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Extracting data from user-friendly HTML tables is difficult because of their different lay-
outs, formats, and encoding problems. In this article, we present a new proposal that first
applies several pre-processing heuristics to clean the tables, then performs functional anal-
ysis, and finally applies some post-processing heuristics to produce the output. Our most
important contribution is regarding functional analysis, which we address by projecting
the cells onto a high-dimensional feature space in which a standard clustering technique
is used to make the meta-data cells apart from the data cells. We experimented with
two large repositories of real-world HTML tables and our results confirm that our proposal
can extract data from them with an F1 score of 89:50% in just 0:09 CPU seconds per table.
We confronted our proposal with several competitors and the statistical analysis confirmed
its superiority in terms of effectiveness, while it keeps very competitive in terms of
efficiency.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Machine learning is boosting many services on the Web. This explains the increasing need for datasets that are used both
to train and to exploit them. We are interested in datasets that are encoded using HTML tables, with an emphasis on user-
generated tables. Many such tables provide data that cannot be found in common knowledge bases, which makes it difficult
to use them in automated processes [15]. Data extractors are software components that analyse web documents and return
their data as records that facilitate automatic processing. Many of them are general-purpose since they do not focus on a
particular data layout [20,8], but there are also many table-specific proposals [18,25].

We have analysed many table-specific proposals [18] and our conclusion is that they typically rely on the following tasks:
location, segmentation, discrimination, functional analysis, structural analysis, and interpretation. The literature provides
many solutions to implement them; our focus is on the functional analysis task since it has been paid less attention, which
provides enough room for improvement [3,24,23,11,10,1,2,6,7,4,12,14]. Unfortunately, only a few of the existing proposals
can deal with arbitrary table layouts (e.g., horizontal listings, vertical listings, or matrices), they have problems to deal with
the many different formats used to display the data (e.g., multi-line headers, no headers at all, context cells, repeated head-
ers, or factorised cells), and they also have trouble with typical encoding problems (e.g., inconsistent row lengths or incorrect
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uses of tags td and th). Simply put: they may easily have problems with 64:41% of the tables in our experimental
repositories.

TOMATE1 is a new proposal that is specifically devised to deal with HTML tables and improves on our previous results [17–
20,18]. Its key contribution is regarding the functional analysis task: it projects the cells onto a rich feature space in which a
standard clustering technique plus some custom heuristics are used to make meta-data cells apart from data cells. Our exper-
imental analysis reveals that it can attain an F1 score of 89:50%, which is 5:68% better than the best supervised competitor and
24:11% better than the best unsupervised competitor; furthermore, it takes an average of 0:09 CPU seconds per table. (The dif-
ferences were proven statistically significant at the standard confidence level.) Currently, it is being used to feed an IARPA sys-
tem with data that are extracted from Wikipedia tables; most such tables are user-generated, which means that the data
extractors that are currently deployed at major knowledge bases cannot deal with them.

The rest of the article is organised as follows: Section 2 reviews the related work; Section 3 describes how TOMATE imple-
ments the data-extraction tasks; Section 4 shows the results of our experimental analysis; Section 5 presents our case study;
finally, Section 6 concludes the article.
2. Related work

In this section, we present the related work. We first summarise the literature and then discuss and compare the existing
proposals to ours.
2.1. Summary of the literature

A data extractor is a tool that uses rules to seek for data in HTML documents and returns them as records [20,8,18,25].
They can be classified as hand-crafted, if the user must devise the rules, supervised, if the user provides a learning set with
annotations, unsupervised, if the user provides a learning set without annotations, and heuristic-based, if the rules are actu-
ally built-in heuristics that have proven to work well with many different documents.

The literature provides many general-purpose proposals [20,8]. Unfortunately, they do not take the intricacies of tables
into account. This motivated many authors to work on specific-purpose proposals [18,25]. Simply put: their goal is to accu-
rately group the meta-data cells into headers, the data cells into tuples, and then return records that reflect the relationships
between the headers and the components of the tuples.

Initially, the challenge was to extract data from tables that were encoded using pre-formatted text or images. More
recently, the focus has shifted towards tables that are encoded using mark-up languages like HTML, XML + XLST, or the
OpenDoc spreadsheet standards. Our focus is on tables that are encoded using HTML. They have some unique characteristics
that make it difficult to extract data from them, including: captions, context data outside the tables, cells that are encoded
using inappropriate tags, or richer cell contents (including images or forms), not to mention that many HTML tables are not
used to display data but to position other elements on the screen. We do not focus on the important challenge of understand-
ing spreadsheet tables, since it would require to address some extra problems: inferring table delimiters, identifying differ-
ent and more varied table layouts, a higher frequency of context cells, and the need for different features related to the pre-
defined formats, formulae, conditional formatting, and sorting criteria.

Many researchers address this problem using a pipeline with the following tasks: 1) location, which returns the excerpts
of the input documents that contain tables; 2) segmentation, which transforms the excerpts into grids of cells; 3) discrim-
ination, which discards non-data tables; 4) functional analysis, which identifies whether the cells provide data or meta-data;
5) structural analysis, which identifies groups of related meta-data cells (the headers) and groups of related data cells (the
tuples); and 6) interpretation, which transforms the input tables into record sets. We identified this pipeline after analysing
and comparing the trends in the field over the last 20 years of research [18].

Our focus is on the functional analysis task because our experience suggests that the quality of the results clearly depends
on the ability of this task to correctly set meta-data cells apart from data cells. We have found twelve proposals that provide
a solution to this task [3,24,23,11,10,1,2,6,7,4,12,14]. They address the problem using a variety of approaches that range from
using heuristics that are tailored for a particular table repository to using deep-neural networks.
2.2. Discussion and comparison

The literature provides many general-purpose proposals to extract data from arbitrary documents. Unfortunately, they do
not seem to work well with tables [1], which we could confirm in our previous work [17–20]. Some unsupervised proposals
are based on analysing the structure of the HTML, which is problematic insofar HTML is intended to describe the tables on a
per-row basis, but their layout (as interpreted by a person) can be a horizontal listing, a vertical listing, or a matrix. Other
unsupervised proposals seek to identify differences amongst several HTML documents that are generated by the same tem-
plate, which is also problematic insofar the meta-data cells are typically the same. The supervised proposals might, in
1 TOMATE is publicly available at http://tomatera.tdg-seville.info.
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principle, be trained to correctly interpret HTML tables, but they involve too much human effort and cannot be easily
adapted to the existing variety of layouts, formats, and encoding problems.

The previous problems have motivated many authors to work on proposals that are specifically targeted to extract data
from HTML tables [18,25]. Our focus is on the unsupervised and heuristic-based ones because the human effort involved in
hand-crafted or supervised proposals is not scalable to the Web. The literature provides many such approaches to locate,
segment, and discriminate tables, which means that it is difficult to make novel contributions regarding those tasks; further-
more, many authors pay little attention to the structural analysis or the interpretation tasks, which means that they are rel-
atively easy to implement once the function of the cells is properly identified. There is, however, some room for
improvement regarding the functional analysis task: some of the existing proposals can deal with horizontal listings only
[1,2,4,6]; a few can also deal with vertical listings [23,24]; a few others can also deal with matrices [12]; only a few can deal
with any table layouts [3,11,10,7,14]. Generally speaking, they have trouble to deal with the variety of formats used to dis-
play data in tables, including multi-line headers, no headers at all, repeated headers, context cells, or factorised cells; they
also have trouble to deal with typical encoding problems, including tables that do not have the same number of columns for
each row or the many tables that do not encode the cells using the appropriate tags [18]. Unfortunately, roughly 64:41% of
the tables in our experimental repositories have one or more of the previous problems.

This motivated us to work on TOMATE, which can deal with all of the problems holistically. It differs from the existing
approaches in that it first projects the cells onto a rich feature space in which the meta-data and data cells can be made apart
using a standard clustering technique plus some custom heuristics. This approach is novel and has proven to work very well
in practice.
3. Our proposal

In this section, we describe our proposal. We first present some preliminary concepts and then delve into our solution to
implement each of the tasks involved in the table understanding pipeline, cf. Fig. 1.
3.1. Preliminaries

Below, we introduce the mathematical notation used in this article and define the main concepts behind our proposal.
Fig. 1. Sketch of our proposal.
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Definition 1. Mathematical notation. We represent a vector m as a map of the form ki : v if gpi¼1, where each ki is a key and
each v i is a value (p P 1). We denote its domain as domm ¼ kif gpi¼1 and its range as ran m ¼ v if gpi¼1. Given key k, we denote
its value in vector m as m k½ �. Given a real number z and vectors m, m1, and m2, we define the following operations (where h
denotes the addition, the subtraction, or the multiplication operators):
Table 1
Taxono

Cate

Style

Struc

Lexic

Misc
z hm ¼ k : z hm k½ � j k 2 dommf g;
m1 hm2 ¼ k : m1 k½ � hm2 k½ � j k 2 domm1 \ domm2f g; and

dist m1; m2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k2dom m1\dom m2

m1 k½ � �m2 k½ �ð Þ2
r

:

A matrix M is a map of the form i; jð Þ : mi;j
� �a;b

i¼1;j¼1 (a P 1; b P 1). Given two indices 1 6 i 6 a and 1 6 j 6 b, we denote the

component of matrix M at position i; jð Þ as M i; j½ �.
Definition 2. Documents. A document is a text file whose contents are encoded using the HTML mark-up language, which
allows to represent it using a DOM tree. Given a node a in a DOM tree, we denote its sequence of children as children að Þ, the
area of its bounding box as area að Þ, and its attribute vector as attr að Þ. Table 1 presents the attributes that we take into
account, namely: style attributes, which are related to display properties, structural attributes, which are related to DOM-
tree properties, lexical attributes, which are related to textual content features, and miscellaneous attributes, which are
related to some syntax and statistical properties.
Definition 3. Tables and cells. A table is a structure that helps position other elements on a grid. We are interested in tables
whose elements are relevant data to be extracted. There are three common layouts for data tables, namely: horizontal list-
ings, vertical listings, and matrices. The cells can be either meta-data cells, which provide semantic hints to understand the
meaning of the data, or data cells, which provide the data themselves. A group of related meta-data cells is a header and a
group of related data cells is a tuple.
Definition 4. Features. A feature is a numeric characteristic of a cell that is computed from the attributes of its DOM node, cf.
Table 1. They can be either base features, which are computed directly from the attributes, or deviation features, which mea-
sure how different the base features of a cell are from the features of the other cells in the same row, column, or table. Here-
inafter, we use j to denote the number of base features; that is, there are a total of 4j features per cell if we take the
deviation features into account.
Definition 5. Record sets. A record set is a collection of records, which are vectors of the form di : v if gri¼1, where each di is a
descriptor and each v i is a value (r P 1). The descriptors are computed from the meta-data cells, some of which may be gen-
erated artificially in cases in which the original table does not provide them; the values are computed from the data cells.
Simply put: a record highlights the relational nature of the data by making it explicit the relation between the headers and
the components of the tuples.
my of attributes.

gory Attributes Components Range

Font-color, background-color, border-color, outline-color R, G, B [0, 255]
Padding, margin, border-weight Top, bottom, left, right [0, 1]
Font-size, font-weight [0, 1]
Display, text-align, vertical-align, font-family, text-decoration, text-transform Categorical

tural Tag Categorical
Number of children [0, 1]
Rowspan, row index [1, 1]
Colspan, column index [1, 1]
Is node repeated? Boolean

al Number of alphanumeric, digit, lowercase, uppercase, symbol, and whitespace characters [0, 1]
Number of tokens [0, 1]
Number of stopwords [0, 1]
Is first/last character type alphanumeric, digit, lowercase, uppercase, symbol, or whitespace? Boolean
Is the content capitalised, all capitals, an amount, a range, a date, money, or empty? Boolean

ellaneous Number of nouns, verbs, adjectives, adverbs, and other parts-of-speech [0, 1]
Likelihood of being meta-data [0, 1]
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3.2. Task a: location

This task works on the input HTML documents and returns their tables, if any. It performs the following steps: 1) the
input documents are downloaded using a headless browser, which runs a script to make the attributes of the HTML elements
explicit; 2) the documents are then transformed into their corresponding DOM trees using a standard HTML parser; and 3)
the tables are extracted using a CSS selector that fetches the sub-trees whose root node has tag table. These steps can be
implemented very straightforwardly using commodity technology, so we do not provide any additional details.
3.3. Task b: segmentation

This task works on the tables returned by the previous task; for each of them, it returns a new table in which every row
has the same number of columns and empty and factorised cells have been processed; it also returns a matrix with the fea-
ture vectors of each cell. This task performs the following steps: 1) the table is pre-processed; 2) the base features are com-
puted; 3) the deviation features are computed; 4) the features are normalised; and 5) the empty and factorised cells are
processed. Next, we provide additional details on each step.

Step 1: pre-processing operations. This step applies several pre-processing operations to the input table and outputs a table
with a rows and b columns (aP 1; b P 1) using the following procedure:

1. If the table tag or any of its ancestors has attribute dir set to rtl, then it is flipped horizontally so that the first col-
umn is always the left-most one.
2. The maximum cell span is set to 200 cells, which helps avoid overhead when processing tables that are incorrectly
encoded.
3. The cells whose span is greater than one are replicated accordingly and their span is set to one.
4. The rows that are shorter than the largest row are padded to the right using empty cells, which prevents outputting
ragged tables.
5. Duplicated rows or columns are removed, except for the top-most and the left-most ones.

Step 2: computing base features. This step analyses the cells in the input tables and outputs a matrix with their base feature
vectors.

First, it computes the attributes of the DOM nodes, cf. Table 1. The style attributes are computed using a headless browser
and the other attributes are computed using simple procedures, except for attribute ‘‘Likelihood of being meta-data”, which
was pre-computed as follows:

1. The tables in the repositories were cleaned by lower-casing their contents, stripping white spaces, and replacing the
digits with a generic ‘‘DIGIT” token.
2. Every cell in the first row or column was flagged as a meta-data cell and the remaining ones were flagged as data cells.
3. Then, the meta-data likelihood of every cell was computed by dividing the number of occurrences of its content in a
meta-data cell by the total number of occurrences of that content in the repositories.
4. The previous likelihood was adjusted as follows: every cell in a row or column with an average meta-data likelihood
greater than 0:50 was considered meta-data; otherwise, it was considered data.
5. The previous two operations were repeated five times, which was enough for the likelihoods to stabilise.

Please, note that we do not claim that the previous likelihoods are good meta-data probability estimates. They simply
help compute features that have proven to work well when they are combined with the other features.

Next, we replace the composite attributes by new attributes that represent their individual components and the categor-
ical attributes by binary attributes that represent them using one-hot encoding. This simplifies working with the attributes
since they all can be assumed to be numeric from now on.

Then, for every node a, we compute its base features as follows:
bfeat að Þ ¼ x1 að Þattr að Þ þ
X

b2children að Þ
x2 a; bð Þbfeat bð Þ;
wherex1 að Þ ¼ 1�P
b2children að Þx2 a; bð Þ andx2 a; bð Þ ¼ area bð Þ=area að Þ. Note thatx1 að Þ denotes the weight of the attributes of

node a, which is computed as the percentage of the area of the bounding box of node a that depends exclusively on that node,
not its children; similarly, x2 a; bð Þ, where b 2 children að Þ, denotes the percentage of area of the bounding box that depends
on node b relative to the total area of node a. Simply put: the base features are computed as the weighted average of the
values of the attributes of node a and the base features of its children, where the weights are the relative area of the bound-
ing boxes of the corresponding nodes.

Step 3: computing deviation features. This step takes the matrix of base features as input and returns a newmatrix in which
each component has the base features plus the deviation features.
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For every cell c and base feature f , we compute the following deviation features: f r , f c , and f t; respectively, they measure
the deviation of f in c with respect to the cells in the same row, column, and table. To compute them, we need the following
ancillary variables:
Ri ¼
Pb
j¼1

1=bM i; j½ � 1 6 i 6 að Þ;

Cj ¼
Pa
i¼1

1=aM i; j½ � 1 6 j 6 bð Þ; and

T ¼ Pa
i¼1

Pb
j¼1

1= abð ÞM i; j½ �;
where M denotes the matrix returned by the previous step and Ri, Cj, and T are vectors with the per-row, per-column, and
per-table averages of the base features, respectively.

Assume now that f p : vp
� �j

p¼1
is the base feature vector computed for the cell at position i; jð Þ (1 6 i 6 a;1 6 j 6 b). The

deviation features are then defined as follows:
f rp ¼ vp � Ri f p
� �� �2

;

f cp ¼ vp � Cj f p
� �� �2

; and

f tp ¼ vp � T f p
� �� �2

;

where 1 6 p 6 j.
Step 4: normalising features. This step takes the a� b matrix with the 4j-dimensional vectors computed by the previous

step and normalises the values of the features so that they all range in interval 0:00;1:00½ �.
In the literature, there are several approaches to perform the normalisation, e.g., global min–max, local min–max, stan-

dard normal, or softmax. Unfortunately, none of them stands out from a conceptual point of view, which means that this is a
variation point. Thus, the decision regarding which of the alternatives must be used requires some experimentation and
must be delayed to the following section.

Step 5: processing empty cells. This step works on the input table and returns a new table in which irrelevant empty cells
are made explicit.

Every cell whose content consists exclusively of white spaces, dashes, asterisks, or question marks is flagged as empty. If
the lang attribute is present in the table tag or any of its ancestors, then other language-dependent symbols are also con-
sidered, e.g., ‘‘N/A” and ‘‘void” in English, ‘‘N/A” and ‘‘N/D” in Spanish, or ‘‘ND” and ‘‘S.O.” in French. The cells that are con-
sidered empty preserve their features, but they are not taken into account for interpretation purposes.

Step 6: processing factorised cells. This operation processes the factorised cells as follows:

1. First, full-span rows are identified. They are rows that originally consisted of one single cell that spanned a row. Accord-
ing to their positions, they can be classified as top full-span rows, which are full-span rows in the first row or in a row in
which every previous row up to the first row is also a full-span row, bottom full-span rows, which are full-span rows at
the last row or in a row fromwhich the remaining rows until the last one is also a full-span row, or middle full-span rows,
which are full-span rows with no full-span rows before or after them.
2. If there is at least one middle full-span row and it is repeated every two rows, then we analyse how similar the middle
full-span rows are to the last top full-span row and to the first bottom full-span row using the Euclidean distance amongst
their corresponding feature vectors. If they are more similar to the former, then every middle full-span row and the last
top full-span row are appended to the end of the next row as an additional column. If they are more similar to the latter,
then every middle full-span row and the first bottom full-span row are appended to the end of the previous row as an
additional column.
3. If the full-span rows are not repeated periodically, then every middle full-span row and the last top full-span row are
appended to the following rows as an additional column until another full-span row is found. To determine the position
of the new column, we compute c as the average of the deviation features per column and r as the average of the deviation
features per row, excluding full-span rows. If r > c, then the new column is placed on the right since the table is more
likely to be a horizontal listing and the factorised cells are more likely to be spanned data. Otherwise, the column is placed
on the left since the table is more likely to be a vertical listing and the factorised cells are more likely to be spanned meta-
data.
4. The procedure is then repeated on a per-column basis to deal with tables that have full-span columns.
5. Finally, the rows and columns in which every cell is empty or the result of repeating a spanned or factorised cell are
removed. The remaining full-span rows or columns are removed and saved as context cells since they usually provide
captions or footnotes that are worth preserving. Note that the cells identified as factorised cells preserve their original
features.
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Example 1. Figs. 2–4 illustrate how factorised cells are processed.
The table in Fig. 2 shows information about a TV show. There is a middle full-span row that is repeated every two rows

and it is clearly more similar to the bottom full-span row than to the top full-span row. The second operation indicates that
they must be added to the right of the previous rows as an additional column.

The table in Fig. 3 shows information about the medals won by a basketball player. In this case, the middle full-span rows
are not repeated periodically and it is easy to realise that the per-row deviation is significantly higher, since the columns are
very homogeneous. This implies that a new column must be added to the right of the table and the contents of the full-span
rows must be replicated for each row until a new full-span row is found. Only a full-span row is kept after factorisation. It is
not difficult to realise that the content of this row is the caption of the table, which is preserved as a context cell.

The table in Fig. 4 shows information about a comparative analysis of vacuum cleaners. In this case, the full-span rows are
not repeated periodically and the deviation per row seems to be smaller than the deviation per column. According to our
heuristics, a new column must be added to the left and the contents of the full-span rows must be replicated to the new cells
until a new full-span row is found.

3.4. Task c: discrimination

This task takes a table returned by the segmentation task and discriminates it as follows: 1) the tables whose width or
height attributes are 0px or whose display attribute is none are discarded; 2) the tables with an ancestor table tag or a
descendant user-input tag are also discarded; 3) the tables that have a single row or a single column are discarded. For the
sake of efficiency, our proposal implements the first two operations during the location task since they do not require to seg-
ment the table.

3.5. Task d: functional analysis

This task takes a table produced by the segmentation task and returns an a� bmatrix in which each component identifies
the function of the corresponding cell plus some scores that help guess the orientation of the input table. This task performs
the following steps: 1) the dimensionality of the feature vectors is reduced; 2) candidate cell functions are computed; and 3)
cell functions are identified. Next, we provide additional details on each step, cf. Fig. 5.

Step 1: reducing feature dimensionality. This step takes the a� b matrix with the 4j-dimensional vectors computed by the
previous task and returns an a� b matrix with new feature vectors that result from selecting some features and then reduc-
ing the dimensionality of the resulting feature space.

Regarding feature selection, we did not find any clear arguments in favour of using a particular group of features. Thus, we
need to introduce a variation point in which we consider the following alternatives: 1) using all of the groups, 2) using a
single group, 3) using combinations of two groups, and 4) using combinations of three groups. This results in a total of 15
alternatives.

Regarding dimensionality reduction, neither is there a clear decision, so we introduce a new variation point with the fol-
lowing alternatives: 1) not performing dimensionality reduction, 2) using Principal Component Analysis, and 3) using feature
agglomeration.2

Step 2: computing candidate cell functions. This step takes the a� bmatrix with vectors computed by the previous task and
returns an a� b matrix in which each component is the candidate function of the corresponding cell.

First, we cluster the cells into two clusters K1 and K2. The exact method used is another variation point with the following
alternatives: 1) k-means using k-means++ as the initialisation method and mini-batches when dealing with more than one
thousand cells; and 2) agglomerative clustering, which recursively merges pairs of clusters that minimally increase the link-
age distance until two clusters are found.3

Next, we need to determine which cluster corresponds to meta-data cells and which one corresponds to data cells. We
use a heuristic that builds on the following variables: 1) ri ¼ ai=bþ bi=að Þ=2, where ai and bi denote the number of cells
in the first row and column, respectively, that are in cluster Ki; intuitively, ri measures the ratio of cells in cluster Ki that
are in the first row and column; thus, the higher ri, the higher the chances that cluster Ki consists of meta-data cells since
such cells are typically placed in the first row or column (i 2 1;2f g). 2) si ¼ 1� jKij=ab; intuitively, si measures the one-
complement of the relative size of cluster Ki; thus, the higher si, the higher the chances that cluster Ki consists of meta-
data cells since these cells are typically a minority (i 2 1;2f g). 3) ci ¼ 1�P

p; qð Þ 2 Ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
=jKij; intuitively, ci measures

the closeness of a cluster to the top-left corner of a table; thus, the higher ci, the higher the chances that cluster Ki consists of
meta-data cells since such cells are typically near the top-left corner of the tables (i 2 1;2f g). Our heuristic assumes that the
meta-data cells are in cluster K1 and the data cells in cluster K2 if r1 þ s1 þ c1ð Þ=3 P r2 þ s2 þ c2ð Þ=3; otherwise, we assume
that the data cells are in cluster K1 and the meta-data cells are in cluster K2.
2 We do not consider t-SNE because our experiments on a random sample of 200 tables resulted in an F1 score of 23:12%. This method is good to reduce a
dataset to two or three dimensions for visualisation, which is insufficient to detect the function of the cells.

3 We could not use alternatives like DBSCAN, OPTICS, Mean Shift, or Affinity Propagation because they are intended to find the optimal number of clusters,
which typically resulted in more than two clusters.
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Fig. 3. Factorised cells that must be added to the right of the following rows.

Fig. 2. Factorised cells that must be added to the right of the previous rows.

Fig. 4. Factorised cells that must be added to the left of the following rows.
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Step 3: identifying cell functions.We identify the functions of the cells building on the previous candidate functions and the
orientation of the table.

The orientation is guessed using three scores, namely: wr , which stands for row-wise orientation, wc , which stands for
column-wise orientation, and wt , which stands for table-wise orientation. To compute them, we split the table into the fol-
lowing regions: A1, which consists of the cell at position 1;1ð Þ, A2, which consists of the set of cells at positions 1; jð Þ,
2 6 j 6 b, A3, which consists of the set of cells at positions i;1ð Þ, 2 6 i 6 a, and A4, which consists of the set of cells at posi-
tions i; jð Þ, 2 6 i 6 a;2 6 j 6 b. Then, we use two methods to compute the scores depending on the size of the table.

The first method is used with tables that have more than two rows and more than two columns. It computes the scores as
follows, where silh denotes the Silhouette coefficient:
wr ¼ silh A1 [ A2;A3 [ A4f g;
wc ¼ silh A1 [ A3;A2 [ A4f g; and
wt ¼ silh A1;A2;A3;A4f g:
The intuition behind the previous formulation is that the Silhouette coefficient is expected to be the highest when each of
the clusters has only regions with the same function; otherwise, it should drop. If a table has row-wise orientation, then
regions A1 and A2 should consist almost exclusively of meta-data cells, whereas regions A3 and A4 should have a majority
of data cells; that is: clustering A1 [ A2;A3 [ A4f g should have a better Silhouette coefficient than the others. If a table has
column-wise orientation, then regions A1 and A3 should consist almost exclusively of meta-data cells, whereas regions A2

and A4 should have a majority of data cells; that is: clustering A1 [ A3;A2 [ A4f g should have a better Silhouette coefficient
than the others. Finally, if a table has table-wise orientation, then we have experimentally found that computing the Silhou-
ette coefficient of clustering A1;A2;A3;A4f g provides a better estimate than the other clusterings. We also explored comput-
ing wt as silh A1 [ A2 [ A3;A4f g since our intuition suggested that this would result in the highest Silhouette coefficient in the
case of table-wise tables, but our experience confirmed that the Silhouette coefficient of clustering A1;A2;A3;A4f g works
much better.

However, the Silhouette coefficient tends to increase with the number of clusters, which makes the wt score artificially
higher than it should be in the case of tables with only two rows or only two columns. In such cases, we first compute the
average feature vector of the cells that belong to each area Ai (which is denoted as ui), and then compute the orientation
scores by measuring the differences between the four regions as follows (1 6 i 6 4):
wr ¼ dist u1;u3ð Þ þ dist u2;u4ð Þ � dist u1; u2ð Þ � dist u3;u4ð Þ;
wc ¼ dist u1;u2ð Þ þ dist u3;u4ð Þ � dist u1; u3ð Þ � dist u2;u4ð Þ; and
wt ¼ dist u3;u4ð Þ þ dist u2;u4ð Þ � dist u1; u2ð Þ � dist u1;u3ð Þ:
Assuming that each region has the function that corresponds to the majority vote provided by its cells, the intuition is
that we expect the score for a given orientation to be the highest when we maximise the distance between two regions that
have different functions and when we minimise the distance between two regions that have the same functions. Simply put,
if we are dealing with a row-wise table, then we expect the cells in regions A1 and A2 to be meta-data cells and the cells in
regions A3 and A4 to be data cells. Therefore, their distances should be minimal. Any other combination of two regions should
have different functions with regard to each other and, therefore, their distance should be larger. Thus, we expect to max-
imise wr if the distances between u1 and u3 and between u2 and u4 are high and the distances between u1 and u2 and
between u3 and u4 are low, as long as the correct orientation is row-wise. The reasoning is similar in the case of column-
wise or table-wise tables.

The procedure to identify the functions of the cells is as follows: 1) if the orientation is row-wise or table-wise, then we
set R to the set of row indices in which the majority of cells are candidate meta-data cells; otherwise, we set R ¼ £; if the
orientation is column-wise or table-wise, then we set C to the set of column indices in which the majority of cells are can-
didate meta-data cells; otherwise, we set C ¼ £; 2) next, we declare as data the cells at positions i; jð Þ such that i R R and
j R C; 3) now, we declare as meta-data the cells at positions i; jð Þ such that i 2 R and 1 6 j 6 b or 1 6 i 6 a and j 2 C; 4)
finally, if both R and C are not empty, then we declare as data the cells at positions i; jð Þ such that i 2 R and
1þmaxC 6 j 6 b or 1þmaxR 6 i 6 a and j 2 C.

Example 2. Figs. 5–7 illustrate our approach to functional analysis.
Fig. 5 provides an overview of the task. Fig. 5.a shows a sample table with data. Fig. 5.b shows how each cell is represented

as a vector with 4j features that are grouped according to their types. After the feature vectors are computed, we perform
feature selection to determine which groups of features can be dropped, if any. Then, we perform feature reduction to
transform the original space of selected features into a smaller-dimensional space that makes computations faster. Fig. 5.c
shows a sample clustering that is computed from the reduced feature vectors; note that the clusters simply make two groups
of cells apart, whose functions are identified by means of the heuristics that were explained before. Fig. 5.d, shows the result
of identifying the cell functions, which requires correcting the function of the cells that are isolated within a region in which
most neighbours have the complementary function. The last step is a bit more involved. We provide additional details in
Figs. 6 and 7.
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Fig. 5. Diagram of the functional analysis.

Fig. 6. Correcting cell functions using the first method.
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Fig. 7. Correcting cell functions using the second method.
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Fig. 6.a shows a table with data about the terrestrial planets of the solar system. Fig. 6.b shows the four regions in which
we divide the table and the candidate functions of the cells. Note that most candidate functions are correct, except for the
highlighted cells on the third column, which seem more similar to the meta-data cells at the top than to the remaining data
cells. To identify the correct function, we have to guess the orientation of the table. This table has more than two rows and
more than two columns, so the first method must be used. Recall that it computes the three scores using the Silhouette
coefficient of three different clusterings and guesses the orientation according to the highest one. Fig. 6.c illustrates the three
clusterings that are analysed and their corresponding scores. In this example, the highest score is wr , which means that the
table can be assumed to be row-wise. Therefore, the candidate function is corrected according to the majority vote on a per-
row basis, which assigns the correct function to the highlighted cells in the third row, cf. Fig. 6.d. Fig. 7.a shows a table with
data about the COVID-19 outbreak. It has two rows only, so the second method to guess the orientation is used. If the first
method were used, the orientation would be estimated as table-wise because having so few rows makes the difference
between the silhouette coefficient of clusterings with different number of clusters artificially high and results in the
clustering with four clusters being selected. Fig. 7.b illustrates the four average feature vectors that are computed for the
cells in each of the regions. Note that vectors u1 and u3 refer to the regions that have the meta-data cells, but vectors u2 and
u4 refer to the regions that have the data cells. Fig. 7.c illustrates the operations performed to compute the distance of the
average feature vectors of the table. Since vectors u1 and u3 are very similar, the highest score is wc , which means that our
heuristic considers that the table is oriented column-wise. Fig. 7.d shows the function returned by the functional analysis
task after the candidate functions are corrected.
3.6. Task e: structural analysis

This task works on the table returned by the segmentation task plus the function matrix and the scores computed by the
functional analysis task. It returns the headers and tuples in the input table. It performs the steps below:

1. If there are not any meta-data cells, then we proceed as follows: if the wr score that was computed by the functional
analysis task is greater than or equal to the wc score, then a new row of artificial meta-data cells is added at the top of the
table; otherwise, a new column of artificial meta-data cells is added to the left of the table. (The artificial meta-data can
be generated using a pattern like $attr_i, where i denotes a sequential index.) In the first case, the headers are the
column-wise blocks of artificial meta-data cells and the tuples are the row-wise blocks of data cells; in the second case,
the headers are the row-wise blocks of artificial meta-data cells and the tuples are the column-wise blocks of data cells.
2. If there are one or more rows of meta-data cells at the top, then each column-wise block of such meta-data cells is a
header and each row-wise block of data cells is a tuple.
3. If there are one or more columns of meta-data cells on the left, then each row-wise block of such meta-data cells is a
header and each column-wise block of data cells is a tuple.
4. Otherwise, there is a block of meta-data cells at the top-left corner. In this case, we set R and C to the sets of row indices
and column indices with meta-data cells, respectively. Given a cell at position i; jð Þ such that i R R and j R C, we define its
row indexers as the set of cells at positions i; kð Þ j k 2 Cf g and its column indexers as the set of cells at positions
k; jð Þ j k 2 Rf g. In this case, the headers are the column-wise blocks of meta-data cells plus jRj þ 1 artificial headers and

there is a tuple for each data cell at position i; jð Þ (i R R; j R C) that is composed of its row indexers, plus its column index-
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Fig. 8. Sample results of structural analysis.
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ers, plus the cell itself. The proposal by Rastan et al. [16] provides further details on how to generate more descriptive
headers in this case.
Example 3. Fig. 8.a shows a table with statistics about a few soccer teams. We identify it as a table-wise table that has one
meta-data cell at the upper-left corner andmany data cells; the meta-data cell is split into two cells by the segmentation task
since it is spanned. It then computes four headers and ten tuples. The first header is composed of the two meta-data cells,
whereas the others were generated artificially. The tuples correspond to the cells in the body of the matrix plus their cor-
responding row and column indexers.

3.7. Task f: interpretation

This task takes the context cells output by the segmentation task and the collections of headers and tuples returned by the
structural analysis task as input. It returns a collection of records with the extracted data.

Recall that records are modelled as maps of the form di : v if gri¼1, where each di is a descriptor and each v i is a value
(r P 1). The descriptors are computed from the headers as follows: the meta-data cells in a header are collapsed by catenat-
ing their contents using a user-defined separator, e.g., symbol ‘‘/”; if two meta-data cells that should be catenated have the
same content, the second one is ignored since it typically results from a spanned cell; if two resulting descriptors are the
same, a sequential index is added to disambiguate them. There must also be a user-defined descriptor to represent the data
in the context cells, e.g., $context. Computing the output record set is now simple: just create a new record per tuple in
which each component takes its value from the corresponding data cell in the tuple and its descriptor from the correspond-
ing header.

Example 4. Fig. 9.a shows a table with stock market data. We identify it as a row-wise table in which the first two rows are
composed of meta-data cells, then come some tuples, and there is a final context cell. Note that the meta-data cells in the
first and the last columns have vertical spans, which means that they are split into several cells. Note, too, that the meta-data
cell in the last column actually spans two columns because the author of the table decided to format the values using a
column to display the currency symbol and another column to display the nominal value. The interpretation task results in
the record set in Fig. 9.b. Realise that the headers are ‘‘Company”, which corresponds to the first component of the tuples,
then come ‘‘Stock / Type A” and ‘‘Stock / Type B”, which correspond to the second and the third component of the tuples, and
finally come ‘‘Value / 1” and ‘‘Value / 2”, which correspond to the fourth and the fifth component of the tuples. Note that the
caption to the table is identified as a context cell, which is also added to the resulting record set.
4. Experimental analysis

In this section, we present our experimental analysis. First, we describe our experimental setting; next, we report on the
variation points; then, we present our experimental results; finally, we present our statistical analysis.

4.1. Experimental setting

We implemented the proposals by Yoshida et al. [24], Jung and Kwon [10], and Embley et al. [7], which are well-known
unsupervised techniques, as well as Nishida et al.’s [14] proposal, which is the most advanced supervised proposal of which
we are aware. Unfortunately, there are not any public implementations of the proposals in the related work section; thus, we
restricted our attention to the ones that are described with enough details to implement them accurately. The unsupervised
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Fig. 9. Sample result of the interpretation task.

J.C. Roldán, P. Jiménez, P. Szekely et al. Information Sciences 577 (2021) 49–68
proposals rely on algorithmic approaches that build on the Expectation Maximisation method, custom heuristics, or a cus-
tom search algorithm; the supervised one relies on a deep neural network.

We assembled two large experimental repositories with real-world tables that were fetched from the English Wikipedia
[22] and the subset of English documents in the DresdenWeb Table Corpus [5]. We randomly sampled enough documents to
assemble two repositories with 1496 and 1513 tables, respectively. In the case of theWikipedia, we limited our extraction to
user-generated tables, since the data in tables that are generated using templates like infobox, navbox, or sistersitebox
can be easily extracted.

To create our ground truth, we asked four people to annotate the tables in our repositories according to their layouts and
the cells according to their functions.4 Their agreement was very good since the Krippendorff Alpha coefficients were 80:36%
and 96:11%, respectively. The disagreement was mainly due to matrices: many of them can be easily interpreted as listings and,
some times, it was not clear if a cell had meta-data or data. The tables in our ground truth are distributed as follows: 70:65% are
horizontal listings, 18:69% are vertical listings, 9:68% are matrices, and 0:97% have unknown layouts; the cells are distributed
as follows: 10:46% are meta-data cells and 89:42% are data cells.

Table 2 provides an insight into the formatting and encoding problems found in our repositories. Regarding the format-
ting problems, it is interesting to note that 14:39% of the tables have multi-line headers, but the figure raises to 22:54% of
the tables in the Wikipedia repository; the reason might be that the authors of Wikipedia tables tend to use homogeneous
formats and they commonly use structured headers that provide as much context as possible to interpret the corresponding
data cells; in the case of the DWTC repository, only 6:15% of the tables have multi-line headers; the reason might be that the
tables were gathered frommany different sites in the Web, which means that they are not homogeneous at all. The previous
hypothesis might be partially supported by the percentage of tables with no headers: note that only 4:69% of the tables in
the Wikipedia repository are headless, whereas this indicator raises to 13:70% in the case of the DWTC repository. Finally,
note that about 1:82% and 0:83% tables have factorised cells or repeated headers; the figures are not as large as was the case
with the previous problems, but they definitely contribute to the number of different formatting problems with which a
good proposal to extract data from tables must deal. Regarding the encoding problems, it is interesting to realise that
25:38% of the tables in the Wikipedia repository and 3:94% of the tables in the DWTC repository have inconsistent row
lengths; this is clearly due to the fact that the tables in the Wikipedia repository were encoded by a person, whereas many
of the tables in the DWTC repository were encoded by a machine. It is also interesting to realise that 34:96% of the meta-data
cells are encoded using td tags and 11:74% of the data cells are encoded using th tags. These figures are not surprising in the
case of the Wikipedia tables because they are encoded manually; in the case of the DWTC the conclusion is that developers
seem to forget that they must use the th tag to encode meta-data cells (note that the figure raises to 53:15% of the tables in
this repository). Summing up: 64:41% of the tables have one or more intricacies.

Our experiments consisted in running our proposal (TOMATE) and the competitors on the two repositories. The proposals
were implemented using the Python 3.7 language, Selenium, BeautifulSoup, and the Scientific Python ecosystem. The exper-
iments were run on a Windows 10 Pro computer that was equipped with an AMD Ryzen 5 3600X processor with six 3:79
GHz cores and 16 GiB of DDR4 RAM memory. We addressed the evaluation using the 3-fold cross validation method. In
4 Our datasets are publicly available at http://datasets.tdg-seville.info.
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Table 2
Frequency of problems by repository.

Source Problem Percentage of tables Wikipedia DWTC overall

Formatting Multi-line headers 22.54% 6.15% 14.39%
No headers 4.69% 13.70% 9.17%
Context cells 13.62% 6.62% 10.14%
Factorised cells 0.79% 2.87% 1.82%
Repeated headers 0.79% 0.87% 0.83%

Encoding Inconsistent row lengths 25.38% 3.94% 14.72%
Meta-data cells with td tag 16.97% 53.15% 34.96%
Data cells with th tag 20.70% 2.68% 11.74%

At least one problem 58.89% 69.99% 64.41%
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the case of unsupervised proposals, the training splits were ignored because they do not require to learn any models; in the
case of the supervised proposal, the training splits were used to fit its neural network. We measured their effectiveness in
terms of precision (P), recall (R), and the F1 score (F1); regarding efficiency, we computed the average number of CPU seconds
to process each table (Time). The measures were averaged from the results computed for each split; in the case of the super-
vised proposal, the training time was apportioned amongst the tables in the testing splits.

4.2. Variation points

We performed a grid search to find the best alternatives to implement the variation points in our proposal, namely: how
to normalise the features, which groups of features must be selected to produce the candidate cell functions, which tech-
nique must be used to reduce their dimensionality, and which technique must be used to perform the clustering. The vari-
ation points resulted in 360 configurations that were explored in sequence, cf. Table 3.

Regarding normalisation, we found that the global min–max alternative was the best one. We realised that the local min–
max normalisation or the softmax normalisation usually give more importance to features that are not significant for a per-
son, e.g., a padding that ranges from 1 to 5 pixels. We also realised that the standard normalisation works significantly worse
because there are many feature values that are normalised as þ1:00, which results in clusters that group cells that are actu-
ally very different.
Table 3
Average performance with each alternative.

Variation point Description Alternative P R F1 Time

Normalisation Process to normalise features to the [0, 1] interval. Min–max global 73.60% 88.31% 77.77% 1164.60
Min–max local 70.77% 85.06% 74.41% 1181.79
Standard 66.17% 81.02% 68.29% 1216.21
SoftMax 70.91% 82.23% 74.02% 1235.13

Feature selection Feature groups used as input for the clustering
algorithm.

Style 67.02% 80.53% 69.41% 1155.20

Lexical 67.42% 81.73% 69.92% 1135.26
Structural 70.34% 84.21% 73.76% 1040.06
Misc. 68.26% 82.88% 71.16% 1056.46
Style, lexical 68.61% 82.72% 71.50% 1286.45
Style, structural 71.87% 84.79% 75.36% 1221.37
Style, misc. 69.95% 83.92% 73.20% 1201.84
Lexical, structural 70.88% 84.80% 74.44% 1177.58
Lexical, misc. 68.56% 83.27% 71.53% 1161.94
Structural, misc. 72.02% 85.28% 75.57% 1098.79
Style, lexical,
structural

71.84% 85.03% 75.35% 1323.50

Style, lexical, misc. 69.77% 84.01% 72.96% 1342.89
Style, structural, misc. 72.57% 85.59% 76.15% 1232.07
Lexical, structural,
misc.

71.65% 85.19% 75.19% 1196.99

All 72.28% 85.53% 75.81% 1353.56

Dimensionality
reduction

Reduction applied to the input before clustering. None 69.64% 83.36% 72.70% 1223.35

PCA 70.05% 83.86% 73.22% 1235.08
Feature agglomeration 70.75% 84.45% 74.13% 1145.16

Clustering method Method applied to cluster the cells. K-means 70.10% 83.65% 73.29% 1288.54
Agglomerative 70.18% 84.09% 73.39% 1121.15
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Regarding feature selection, we found that there are two good alternatives, namely: using the four groups of features or
leaving the lexical features out. Furthermore, we observed that using a single feature group does not suffice in most exper-
iments because each of them provides some discriminatory power that cannot be replaced by any of the other groups.

Regarding feature reduction, we found that using a dimensionality reduction technique improves the results. The best
result was obtained using feature agglomeration, both regarding effectiveness and efficiency.

Regarding the clustering method, we found that both alternatives provide fairly similar results. However, the perfor-
mance of the agglomerative clustering method is slightly better than k-means. We profiled our implementation and we
found out that the difference was due to the initialisation procedure in k-means.

The previous analysis helps have an overall understanding of how each alternative performs. To make a decision, we need
to analyse the top configurations, cf. Table 4. The best two alternatives provide very similar precision, recall, and F1 score, but
the second one is faster. We profiled our implementation and we found out that the reason is that the second alternative
does not require to perform any regular expression matches because it does not use any lexical features. The decision regard-
ing which of the alternatives should be selected was difficult. We finally leaned towards the top one because we estimated
that the difference regarding efficiency would be negligible in practice, but the difference regarding effectiveness would not.

4.3. Experimental results

Table 5 presents our experimental results. For each proposal, we report on its performance measures in theWikipedia and
the DWTC repositories independently, plus its overall average performance on both repositories. We first group the results
according to the table layout and then present the aggregated results on all layouts. The best results in each group are high-
lighted in boldface.
Table 4
Top 10 configurations according to the F1 score.

Normalisation Feature selection Dimensionality reduction Clustering method P R F1 Time

Min–max global All PCA K-means 76.93% 90.89% 81.49% 1489.09
Min–max global Style, structural, misc. Feature agglomeration Agglomerative 76.91% 90.74% 81.45% 1006.14
Min–max global All None K-means 76.66% 90.74% 81.21% 1426.72
Min–max global Style, structural, misc. None K-means 76.31% 89.96% 80.75% 1275.88
Softmax Style, structural, misc. Feature agglomeration K-means 77.38% 85.92% 80.73% 1394.67
Min–max global Style, lexical, structural Feature agglomeration Agglomerative 75.99% 90.13% 80.47% 1092.55
Min–max global Style, structural, misc. Feature agglomeration K-means 75.92% 90.18% 80.41% 1295.06
Min–max global Style, lexical, misc. None K-means 75.77% 90.13% 80.25% 1362.69
Softmax Style, structural Feature agglomeration Agglomerative 76.61% 85.93% 80.14% 1072.34
Min–max global Style, structural Feature agglomeration K-means 75.83% 88.78% 80.10% 1220.67

Table 5
Experimental results.

Layout Proposal Wikipedia DWTC Overall

P R F1 Time P R F1 Time P R F1 Time

Horizontal listing P0 90.52% 95.25% 91.43% 0.12 85.07% 87.45% 84.01% 0.09 88.06% 91.72% 88.08% 0.11
P1 66.45% 73.35% 66.41% 0.53 63.73% 68.68% 63.66% 0.29 65.22% 71.24% 65.17% 0.42
P2 70.08% 74.95% 70.33% 0.01 47.69% 56.76% 50.77% 0.00 59.97% 66.74% 61.50% 0.01
P3 62.57% 79.12% 58.80% 0.00 65.19% 70.17% 57.72% 0.00 63.75% 75.08% 58.31% < 0.01
P4 91.97% 94.86% 92.07% 9.26 74.76% 75.53% 73.77% 9.41 84.20% 86.13% 83.81% 9.33

Vertical listing P0 88.05% 91.29% 87.99% 0.05 93.09% 93.78% 92.41% 0.02 90.33% 92.41% 89.99% 0.04
P1 44.52% 50.08% 43.60% 0.53 46.86% 49.47% 45.68% 0.29 45.58% 49.80% 44.54% 0.42
P2 46.47% 58.53% 48.76% 0.00 28.59% 49.90% 35.18% 0.00 38.40% 54.63% 42.63% < 0.01
P3 77.46% 83.27% 73.72% 0.00 83.32% 81.76% 79.28% 0.00 80.11% 82.59% 76.23% < 0.01
P4 61.65% 64.16% 57.09% 9.26 88.73% 89.42% 87.90% 9.41 73.88% 75.56% 71.00% 9.33

Matrix P0 90.19% 96.76% 91.13% 0.12 93.98% 94.36% 92.75% 0.09 91.90% 95.68% 91.86% 0.11
P1 54.38% 59.68% 51.23% 0.53 51.20% 59.09% 51.87% 0.30 52.94% 59.41% 51.52% 0.43
P2 58.48% 65.69% 56.40% 0.00 47.55% 58.26% 48.94% 0.00 53.55% 62.34% 53.03% < 0.01
P3 87.77% 96.11% 89.28% 0.00 94.52% 98.01% 95.84% 0.00 90.82% 96.97% 92.24% < 0.01
P4 83.43% 81.01% 75.69% 9.27 83.39% 77.58% 76.15% 9.40 83.41% 79.46% 75.90% 9.33

All P0 90.34% 95.24% 91.21% 0.11 88.36% 90.04% 87.43% 0.07 89.45% 92.89% 89.50% 0.09
P1 63.56% 70.16% 63.04% 0.53 57.12% 61.39% 56.69% 0.29 60.65% 66.20% 60.17% 0.42
P2 67.17% 72.76% 67.20% 0.01 40.89% 54.40% 45.14% 0.00 55.30% 64.47% 57.24% 0.01
P3 66.89% 81.71% 63.86% 0.00 73.06% 75.65% 67.24% 0.00 69.68% 78.97% 65.39% < 0.01
P4 89.11% 91.24% 87.86% 9.26 80.15% 80.57% 78.91% 9.41 85.06% 86.42% 83.82% 9.33

Legend: P0 = TOMATE; P1 = Yoshida et al.’s [24] proposal; P2 = Jung and Kwon’s [10] proposal; P3 = Embley et al.’s [7]; P4 = Nishida et al.’s [14] proposal.
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Our proposal attains the best overall precision, recall, and F1 score in both repositories. Regarding horizontal listings,
TOMATE attains the best overall effectiveness results although the proposal by Nishida et al. [14] is more competitive in
the Wikipedia repository, since simple horizontal listings are much more frequent. We have found that the problem with
this layout is that our orientation detection method tends to classify some horizontal listings as matrices when the first rows
and columns are very different from the others; for instance, see the ‘‘Year” column in the table in Fig. 10.a. Regarding ver-
tical listings, TOMATE has proven to be the most effective proposal in every repository. Regarding matrices, the proposal by
Embley et al. [7] provides the best overall results but TOMATE provides very similar results.

The proposal by Yoshida et al. [24] did not attain the best result regarding any of the measures since it builds on the
assumption that the meta-data cells usually have the same common contents across different tables, but the variety of topics
covered by Wikipedia tables does not meet this assumption. Their frequency-based approach also has problems when pro-
cessing cells with numeric contents, since many of them occur only once in the repositories.

The proposal by Jung and Kwon [10] works reasonably well on horizontal listings, but it is less effective when processing
other layouts. We found that the main source of errors are some data cells that the author highlights in a way that resembles
meta-data cells; for instance, see the ‘‘Year” column in the table in Fig. 10.a. Style and structural features provide good hints
to identify the function of a cell, but they are very dependent on an author’s preferences. Contrarily, lexical features are less
dependent on them.

The proposal by Embley et al. [7] is significantly faster than the others, but it has some problems when dealing with list-
ings. We found that tables with no repeated contents are interpreted as matrices with one row and one column of headers,
e.g., see the table in Fig. 10.b. This technique was devised to extract data from tables that resemble spreadsheets by analysing
the column and row content repetitions, and trying to find a set of rows and columns that index the rest of the data. How-
ever, the tables in our dataset do not typically have many repeated values and matrices are not the most frequent layout.

Nishida et al.’s [14] proposal attains the closest overall results to TOMATE. However, it seems to be the most inefficient
one because it relies on using neural networks that are very complex from a computational point of view. This proposal
works well when extracting tables with a layout that is similar to other tables in the training set. Note that it attains good
results with the tables in the Wikipedia repository, which provides many similar tables regarding the climate, sports results,
books, or TV shows, just to mention a few examples.
4.4. Statistical analysis

We first checked our experimental results for normality and homoscedasticity using Shapiro–Wilk’s and Levene’s tests,
respectively. The p-value that we got was zero or nearly zero in every case, which is a strong indication that the experimental
results are neither normal nor homoscedastic. It then proceeds to perform non-parametrical tests, e.g., Iman-Davenport’s
and Bergmann-Hommel’s tests.

Tables 6.a–d show the results of the analysis. The first two columns present the empirical ranking; the next two columns
present the F statistic that is computed by Iman-Davenport’s test and its corresponding p-value; the following three columns
report on the proposals compared, the Z statistic that is computed by Bergman-Hommel’s test and its corresponding p-value.
The cells that correspond to p-values that are smaller than the standard significance level (a ¼ 0:05) are highlighted in
boldface.

Note that TOMATE ranks the first regarding precision, recall, and F1 score, but the third regarding time. Iman-Davenport’s
test returns a p-value of 0:00 in every case, which is a very strong indication that there are experimental differences in the
empirical rankings. It then proceeds to apply Bergman-Hommel’s test to compare the empirical rank of every proposal to
every other. Note that the differences are statistically significant in almost every case, which confirms that TOMATE actually
ranks the first regarding precision, recall, and F1 score; they also confirm that the differences in rank regarding the tech-
niques immediately after is statistically significant.
Fig. 10. Sample tables from Wikipedia.
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Statistical analysis.
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Unfortunately, the improvement regarding effectiveness induces some inefficiency. The empirical ranking establishes
that Embley et al.’s [7] proposal is the quickest one, but realise that it ranks at the fourth position regarding the effectiveness
measures; it also establishes that Yung and Kwon’s [10] proposal ranks at the second position regarding efficiency, but it
ranks the third regarding the effectiveness measures. Bergman-Hommel’s test confirms that the previous differences in rank
are statistically significant.

Summing up, the statistical analysis confirms that TOMATE is 5:68%more effective than the best proposal with which we
have compared it, which is a supervised one. It is 24:11% better than the next proposal in the ranking, which does not require
any supervision. This improvement makes it a bit more inefficient, but it takes an average of 0:09 CPU seconds to process
each table, which we think is good for practical purposes.

5. Case study

TOMATE was integrated into an IARPA system [13] whose goal is to help experts answer key political questions. The
experts are expected to perform clerical tasks only, e.g., entering keywords to search the Wikipedia and selecting the tables
that they think might provide relevant data. TOMATE extracts the data in the selected tables automatically and feeds the
system so that it can perform forecasts that are shown using tables and charts.

Fig. 11 illustrates the system in the context of El Salvador 2019 presidential election. Let us assume that an expert has
been posed a question and he or she has selected the table in Fig. 11.a. TOMATE analyses it as follows:

– Location: it fetches the document, makes its attributes explicit, parses it into a DOM tree, and selects the sub-trees with
tag table.
– Segmentation: the first step pre-processes the input document as follows: there is no dir attribute, so the table does not
need to be flipped horizontally; neither are there any cells that span more than 200 rows or columns, so no correction must
be performed; the three cells at the top-left corner span three rows each, so they are replicated accordingly (note that there
are three rows at the top of the table: the first one has the pictures of the politicians, the second one has the corresponding
party colour, and the third one has the names of the politicians and their parties); since all of the rows have the same num-
ber of columns, no correction is required; neither are there any duplicated rows or columns, so none of them needs to be
removed. The second step computes the base features from the attributes of the DOM tree. The third step computes their
deviations on a per-row, per-column, and per-table basis. The fourth step identifies the empty cells and processes the fac-
torised cells; note that the second row of the table consists exclusively of empty cells (with the party colours) and cells that
resulted from spanning the ‘‘Data”, ‘‘Polling firm”, and ‘‘Sample size” cells; that is, our heuristic removes it from the table;
there are not any full-span rows or columns, so there are not any factorised cells to process in this example.
–Discrimination:the table in our sample document must be passed on to the next task because it is visible to the user, it has more
than one row and one column, it is not within another table, and it does not contain any input elements.
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Fig. 11. Sample opinion poll from Wikipedia.
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– Functional analysis: first, this task reduces the dimensionality of the features that represent the cells, next computes the can-
didate cell functions, and then computes the final functions. Fig. 11.b illustrates its results. Note that the table is identified as a
table-wise table, which is correct but not evident on a first sight. Realise that the six cells at the top-left corner are clearly
meta-data cells that provide semantic hints for the data cells that are below them; but the remaining cells in the corresponding
rows do not actually provide any meta-data, but data that consists of the pictures of the politicians plus their names and the
names of their parties.
– Structural analysis: since the functional analysis identifies a unique block of meta-data cells at the top-left corner, the table is a
matrix. The structural analysis task creates three headers from the meta-data cells, i.e., ("Date"), ("Polling firm"), and
("Sample size"), plus two artificial headers for the data cells in the first two rows, i.e., ("$attr_0") and ("$attr_1"), plus
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an additional artificial header for the cells in the body of the matrix, i.e., (”$attr_2”). The tuples combine each of the cells in the
body of the matrix with their corresponding row and column indexers. Fig. 11.c illustrates the results of this task.
– Interpretation: this task leverages the results of the previous tasks and creates a record set in which the data in the tuples are
explicitly associated with the descriptors that are computed from their corresponding headers. For instance, this is the first record
returned: {"Date": "30 July 2018", "Polling firm": "CID-Gallup", "Sample size": "806", "$attr_0": "Carlos
Calleja", "$attr_1": "Calleja (Alianza por un nuevo país)", "$attr_2": 24}.

The system shows the results of the interpretation task and helps the user decide on which records and which of their
components must be used to feed the machine-learning engine that generates the forecasts, which are shown in charts like
the one in Fig. 11.d. New approaches are currently being studied regarding entity matching [21] and system evaluation [9].

6. Conclusions

In this article, we have introduced TOMATE, which is an automated method to extract data from HTML tables. It can deal
with all of the problems with which other proposals have difficulties: regarding the table layouts, it can deal with horizontal
listings, vertical listings, and matrices; regarding the formatting problems, it can deal with tables that have multi-line head-
ers, no headers at all, context cells, repeated headers, or factorised cells; regarding encoding problems, it can deal with tables
that have inconsistent row lengths or tables that use tags td and th incorrectly. Our experimental results prove that
TOMATE ranks the first in terms of effectiveness since it can attain an F1 score of 89:50%, which is 5:68% better than the
best supervised competitor and 24:11% better than the best unsupervised competitor. It is also efficient enough for practical
purposes, since it requires an average of 0:09 CPU seconds per table.

We have identified a number of problems that deserve to be studied in future, namely: identifying marginal table layouts,
finding as much context data as possible, finding whether an empty cell is actually empty or factorised, dealing with tables
that have multiple blocks of non-repeated headers, and removing decorator cells that are commonly used for advertisement
purposes. None of them seems to be frequent enough to be a serious problem, but they all constitute a long tail of problems
that deserve attention. Furthermore, we would like to study how to adapt this proposal to analyse data from spreadsheets,
since many web tables are encoded using this approach.
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