

Test Cases from Functional Requirements Using
Model Transformations

Javier J. Gutiérrez, María J. Escalona, Manuel Mejías, Isabel Ramos
Computer and Languages Department, University of Sevilla.

Avd. Reina Mercedes sn. 41012
Sevilla, Spain

{javierj, escalona, risoto, iramos}@us.es

Abstract:
This abstract describes the experiences and ongoing work applying MDE to the gen-
eration of test cases from functional requirements.

1. Introduction

Nowadays, one of the main research files is model-driven engineering (MDE).
The main goal of MDE is to define a set of metamodels and a set of transformation
among models (instances of the metamodels). From this point of view, MDE is not only
a valuable research field but a useful tool for resolve problems in other domains. One
of those domains is the test field. Generation of test cases systematically implies the
need for defining the input information, the output information and the automate
process for transforming from the input to the output. Input and output and transforma-
tions may be defined with MDE tools. This abstract describes de efforts of the authors
to apply MDE to their work about generation of test cases from functional require-
ments. Section 2 introduces a brief description of the transformation process used in
this abstract. Section 3 describes the metamodels needed for functional requirements
(input information) test cases (output information) and introduces an example of trans-
formation. Finally section 4 exposes conclusions and acknowledges.

2. An overview of the transformation process

The process of generate test cases from functional requirements has been de-
scribed in previous papers of the same authors [4][5][6]. However, none of them uses a
MDE approach. This section introduces a brief description of this process, which be
formalized in metamodels and transformations in next section.

One of the main techniques for extracting test cases from a functional require-
ment is the scenario analysis. The main goal is to identify scenarios from the functional
requirement and propose them as text cases. A functional requirement describes an
interaction among system and actor using steps. Generally, the functional requirement
includes steps to manage alternatives o erroneous situations. Thus, a scenario may be
defined as a concrete set of steps from the functional requirement, this means, a se-
quence of steps with no alternatives or errors. This technique is used, for example, in
[1][2][8] and [9].

3. Generating test cases from a MDE perspec-
tive

This section describes an overview of this elements applied to the generation
of test cases from functional requirements. As seen before, three elements are
needed to apply a MDE approach: source metamodel, target metamodel and trans-
formations. Next sections introduce these elements.

3.1. Functional Requirements Metamodel

Source metamodel must be a functional requirements metamodel. There are
many approaches to define textual requirements (for example [3] and [2]). However the
majority of the existing approaches are based on a common core of elements. These
elements include the participants, preconditions, post-conditions, a set of main steps
(to achieve the goal of the use case) and a set of exceptional steps (to manage alter-
native and erroneous scenarios). These common elements have been extracted from
the cited approaches and modeled in the functional requirement metamodel intro-
duced in figure 1 and briefly described in the following paragraphs.

class Functional Requirement Metamodel

FRActor

- name: String

FunctionalRequirement

- name: String
- precondition: Constraint [0..*]
- postcondition: Constraint [0..*]
- description: String [0..1]

MainStep

- action: String

ExceptionalStep

- action: String [0..1]
- exceptionCondi tion: Constraint [1..*]
- result: Resul tType
- nextStep: MainStep [0..1]

«enumeration»
ResultType

«enum»
 continue
 repeat / goto
 end

+functionalRequirement

+mainSequence
1..*
{ordered}

+performedBy

0..1

+performs

0..1

1

+exceptionalSequence
0..*

+erroneousStep

0..* {ordered}

+mainStep

+alternativeStep

0..* {ordered}

+mainStep

+performedBy

1..*

+collaborates

1..*

Figure 1. Functional Requirements Metamodel.

A FRActor element models an external actor who participates in the functional

requirement. The FunctionalRequirement element defines an interaction among the
system and a set of external actors. The behavior of the FunctionalRequirement
metamodel is defined with preconditions, postconditions and a sequence of steps,
called main steps. This sequence defines the steps performed by actors and system to
achieve the goal of the functional requirement. The alternative steps indicate variants
or additional behavior for the main steps. The erroneous steps indicate error scenarios
after performing main steps. The exceptionCondition attribute indicates a boolean
expression that must be true for performing the step and the result attribute indicates
the behavior at the end of the exceptional step. Three results have been defined as the
enumerated ResultType element: end the execution, continue the execution and
repeat/go-to to another step. A continue result indicate that the execution of the
functional requirement continues with the next step after the ending of the alternative
or erroneous step. The repeat or go-to result indicates that the execution of the use
case continues executing the step indicated in the nextStep attribute and the end result
indicates than the use case ends. The nextStep attribute is only mandatory when the
result type is repeat / go-to.

No concrete syntax is defined in this paper for instances of this metamodel (this
means, for functional requirements). For example, the textual tabulation or activities
diagrams, as introduced in previous papers of the author, like [7].

3.2. Test Cases Metamodel

Target metamodel must allow to define test cases as the scenarios from the
functional requirements (as defined in previous section). This target metamodel is
showed in figure 2.

class Test Scenarios Metamodel

TestCase

- name: String
- description: String
- preconditions: Constraint [0..1]
- postconditions: Constraint [0..1]

TestAction

- body: String

TestActor

- name: String
- description: String

+testAction

1..* {ordered}

+testCase

1..*

+interaction 1..*

+executor 0..1

Figure 2. Test Scenarios Metamodel.

Elements in target metamodel are quite similar to the elements of source me-

tamodels. A TestCase element is a scenario from a functional requirement. The steps
of a test case are the elements TestActions. As mentioned before, there are no alter-
natives in the set of steps. Finally, some test steps will be execute for the system and
will be a valuable point to include assertions to verify the successful execution of the
test case, but other steps must be executed for an external element: a human, a test
harness, other subsystem, etc. This fact is modeled with the TestActor element.

Again, there are no definitions of concrete syntaxes, so test cases may be
represented as tabular text (in the same way that functional requirements in previous
section) or using the UML diagrams proposed in the UML Testing Profile [10].

3.3. Transformations between models

As seen before, the last element for an MDE is a set of transformations be-
tween instances of the source metamodel and instances of the target metamodel. An
example of transformation to create a new TestCase element from a FunctionalRe-
quirement element is described in next paragraph. This transformation has been de-
fined using the QVT-Relational language, which is the transformation language defined
by the OMG [11].

top relation FunctionalRequirement2TestCase {
 checkonly domain functionalRequirements rf: FunctionalRequirement
 { name = nrf, description = com
 precondition = pre, postcondition = pos
 };
 enforce domain testScenarios e: TestCase {
 name = nrf, description = ‘Test case for ‘+nrf,
 precondition = pre, postcondition = pos
 };
}

This QVT transformation is quite simple due there is no need to change the in-
formation from the functional requirements. However, other transformations are more
sophisticated, for example the set of transformations dedicated to traverse all the
execution paths of the functional requirement to build the scenarios. This set is still an
ongoing work.

4. Conclusions and acknowledges

This abstract has briefly presented an approach for test case generation using
MDE philosophy. There are two main benefits of using MDE philosophy to define test
case generation process. First, MDE adds a set of tools for formalizing the algorithms
and information structures presented in any work about test case generation. Second,
due the strong relation between MDE and UML, several generic supporting tools like
UML Profiling modelling tools, etc are already available.

This work is supported by the Ministry of Science and Education (Spain) under
the National Program for Researching, Development and Innovation, project QSimTec
(TIN2007-67843-C06-03) and REPRIS (TIN2005-24792-E).

References

[1] Boddu R., Guo L., Mukhopadhyay S. 2004. RETNA: From Requirements to Testing in Natural Way. 12th
IEEE International Requirements Engineering RE’04.
[2] Cockburn, A. 2000. Writing Effective Use Cases. Addison-Wesley 1st edition. USA.
[3] Escalona M.J. 2004. Models and Techniques for the Specification and Analysis of Navigation in Software
Systems. Ph. European Thesis. Department of Computer Language and Systems. University of Seville. Seville.
[4] Gutiérrez J.J. Escalona M.J. Mejías M. Torres J. 2006. Derivation of test objectives automatically. Fifteenth
International Conference On Information Systems Development (ISD06). Budapest, Hungary, 31 August – 2
September, 2006
[5] Gutiérrez J.J. Escalona M.J. Mejías M. Torres J. 2006. Towards a Complete Approach to Generate System
Test Cases. ICEIS Doctoral Consortium. Oaphos, Cyprus.
[6] Gutiérrez J.J. Escalona M.J. Mejías M. Torres J. 2006. Modelos Y Algoritmos Para La Generación De
Objetivos De Prueba. Jornadas sobre Ingeniería del Software y Bases de Datos JISBD. Sitges. Spain.
[7] Gutierrez, J.J., Nebut, C., Escalona, M.J., Mejías, M., Ramos, I. Visualization of use cases through automat-
ically generated activity diagrams. Lecture Notes in Computer Science. 5301. pp. 83-96. 2008
[8] Heumann , J. 2002. Generating Test Cases from Use Cases. Journal of Software Testing Professionals.
EEUU.
[9] Naresh, A. 2002. Testing From Use Cases Using Path Analysis Technique. International Conference On
Software Testing Analysis & Review. EEUU
[10] Object Management Group. 2003. The UML Testing Profile. www.omg.org.
[11] Query QVT-Merge Group, Revised submission for MOF 2.0 Query/Views/ Trans-formations RFP. 2004,
Object Management Group, http://www.omg.org/cgi-bin/apps/doc?ad/04-04-01.pdf.

