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Abstract 
 

Filtering is a very important issue in next 

generation networks. These networks consist of a 

relatively high number of resource constrained devices 

with very special features, such as managing frequent 

topology changes. At each topology change, the access 

control policy of all nodes of the network must be 

automatically modified. In order to manage these 

access control requirements, Firewalls have been 

proposed by several researchers. However, many of 

the problems of traditional firewalls are aggravated 

due to these networks particularities. 

In this paper we deeply analyze the local 

consistency problem in firewall rule sets, with special 

focus on automatic frequent rule set updates, which is 

the case of the dynamic nature of next generation 

networks. We propose a rule order independent local 

inconsistency detection algorithm to prevent automatic 

rule updates that can cause inconsistencies.  The 

proposed algorithms have very low computational 

complexity as experimental results will show, and can 

be used in real time environments. 

 

1. Introduction 
 

In the next generation of communication networks, 

there will be a need for the quick deployment of 

independent mobile users. An ad hoc network is a 

network connection method which is most often 

associated with wireless devices. A wireless ad hoc 

network is a collection of autonomous nodes that 

communicate with each other by forming a multihop 

radio network and maintaining connectivity in a 

decentralized manner. Each node in a wireless ad hoc 

network functions as both a host and a router, and the 

control of the network is distributed among the nodes. 

In next generation networks, the network topology is 

in general dynamic, because the connectivity among 

the nodes may vary with time due to node departures, 

new node arrivals, and the possibility of having mobile 

nodes.  

In next generation networks, authentication and 

access control between nodes is very important. 

However, prior and after the authentication step, there 

are attacks that can be performed with the aim of 

degrading network performance, for example to 

exploit services that should be available. In traditional 

networks, firewalls reduce the impact of these attacks, 

since they enforce at network perimeters an access 

control policy. However, as the concept of perimeter is 

not well defined in next generation networks, the 

firewall concept must be adapted [17, 18, 2]. 

A firewall is a network element that controls the 

traversal of packets across different network segments 

[1], thus it is a mechanism to enforce an access control 

policy, represented as an Access Control List (ACL). 

An ACL is in general a list of linearly ordered (total 

order) condition/action rules. The condition part of the 

rule is a set of condition attributes or selectors, where k 

is the number of selectors. The condition set is 

typically composed of five elements, which correspond 

to five fields of a packet header. Rule sets are usually 

composed of a number of rules ranging from tens to 

five thousand [3].  

One of the main problems when adapting the 

concept of firewalls to next generation networks is that 

in general, nodes will have very limited resources 

(memory, processing power, and bandwidth), but a 

complete firewall software must be executed at each 

node. In addition, problems regarding matching 

algorithm complexity [3], rule set consistency [4, 5, 6], 

and rule set conformity [7] not only also exist, but are 

aggravated due to the particularities of the 

environment. 

As can be seen from the example in Table 1, 

selectors of rules may overlap. There is a local 

inconsistency when two or more rules of the same rule 

set which have different actions overlap, since a packet 

can be matched with any of the overlapping rules. In 

next generation networks, when a rule is inserted, 



removed or modified in a rule set, it can produce a 

local inconsistency. An inconsistent rule set may 

accept traffic that should be denied or vice versa, 

causing an important security problem.  

In this paper we formally define what is a local 

inconsistency between an arbitrary number of rules in 

a firewall rule set. We have deeply analyzed the local 

consistency problem in firewall rule sets, with special 

focus on automatic rule insertions, removal and 

modifications. We propose a fast polynomial local 

inconsistency detection algorithm in firewall rule sets 

to prevent rule updates that can cause inconsistencies. 

The algorithm is in O(n·m) time complexity in the 

average case with the number of rules in the rule set, n, 

and with the number of inserted or modified rules, m, 

and in O(m+n) space complexity. The proposed 

algorithm is capable of handling full ranges in all 

selectors. A Java tool has been implemented and it is 

available under request. To the best of our knowledge, 

this is the first time a polynomial local inconsistency 

detection algorithm for rule set updates has been 

proposed and tested with success in resource 

constrained devices. Note that inconsistency detection 

is only a part of the inconsistency management 

problem, where inconsistencies should be 

automatically detected, identified, characterized and 

possibly repaired [6]. In this paper we only focus in 

fast algorithms for inconsistency detection. 

This paper is structured as follows. In Section 2 the 

special needs for firewalls in next generation networks 

are explained and related works are presented. In 

Section 3 firewall rule set local consistency 

management is explained, the problem is dissected and 

a solution is proposed for different rule set operations 

(insertion, removal, and modification). Section 4 

presents the algorithms and a theoretical complexity 

analysis. Section 5 presents the experimental results of 

the algorithms that prove its feasibility in resource 

constrained devices. Finally, Section 6 presents the 

concluding remarks and some insights for future work. 

 

2. Firewalls in Next Generation Networks. 

Related Works 
 

There are two major types of next generation  

networks.  

• Mobile Ad hoc Networks (MANet). A MANet is 

an autonomous collection of mobile nodes that 

communicate over relatively bandwidth 

constrained wireless links. Since the nodes are 

mobile, the network topology may change quickly 

and unpredictably over time. The network is 

decentralized, where all network activity, 

including discovering the topology and delivering 

messages must be executed by the nodes 

themselves, i.e., routing functionality will be 

incorporated into mobile nodes. 

• Wireless Sensor Networks (WSN). A wireless ad 

hoc sensor network consists of a number of 

sensors spread across a geographical area.  Each 

sensor has wireless communication capability and 

some level of intelligence for signal processing 

and networking of the data. 

 

2.1. Firewalls in next generation networks 
 

Filtering is a very important issue in any kind of 

next generation network, and especially in MANet due 

to its highly dynamic nature. The typical scenario 

results when a node enters or leaves a network. In this 

case, as nodes should or not communicate with the 

new one, the access control policy of all nodes of the 

network must be updated accordingly. 

In traditional networks, firewalls are deployed in 

the perimeter routers that connect networks with 

different access control requirements (and not in 

Table 1. Example rule set 
 

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action 

R1 tcp 192.168.1.5 any *.*.*.* 80 deny 

R2 tcp 192.168.1.* any *.*.*.* 80 allow 

R3 tcp *.*.*.* any 172.0.1.10 80 allow 

R4 tcp 192.168.1.* any 172.0.1.10 80 deny 

R5 tcp 192.168.1.60 any *.*.*.* 21 deny 

R6 tcp 192.168.1.* any *.*.*.* 21 allow 

R7 tcp 192.168.1.* any 172.0.1.10 21 allow 

R8 tcp *.*.*.* any *.*.*.* any deny 

R9 udp 192.168.1.* any 172.0.1.10 53 allow 

R10 udp *.*.*.* any 172.0.1.10 53 allow 

R11 udp 192.168.2.* any 172.0.2.* any allow 

R12 udp *.*.*.* any *.*.*.* any deny 

 



systems themselves). However, in next generation 

networks, filtering must me implemented at each node 

of the network. There are several important problems 

associated to the design and deployment of firewalls in 

next generation networks. Some problems are 

presented bellow, but a more extensive analysis was 

presented in [18]: 

• Real time frequent rule set updates. As next 

generation networks and especially MANet are 

highly dynamic, rule set modification may be a 

frequent task performed in real time. As with 

traditional firewalls rule modification could cause 

inconsistencies in the rule set. However, in next 

generation networks, these inconsistencies must be 

detected and managed very fast.  

• The nodes of next generation networks usually are 

battery powered embedded devices (cellular 

phones, cameras, PDA, smart cards, laptops, etc.) 

The problem of CPU and memory consumption is 

of extreme importance. 

 

2.2. Related works 
 

The closest works to ours come from the firewall 

diagnosis field. The seminal paper presented by Hari 

[11] identified this topic. They base their proposal on 

the assumption that there could not be a partial overlap 

between any selectors, which is not true for firewall 

rule sets. The proposed diagnosis algorithm is O(n) for 

rules with two selectors. Authors explain that the 

application of their algorithm to rules with more 

selectors could exceed computational and memory 

limits of most systems. Eppstein [12] proposed a new 

definition of inconsistency based on rule priorities, and 

provided worst case O(n1.5) algorithm to diagnose 

inconsistencies in rules with only two selectors (again, 

this is not the case of firewalls). Baboescu et al. 

improved both works [13] and provided diagnosis 

algorithms to diagnose inconsistencies in router filters 

that are 40 times faster than O(n2) ones for the general 

case of k selectors. However, they preprocess the rule 

set and convert integers and ranges to prefixes. This 

pre-process technique imposes the implicit assumption 

that a range can only express a single interval, which is 

true for all firewall selectors that can express ranges in 

the most common used firewall languages [14]. 

However, the range to prefix conversion technique 

could need to split a range in several prefixes (for a 

range [0, 2i], it could be needed 2i prefixes in the worst 

case), and thus the final number of rules could increase 

over the original rule set [15] (which is not good for 

resource constrained devices). Recently, we proposed a 

novel algorithm for k selectors [6] based on a 

theoretical analysis of the problem. The algorithms are 

worst case O(n2) time complexity and O(n) space 

complexity with the number of rules in the rule set. It 

is capable of handling full ranges in all selectors 

without any pre-process. However, none of these 

works propose real time rule set modification 

algorithms. 

Other researchers complemented the diagnosis 

process with a characterization of the faults against an 

established taxonomy (inconsistencies are called 

anomalies in these works). Al-Shaer et al. [4] provided 

an order-dependent diagnosis plus characterization of 

different kinds of inconsistencies by pairs of rules and 

provide an algorithm. They use rule decorrelation 

techniques as a pre-process in order to decompose the 

rule set in a new one with non overlapping rules. Since 

the proposed rule decorrelation algorithms [8] have 

worst case exponential time and space complexity, the 

worst case complexity of their process is also 

exponential. Their proposal also contains an algorithm 

to insert, remove and modify rules in a consistent way. 

As this algorithm call the previous one, worst case 

time complexity is also exponential. A modification to 

their algorithm was provided by García-Alfaro et al. 

[5], where they integrate the decorrelation and 

consistency diagnosis plus characterization algorithms 

of Al-Shaer, and generate a decorrelated and consistent 

rule set. Due to the use of the same decorrelation 

techniques, this proposal has the same complexity of 

Al-Shaer one. Others have tried to address the 

consistency problem using OBDDs [9]. However, 

complexity of OBDDs depends on the optimal 

ordering of its nodes which is a NP-Complete problem 

[10]. Due to the high computational complexity, none 

of these algorithms are suitable for resource 

constrained devices. 

 

3. Firewall Rule Set Consistency 

Management in Updates 
 

The consistency management process can be 

divided in three sequential phases [6]: detection 

(finding the rules that are inconsistent with other 

rules), identification (finding the rules that cause all 

the inconsistencies among the detected inconsistent 

rules), and characterization (naming the identified 

inconsistent rules among a taxonomy of faults using 

rule relations) of inconsistent rules. The combination 

of detection and identification is the diagnosis. 

In this paper, we are only interested in the detection 

of possible inconsistencies that can be caused when a 

rule or a collection of rules is updated in a consistent 

rule set. Note that identification is a naïve process in 



this case, as all inconsistencies are caused by the newly 

inserted rule. 

 

3.1. One to one local consistency 
 

In [6] we showed that all inconsistencies 

characterized in the bibliography [16] (Fig. 1) can be 

detected with a single higher level one to one 

inconsistency definition. We showed that all 

characterized inconsistencies are special cases of 

correlation. So, the correlation inconsistency can be 

redefined as the superset of all inconsistencies, 

representing the most general case.We propose to use 

that one to one inconsistency definition (Definition 

3.1), which ignores identification and characterization 

in order to simplify the detection process. 

 
Definition 3.1. Local inconsistency. Two rules Rx, Ry 

from a rule set RS are locally inconsistent if and only if 

the intersection of each of all of its selectors 

R[k], { }, _ , _ , _ , _k protocol src ip src prt dst ip dst prt∀ ∈

is not empty, and they have different actions, 

independently of their priorities. The inconsistency 

between two rules expresses the possibility of a non 

desirable effect in the semantics of the rule set.  
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Attending to Definition 3.1, all characterized cases 

are of the same kind, and are called inconsistencies 

without any particular characterization. Note that, 

attending to Defintion 3.1, rule priority is not needed 

for inconsistency detection, and is only needed if 

inconsistencies are going to be characterized. 

 

3.2. One to many local consistency 
 

With the given definition, some questions may arise 

about how two or more rules can relate themselves in 

order to cause an inconsistency. We showed that all 

inconsistencies between pairs of rules can be detected 

by pairs of two with Definition 3.1, but more 

complicated situations must also be analyzed in order 

to illustrate this definition. In this section we show that 

no extension is needed to Definition 3.1, since the case 

of one to many rule inconsistency can be decomposed 

in several independent two-rule inconsistencies. 

All base situations are presented in Fig. 1. This 

figure is a simplification to three inconsistent rules, but 

can easily be extended to more rules that can be 

composed in several ways. 

Fig. 1(a1) represents an inconsistency where the 

union of two independent rules Rx, Ry overlaps with 

another one, Rz. As Rx is inconsistent with Rz, and Ry 

is also inconsistent with Rz, both in an independent 

manner, this situation can be decomposed in two 

independent inconsistencies, and can easily be 

detected. Note that, although Rx and Ry overlap, they 

do not cause an inconsistency, since they have the 

same action. Fig. 1(a2) presents a similar situation, 

where Rx overlaps with the union of Ry and Rz. This 

situation is also decomposable in two independent 

inconsistencies: Rx inconsistent with Ry, and Rx with 

Rz. Take into consideration that, in order to detect 

inconsistencies, the priority of the rules is not 

necessary. The situations presented in Fig. 1(b1) and 

Fig. 1(b2) are the inverse of the two previous ones 

respect to the action. Thus, the detection process is 

analogous. Finally, Fig. 1(c) represents a relation with 

three overlapping rules. This situation can also be 

decomposed in two independent ones: Rx inconsistent 

with Ry, and Ry with Rz. 

 

 
Figure 1. Graphical diagram of 

inconsistencies between three rules 
 

In conclusion, it is possible to detect 

inconsistencies between an arbitrary number of rules 

with Definition 3.1, because all the presented 

situations can be decomposed in independent two by 

two relations. These examples are easily extendable to 

more than three rules. 



3.3. Rule set update operations 
 

There are three basic update operations: insertion, 

removal or modification of one or more rules. Insert 

operation usually occur when a new node enters the 

networks, removal when a node leaves the network, 

and modifications when the access control 

requirements between nodes change. Each of these 

three operations needs an analysis in order to know if 

they can cause an inconsistency. In this paper, 

consistency of the node rule set is maintained (1) not 

allowing the insertion of an inconsistent group of rules 

and (2) only inserting rules that are consistent with the 

node rule set. Thus, the algorithm only inserts rules 

that guarantee that the resulting rule set is consistent. 

Rule set distribution and rule deployment is considered 

in this paper, and it is a topic for future research. 

 

3.3.1. Rule insertion. One or more rules can be 

inserted at the same time in a rule set, for example 

when one or more nodes enter the network. We assume 

in this paper that the target rule set is consistent. Initial 

consistency diagnosis can be run offline, as it is 

understood that this case only happens prior to the first 

deployment of the rule set. Several algorithms to 

diagnose inconsistencies in rule sets have been 

reviewed in the related works section. 

 

Rz
Action=allow

Rz
Action=allow

Rx
Action=deny

(a) Partial overlap with

one or two rules

Rz
Action=allow

Ry
Action=allow

Rx
Action=deny

(b) Total overlap/subset with

one rule or two rules or

superset with one or two rules

Ry
Action=allow

Rx
Action=deny

(c) Total overlap with one

and partial with the other

(mix of situations)

Ry
Action=deny

 
Figure 2. Graphical diagram a new 

inconsistent rule introduced in a consistent 
rule set 

 

If only one rule is inserted, then it could be consistent 

with all rules of the rule set, or may be inconsistent 

with one or many of them. As has been explained in 

the previous subsection, this case can be reduced to 

checking the consistency between pairs of rules. These 

pairs of rules will always be composed of the new rule 

to be inserted and each of the rules in the rule set. Note 

that, as Defintion 3.1 is order independent, the new 

rule can be inserted anywhere in the rule set. Fig. 2 

presents an example where a new rule Rz is going to be 

added to a consistent rule set consisting of two rules. 

More complex cases can be derived from this one. 

Fig. 2(a) represents a partial overlap between the new 

rule, Rz, and one of the independent rules, Rx. Note 

that this case can be extended to a partial overlap with 

both Rx and Ry, deriving in the situation of Fig. 1(c). 

Fig. 2(b) represents the case of a total overlap between 

the new rule Rz, and one of the independent ones, Rx. 

This case can be extended to a subset overlap of Rz in 

Rx, and also to a superset overlap (it is the inverse). 

Fig. 2(c) represents an example of a combined case of 

the two previous situations, where the new rule Rz 

totally overlaps with Rx and partially with Ry. This 

situation can also be extended to fully overlap with Rx 

and Ry, or even a subset or superset of both. 

If more than one rule is being inserted, then there are 

three possible approximations. Note that the relative 

order between the collection of rules being inserted 

and their final position on the rule set to be inserted in 

is not relevant, since inconsistencies are order 

independent. 

• The first one is to insert all rules and then check 

the consistency of the full rule set with an on-line 

algorithm. To the best of our knowledge, the 

fastest algorithm to solve the inconsistency 

diagnosis problem [6] is worst case O(n2) time 

complexity with the number of rules in the rule 

set. However, for big rule sets the consistency 

diagnosis of the full rule set could be unfeasible in 

time and space in resource constrained devices. 

• The second one is to iterate over the collection of 

rules to be inserted and check the consistency of 

the rule set for each insertion operation, inserting 

it if consistent. This case is the same as the one 

explained above but repeated as many times as 

rules are in the collection. In addition, if the 

collection is inconsistent, then it is not detected 

until two inconsistent rules of the collection are 

inserted in the rule set. 

• The third one is to check the consistency of the 

collection of rules being inserted using one of the 

reviewed offline algorithms and then use the 

second approximation. In next generation 

networks, the collection of new rules may be in 

general very small, since these networks 

(especially MANet) suffer from small but frequent 

topology updates. In this case, the O(n2) 

consistency diagnosis algorithm [6] can be applied 



to the collection of rules being inserted. If they are 

consistent, then they can be added to the rule set 

using the second approximation; if not, the 

process is stopped here. This approximation is 

fastest than the first one and more secure than the 

second one, since if the collection of new rules are 

inconsistent, no rule is going to be added to the 

rule set. This approximation is the one that is 

going to be used in the algorithms presented in 

this paper. 

 

3.3.2. Rule removal. One or more rules can be 

removed at the same time in a rule set, for example 

when one or more nodes leave the network. If the rule 

set has been deployed in a node, then it is consistent by 

definition, as has been explained in the previous 

subsection. Note that, contrary to the insertion 

operation, the cases of removing one or more rules are 

the same with regard to consistency, since the rules to 

be removed are by definition, consistent (they are part 

of a consistent rule set). No special care must be taken. 

 

3.3.3. Rule modification. Rule modification is a 

similar operation to a sequential removal and insertion, 

and represents the case when access control 

requirements change, or when a node leaves the 

network and another enters it. Since rule removal 

cannot cause any inconsistency, then this case is 

reduced to rule insertion with regard to consistency. If 

several rules are going to be modified, this can again 

be reduced to the removal of several rules and the 

insertion of the new ones. Consistency checking is 

necessary in the new collection of rules being updated. 

 

4. Local Inconsistency Detection 

Algorithms 
 

As was explained below, upon network creation 

nodes must have a rule set that implement the initial 

access control requirements. However, in order be as 

secure as possible, this rule sets must be consistent 

and, if possible, not redundant. The removal of 

redundancies is not required, since redundancies can 

be used to improve the performance of matching 

algorithms. Any of the reviewed offline algorithms like 

[4, 5, 6] can be used in this step in order to diagnose 

inconsistencies prior to first deployment. In this 

section, two polynomial algorithms to detect 

inconsistencies in rule sets upon rule insertion are 

presented; the second one is an improvement in 

computational complexity over the first one. These two 

algorithms implement Definition 3.1 and the process 

explained in Section 3.3. Recall Note that in this paper, 

consistency of the node rule set is maintained (1) not 

allowing the insertion of an inconsistent group of rules 

and (2) only inserting rules that are consistent with the 

node rule set. Thus, the algorithm only inserts rules 

that guarantee that the resulting rule set is consistent. 

 

4.1. Local inconsistency detection algorithm 
 

The algorithm presented in Fig. 3 receives a firewall 

rule set and one or more rules to be inserted. The result 

of the algorithm is a boolean matrix called 

Inconsistency Matrix (Definition 4.1). 

Definition 4.1. Inconsistency Matrix, IM. It is a 

matrix of size n·m, where n is the number of rules in 

the rule set of the node, and m is the size of the 

collection of rules being inserted. Upon instantiation, 

the matrix elements are set to false. An element 

im[n,m] is set to true when an inconsistency is 

detected between the rules in the row n and column m. 

 

Firstly, if there is more than one rule to be inserted, 

consistency of the collection is checked. If the 

collection is inconsistent, the algorithm finishes with 

no rules inserted. The consistency diagnosis algorithm 

used in this first step has been taken from [6], and 

returns a boolean indicating if the collection of rules to 

be inserted is consistent or not. Then, the algorithm 

enters the main loop. For each rule in the collection (if 

there are more than one rule), it checks if there is an 

inconsistency with any of the rule set. Note that the 

detection process, like Definition 3.1, is order 

independent. If there is no inconsistency with the rule 

considered in that iteration, it is inserted. However, if 

there is inconsistency, the corresponding element of 

the IM is set to true and the rule is not inserted. The 

algorithm finishes with a consistent rule set, because if 

inconsistent rules are detected, they are not inserted. 

Inconsistencies are given to the user in the 

Inconsistency Matrix. 

Time complexity of Algorithm 1 is bounded by the 

diagnosis algorithm of line 7 applied to the collection 

of rules being inserted, O(m2), and the two nested 

loops of lines 9 and 11. Note that the general case in 

next generation networks is m<<n. Complexity of the 

algorithm depends on the size of the list that contains 

the rules to be inserted (which will usually be very 

small in next generation networks). The 

inconsistency() operation of line 23 (called in line 13) 

implements Definition 3.1. It is composed of an 

iteration. In typical firewall rule sets the iteration runs 

5 times. Anyway, the iteration is bounded by the 

number of selectors, which is a constant, k. In addition, 

inside the iteration there is an intersection between 

each selector. The typical 5 selectors of firewall rule 



sets are source and destination IP, source and 

destination ports and protocol. All these selectors are 

integers or ranges of them except IP address. Knowing 

if two ranges of integers intersect can be done in 

constant time with a naïve algorithm which compares 

the limits of the intervals. Knowing if two IP addresses 

intersect can also be easily done in constant time by 

comparing their network addresses by using their 

netmasks. 

Thus, the best case for the algorithm is achieved 

when only one rule is going to be inserted, m=1. In 

this case, time complexity is in O(n). Worst case is 

achieved when the number of rules to be inserted is 

very near to the number of rules in the rule set. In this 

case time complexity is very near to O(n2). However, 

note that the worst case is very rare in next generation 

networks. Average case is in O(m2+n·m), 

m<<n�O(n·m). Complexity also depends on the 

selectors of the rules being inserted, as is derived from 

the implementation of the inconsistency() operation (it 

uses lazy evaluation). Worst case complexity is 

achieved if rules are too open (ranges in selectors or 

even wildcards), which is not the usual case in next 

generation networks (as was explained in the first two 

sections of the paper). 

Space complexity of Algorithm 1 is bounded by the 

size of the rule set and the number of rules being 

inserted, which in the best case is O(n), in the worst 

case is close to O(n2), and in the average case is 

O(n+m). 

Algorithm 1. Inconsistency Detection Algorithm 2. Improved Inconsistency Detection 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 10 

11 11 

12 12 

13 13 

14 14 

15 15 

16 16 

17 17 

18 18 

19 19 

20 20 

21 21 

22 22 

23 23 

24 24 

25 25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

Func detection(in List: ruleSet, List: insertCollection; out 

Array[][]: im) 

Var 

    Rule ri, rj 

Alg 

    im=new Boolean[ruleSet.size()][insertCollection.size()]  

    if (insertGroup.size()>1) 

        res = consistencyDiagnosis(insertCollection) 

    if (res) { // If consistent 

        for each j=1..insertCollection.size() { 

            rj=insertCollection.get(j) 

            for each i=1..ruleSet.size() { // Main loop 

                ri = ruleSet.get(i) 

                if (inconsistency(ri, rj)) 

                    im[ri.getID()][rj.getID()] = true 

                else 

                    insertRule(ruleSet, insertCollection.get(j)) 

            } 

        } 

    } 

End Alg 

 

// This function implements the Inconsistency Definition 

Func inconsistency(in Rule: rx, ry; out Boolean: b) 

Var 

    Integer i 

Alg 

    b = false 

    if (rx.action != ry.action) { 

        b = true 

        i = 1 

        while (i<=x.selectors.size() AND b) 

            b = b AND intersection(rx.getSelector(i), 

ry.getSelector(i)) 

    } 

End Alg 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

Func detection(in List: ruleSetAllow, List: ruleSetDeny , 

List: insertCollection; out Array[][]: im) 

Var 

    Rule ri, rj 

Alg 

   im=new Boolean[ruleSet.size()][insertCollection.size()]  

    if (insertCollection.size()>1) 

        res = consistencyDiagnosis(insertCollection) 

    if (res) { 

        for each j=1..insertCollection.size() { // Main loop 

                rj=insertCollection.get(j) 

                if (rj.action == allow) { 

                    for each i=1..ruleSetDeny.size() { 

                        ri = ruleSetDeny.get(i) 

                        if (inconsistency(ri, rj)) 

                            im[ri.getID()][rj.getID()] = true 

                        else 

                         insertRule(ruleSet, insertCollection.get(j)) 

                    } 

                } 

                else { // Check with allow rule set 

                    for each i=1..ruleSetAllow.size() { 

                        ri = ruleSetAllow.get(i) 

                        if (inconsistency(ri, rj)) 

                       im[ri.getPriority()][rj.getPriority()]= true  

                        else 

                         insertRule(ruleSet, insertCollection.get(j))  

                    } 

                } 

            } 

        } 

    } 

End Alg 

 

// This function is the same than in Algorithm 1 

Func inconsistency(in Rule: rx, ry; out Boolean: b) 

Figure 3. Inconsistency Detection for rule 
insertion algorithm 

Figure 4. Improved Inconsistency Detection for rule 
insertion algorithm 

 



4.2. Improved algorithm 
 

An optimization can be introduced in Algorithm 1 

in order to improve performance. Note that Definition 

3.1 is based on the fact that two rules can only be 

inconsistent if they have different actions. To improve 

the algorithm, it is possible to divide the original rule 

set in two, one with allow rules and the other with deny 

rules. This modification can be done because the 

possible inconsistencies are independent of rule 

priority (Definition 3.1) The modifications needed 

over Algorithm 1 are presented in Fig. 4 (lines 9-30, 

the main loop). Algorithm 2 receives three lists, one 

with allow rules, other with deny rules, and finally the 

list of rules to be inserted. The division of the original 

rule set in two can be done while parsing with no 

additional cost. As in Algorithm 1, the first operation 

is to check the consistency of the collection. Then, and 

here is the difference, for each rule in the collection (if 

there are more than one rule), it checks its action. If it 

is allow, the rule is checked for inconsistency with all 

of the deny rule set; if it is deny, it is checked for 

consistency with all allow rules. The rest of the 

algorithm is equal to Algorithm 1. 

Time complexity of Algorithm 2 (Table 2) is again 

bounded by the diagnosis algorithm of line 7 applied to 

the collection of rules being inserted, O(m2), and the 

two nested loops of lines 9 and 12 or 21.  

With the improvement, the best case for the 

algorithm is achieved when only one rule is going to 

be inserted, m=1, and there are no rules in the opposite 

action rule set. In this case, time complexity is a 

constant. Worst case is achieved when the number of 

rules to be inserted is very near to the number of rules 

in the rule set, and most of them have the opposite 

action of the smaller rule set. In this case time 

complexity is very near to O(n2) and there is no real 

improvement over Algorithm 1. However, note that the 

worst case is very rare in next generation networks. 

Average case is in O(m2+n/2·m), m<<n�O(n/2·m). 

However, as in next generation networks most rules 

will be allow and there will be few exceptions (deny 

rules), experimental results should show a huge 

improvement in real life scenarios.  As in Algorithm 1, 

complexity also depends on the selectors of the rules 

being inserted, as is derived from the implementation 

of the inconsistency() operation (it uses lazy 

evaluation). Space complexity of Algorithm 2 is equal 

to Algorithm 1. Thus, in most real life scenarios the 

improvement should show a huge reduction in running 

time over Algorithm 1.  

Recall that rule removal does not need a special 

algorithm, since it cannot cause inconsistencies. In 

addition, rule update is equivalent to sequential rule 

removal and insertion in terms of the possibility of 

causing inconsistencies. 

 

Table 2. Computational complexity of 
Algorithm 2 

 

Number of inserted rules Best case Worst case Average case 

1 constant O(n) O(n/2) 

m O(m) near O(n2) O(n/2·m) 

 

5. Experimental Results 
 

As real rule sets have been used in the experiments, 

results represent an average case in the number of deny 

and allow rules for each rule set. Table 3 presents the 

results of the conducted tests in one node of the 

network. The first column represents the size of the 

rule set. The second and third ones represent the 

running time of Algorithm 1 with only one rule to be 

inserted. The average case (AC) is achieved when the 

rule to be inserted is an arbitrary rule (in experiments, 

a rule with allow action). The worst case (WC) is 

achieved when the rule to be inserted is the wildcard 

rule deny all. Fourth and fifth columns represent the 

same but for Algorithm 2. Note that the only difference 

in the presented average and worst case is a 

multiplicative constant, as the type of the rule only 

changes the time needed to execute the inconsistency() 

method in both algorithms by a constant factor. 

If more rules are going to be inserted, it is necessary 

to multiply the desired results by the number of rules, 

and add the needed time for the initial diagnosis of the 

collection of rules. In order to test the feasibility of this 

diagnosis, we have used the fastest known heuristic 

Table 3. Experimental results 
 

Rule Set 

size 

%Deny 

rules 

Algorithm 1 

 AC (ms) 

Algorithm 1 

 WC (ms) 

Algorithm 2 

AC (ms) 

Algorithm 2 

 WC (ms) 

50 28,21 2 4 1 3 

144 30,91 9 13 3 11 

238 66,43 16 19 9 14 

450 34,73 27 41 11 33 

900 14,8 48 88 13 77 



algorithm [6] and used the rule set of size 50, obtaining 

a result of 64ms, which is quite acceptable. However, 

in real life scenarios of next generation networks, 

insertions will be of few rules and time needed for the 

diagnosis of the new rules may be negligible. 

Experiments were performed on a Java implementation 

with SableVM Java Virtual Machine implementation 

1.13, and on an isolated machine with Intel XScale 

IXP420@266MHz processor with 32Mb of RAM, 

running Debian Etch GNU/Linux Distribution. Each 

test was conducted 5000 times in order to get accurate 

results (the presented results are the average). Note 

that SableVM is not a just in time virtual machine (JIT 

VM). If a JIT capable VM is used, results could 

improve by a factor or 10 or more, depending on the 

particular JIT implementation. 

 

 
Figure 5(a). Running time of the algorithms. 

Average case 
 

 
Figure 5(b). Running time of the algorithms. 

Worst case 
 

The first thing that should be noted is the difference 

between the two algorithms in the insertion of one rule 

(in average and worst cases). As expected, there is a 

huge reduction in the execution time of the average 

case in a real life scenario for all rule set sizes (Fig. 

5(a)). Even for very large rule sets in next generation 

networks (900 rules) execution time is about 13ms 

with the improved algorithm (a 5x speedup). This time 

is very reasonable taking into account that next 

generation networks may have rule sets smaller than 

900 rules. However, if a very conflictive rule is going 

to be added, execution time increases a lot (Fig. 5(b)). 

With 900 rules, it can be eight times slower (Fig. 6). 

Even in this case, the execution time is very 

reasonable, about 80ms). Note how in Fig. 5(b) the 

difference between worst cases of Algorithms 1 and 2 

is not as big as was for the average case. The reason is 

that the used rule for insertion (deny all) will cause an 

inconsistency with most rules of the rule set (in 

Algorithm 2 the rule is compared with the bigger of the 

two lists, the one that contains allow rules). 

 

 
Figure 6. Algorithm 2 running time 

 

In conclusion, theoretical and empirical results 

show that the algorithms can be used in resource 

constrained devices where a quick response time is 

needed, as a complement for actual distributed and 

ubiquitous firewall proposals. 

 

6. Conclusions and Future Works 
 

This paper proposes a real time approach to detect 

inconsistencies in firewall rule sets when inserting, 

removing or modifying its rules. We showed that 

filtering is a very important topic in next generation 

networks. We showed that, to the best of our 

knowledge, no algorithm to date is applicable in real 

time in resource constrained devices. For these 

reasons, firewall problems must be revisited. We 

analyzed the consistency diagnosis problem in firewall 

rule sets when inserting, removing and modifying the 

rule set, and showed that inconsistencies can only be 

caused in rule insertions. This analysis is based on a 

previous more general theoretical one for the general 

problem of firewall consistency management. Due to 

the division of the consistency management process in 

three steps, we realized that local inconsistency 



detection does not depend on rule priorities, 

identification is a naïve step and characterization is not 

necessary for rule modifications. Inconsistency 

detection is only a part of the inconsistency 

management problem, where inconsistencies should be 

automatically detected, identified, characterized and 

possibly repaired [6]. In this paper we only focus in 

fast algorithms for inconsistency detection. 

We explained that inconsistencies can only be 

caused by rule insertions, proposed three 

approximations to the solution and selected one for 

implementation, giving two algorithms. In this paper, 

consistency of the node rule set is maintained (1) not 

allowing the insertion of an inconsistent group of rules 

and (2) only inserting rules that are consistent with the 

node rule set.  

The average case time complexity of the process in 

O(n·m) with the number of rules in the rule set, n, and 

with the number of updated rules, m. Space complexity 

is in O(n/2+m). The proposed process is capable of 

handling full ranges in all selectors without pre-

processing them. The algorithms must be run at each 

node of the topology which needs a modification of its 

rule set. We provide experimental results using 

resource constrained devices. Results were provided. A 

Java tool has been implemented and it is available 

under request. To the best of our knowledge, this is the 

first time a polynomial algorithm has been proposed to 

automatically address this problem in resource 

constrained devices. This work represents a 

complement to the distributed and ubiquitous firewall 

proposals. 

However, our approach has some limitations that 

give us opportunities for improvement in future works. 

The most important one is that our process can detect 

inconsistent rules but not redundancies Although 

redundancies do not change the semantics of the rule 

set, they can increase its size. 
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