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Abstract: Firewall ACLs can contain inconsistenciBisere is an inconsistency if different actions ba taken on the
same flow of traffic, depending on the orderingtloé rules. Inconsistent rules should be notifiedhi®
system administrator in order to remove them. Maligiagnosis and characterization of inconsistenisie
a combinatorial problem. Although many algorithnasd been proposed to solve this problem, all reskew
ones work with the full ACL with no approximate histics, giving minimal and complete results, but
making the problem intractable for large, real-lf€Ls. In this paper we take a different approdest,
we deeply analyze the inconsistency diagnosisé@wfll ACLs problem, and propose to split the pescie
several parts that can be solved sequentially:nisistency detection, inconsistent rules identifaoat and
inconsistency characterization. We present polyabtméuristic algorithms for the first two parts thie
problem: detection and identification (diagnosig) ilmconsistent rules. The algorithms return several
independent clusters of inconsistent rules thatbeanharacterized against a fault taxonomy. Thesters
contains all inconsistent rules of the ACL (algomiis are complete), but the algorithms not necdgssvie
the minimum number of clusters. The main advantagihe proposed heuristic diagnosis process is that
optimal characterization can be now applied to ihsmaller problems (the result of the diagnosess)
rather than to the whole ACL, resulting in an efifieec computational complexity reduction at the cafshot
having the minimal diagnosis. Experimental reswith real ACLs are given.

1 INTRODUCTION possible:allow or denya packet. A firewall ACL is
commonly denominatedrale set

A firewall is a network element that controls the  Firewalls have to face many problems in real-life
traversal of packets across different network Medern networks (Wool, 2004). One of the most
segments. It is a mechanism to enforce an Accesdmportant ones is rule set consistency. Selectbrs o
Control Policy, represented as an Access ControlfUlés can overlap (for example, the protocol
List (ACL). An ACL is in general a list of linearly ~ Seléctor), and can even be rules that are totgliale
ordered (total order) condition/action rules. The [© Others. Since a packet can be matched with &ny o
condition part of the rule is a set of condition the overlapping rules, firewalls usually use a
attributes or selectors, whefeondition|=k (k is the pos_|t|onal confl_lct resolut|_0n techmque3 takm_gpth
number of selectors). Theondition set is typically ~ &ction of the first matching rule. An inconsistent
composed of five elements, which correspond to five firewall ACL implies in general a design error, and
fields of a packet header (Taylor, 2005). In firtisa indicates that_the flrgwall is accepting trafficath
the process of matching TCP/IP packets againstShould be denied or vice versa. o
rules is called filtering. A rule matches a packet  1he minimal inconsistency characterization is a
when the values of each field of the header of a COmbinatorial problem. AIthoug_h many algorithms
packet are subsets or equal to the values of itsh@ve been proposed to solve it, to the best of our
corresponding rule selector. Thetion part of the knowledge, aII_of them are brgte _force. These tesul
rule represents the action that should be takermfor €turn an optimal characterization, but make the
matching packet. In firewalls, two actions are problem intractable for large real-life rule sets.



In this paper we propose to take a different 2 ANALYSISOF THE
approach in order to make the problem tractable for CONSISTENCY PROBLEM

real-life, big rule sets. We propose to divide
consistency management in three sequential stages: To understand the problem, it is important to kst

: I_ncqn5|stency detectlon._ It is _ the action of review the inconsistencies characterized in the
finding the rules that are inconsistent with other bibliography. A complete characterization that
rules“ ) . i Lo includes shadowing, generalization, correlation and

* ldentification of inconsistent rules. Finding the redundancy has been given in (Al-Shaer, 2006).
rules that cause the inconsistencies among theajihough all of these are inconsistencies, usuatly
detected inconsistent rules, and whose removaly)| are considered to be errors. as it can be tsed
produces a consistent rule set. cause desirable effects. All of these inconsisesnci

* Inconsistency characterization is understood asexcept redundancy are graphically represented in
the action of naming the identified inconsistent Fig. 1. For the sake of simplicity, only two rule
rules among an established taxonomy of faults. jnconsistencies with one selector are represented.

) ) ) example of an ACL is presented in Table 1.
This paper focuses in the first two parts of the

process (detection and identification, diagnoss). R =

we will show, detection is a problem that can be action=allow action=deny
solved in polynomial time with complete algorithms. = n
However, optimal identification and characterizatio action=deny action=allow
are combinatorial problems. In this paper, we
propose best cag®(n) and worst cas©(r?) time
complexity order independent detection and (a) Shadowing (b) Generalization
identification algorithms with the number of rules

the rule setn. Algorithms are capable of handling =

full ranges in rule selectors without doing rule action=deny
decorrelation, range to prefix conversion, or any

other pre-process. A Java tool is available. o R,
We consider this work a significant advance in action=allow
consistency diagnosis in firewall rule sets because
isolating diagnosis from characterization can reduc (¢) Correlation (d) Independency

the effective computational complexity of optimal
characterization algorithms, since they can now _ . ) . »
applied to several smaller problems (the resuthef Figure 1: Graphical representation of three incdeaises
diagnosis stage) rather than to a big one (theidl
set). The work presented in this paper is an
improvement over a previous presented one (Pozo
2008). In this paper, best case has been improyed b
and order of magnitude and worst case by a
constant. Although the worst case improvement may
not seem representative in theoretical results, we
will show that this improvement is very important i
real-life rule sets, since they are near the best.c

In this paper, we propose to divide consistency
management in three sequential stages (Fig. 2). In
the first step, all inconsistent rules are detected
Then, the minimal number of rules that cause the
detected inconsistencies should be identified. fThei
removal guarantees that the resulting rule set is
consistent. These two stages are called Inconsisten
Diagnosis. Finally, the identified inconsistentesil
This paper is structured as follows. In section 2, are characterizet_j among a (_astablished taxonomy of

firewall rule set inconsistencies. The detectiont pa

we analyze the internals of the consistency £ th b ved  with let
management problem in firewall rule sets. In sectio 0 € process can be solved with - compiete
polynomial algorithms (the most important are

3 we propose the consistency-based diagnosis'? din the related K ” q
algorithms, give a theoretical complexity analysis reviewed in de r_ea(?[h_wor S Sec |0n_,r2n a new oln
and experimental results with real rule sets. In IS proposed - In IS pz_;\per). € minima
section 4 we review related works comparing them identification is a combinatorial problem, as isrgp

to our proposal. Finally we give some concluding LO b_et_shO\INed_ﬂ;n the next sedct!ont.h_A polynon_’ll_lﬁl
remarks in section 5. euristic algorithm is proposed in this paper. The

third and last problem is also combinatorial (Pqzo4
2008) (the most important works are reviewed later



Table 1: Example of a Firewall Rule Set

Priority/ID Protocol SourcelP SrcPort  Destination IP Dst Port Action
R1 tcp 192.168.1.5 any xR 80 deny
R2 tcp 192.168.1.* any koK kK 80 allow
R3 tcp * kK any 172.0.1.10 80 allow
R4 tcp 192.168.1.* any 172.0.1.10 80 deny
R5 tcp 192.168.1.60 any * kR K 21 deny
R6 tcp 192.168.1.* any koK kK 21 allow
R7 tcp 192.168.1.* any 172.0.1.10 21 allow
R8 tcp kR kK any kR kK any deny
R9 udp 192.168.1.* any 172.0.1.10 53 allow
R10 udp * ok k * any 172.0.1.10 53 allow
R11 udp 192.168.2.* any 172.0.2.* any allow

in this paper). Diagnosis is also rule-order
independent, contrarily to characterization. Thénma
difference of this work with other ones is thateath
authors apply brute force algorithms to solve diyec
the characterization problem, with no previous
diagnosis. This yields algorithms that cannot be
applied to big rule sets. With the proposed apgrpac
the same characterization algorithms can be applied,
to several smaller problems, rather than to the ful
rule set. However, the number of these smaller
problems is not minimal with the given heuristic
algorithms proposed in this paper. In addition,
heuristic characterization algorithms (Pozo4, 2008)

Let R=< H, Action>, HON?® be a rule, where
Action={ allow den} is its action.

Let R[K,1< ks n kO

{ protocol, src_ ip, src_ prt dst_ ip dst_ p}t

be a selector of a firewall rufg.

Let ‘<’ and >’ be operators defined over the
priority of the rules, wher&, < R, implies that
thenR, has more priority thaR, and its action
is going to be taken first, and vice versa.

Attending to Al-Shaer characterization, two rules

can also be used to make the problem fully traetabl (R, R) are correlated if they have a relation

2.1 OnetoOneConsistency in Firewall
Rule Sets

First, it is needed to formalize a firewall rulg.se
Let RS be a firewall rule set consisting of

rules,RS={ R... R} .

DIAGNOSIS

DETECTION

(Polynomial)

IDENTIFICATION

(Combinatorial)

v

CHARACTERIZATION

(Combinatorial)

Figure 2: Consistency management process

between all of its selectors, and have different
actions. Fig. 1(c) represents a correlation
inconsistency between two rules with one selector
each. As the figure shows, the relation between the
rules is not subset, nor superset, nor equal (fRles
and R3 of Table 1 are correlated). Fig. 1(a)
represents a shadowing inconsistency between two
rules. The relation is equality or subset of the
shadowed rule, | respect to the general rule,,R
with R>R, (R4 is shadowed by R3 in Table 1
example). Fig. 1(b) represents a generalization
inconsistency between two rules, which is the
inverse of shadowing respect to the priority of the
rules. The relation is superset of the general rule
respect to the other one (R2 is a generalizatidR3of

in Table 1 example).

Since we are only interested in diagnosis and not
in characterization, let's try to remove names and
give a general case of inconsistency based on these
inconsistency characterizations (except redundancy)
In a closer look at shadowing and generalization
inconsistencies in Fig. 1, it can be seen that, in
reality, these two inconsistencies are the same one
and the only thing that differentiates them is the
priority of the rules. Thus, if priority is ignored
these two inconsistencies are special cases of a



correlation. That is, shadowing can be redefined as 2.2 Oneto Many Consistency in

correlation where all selectors of one rule (the Firewall Rule Sets
shadowed one) are subsets or equal of the general
rule. As generalization is the inverse with resgect All base situations are presented in Fig. 3, which

the priority of shadowing, a generalization js an extension to Fig. 1. This figure is a
inconsistency can also be redefined as a corralatio simplification to three inconsistent rules, but can
where of all selectors of a rule (the general @re)  easily be extended to more rules that can be
supersets of the other rule. So, the correlation composed in several ways.
inconsistency can be redefined as the supersét of a  Fig. 3(al) represents an inconsistency where the
inconsistencies, representing the most general caseunion of two independent rules, AR, overlaps with
For that reasons, it is possible to definele another one, RFig. 4(a) taken from (Garcia-Alfaro,
inconsistencyin only one priority independent case 2007) exemplifies this situation). As ,Ris
that recognizes all characterized inconsistencies.inconsistent with R and R is also inconsistent with
This is a key issue for our diagnosis process. R,, both in an independent manner, this situation can
be decomposed in two independent inconsistencies,
Definition  2.1.  Inconsistency. Two  rules and can easily be diagnosed.

R,RO RS are inconsistentif and only if the

intersection okach ofall of its selector®k[k] is not Re Ry Ry R.
empty and they have different actions Action=allow | Action=allow Action=allow | Action=allow
independentlyof their priorities The inconsistency iénonmeny i;tion:deny
between two rules expresses thbessibility of an
undesirable effect in theemanticsof the rule set. ‘
The semantics of the rule set changes if an
inconsistent rule is removed. @ ©n
R R,
. . s . . Action=deny Action=deny
< . < < .
Inconsistent R RBl<s € r O R RSB <), nZj R R R 5
R[k] N R[ k 200 ER Actidn¢ R ActE[)n allow | allow allow | allow
Ok D{ protocol, src_ ip src_ prt dst_ ip dst p}1
Inconsistency of one rule in a RS (@2) (62)
R, R,
Inconsistent R R Rgl< ,i§ n#d ¢ Action=deny Action=deny
RIKNR[ k#00 R Actignz R Actbn R,
Action=allow
Ok I]{ protocol, src_ ip src_ prt dst_ip dst p}t
Inconsistency between two rules in a RS ©

. o Figure 3: Graphical representation of inconsis@&sci
This definition can be extended to more than two petween three rules

rules, as is going to be explained in the nexticect

A_ttending to Definition 2.1, aII.cases represernited Fig. 3(a2) presents a similar situation, whege R
Fig. 1 are of the same kind, and are called gyerlaps with the union of Rand R. This situation
inconsistencies  without any particular  js also decomposable in two independent

characterization. Priority is only required if jnconsistencies: Rnconsistent with R and R with
inconsistencies are going to be characterized. WeR,. Note that, in order to diagnose inconsistencies,
showed that all inconsistencies between pairs ofthe priority of the rules is not necessary.

rules can be detected by pairs of two with Defamiti The situations presented in Fig. 3(b1) and Fig.
2.1, but more complicated situations must also be3(p2) are the inverse of the two previous ones
analyzed in order to illustrate this definition. next respect to the action. Thus, the diagnosis is
sections we show that no extension is needed toanalogous. This situation is exemplified in Figh)4(
Definition 2.1, since the case of to onerule  Finally, Fig. 3(c) represents a relation with three
inconsistency can be decomposed in severalgyerlapping rules (an example is in Fig. 4(c)).sThi
independent two-rule inconsistencies. situation can also be decomposed in two



independent ones: Rnconsistent with R and R Note that, as the diagnosis process is order-

with R,. independent, the new rule can be inserted anywhere
In conclusion, it is possible to diagnose in the rule set. Again, these two situations can be

inconsistencies between an arbitrary number orule easily extended to more than three rules.

with Definition 2.1, because all the presented

situations can be decomposed in independent two by g, Ry R R,
two relations. These examples are easily extendablg Acton=deny Acticnasicy GEBlal] | Actionzallow
to more than three rules.

R,

Action=allow R.

Action=allow
RX:{ port[10 - 50]} = { 3”0"} (a) Partial overlap with (b) Total overlap/subset with
one or two rules I t I

Ry:{ port0[40 - 90} = { allov} superset with ore o hwo ules
Rz:{ portd[30 - 80} :>{ den}/ Ry R,

(a) Action=deny Action=deny
Ry:{ portd[10 - 50} 2{ aIIov} -

Action=allow

Rz: { portl:l [40 B 90} = { allov} (c) Total_over_lap with one
Rx:{ porti[0 - 100} = { der gl e o

(b) Figure 6: Graphical representation of a new incziest
Rx:{ portd[0 - 50]} 2{ den} rule added in an consistent rule set
Rz:{ portd[60 - 100} 2{ den}/
Ry:{ portd[40 - 70} = { allow} 3 CONSISTENCY-BASED

(c) DIAGNOSISOF RULE SETS

Figure 4: Inconsistency examples The presented analysis has motivated the separation

of characterization from diagnosis, and to solve th
diagnosis problem in isolation, as a first stagettie
optimal inconsistency characterization problem. As
it is going to be showed, the result of the diaggos
process is the identification of the rules thatseau
the inconsistencies in the rule set and for eaah on
the set of the rules which they are inconsistetih.wi
Each of these sets and their corresponding idedtifi
conflicting rule can be taken as input to the
characterization part of the process, resultingin

If a new rule, R is added to amconsistentule
set, the new rule can only cause a new inconsigtenc
with one to all of the rules in the rule set, isimilar
way that it did in the previous case (Fig. 5).dhnot
modify a previous inconsistency, or cause an
inconsistency between two consistent rules, and
without the new rule. This inconsistency can also b
decomposed in two by two inconsistencies, which
are independent of the inconsistencies that were
present in the rule set previously to the additibn ffocti tational lexit ducti
R,. In the same way, if a new rule is inserted in a eriective - computational — compiexity reduction

consistentrule set, a similar decomposition can be (solving severa] smaII_ combinatorial problems is
done (Fig. 6) ' faster than solving a big one). However, recalt tha

as the optimal identification of inconsistent ruies

" R combinatorial problem, the application of an optima
- action=allow action=deny characterization algorithm to the result of the
action=deny R, proposed heuristic diagnosis process is sensétess.
Ry action=deny contrast, heuristic characterization algorithms
action=allow R, (Pozo4, 2008) can be used, with a heavy
- — action=allow improvement in computational complexity of the

* dconisaniries O oo full process.

In this section, two algorithms which implement
Figure 5: Graphical representation of a new inczinst Def”’“tlor} 2.1and _the diagnosis process explalned
rule added in an inconsistent rule set the previous section are presented. Algorithms are
capable of handling ranges in all selectors.



3.1 Stage 1. Detection of Inconsistent

: Algorithm 1. Inconsistency Detection algorithm
Pairsof Rules

1. Func detection(in  List:  ruleSetAllow,
i . . 2. ruleSetDeny; out Graph: ig)
The first stage of the process detects the inctamis 3 Var
rules of the rule set and returns an Inconsistency Rule ri. ri
Graph (IG, Definition 3.1) representing their 4. ;e
relations. Note that the detection process, like 5. Integer i, |
Definition 2.1, is order independent. Also notettha 6. Alg _ _
the presented algorithm is complete, as it 7- for each j=1..ruleSetAllow.size() {
implements Definition 2.1 (which is complete). 8. rj= ruleSetAllow.get())
9. for each i=1..ruleSetDeny.size() {
Definition 3.1. Inconsistency Graph, |G. An IG is 10. ri = ruleSetDeny.get(i)
an undirected, cyclic and disconnected graph whose 11, if (inconsistency(ri, rj)) {
vertices are the inconsistent rules of the rule aed 12. ig.addVertex(ri)
whose edges are the inconsistency relations between 13 ig.addVertex(rj)
the these rules. Note that |IG| is the number of ,, ig.addEdge(r, rj)
inconsistent rules iRS and ||IG|| corresponds with 15. }
the number of inconsistencies pairs of ruleR&or 16 }
simple the number of inconsistenciedi8. 17' }
LetIG =<V ,E> be an undirected, cyclic and disoected grap 18. End Alg
V(IG)=RORSL< & n Inconsisteft; R BS 19.
E(IG)=R, RO Vi< i j< ni# j» Inconsistert B R RS 20. /I Implements the Inconsistency Definition
21. Func inconsistency(in Rule: rx, ry; out
Algorithm 1 presented in Figure 7 (implemented ~22. Boolean: b)
in Object Oriented paradigm and using abstract data 23- Var
types) exploits the order independence of the 24 Integer i
inconsistency  definiton and only checks 25. Alg
inconsistencies between rules with different actjon  26. b = true
dividing the ACL in two lists, one witlallow rules 27. i=1
and the other witldenyones. The algorithm receives  28. while (i<=rx.selectors.size() AND b)
two rule sets. One of them is composedabbw 29. b = b AND intersection(rx.getSelector(i),
rules and the other afenyrules of the original rule 30. rgtgelector(i))

set. This decomposition is a linear complexity 54
operation. The algorithm takes one of the rule sets 32
. g . . }
and, for each rule, it checks if there is an 55
inconsistency with other rules in the other one. As End Alg
all inconsistencies can be decomposed in two by two
relations, there is no need to check combinatidns o
more than two rules. Each time the algorithm finds ruleSetAllow.size()=nand ruleSetDeny.size()=0or
an inconsistency between a pair of rules, the two ruleSetAllow.size()=0 and ruleSetDeny.size()=n
rules are added as vertices to the IG, with a nonThus, the complexity of the improved detection
directed edge between them. The algorithm returnsalgorithm depends on the percentagealéw and
an IG. Since all possibilites have been checked, denyrules over the total number of rules.

i=i+1

Figure 7: Inconsistency detection algorithm

Algorithm 1 detects of all possible inconsisteriesu However, there are other inner operations that
(i.e. it is complete). Fig. 8 presents the resglti@  should be analyzed in lines 12 to 15. The first, ame
of the Table 1 example. line 12, isinconsistency(which is composed of an

Time complexity of Algorithm 1 is bounded by iteration. ~ This  operation implements the
the two nested loops (lines 8 and 10). Each rule ininconsistency definition. In typical firewall ACLs,
ruleSetAllowis tested for inconsistency against rules k=5, and thus the iteration runs 5 times. Anyway,
in ruleSetDeny The worst case for the loop is the iteration is bounded by the number of selectors
reached when ruleSetAllow.size which is a constank.

ruleSetDeny.size().e. half rulesallow and the other In addition, inside the iteratiorthere is an
half deny, and the best case when intersection between each selector (lines 28 to 30)



The typical 5 selectors of firewall ACLs (Table 1)
are integers or ranges of them, except IP address:
Knowing if two ranges of integers intersect can be
done in constant time with a naive algorithm which

Algorithm 2. Inconsistent Rule Identification algorithm
. Func identification(in Graph:ig; out List of
2. Treezicirs)

compares the limits of the intervals. Knowing ifotw Var o

IP addresses intersect can also be easily done in%: Tree icir

constant time by comparing their network addresses - Alg

and netmasks. Other operations of the inner loop 6- while (ig.hasVertices()) {

(lines 12 to 14) are the graph-related ones. If the 7. Vertex v = ig.getMaxAdjacencyVertex();

graph is based on hash tables, vertex and edgeS8. List adj = ig.getAdjacents(v)

insertions run in constant time, except in somegas 9. icir.createEmptyTree()

where rehashing could be necessary. 10. icir.setRoot(v)
11. icir.addChildren(adj)

° e e e 12. icirs.add(icir)

13. ig.removeVertexWithEdges(v)
14. ig.removeNotConnectedVertices()
15. }

H—® @—F& 5

Figure 9: Inconsistency identification algorithm

rules (the result of the previous stage) with an
@ heuristic algorithm. Algorithm 2 (Fig. 9) was
initially presented in (Pozo, 2008). It receives
@ @ as input and takes iteratively the vertex with the
greatest number of adjacencies (lines 6 and 7), tha
is, the vertex with the greatest number of
@ inconsistenciesy. Then, an independent cluster of
inconsistent rules (ICIR, Definition 3.2) is credias
. ) a tree withv (the conflicting rule of the cluster) as its
Figure 8: Inconsistency graph root, and its adjacents (the inconsistent rules) as
leafs (lines 8 to 12). The root of all ICIRs frohet
For all these reasons, the complexity of the two piagnosis Set (DS, Definition 3.3), or the set of
nested loops is only affected by a constant faictor  yyles that must be removed to get a consistent rule
all cases, which depends on the constant number oket, Theny and its edges are removed from the 1G
selectorsk. Thus, worst case time complexity of the (line 13). If vertices with no edges are left i G,

detection algorithm is iD(’), best case is i®(N),  then these vertices are removed (line 14), sineg th
and average case is iB(n-m)with the number of  are consistent by definition (they are rules with n
allow rules,n, anddenyrules,min the ACL. relations with others). As inconsistencies havenbee

Space used by Algorithm 1 is the sum of the gecomposed in pair wise relations, ICIRs are always
space needed to store the ACL, and the one needeghrmed by two levels. For the analyzed example, the
for the graph. In best case the graph would have ajgorithm finishes with a diagnosis set of cardiyal
vertices andh-1 edges. In the worst case, there could fjye (IDS|=5), containing the rule®S={R8, R12,
be n-1 inconsistent rules and alsel edges per R5 R1, R4}which are the ICIR roots or the rules

vertex. Note that the space needed to store anigdge that cause an inconsistency with other ones. If all
fewer than the needed to store a vertex, since@nly ryles of DS are removed, the resulting rule set is

reference between vertices is needed. consistent. R8 and R12 were the most conflicting
) ) ones . A trace of the different iterations of Aligiom
3.2 Stage 2. Detection of Inconsistent 1 when applied to Table 1 was presented in (Pozo,
Pairsof Rules 2008).

The second and last stage of the diagnosisDefinition 3.2. Independent Cluster of
process identifies the rules that cause thelnconsistent Rules, ICIR. An ICIR(root, CV)is a
inconsistencies from the set of inconsistent pafrs two level tree, rooted in the ruteot and whereCV



is a set of rules (its leafs). It represents atelusf

mutually consistent rule€V, which are at the same

time inconsistent with theiroot. ICIR(root) is the

rule  which has the greatest number of

inconsistencies with other rules of the same ctuste e e e e e @ @
Note that the actiofCIR(root) is the contrary of the

actions of all of its leafs i€ V.
ICIR1 ICIR 2

ICIR(root, CV) =
OR O CVe Inconsisterft root RO
OR,ROCV, i# o= Inconsister{t R R

Definition 3.3. Diagnosis Set, DS. This is the set of
rules that cause the inconsistencies, and coincide

3 ICIR3 ICIR 4 ICIR5
with the root of all ICIRs.

Figure 10: Generated ICIRs and the Diagnosis Set

LetICIRS={ICIR,....ICIR } Algorithm 2 needs some space to store the
be the set of all ICIR of a giveRS , th ICIRs. Each ICIR needs space for its root andHer t
_ conflictive rules. But note that, as the algoritliisn
DS'{ ICIR(roo,..., ICIF\;(rool)} creating the ICIRs, the corresponding vertices and
edges are removed from the IG, and thus at each
If the rules from the DS are directly removed iteration only the space to store the adjacentyofis
from the rule set, it gets consistent. Note tha th the removed vertex is necessary. Complexities are
heuristic is not necessarily minimal. presented in Table 2.
Time complexity of Algorithm 2 is bounded by
the loop of line 5, which runs as many times as

ICIRs are formed (it corresponds with the cardigali Act! ALz Aot AcLz
of the Diagnosis Set|DS|). The worst case is
reached, as in  Algorithm 1, when > Ry R, R,
ruleSetAllow.sizegruleSetDeny.size()=n/2 (Fig. == — R:
11(b)), resulting in a|DS|=n/2 In this case, I /2 " 2
getMaxAdjacencyVertex(Xline 7), a maximum
calculus, runs if©(n) with the number of vertices of
(a) Best case (b) Worst case

the graph (the number of inconsistencies).
Operations of lines 8, 9, 10, 11, and 12 run in Figure 11: Identification best and worst cases
constant time.removeVertexWithEdges(Jine 13)

runs in linear time with the cardinality of its The result of the diagnosis process is the set of
adjacency list r{/2-1 in the worst case). Finally, all ICIRs. As each ICIR represent a different
removeUnconnectedVerticegline 14) is also linear  independent inconsistency, exhaustive search
with the number of vertices in the graph at each optimal characterization algorithms can be applied
iteration, O(n). Thus, the resulting worst case time to each one independently, reducing the effective

complexity of Algorithm 2 is inO(|DS|-(n+n/2- computational complexity of the whole process. In

1+n))=0(n/2-n)=0(rf). addition, heuristic characterization algorithms can
The best case is reached, as in Algorithm 1, also be applied (Pozo4, 2008) Also note that the

when ruleSetAllow.size()=n and presented proposal makes no assumptions about how

ruleSetDeny.size()=0r vice versa (Fig. 11(a)). The selector ranges are expressed. This is important,
IG only has one vertex, connected to all the other because if the original rule set is directly used b
vertices. In this cas¢DS|=1 and the algorithm is in  algorithms, inconsistency results are given over th
O(n). In an average case the algorithm is in original, unmodified rule set.

O(|DS|-h), |DS|<<h (h is the number of

inconsistencies).



Table 2: Detection and Identification Time Complist rules are in them); the fifth the number of
inconsistencies; and the sixth, seventh and last
columns the execution time of the detection,
identification and the sum of them.

Number of Best Average Worst Space
inserted rules case case case Worst

Detection O(n) OMm) O@®) Rulnes-h _ The conducted performz_;mce analysis_ represents a
Edges wide spectrum of cases, with ACLs of sizes ranging
n from 50 to 10600 rules, and percentagesaldw
Identification O(n) O(IDS]-h), O Rulesh anddenyrules ranging from 2% to 65%. Recall that
|DS|<<h Edges worst case for the improved detection algorithm is
. n half rulesallow and the other halleny Also note
combined - 5y 5.m)  O@ Rules-h that real ACLs have some important differences with
(Diagnosis) Edges synthetically generated ones. The most important
one is the number alenyandallow rules: as real
3.3 Experimental Results firewall ACLs are usually designed wittieny all

default policy, most rules are going to haalow
In absence of standard rule sets for testing, theactions. In ACLs designed witallow all policy,
proposed heuristic process has been tested with reamost rules would havedenyactions. Also note that,
frewall rule sets (Table 3). The first column as the percentage allow or denyrules decrease,
represents the size of the rule set; the secondhene the number of inconsistencies does necessarily not,
percentage of deny rules over the rule set size; th because the number of inconsistencies depend on
third the cardinality of the Diagnosis Set, [D$F, ( how many rules with different actions intersecteTh
the number of generated ICIRs), or the result is that the worst case would not normally
combinatorial problems to be solved by an optimal happen in real firewall ACLs. Experiments were
characterization algorithm; the fourth represehts t ~Performed on a Java implementation with Sun JDK
average size of each ICIR (that is, the number of 1.6.0_03 64-Bit Server VM, on an isolated HP
ICIRs divided by |DS|), or the average size of the Proliant 145G2 (AMD Opteron 275 2.2GHz, 2Gb

characterization problems to be solved (how many RAM DDR400). Execution times are in ms. Tests
have been run without wildcard rules (R@&ny all

Table 3. Performance Evaluation

Size %Deny |DS| Average ICIR sizénconsistencies Detection (ms) Identification (ms) TOTAL (ms)

50 28,21 0 n/a 0 0,06 0 0,06
144 30,91 3 16 48 0,59 0,21 0,8
238 66,43 15 19 201 2,08 0,15 2,23
450 34,73 15 20 312 5,59 0,16 5,75
900 148 29 34 1005 13,38 0,64 14,02

2500 6,97 100 43 4337 59,48 4,08 63,56
5000 198 32 19 1388 63,93 1,18 65,11
10611 2,05 156 59 18894 346,58 24,79 371,37

M Detectionv1 B Detectionv2
W Detectionvz W identitication 12000
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Figure 12(a): Running time. Average case Figure 1 Ztbmparison between detection algorithms



or allow all rules) because WR provide no useful Fig. 13 represents a comparison of running times
information to the diagnosis process: they are of the identification algorithm with and without
conflictive by definition with all rules with the wildcard rules, in order to highlight the impacese
contrary action. rules have in processing time. As we previously
The experimental comparison of the efficiency of noted, leaving trailing wildcard rules for diagr®si
the proposed algorithms with others of the reviewed purposes gives no useful information to the pracess
in the bibliography is a very difficult task for ow  since they are conflictive with all rules with coary
main reasons. In one hand, there are no standkrd ru action.
sets to be used. In other hand different algorithms
cover different parts of the process. One of thetmo Other important things worth noting are the
important parts of the presented experimental related with problem reduction. The average ICIR
analysis is the average reduction of the full peahbl size in Table 3 (fourth column) represents the
and the size of each reduced part. Recall thatnapti  average number of children of each generated ICIR
characterization algorithms can be applied now to (the number of ICIRs is represented in the third
each of these problems and solve them faster tharcolumn as the size of the Diagnosis Set, |DS|)t Tha
running the characterization over the full rule.set is, |DS| is the number of characterization probleams
Unfortunately, there are neither standardized rule be optimally solved if optimal characterization
sets nor syntactic generation tools that can be ttsse  algorithms are going to be used, and Average ICIR
test how near is the proposed heuristic to the Size is their average size. Clearly, solving (optign
optimum. or not) such small number of small problems is
As Table 3 and Fig. 12(a) show, execution time faster than solving a big combinatorial one.
for the diagnosis process is very reasonable, aven
large rule sets. Note that rule set of sizes 238 an Finally, due to its low computational complexity,
450 are very near worst case. Rule set of size1l061 the presented detection algorithm can be used with
has not been represented to prevent image scaleery big rule sets or even in resource constrained
distortion, but note that even with a very high devices (Pozo2, 2008) in a real time process.
number of inconsistencies (18894) execution time of
the full process is 371ms. Take into account that a

rule set of 10611 rules is a very big one (Taylor, 4 RELATED WORKS
2005). Fig. 12(b) presents a comparison between the

previous detectjon :_allgorithm (Pozo, 2008) and _the The closest works to ours are related with
one presented in this paper. Note how the preV'Ousconsistency detection in general network filters. |

verscljont_ I(lDet(_etﬁt;%nVD b(PO?O’l 20H08) sc?rl]e the most recent work, Baboescu et al. (Baboescu,
quadratically wi € humber of rules. HoOWevee 2003) provide algorithms to detect inconsisteniries

gomplt{ejxny c?;] the neV\t/ algggthm élgetectlcl)nVZ) router filters that are 40 times faster tHa@?) ones
epends on the percentagealibw anddenyrules. for the general case &fselectors per rule. Although

As can be seen, there is a huge difference with rea algorithmic complexity is not given, it improse

rule sets. other previous works (Hari, 2000), (Eppstein, 2001)
&0 However, they preprocess the rule set and convert
50 selector ranges to prefixes, and then apply the
@ algorithms. This imposes the implicit assumption
that a range can only express a single intervakwh
is true (pozo3, 2008). However, the range to prefix
20 conversion technique could need to split a range in
0 several prefixes (Srinivasan, 1998) and thus tha fi
L l_ number of rules could increase over the originéd ru
— set. Thus, results are given over the preprocessed
=00 rule set, which could be bigger and different from
the original one.
e Other researchers apply brute force,
Figure 13: Identification with and without wildcardles combinatorial algorithms for the characterization
problem. Thus, the resulting worst case time
complexity will be exponential in all these propdse
algorithms. One of the most important advances was

30

Execution time (ms)

50 144 s 450
Size of the ACL

2500 5000 10611



made by Al-Shaer et al. (Al-Shaer, 2004), where alternative to the reviewed brute force algorittfors
authors define an inconsistency model for firewall big rule sets. However, characterization algorithms
ACLs with 5 selectors. They give a combined are not the focus of the paper, but the presentatio
algorithm to diagnose and characterize the a novel process and diagnosis algorithms for the
inconsistencies between pairs of rules. In addition diagnosis part of the process. Our diagnosis
they use rule decorrelation techniques (Luis, 2002) algorithms have a theoretical best c&3é) and

as a pre-process in order to decompose the ACL in avorst caseQ(r) time complexity with the number
new, bigger, one with non overlapping rules. Result of rules in the rule setn. More precisely, the
are given over the decorrelated ACL, which has the complexity of our algorithms depends on the
disadvantages commented above. Although thepercentage ofllow and deny rules over the total
proposed characterization algorithm proposed by Al- number of them (in the case of detection), anchen t
Shaer is polynomial, a decorrelation pre-process cardinality of the minimal diagnosis set and the
imposes a worst case exponential time and spacenumber of inconsistencies (in the case of
complexity for the full process. identification). Our process is capable of handling

A modification to their algorithms was provided full ranges in all selectors, and does not need to
by Garcia-Alfaro et al. (Garcia-Alfaro, 2007), wher decorrelate or do any range to prefix conversion to
they integrate the decorrelation and charactedmati the ACL as a pre process to the algorithms. Wekthin
algorithms of Al-Shaer, and generate a decorrelatedthat for a result to be useful for a user, it sdooé
and consistent rule set. Thus, due to the useef th given over the original ACL. However, our proposal
same decorrelation techniques, this proposal also h does not cope with redundancies, because we
worst case exponential complexity. The resulting redundancies are not a consistency problem.

ACL is also bigger and different from the original
one. However, Garcia-Alfaro et al. provide a
characterization technique with multiple rules. 5 CONCLUSIONS

A similar approach to Garcia-Alfaro was
followed in (Abedin, 2006), where authors provide
worst caseO(2") time complexity algorithms with
the number of rules (they also use rule decorpHati
techniques).

Ordered Binary Decision Diagrams (OBDDs)
have been used in Fireman (Yuan, 2006), where
authors provide a diagnosis and characterization
technique with multiple rules. A very important
improvement over previous proposals is that they do
not need to decorrelate the ACL, and thus, results
are given over the original one. Note that the
complexity of OBDD algorithms depends on the
optimal ordering of its nodes, which is a NP-
Complete problem (Bollig, 1996). This results in a
worst caseO(2") time complexity with the number
of rules, as other proposals.

There are several differences of our work with
these ones. In one hand, we provided an analysis o
the consistency diagnosis problem in rule sets
separating diagnosis (detection and identification)
from characterization, which enabled us to design
heuristic polynomial diagnosis algorithms. The
result of the diagnosis process is several indeg@nd
clusters of inconsistencies, where optimal
characterization algorithms can be applied
effectively reducing the computational complexity
(in time and space) of the whole process. In aalaljti
heuristic characterization algorithms can also be
applied. This heuristic process provides an

We have deeply analyzed the consistency diagnosis
problem in firewall ACLs, and decided to divide the
consistency management process in three sequential
stages: detection, identification, and
characterization. Inconsistency detection is a
polynomial problem, but minimal identification and
characterization are combinatorial ones. Detection
plus identification is called diagnosis. All revied
proposals deal with the full characterization pewbl
with brute force algorithms, with yield unusable
results for real-life, big rule sets.
In this paper we take a different approach, isotati
the combinatorial parts of the full problem (optima
identification and characterization) from the
polynomial one (detection). We have proposed an
abstract definition of inconsistency that coverk al

reviously characterized cases in the bibliography.

ased on this definition, we revisited the
' consistency problem in firewall rule sets and shibwe
that all relations between more than two rulesluan
decomposed in simpler pair wise relations.

We have proposed two polynomial algorithms

that should be applied sequentially to get a diagno
of the inconsistent rules in the rule set. Thet finse
' detects the inconsistent rules and is complete. The
second one identifies the rules that cause the
detected inconsistencies, and is based in a hieurist
The diagnosis can then be taken as input to optimal
characterization algorithms resulting in an effeeti



computational complexity reduction (solving several Bollig, B., Wegener, I. “Improving the Variable Oréey
small combinatorial problems is faster than solving of OBDDs is NP-Complete”. IEEE Transactions on
one big one), or to heuristic ones. Computers, Vol.45 No.9, September 1996. _

A theoretical complexity analysis has been done EPPStéin. D., Muthukrishnan, S. “Internet PackelteFi
and showed that the full process has best €4sg Management and Rectangle Geometry.” Proceedings

. - . of the Annual ACM-SIAM Symposium on Discrete
and worst caseO(’) time complexity with the Algorithms I(JSODA) January %/OOpl. |u I

number of rules in the rule set, An experimental  Garcia-Alfaro, J., Boulahia-Cuppens, N., Cuppens, F.
performance evaluation with real rule sets of Complete Analysis of Configuration Rules to
different sizes was also presented, showing tredt re Guarantee Reliable Network Security Policies,
rule sets are very near to the best case, and the Springer-Verlag International Journal of Informatio
effective problem reduction. Unfortunately, there a Security (Online) (2007) 1615-5262. S
neither standardized rule sets nor syntactic Hamed, H., Al-Shaer, E. "Taxonomy of Conflicts in
generation tools that can be used to test how isear Network Security Policies." IEEE Communications

S . Magazine Vol.44, No.3, 2006.
the proposed heuristic to the optimum. We Hari, B., Suri, S., Parulkar, G. “Detecting and Resg

C?”_‘pared our proposal with other works in the Packet Filter Conflicts.” Proceedings of IEEE

bibliography and showed that, to the best of our INFOCOM, March 2000.

knowledge, no proposals that split the consistency Luis, S., Condell, M. "Security policy protocol.” TE

management process have been made. Thus, our Internet Draft IPSPSPP-01, 2002.

work represents a completely different way to treat Pozo, S., Ceballos, R., Gasca, R.M. “Fast Algorithars f

the problem with algorithms that are useable with Consistency-Based Diagnosis of Firewalls Rule Sets.”

real-life, big rule sets. We have implemented the Intsrnasttional Co(nfereg():e on Avlailabilit)g Reliability
; ; ; ; ; an ecurity (ARES), Barcelona, Spain. IEEE

Zi?aci)lrggginlger‘]ii\;au;:tnguage in-a tool which is Computer Society Press, March 2008.

S Pozo2, S., Ceballos, R., Gasca, R.M. "Fast Algoritfans
However, our approach has some limitations that Local Inconsistency Detection in Firewall ACL

give us opportunities for improvement in future Updates’. 1 International Workshop  on
works. The most important one is that our process  Dependability and Security in Complex and Critical
can diagnose inconsistent rules, but cannot diagnos  Information Systems (DEPEND). Cap Esterel, France.
redundant rules. IEEE Computer Society Press, 2008.
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