
Automatic Generation of Purchasing
Plans for Cloud Services?

Octavio Martín-Díaz, José María García, Pablo Fernandez, and Antonio
Ruiz-Cortés

Dpto. Lenguajes y Sistemas Informáticos
ETS. Ingeniería Informática – Universidad de Sevilla

41012 Sevilla, España – Spain
omartindiaz@us.es, josemgarcia@us.es, pablofm@us.es, aruiz@us.es

Abstract. The myriad of cloud service providers, as well as their over-
whelming variety of configuration and purchasing options, result in a
highly complex purchasing scenario. Furthermore, users may specify their
needs for cloud services provisioning with a certain scheduling restric-
tions. There is a need for an automatic support for obtaining an ap-
propriate purchasing plan, which takes into account both service con-
figurations and scheduling needs, while allowing the comparison among
different providers and their various offerings. In this work, we present
an automatic purchasing plan generator, which analyzes cloud service
offerings from several providers to obtain an optimized purchasing plan
according to user needs. From the obtained purchasing plan, our solution
can provide the corresponding charge plan, possibly including discounts,
which serves the purpose of comparing offerings to get the best option.

Keywords: Cloud Services, Purchasing Plan, Discounts

1 Introduction

Nowadays, IaaS purchasing aims to obtain virtual processing and storage re-
sources from cloud providers, as a way to reduce cost if compared with the pro-
curement of on-premise, private compute infrastructures. However, the myriad
of cloud service providers, as well as their overwhelming variety of configura-
tion and purchasing options [7], result in a highly complex purchasing scenario.
In this setting, there are major heterogeneity issues that make the comparison
among providers rather difficult, e.g. different variables for configurations, addi-
tional purchasing variants apart from the usual on-demand option, billing and
charge processes, and particular discount rules, to name a few.

? This work has been partially supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programmes under grants TIN2015-70560-R,
P12-TIC-1867, and P10-TIC-5906.

On the other hand, users may also specify their needs for cloud services pro-
visioning including specific scheduling restrictions. These restrictions provide ad-
ditional beforehand information concerning not only the number of instances of
particular configurations that are needed at a certain time, but also the amount
of time they are going to be used. Purchasing plans can be derived from the
scheduling restrictions, which in turn may affect the charge plans proposed by
cloud providers, since they usually offer discounts depending on purchase vol-
ume.

There are some tools which implement the search for an optimal configura-
tion, such as [4] and [5], according to particular user needs. However, these tools
do not take into account scheduling. As a consequence, their results, though very
valuable in smaller cases, are but a simplified version of the overall purchasing
scenario. Therefore, there is a need for an automatic support for obtaining an ap-
propriate purchasing plan, which takes into account both service configurations
and scheduling needs, while allowing the comparison among different providers
and their various offerings.

In this work, we present an automatic purchasing plan generator, which an-
alyzes cloud service offerings from several providers to obtain an optimized pur-
chasing plan according to user needs. From the obtained purchasing plan, our
solution can compute the corresponding charge plan. Our solution is able to
search for optimal service configurations and apply discount rules from different
providers, providing facilities to compare their offerings to select the best op-
tion. We have developed a prototype implementation that has been validated in
a particular scenario with three different providers.

The rest of the article is structured as follows. Section 2 introduces a case
study that further motivates our work. Next, Section 3 describes the conceptual
model of the purchasing process. Then, Section 4 presents the architecture of our
solution along with our validation results. Section 5 discusses the related work.
Finally, Section 6 concludes the article and outline our future work.

2 Motivation

In order to further motivate our work, we present a case study about the virtual-
ization of laboratory classes in the context of our Software Engineering courses.
Laboratory classes may have a dynamic evolution from two viewpoints: (1) the
software being used on those classes may evolve, usually requiring increasing
computing resources, and thus possibly rendering the corresponding hardware
obsolete at short notice; and (2) the demand, due to the number of students,
may vary along the academic year. In order to increase flexibility and save over-
all costs, these classes can be virtualized by purchasing cloud infrastructure to
support their dynamic environment.

In this context, we need to clearly state which particular computational re-
quirements we have in order to obtain an appropriate purchasing plan that we
have to follow with some cloud infrastructure services provider. As an example,
let us consider that we need to provide infrastructure for the laboratory classes

of a four-month course beginning on Monday 3rd October 2016, which requires
a very simple hardware configuration of single core CPU and 1GB memory (in
short “Cpu:1 Mem:1”).

MO TU WE TH FR

8h

9h

10h

11h

12h

G1 - 35

G2 - 30

G3 - 25

G4 - 30

G5 - 75

G6 - 20

Fig. 1. Practices Scheduling

Figure 1 outlines the weekly sessions scheduling. There are 6 groups of stu-
dents: G1 to G6. G1 to G4 have 4 hours-week (note that the sessions are over-
lapped between 10h and 11h), G5 has 2 hours-week, and G6 only has 1 hour-
week. These groups have 35, 30, 25, 30, 75, and 20 students enrolled, respectively,
which amount to 215 students. Additionally, there is a classroom open for stu-
dents interested to further work outside regular sessions, which is planned to be
open 6 hours-day from Monday to Friday for 10 students during 3 months, and
30 students during the 4th month which is closer to the exams period.

Starting with the stated user needs including scheduling restrictions, we can
derive a simple purchasing plan that lists the necessary purchasing actions that
have to be carried out to fulfill those needs. Table 1 shows each action as a
temporal event, enumerating the number of instances to be purchased, the term
(or number of months during which the purchasing is valid), and the expected
usage (expressed as hours per month). In this plan we are considering overlaps
between the regular sessions as shown in Figure 1.

In order to actually provision the infrastructural needs for these laboratory
classes, we need to carry out those particular purchasing actions against a cloud
infrastructure service provider. Before selecting a particular provider, different
offers should be compared, considering actual charges and possible discounts to
be applied. Consequently, there is a need for computing expected charges with
respect to user needs to enable comparison amongst providers. Our solution ana-
lyzes user needs, their associated purchasing plans, and available service offerings
to obtain a corresponding charge plan, hence allowing the user to choose the best
option in each case.

Table 1. Purchasing plan for our case study

Event time Instances Terms Usage
(number) (months) (hours/month)

Mon Oct 03 2016 20 4 5
" 75 4 10
" 55 4 10
" 25 4 10
" 30 4 20
" 65 4 10
" 35 4 10
" 10 3 160

Mon Jan 03 2016 30 1 120

3 Modeling the Purchasing Process

As motivated in Section 2, we need a plan generator to compute a purchasing
plan from the user needs which, in turn, given the provider’s offers, will determine
the charge plan which, in the end, will make possible the comparison in order
to select the most appropriate service. In order to automatically perform this
process, we first need to model the relevant descriptions so that our solution can
analyze and transform them into the resulting plan. In the following we present
our modeling approach.

3.1 User Needs

User needs specifies the client’s requirements on particular services (in our case
study cloud infrastructure services, or IaaS in short). These requirements mainly
state (1) the configurations which are needed to execute the client’s software,
and (2) the expected usage schedule .

Figure 2 shows our conceptual model representing user needs. User needs
have a reference to the client’s information, and a validity period which denotes
the global time interval during which the IaaS is going to be used.

User needs are composed of several scheduling groups, which represent the
particular usage schedule of certain service configuration [7].Essentially, each
scheduling group is composed of scheduling items, which are “temporal com-
posites” that detail the validity periods and number of instances of the same
configuration that are needed. The validity period of a scheduling item is a time
interval that may be periodic, and possibly disjoint or overlapped with others.

3.2 Purchasing and Charge Plans

A purchasing plan is composed of purchasing events. Each event comprises a
series of purchasing actions that have to be performed at the same point of
time. Conversely, each purchasing action is represented in Figure 3, including

UserNeeds

validityPeriod: SingleRealTimeInterval

SchedulingGroup

1..*
<<TemporalComposite>>

SchedulingItem

validityPeriod: RealTimeInterval

1..*

1..*

{ ordered }

Client

Configuration

1

1 *has

SchedulingSubItem

validityPeriod: RealTimeInterval
numberOfInstances

Fig. 2. Conceptual model for user needs

the required service configuration (i.e. memory and CPU in our case study), the
purchasing type (prepayment, reservation, on-demand, or others), the expected
usage (in hours/month), the number of instances to be purchased, and the term
(number of months during which the purchase is going to be effective).

Initially, a purchasing plan is not associated with a particular provider. How-
ever, when searching for the most appropriate configuration from provider offer-
ings, there could be specific information (e.g. base price) that would be stated by
corresponding providers. Consequently, the generation of the specific purchasing
plan and subsequent charge plan needs to be particularized for each provider.

Similarly, a charge plan is composed of charge events. In this case, our model
specifies the point of time at which the actual charge is carried out, the type of
charge (e.g. monthly payment or one-time payment), the monetary quantity, and
a reference to the purchasing information that the charge is related to. Though it
is not represented in the figure, purchasing and billing policies, including discount
rules, are taken into account when generating charge plans from the purchasing
plan, as discussed in the following section.

4 Prototype Implementation

In order to validate our approach, we developed a prototype solution that is
based on the models described in Section 3. This solution is able to automatically
derive purchasing plans and corresponding charge plans from different providers
with regards to stated user needs. Figure 4 sketches the overall architecture of
our solution.

On the one hand, service offerings are automatically imported in our sys-
tem using a JSON-LD [10] parser that takes JSON files published by service

PurchasingPlan
PurchasingEvent

timePoint: TimePoint

PurchasingInfo

numberOfInstances
term
expectedUsage
purchasingType: PurchasingType

{ ordered }

1..*

1..*

Amazon
Configuration

basePrice
upfrontPrice

Google
Configuration

basePrice

Rackspace
Configuration

basePrice
infrastructure

ChargePlan

ChargeEvent

timePoint: TimePoint
chargeType: ChargeType
quantity

1..*{ ordered }

references 10..1 Configuration

memory
cpu

1

Provider
0..1

**

1has has

Fig. 3. Conceptual model for purchasing and charge plans

JSON- LD
Annot at or

Of f er i ngs
Par ser

Pur chasi ng
Pl an

Gener at or

User
Needs

Pr i c i ng
Li st i ngsDi scount

Pol i c i es

Pr i c i ng
Li st i ngsPr i c i ng

Li st i ngs

Char ge Pl an
Gener at or

Pr ovi der
Char ge

Pl an

Fig. 4. Architecture of our automatic purchasing plan generator

providers, such as Amazon1 or Google2, and annotate some properties to iden-
tify common properties (such as base price, CPU, or memory) using JSON-LD
facilities. We use the conceptual model sketched in Figure 3 as the fundamental
schema to annotate pricing information from these providers, enabling interop-
erability of their original JSON schemas. Then, annotated JSON pricing listings
are parsed in order to populate the catalog of service offerings from different
providers.

On the other hand, user needs are instantiated according to the model dis-
cussed in Section 3. The purchasing plan generator component analyzes user
needs and scheduling restrictions in order to obtain a specific purchasing plan,
such as the one shown in Table 1. Generic purchasing plans need to be instanti-
ated with respect to a specific service provider, so that a subsequent charge plan
is generated. The charge plan generator component of our system perform this
process, taking into account discount policies of each provider to finally obtain
a specific provider charge plan that completely fulfill user needs.

In order to validate our solution, we carried out the case study described
in Section 2 using the implemented prototype. We considered service offerings
from Amazon, Google, and Rackspace. As stated by our user needs, our tool
searched for the closer configuration to “Cpu:1 Mem:1” in their catalogs, using
the approach presented in [7]. According to the on demand purchasing type,
Table 2 summarizes the results of the search3:

Table 2. Selected configurations for our case study

Provider Configuration Base price Infrastructure Price

Amazon t2.micro 0.013$/hour
Google g1-small 0.027$/hour

Rackspace General1-1 0.032$/hour 0.005$/hour (Min 50$/month)

After applying each provider’s policies regarding the purchasing process, in-
cluding discount rules, Table 3 shows the corresponding charge plans:

In this case, Amazon is the best option. However if we elevate the require-
ments, for instance increasing the usage to 15 or 24 hours-day, requiring a more
powerful configuration “Cpu:16 Mem:120” or “Cpu:32 Mem:240”, or increasing
the number of students, then it would be possible that the application of dis-
count rules results in other providers becoming better options. Table 4 shows
the resulting totals.

In this situation the best option depends on the particular case. Amazon is
cheaper with smaller configuration, but it is the most expensive when strong
requirements are needed, with Google offerings being the best positioned.
1 http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/
price-changes.html

2 https://cloudpricingcalculator.appspot.com/static/data/pricelist.json
3 Note that all prices considered were obtained on April, 20th 2016.

Table 3. Charge plans for our case study

Amazon Google Rackspace

Date Quantity Date Quantity Date Quantity

Nov 01 2016 56.74$ Nov 02 2016 117.85$ Nov 03 2016 202.70$
Dec 01 2016 63.05$ Dec 02 2016 130.95$ Dec 03 2016 202.70$
Jan 01 2017 63.05$ Jan 02 2017 130.95$ Jan 03 2017 202.70$
Feb 01 2017 86.45$ Feb 02 2017 179.55$ Feb 03 2017 276.70$
Mar 01 2017 8.91$ Mar 02 2017 18.50$

Total 278.20$ Total 577.80$ Total 884.80$

Table 4. Comparison between different variants of our case study

Amazon Google Rackspace
Case study variant (Prepayment)

4 hours-day (initial case study) 278$ 577$ 884$
9 hours-day 947$ 1,958$ 2,697$
15 hours-day ... 1,579$ 3,218$ 4,495$
24 hours-day ... 2,527$ 4,889$ 7,192$
... and Cpu:16 Mem:120 536,544$ 185,528$ 238,157$
... and Cpu:32 Mem:240 1,073,088$ 365,057$ 449,254$
... and Cpu:32 Mem:240 / x10 users 10,730,880$ 3,650,573$ 4,262,025$

As a conclusion, obtaining the best provider for certain user needs and
scheduling restrictions depends on the actual configurations needed as well as
the discount policies that providers offer. Our solution supports this process, fa-
cilitating the computation of purchasing and charge plans that can be compared
among different providers.

5 Related Work

As far as we know, there is no approach to the purchasing problem which takes
into account both heterogeneity of configuration, purchasing options, and dis-
count rules, together with a required usage scheduling. However, there are related
works which partially solve the purchasing and related problems.

First, previously cited tools such as [4, 5] compare providers given a con-
figuration and some purchasing options, but discount rules and scheduling are
not taken into account. From a workflow perspective, there are approaches to
optimize the IaaS purchasing process supporting a workflow under scheduling
restrictions [1, 6, 12, 13]. From an economic perspective, some studies on the
cost of cloud services have been carried out [2, 3, 15], focussed on the analysis of
investments to support the decision making during the purchasing process, but
they do not address how the different purchasing options are formally expressed.
From a quality perspective, in [8] authors provide a comprehensive model to

automate the ranking of different providers, but define a simplified version of
cost and do not introduce a real purchasing option variability in their scenario.

Concerning purchasing models, similar limitations can be found in other re-
lated works such as [9] where authors present an initial review of different pricing
models for cloud services that shows simple cost model scenarios, but elements
such as purchasing processes variability or discounts are not discussed. For in-
stance, in [16], authors present a formal language for cloud services.

There are also general comparisons among cloud providers, such as [14] whose
author presents a comparison framework where different characteristics of the
purchasing process, including the price model, are evaluated in order to obtain
a classification of service providers.

6 Conclusions and Future Work

Purchasing plans are of utmost importance when trying to optimize computa-
tional resources required to fulfill some user needs during specific time periods.
This article presents a solution to automatically derive purchasing plans from
user needs specification including scheduling restrictions. After modeling user
needs for a particular scenario, our prototype implementation searches for ap-
propriate service configurations from different providers and generates the cor-
responding charge plan related to the purchasing actions needed to fulfill user
requirements. Consequently, users can choose the best provider with respect to
their needs.

As future work, we plan to further validate our approach, automatically
crawling pricing and service configuration options from other providers, such
as Microsoft of Heroku. Moreover, we will integrate our current solution with
previous work in order to optimize purchasing plans and hence obtain more
competitive charge plans [11]. Finally, we are evaluating rule-based approaches
to generalize the definition of discount rules from service providers.

Acknowledgements

Authors would like to thank Manuel Arenillas for his support on the prototype
implementation.

References

[1] Anbazhagi, Latha Tamilselvan, and Shakkeera. QoS based Dynamic Task Schedul-
ing in IaaS Cloud. In 2014 IEEE International Conference on Recent Trends in
Information Technology (ICRTIT), 2014.

[2] Slaven Brumec and Neven Vrček. Cost effectiveness of commercial computing
clouds. Information Systems, 38(4):495–508, 2013.

[3] Se-Hak Chun and Byong-Sam Choi. Service models and pricing schemes for cloud
computing. Cluster Computing, 17(2):529–535, 2014.

[4] Cloudorado.com. Cloud Computing Price Comparison Engine. http://www.
cloudorado.com/.

[5] CloudScreener.com. Cloud Computing Comparison and Evaluation. http://www.
cloudscreener.com/.

[6] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Cost-Optimal
Scheduling in Hybrid IaaS Clouds for Deadline Constrained Workloads. In 2010
IEEE 3rd International Conference on Cloud Computing, 2010.

[7] Jesús García-Galán, Pablo Trinidad, Omer F. Rana, and Antonio Ruiz-Cortés.
Automated Configuration Support for Infrastructure Migration to the Cloud. Fu-
ture Generation Computer Systems, 2015.

[8] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. A framework
for ranking of cloud computing services. Future Generation Computer Systems,
29(4):1012–1023, 2013.

[9] Sahil Kansal, Gurjeet Singh, Harish Kumar, and Sakshi Kaushal. Pricing mod-
els in cloud computing. In ACM International Conference on Information and
Communication Technology for Competitive Strategies (ICTCS), page 33, 2014.

[10] Markus Lanthaler and Christian Gütl. On using JSON-LD to create evolvable
restful services. In Rosa Alarcón, Cesare Pautasso, and Erik Wilde, editors, Third
International Workshop on RESTful Design, WS-REST ’12, Lyon, France, April
16, 2012, pages 25–32. ACM, 2012.

[11] O. Martín-Díaz, P. Fernandez, P. Trinidad, and A. Ruiz-Cortés. Apoyo a la toma
de decisiones en la compra de iaas. In 10th Jornadas de Ciencia e Ingeniería de
Servicios (JCIS’14), pages 179–188, Cádiz, Spain, 2014.

[12] Nuttapong Netjinda, Booncharoen Sirinaovakul, and Tiranee Achalakul. Cost
Optimal Scheduling in IaaS for Dependent Workload with Particle Swarm Opti-
mization. The Journal of Supercomputing, 68(3):1579–1603, 2014.

[13] M. K. Nivodhini, K. Kousalya, and S. Malliga. Algorithms to Improve Scheduling
Techniques in IaaS Clouds. In 2013 IEEE International Conference on Informa-
tion Communication and Embedded Systems (ICICES), 2013.

[14] Thoran Rodrigues. 11 Cloud IaaS Providers Compared.
http://www.techrepublic.com/blog/the-enterprise-cloud/
11-cloud-iaas-providers-compared/.

[15] Bhanu Sharma, Ruppa K Thulasiram, Parimala Thulasiraman, Saurabh K Garg,
and Rajkumar Buyya. Pricing cloud compute commodities: a novel financial
economic model. In 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pages 451–457, 2012.

[16] Rafael B. Uriarte, Francesco Tiezzi, and Rocco De Nicola. SLAC: A formal
Service-Level-Agreement Language for cloud computing. In IEEE/ACM th Int.
Conf. on Utility and Cloud Computing (UCC), pages 419–426, 2014.

