
AUTODDM: AUTOmatic characterization tool for the Delay
Degradation Model

J. Juan-Chico", M. J. Bellido", P. Ruiz-de-Clavijo", C. Baena", M. Valencia*
Instituto de Microelectrhica de Sevilla-CNM, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

e-mail: jjchico@imse.cnm.es
*Also with the Departamento de Tecnologia Electr6nica. Universidad de Sevilla. Spain.

Abstract
As delay models used in logic timing simulation

become more and more complex, the problem of model
parameter values extraction arise as an important issue,
which is necessary to face in order to achieve a practical
implementation of the model. In this way, this communica-
tion describes the characterization process associated to
the previously developed Delay Degradation Model for
CMOS logic gates (DDM) and the implementation of an
automatic characterization tool that automates the process
and allows an easy and fast model parameters extraction.

In the field of logic simulation of digital CMOS circuits,
delay models exist that take into account most issues
affecting accuracy [1,2,3,4]: low voltage, submicron and
deep submicron devices, transition waveform, etc. There
are also dynamic effects, the most important being the so-
called input collisions [5], which happens when two or
more input signals change almost simultaneously. The type
of input coIIision that more notably affects the behaviour
of digital circuits are the glitch collisions, or those that may
cause narrow pulses or glitches. In previous papers [6,7,8]
we have presented a very accurate model that handles the
generation and propagation of glitches, which makes an
important headway in logic timing simulation. This model
is called Delay Degradation Model (DDM).

One important point in any delay model (including the
DDM) is the definition of the model parameters and the set
up of an useful characterization process that describes how
the model parameter values are obtained. This information
is necessary to be able to reproduce simulation results by
others and also to check the viability of the approach: a
model that is very hard or expensive to characterize may be
useless.

In this paper we describe the parameter characterization
process associated to the DDM and we present a tool that
automates the process. We will show that the automation of
the process is necessary in order to be able to use the model
in a practical way.

The paper is organized as follows: in section 2 the Delay
Degradation Model is presented, in section 3 we describe
the characterization process and its complexity, section 4
presents the characterization tool autoddm from the point

500 1000 1500 -0.Zo

T (PSI
(a) (b)

Figure 1. Modelling delay degradation. a) T
parameter, b) degradation curve.

of view of use and implementation; performance results
are shown in section 5 and we will finish with the main
conclusions of this work.

2. Degradation Delay Model (DDM)
Narrow pulses or glitches propagating through CMOS

gates are affected by the so-called degradation effect. In
previous papers, we have developed a model that handles
the degradation effect and is able, then, to accurately sim-
ulate the propagation of arbitrarily narrow pulses. Despite
the model has been presented in previous papers [6, 7, 81,
we will summarize its main points in this section.

A suited way to describe and quantify the degradation
effect is as a reduction in the delay (t) with respect to the
normal propagation delay as a function of the inputs and
output timing characteristics. Here, normal means the
delay when no degradation effect takes place, which is the
one calculated by conventional delay models [1,2]. It has
been demonstrated in [6] that this reduction in the delay
depends on the time elapsed since the last output transition
(T) as shown in Figure la. The t p ,dependence on T of
Figure lb very well fits to the following expression:

P

where tpO is the normal propagation delay and T o and T
are fitting parameters.

For a given gate, there is a set of input triggering condi-
tions that may produce degradation effect, called glitch
collisions. Some of them correspond to narrow pulses in a
given input while others correspond to almost simultane-
ous changes of a pair of input signals. A classification of

0-7803-7057-010 l / $ l O . O O 0200 1 IEEE. 1631

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on January 27,2022 at 08:27:00 UTC from IEEE Xplore. Restrictions apply.

the types of input collisions that produce degradation effect
can be found in [8].

For each particular gate, T and To depend on the output
load (C,), the supply voltage (V,,), the input transition
time (zin) and the position of the input that is changing
state (i) . It has been obtained in [8] that this dependence
can be expressed as:

~ ~ V D D = ‘ x i +‘xi‘, (eq. 2)

C .
To , = (i - *)zin

V D D
(eq. 3)

where “x” stands for “r” or ‘tf’ depending on the sense of
the output transition (rise or fall respectively). In this way,
a CMOS gate is fully characterized with respect to the deg-
radation effect when the set of A , B and C parameters
(the degradation parameters) are obtained for each gate
input. Therefore, the number of degradation parameter for
a n-input gate is:

n p = 6n (eq. 4)

The degradation parameters are obtained by fitting (eq.
2) and (eq. 3) to HSPICE simulation data.

3. Characterization process
The objective of the characterization process is to obtain

the values of the set of degradation parameters of (eq. 2)
and (eq. 3) for a particular gate, i.e.

(A , , B,, Cx i} x = r, f i = 1 ... n (eq. 5)

3.1 Characterization process description
The characterization process is composed of three main

tasks:

Tusk 1: obtain t p vs. T curves corresponding to (eq. 1) and
Figure lb.
Tusk 2: obtain z vs. C, curves corresponding to (eq. 2).
Tusk 3: obtain To vs. T~~ curves corresponding to (eq. 3).

The first task is the source to obtain 7, T o pairs, which
are needed by tasks 2 and 3. z, T o pairs are extracted from
applying a regression fitting to data obtained from electri-
cal simulations (SPICE [9] or HSPICE [lo]) like in Figure
lb. Each point in the curve requires a transient analysis for
a given value of T . The number of transient analysis that
are necessary to represent a t vs. T curve is noted as
ncurve and a typical value is 28.

By repeating task 1 with different values of C,, a set of
z, C, pairs is obtained, allowing for the calculation of
parameters A and B by linear regression (eq. 2). The

PB
number of points used in a z vs. C, curve is noted as n
and a typical value is 10. Task 3 is carried out in a similar
way, by performing task 1 a number of times (n c) with
different values of zin to obtain parameter C by linear
regression (eq. 3). nC is also typically ?qual to 10.

3.2 Characterization process complexity
A good manner to measure the complexity of the char-

acterization process is by evaluating the total number of
transient analysis that are needed to characterize a gate.
Considering that 2n is the number of input collisions that
produce degradation, the number of transient analysis can
be calculated as:

ntran = ~ (~ A L I + nC)ncurven (eq. 6)

where n is the number ofhputs of the gate.

Another interesting parameter measuring the character-
ization process performance is the characterization time
(t,,,) which is necessary to complete the characterization
of a gate. It is proportional to the number of transient anal-
ysis and can be expressed like:

= t f n t r a n (eq. 7)

where t f is the characterization time factor which meas-
ures the average time needed to set up and run each tran-
sient analysis. It is useful to split this time factor in two:

t f = t f O P + t f sirn (eq. 8)

where t f s i m is the simulator time factor, which measures
the average time used by the electrical simulator in each
transient analysis; and t fop is the operator time factor
which includes the average time spent in any other tasks
done to prepare each transient analysis: file editing, simu-
lation launching, data storing, problem resolution and data
analysis (regression, fitting, etc.).

In a conventional laboratory setup, t fop would corre-
spond to the time spent by a human operator in performing
the mentioned tasks using a set of computer tools, while
,tfsim is the CPU time consumed by an electrical simulator
in each transient run. In this case, t fsim is negligible with
respect to t

can be optimistically
estimated in losec., assuming that an experimented opera-
tor is driving the characterization process. If we also con-
sider typical values like ncurve = 20, nAB = nC = 10
and a 4-input gate, the characterization time can be calcu-
lated from (eq. 6) and (eq. 7):

f o p ’
As an example, the time factor t

t,,, = 10 x 2(10 + 10)20 x 4 = 3200sec
(eq. 9)

= 8h, 53min, 20sec

This means that, in the best case, a well trained human
operator would spent around 9 hours in the characteriza-
tion of a single gate. This cost is excessive in most cases,
specially when the objective is to characterize a whole
library of gates or when exploring different gate configura-
tions.

4. Characterization tool description
A tool called autoddm has been implemented in order to

automate and speed up the characterization process
described in the previous section, saving “human” time.
The tool is easy to use and is able to provide with the whole
set of degradation parameters of a gate, from a basic infor-
mation specified by the user.

1632

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on January 27,2022 at 08:27:00 UTC from IEEE Xplore. Restrictions apply.

xxx.config 7 xxx.ddm P
autoddm

Figure 2. Autoddm input/output data flow.

I sim [I

Two versions of the program are currently implemented:
autoddm-cis and autoddm-spice, which only difference is
the electrical simulator used to perform the electrical sim-
ulations. The autoddm-cis uses CIS, which is a library
designed to control the HSPICE simulator, while
autoddm-spice uses Berkeley's SPICE3fS.

Figure 2 shows the information flow around the
autoddm tools. The designer has to specify a configuration
file (xxx.conjg) with the information about the characteri-
zation process parameters and basic information about the
gate to be analysed (type and number of inputs). Addition-
ally, a netlist of the gate under analysis need to be pro-
vided, as well as the MOS models. In the case of the
HSPICE version (autoddm-cis), this information is
included in a file called m . s p , while in the case of the
SPICE3f5 version (autoddm-spice), the netlist is placed in
file xxx.gate and the MOS transistors model card is placed
in file xxx.mode1.

Once the input files are created, the tool runs in batch
mode and produces a characterization result which is
stored in the xxx.ddm output file. The progress of the char-
acterization process is printed to the standard output (std-
out) and error messages are directed to the standard error
output (stderr).

For the sake of clarity, we will use the autoddm-spice
version in the following examples, the other version being
similar.

Technology: oxide capacitance (CO,) and minimum
channel length of the technology (Z m i n). This parameters
are not mandatory, but can simplify the use of other char-
acterization process parameters.

Geometry: channel widths of the N-MOS and P-MOS
trees in the gate. Again, these are not mandatory but con-
venient when using gates with homogeneous trees.

Files: name of input and output files. In the example, the
configuration file is set to work either with the SPICE and
HSPICE versions. Lines corresponding to the HSPICE
version are commented out to select the SPICE version.

The configuration file just defines a set of process
parameters, and is composed of five sections:

1633

Figure 3. Autoddm block diagram.

Gate: gate type, number of inputs and gate's input
capacitance (or reference capacitance). If technological
and geometrical parameters are provided, Ci, is calcu-
lated automatically if not present in the configuration file.

Simulation: various simulation parameters like the
power supply value (V D D) and the ranges of interest for
the curves corresponding to the different tasks of the char-
acterization process mentioned in the previous section.

The input to the tool is completed with the netlist and
model files mentioned above. The last is usually one pro-
vided by the foundry, while the former is just a spice netlist
of the gate.

With respect to the program output, a lot of useful infor-
mation about the characterization process is generated
besides the value of the degradation model parameters. For
example, the program gives information about each degra-
dation curve (task 1 of the process) allowing the monitor-
ing of the characterization process.

5. Characterization tool implementation
Internally, autoddm is organized in four separate mod-

ules that interact following the diagram in Figure 3. These
modules are: ddm, deg, sirn and regression. We will
describe them going from a lower to a higher level:

regression: is an utility module which consist on just
one function to calculate the linear regression parameters
that corresponds to a set of points. This is used by other
parts of the program which need this facility.

sirn: this module is in charge of running transient analy-
sis on an electrical simulator in order to obtain delay values
(t) for a given set of simulation parameters (C , , zin ,
etc.). The sim module incorporates two submodules to
allow interaction with either HSPICE or SPICE electrical
simulators (sim-cis and sim-spice).

deg: this module uses the sim module functionality to
obtain degradation curves like the one in Figure lb, and
calculates the corresponding z and T o parameters from it
(using the regression module) thus implementing task 1 of

P

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on January 27,2022 at 08:27:00 UTC from IEEE Xplore. Restrictions apply.

the characterization process.

ddm: corresponds to the main function of the program
and implements the rest of the characterization algorithm
(tasks 2 and 3). This function does the following: after
reading the configuration from the input files, the program
initiates some variables and starts the main loop that runs
through every input collision that produces degradation, in
order to obtain a set of parameters for each input. In each
pass, the main loop executes two new loops: the first for
different values of C,, implementing task 2, and the sec-
ond for different values of T ~ ~ , implementing task 3. In
both cases, the corresponding degradation parameters are
obtained at the end of the loop by linear regression. Char-
acterization data are printed as they are obtained. At the
end of the main loop, all inputs have been characterized
and the program ends.

6. Autoddm performance results
An example of a gate characterized using autoddm has

been presented in Table 1. The value of the parameters
obtained by autoddm are at least as accurate as those
obtained by a human operator. In fact, autoddm actually
achieves better results than a human operator since it
makes more elaborated calculations to obtain a more
homogeneous distribution of points in each degradation
curve. Nevertheless, the main result is related to the time
gain of autoddm with respect to a human operator. As an
example, we will compare three representative cases: two
automatic systems using both versions of autoddm and a
human operator. System 1 corresponds to autoddm-cis
(HSPICE) running on a Sun Ultra-SPARC-2 400MHz
work station with Solaris 7, while system 2 is
autoddm-spice (SPICE3fS) running on a PC Pentium I1
266MHz with Linux 2.2.14. The characterization time fac-
tors for system 1 is 2.34, for system 2 is 0.179 and for the
human operator is 10.

It is worth to remark that system 2 is much faster than
system 1. We have discovered that the main reason is the
delay added at the beginning of each HSPICE simulation
due to the licence management tasks that are run by this
tool during the simulator’s set up. This is an important por-
tion of the total simulation time.

Table 1 compares the performance of the three examples
as a function of the number of inputs to characterize. The
number of transient analysis is calculated using (eq. 6)
with nAB = nC = 10 and ncurve = 20 . The characteri-
zation time is calculated from (eq. 7). Four characteriza-
tion tasks are studied: an inverter, a gate, a small library of
gates and a big library of gates.Attending to these results,
it is easy to conclude that the characterization process auto-
mation greatly improves the characterization time with
respect to a manual characterization. Comparing systems 1
and 2, it is clear that the long HSPICE set up time repre-
sents a bottleneck in the characterization time, which does
not appears when using SPICE3fS. Furthermore, charac-
terization of a whole library is not affordable using a tradi-
tional method but is viable using an automatic

n

1 (inverter)

Table 1. Characterization times for the three com-
pared cases in days, hours and minutes.

characterization time (D:H:M) I
Human System 1 System 2

%an

800 0:2:13 0:0:31 0:0:2.4

4 (gate)
100 (small lib.)

I I I I I

3200 0:8:53 0:3:7 0:0:9.5
80000 9:6:13 2:4:0 0:3:59

I 500(biglib.) I 400000 I 46:7:7 I 10:20:0 I 0:19:53

7. Conclusions
To provide a characterization process for a delay model

may be as important as the model itself. In this way, we
have described the tasks involved in the characterization
process of the Delay Degradation Model developed previ-
ously and showed the need for an automatic characteriza-
tion tool. This tool has been implemented following an
easy to understand and reusable modular design. Perform-
ance results of the automatic characterization tool running
on different platforms are presented, showing an improve-
ment in the characterization time up to 50 times better than
a characterization driven by a human operator, making the
characterization process affordable.

8. References
L. Bisdounis, S. Nikolaidis, 0. Koufopavlou. “Analytical
Transient Response and Propagation Delay Evaluation of
the CMOS Inverter for Short-Channel Devices”. IEEE J. of
Solid-state Circ. pp. 302-306. Vol. 33, no. 2, Feb. 1998.
J.M. Daga, D. Auvergne. “A Comprehensive Delay Macro
Modeling for Submicrometer CMOS Logics”. IEEE J. of
Solid State Circuits. Vol. 34, No. 1, Jan. 1999.
A.I. Kayssi, K.A. Sakallah, T.N. Mudge. “The Impact of
Signal Transition Time on Path Delay Computation”. IEEE
Trans. on Circuits and Systems-11: Analog and Digital Sig-
nal Processing, Vol. 40, No. 5, pp. 302-309, May 1993.
D. Auvergne, N. Azemard, D. Deschacht, M. Robert. “Input
Waveform Slope Effects in CMOS Delays”. IEEE J. of
Solid-state Circ., Vol. 25, No. 6, pp. 1588-1590. Dec. 1990
E. Melcher, W. Rothig, M. Dana. “Multiple Input Transi-
tions in CMOS Gates”. Microprocessing and Micropro-
gramming 35 (1992) pp. 683-690. North Holland.
M.J. Bellido-Diaz, J. Juan-Chico, A.J. Acosta, M. Valencia,
J.L. Huertas. “Logical modelling of delay degradation effect
in static CMOS gates”. IEE Proc. Circuits Devices and Sys-
tems, Vol. 147, No. 2, pp. 107-117, April 2000.
J. Juan-Chico, P. Ruiz-de-Clavijo, M.J. Bellido, A.J.
Acosta, M. Valencia. “Inertial and degradation delay model
for CMOS logic gates”. In Proc. IEEE International Sympo-
sium on Circuits and Systems (ISCAS) 2000, pp. 1-459-462,
Geneva, May 2000.
J. Juan-Chico, P. Ruiz-de-Clavijo, M.J. Bellido, A.J.
Acosta, M. Valencia: “Degradation delay model extension to
CMOS gates”. In Proc. Power and Timing Modelling, Opti-
mization and Simulation (PATMOS) 2000, pp. 149-158,
Sept. 2000.
A.R. Newton, D.O. Pederson, A. Sangiovanni-Vicentelli:
“SPICE3 Version 3f3 User’s Manual”. Department of Elec-
trical Engineering and Computer Sciences, Universidad de
California, Berkeley. Distributed with SPICE 3F.

[101 “HSPICE User‘s Manual”. Meta-software, 1999.

1634

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on January 27,2022 at 08:27:00 UTC from IEEE Xplore. Restrictions apply.

