
Fast Algorithms for Local Inconsistency Detection in Firewall ACL Updates

S. Pozo, R. Ceballos, R. M. Gasca, A. J. Varela-Vaca

Department of Computer Languages and Systems, ETS Ingeniería Informática,

University of Seville, Avda. Reina Mercedes S/N, 41012 Sevilla, Spain

{sergiopozo,ceball,gasca}@us.es

www.lsi.us.es/~quivir

Abstract

Filtering is a very important issue in next

generation networks. These networks consist of a

relatively high number of resource constrained devices

with very special features, such as managing frequent

topology changes. At each topology change, the access

control policy of all nodes of the network must be

automatically modified. In order to manage these

access control requirements, Firewalls have been

proposed by several researchers. However, many of

the problems of traditional firewalls are aggravated

due to these networks particularities.

In this paper we deeply analyze the local

consistency problem in firewall rule sets, with special

focus on automatic frequent rule set updates, which is

the case of the dynamic nature of next generation

networks. We propose a rule order independent local

inconsistency detection algorithm to prevent automatic

rule updates that can cause inconsistencies. The

proposed algorithms have very low computational

complexity as experimental results will show, and can

be used in real time environments.

1. Introduction

In the next generation of communication networks,

there will be a need for the quick deployment of

independent mobile users. An ad hoc network is a

network connection method which is most often

associated with wireless devices. A wireless ad hoc

network is a collection of autonomous nodes that

communicate with each other by forming a multihop

radio network and maintaining connectivity in a

decentralized manner. Each node in a wireless ad hoc

network functions as both a host and a router, and the

control of the network is distributed among the nodes.

In next generation networks, the network topology is

in general dynamic, because the connectivity among

the nodes may vary with time due to node departures,

new node arrivals, and the possibility of having mobile

nodes.

In next generation networks, authentication and

access control between nodes is very important.

However, prior and after the authentication step, there

are attacks that can be performed with the aim of

degrading network performance, for example to

exploit services that should be available. In traditional

networks, firewalls reduce the impact of these attacks,

since they enforce at network perimeters an access

control policy. However, as the concept of perimeter is

not well defined in next generation networks, the

firewall concept must be adapted [17, 18, 2].

A firewall is a network element that controls the

traversal of packets across different network segments

[1], thus it is a mechanism to enforce an access control

policy, represented as an Access Control List (ACL).

An ACL is in general a list of linearly ordered (total

order) condition/action rules. The condition part of the

rule is a set of condition attributes or selectors, where k

is the number of selectors. The condition set is

typically composed of five elements, which correspond

to five fields of a packet header. Rule sets are usually

composed of a number of rules ranging from tens to

five thousand [3].

One of the main problems when adapting the

concept of firewalls to next generation networks is that

in general, nodes will have very limited resources

(memory, processing power, and bandwidth), but a

complete firewall software must be executed at each

node. In addition, problems regarding matching

algorithm complexity [3], rule set consistency [4, 5, 6],

and rule set conformity [7] not only also exist, but are

aggravated due to the particularities of the

environment.

As can be seen from the example in Table 1,

selectors of rules may overlap. There is a local

inconsistency when two or more rules of the same rule

set which have different actions overlap, since a packet

can be matched with any of the overlapping rules. In

next generation networks, when a rule is inserted,

removed or modified in a rule set, it can produce a

local inconsistency. An inconsistent rule set may

accept traffic that should be denied or vice versa,

causing an important security problem.

In this paper we formally define what is a local

inconsistency between an arbitrary number of rules in

a firewall rule set. We have deeply analyzed the local

consistency problem in firewall rule sets, with special

focus on automatic rule insertions, removal and

modifications. We propose a fast polynomial local

inconsistency detection algorithm in firewall rule sets

to prevent rule updates that can cause inconsistencies.

The algorithm is in O(n·m) time complexity in the

average case with the number of rules in the rule set, n,

and with the number of inserted or modified rules, m,

and in O(m+n) space complexity. The proposed

algorithm is capable of handling full ranges in all

selectors. A Java tool has been implemented and it is

available under request. To the best of our knowledge,

this is the first time a polynomial local inconsistency

detection algorithm for rule set updates has been

proposed and tested with success in resource

constrained devices. Note that inconsistency detection

is only a part of the inconsistency management

problem, where inconsistencies should be

automatically detected, identified, characterized and

possibly repaired [6]. In this paper we only focus in

fast algorithms for inconsistency detection.

This paper is structured as follows. In Section 2 the

special needs for firewalls in next generation networks

are explained and related works are presented. In

Section 3 firewall rule set local consistency

management is explained, the problem is dissected and

a solution is proposed for different rule set operations

(insertion, removal, and modification). Section 4

presents the algorithms and a theoretical complexity

analysis. Section 5 presents the experimental results of

the algorithms that prove its feasibility in resource

constrained devices. Finally, Section 6 presents the

concluding remarks and some insights for future work.

2. Firewalls in Next Generation Networks.

Related Works

There are two major types of next generation

networks.

• Mobile Ad hoc Networks (MANet). A MANet is

an autonomous collection of mobile nodes that

communicate over relatively bandwidth

constrained wireless links. Since the nodes are

mobile, the network topology may change quickly

and unpredictably over time. The network is

decentralized, where all network activity,

including discovering the topology and delivering

messages must be executed by the nodes

themselves, i.e., routing functionality will be

incorporated into mobile nodes.

• Wireless Sensor Networks (WSN). A wireless ad

hoc sensor network consists of a number of

sensors spread across a geographical area. Each

sensor has wireless communication capability and

some level of intelligence for signal processing

and networking of the data.

2.1. Firewalls in next generation networks

Filtering is a very important issue in any kind of

next generation network, and especially in MANet due

to its highly dynamic nature. The typical scenario

results when a node enters or leaves a network. In this

case, as nodes should or not communicate with the

new one, the access control policy of all nodes of the

network must be updated accordingly.

In traditional networks, firewalls are deployed in

the perimeter routers that connect networks with

different access control requirements (and not in

Table 1. Example rule set

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action

R1 tcp 192.168.1.5 any *.*.*.* 80 deny

R2 tcp 192.168.1.* any *.*.*.* 80 allow

R3 tcp *.*.*.* any 172.0.1.10 80 allow

R4 tcp 192.168.1.* any 172.0.1.10 80 deny

R5 tcp 192.168.1.60 any *.*.*.* 21 deny

R6 tcp 192.168.1.* any *.*.*.* 21 allow

R7 tcp 192.168.1.* any 172.0.1.10 21 allow

R8 tcp *.*.*.* any *.*.*.* any deny

R9 udp 192.168.1.* any 172.0.1.10 53 allow

R10 udp *.*.*.* any 172.0.1.10 53 allow

R11 udp 192.168.2.* any 172.0.2.* any allow

R12 udp *.*.*.* any *.*.*.* any deny

systems themselves). However, in next generation

networks, filtering must me implemented at each node

of the network. There are several important problems

associated to the design and deployment of firewalls in

next generation networks. Some problems are

presented bellow, but a more extensive analysis was

presented in [18]:

• Real time frequent rule set updates. As next

generation networks and especially MANet are

highly dynamic, rule set modification may be a

frequent task performed in real time. As with

traditional firewalls rule modification could cause

inconsistencies in the rule set. However, in next

generation networks, these inconsistencies must be

detected and managed very fast.

• The nodes of next generation networks usually are

battery powered embedded devices (cellular

phones, cameras, PDA, smart cards, laptops, etc.)

The problem of CPU and memory consumption is

of extreme importance.

2.2. Related works

The closest works to ours come from the firewall

diagnosis field. The seminal paper presented by Hari

[11] identified this topic. They base their proposal on

the assumption that there could not be a partial overlap

between any selectors, which is not true for firewall

rule sets. The proposed diagnosis algorithm is O(n) for

rules with two selectors. Authors explain that the

application of their algorithm to rules with more

selectors could exceed computational and memory

limits of most systems. Eppstein [12] proposed a new

definition of inconsistency based on rule priorities, and

provided worst case O(n1.5) algorithm to diagnose

inconsistencies in rules with only two selectors (again,

this is not the case of firewalls). Baboescu et al.

improved both works [13] and provided diagnosis

algorithms to diagnose inconsistencies in router filters

that are 40 times faster than O(n2) ones for the general

case of k selectors. However, they preprocess the rule

set and convert integers and ranges to prefixes. This

pre-process technique imposes the implicit assumption

that a range can only express a single interval, which is

true for all firewall selectors that can express ranges in

the most common used firewall languages [14].

However, the range to prefix conversion technique

could need to split a range in several prefixes (for a

range [0, 2i], it could be needed 2i prefixes in the worst

case), and thus the final number of rules could increase

over the original rule set [15] (which is not good for

resource constrained devices). Recently, we proposed a

novel algorithm for k selectors [6] based on a

theoretical analysis of the problem. The algorithms are

worst case O(n2) time complexity and O(n) space

complexity with the number of rules in the rule set. It

is capable of handling full ranges in all selectors

without any pre-process. However, none of these

works propose real time rule set modification

algorithms.

Other researchers complemented the diagnosis

process with a characterization of the faults against an

established taxonomy (inconsistencies are called

anomalies in these works). Al-Shaer et al. [4] provided

an order-dependent diagnosis plus characterization of

different kinds of inconsistencies by pairs of rules and

provide an algorithm. They use rule decorrelation

techniques as a pre-process in order to decompose the

rule set in a new one with non overlapping rules. Since

the proposed rule decorrelation algorithms [8] have

worst case exponential time and space complexity, the

worst case complexity of their process is also

exponential. Their proposal also contains an algorithm

to insert, remove and modify rules in a consistent way.

As this algorithm call the previous one, worst case

time complexity is also exponential. A modification to

their algorithm was provided by García-Alfaro et al.

[5], where they integrate the decorrelation and

consistency diagnosis plus characterization algorithms

of Al-Shaer, and generate a decorrelated and consistent

rule set. Due to the use of the same decorrelation

techniques, this proposal has the same complexity of

Al-Shaer one. Others have tried to address the

consistency problem using OBDDs [9]. However,

complexity of OBDDs depends on the optimal

ordering of its nodes which is a NP-Complete problem

[10]. Due to the high computational complexity, none

of these algorithms are suitable for resource

constrained devices.

3. Firewall Rule Set Consistency

Management in Updates

The consistency management process can be

divided in three sequential phases [6]: detection

(finding the rules that are inconsistent with other

rules), identification (finding the rules that cause all

the inconsistencies among the detected inconsistent

rules), and characterization (naming the identified

inconsistent rules among a taxonomy of faults using

rule relations) of inconsistent rules. The combination

of detection and identification is the diagnosis.

In this paper, we are only interested in the detection

of possible inconsistencies that can be caused when a

rule or a collection of rules is updated in a consistent

rule set. Note that identification is a naïve process in

this case, as all inconsistencies are caused by the newly

inserted rule.

3.1. One to one local consistency

In [6] we showed that all inconsistencies

characterized in the bibliography [16] (Fig. 1) can be

detected with a single higher level one to one

inconsistency definition. We showed that all

characterized inconsistencies are special cases of

correlation. So, the correlation inconsistency can be

redefined as the superset of all inconsistencies,

representing the most general case.We propose to use

that one to one inconsistency definition (Definition

3.1), which ignores identification and characterization

in order to simplify the detection process.

Definition 3.1. Local inconsistency. Two rules Rx, Ry

from a rule set RS are locally inconsistent if and only if

the intersection of each of all of its selectors

R[k], { }, _ , _ , _ , _k protocol src ip src prt dst ip dst prt∀ ∈

is not empty, and they have different actions,

independently of their priorities. The inconsistency

between two rules expresses the possibility of a non

desirable effect in the semantics of the rule set.

{ }

(, ,) 1 , ,

[] [] [] []

, _ , _ , _ , _

,

x y x y

i j
Inconsistent R R RS i j n i j

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ≠ ⇔

≠ ∅ ∧ ≠

∀ ∈

∩

Attending to Definition 3.1, all characterized cases

are of the same kind, and are called inconsistencies

without any particular characterization. Note that,

attending to Defintion 3.1, rule priority is not needed

for inconsistency detection, and is only needed if

inconsistencies are going to be characterized.

3.2. One to many local consistency

With the given definition, some questions may arise

about how two or more rules can relate themselves in

order to cause an inconsistency. We showed that all

inconsistencies between pairs of rules can be detected

by pairs of two with Definition 3.1, but more

complicated situations must also be analyzed in order

to illustrate this definition. In this section we show that

no extension is needed to Definition 3.1, since the case

of one to many rule inconsistency can be decomposed

in several independent two-rule inconsistencies.

All base situations are presented in Fig. 1. This

figure is a simplification to three inconsistent rules, but

can easily be extended to more rules that can be

composed in several ways.

Fig. 1(a1) represents an inconsistency where the

union of two independent rules Rx, Ry overlaps with

another one, Rz. As Rx is inconsistent with Rz, and Ry

is also inconsistent with Rz, both in an independent

manner, this situation can be decomposed in two

independent inconsistencies, and can easily be

detected. Note that, although Rx and Ry overlap, they

do not cause an inconsistency, since they have the

same action. Fig. 1(a2) presents a similar situation,

where Rx overlaps with the union of Ry and Rz. This

situation is also decomposable in two independent

inconsistencies: Rx inconsistent with Ry, and Rx with

Rz. Take into consideration that, in order to detect

inconsistencies, the priority of the rules is not

necessary. The situations presented in Fig. 1(b1) and

Fig. 1(b2) are the inverse of the two previous ones

respect to the action. Thus, the detection process is

analogous. Finally, Fig. 1(c) represents a relation with

three overlapping rules. This situation can also be

decomposed in two independent ones: Rx inconsistent

with Ry, and Ry with Rz.

Figure 1. Graphical diagram of

inconsistencies between three rules

In conclusion, it is possible to detect

inconsistencies between an arbitrary number of rules

with Definition 3.1, because all the presented

situations can be decomposed in independent two by

two relations. These examples are easily extendable to

more than three rules.

3.3. Rule set update operations

There are three basic update operations: insertion,

removal or modification of one or more rules. Insert

operation usually occur when a new node enters the

networks, removal when a node leaves the network,

and modifications when the access control

requirements between nodes change. Each of these

three operations needs an analysis in order to know if

they can cause an inconsistency. In this paper,

consistency of the node rule set is maintained (1) not

allowing the insertion of an inconsistent group of rules

and (2) only inserting rules that are consistent with the

node rule set. Thus, the algorithm only inserts rules

that guarantee that the resulting rule set is consistent.

Rule set distribution and rule deployment is considered

in this paper, and it is a topic for future research.

3.3.1. Rule insertion. One or more rules can be

inserted at the same time in a rule set, for example

when one or more nodes enter the network. We assume

in this paper that the target rule set is consistent. Initial

consistency diagnosis can be run offline, as it is

understood that this case only happens prior to the first

deployment of the rule set. Several algorithms to

diagnose inconsistencies in rule sets have been

reviewed in the related works section.

Rz
Action=allow

Rz
Action=allow

Rx
Action=deny

(a) Partial overlap with

one or two rules

Rz
Action=allow

Ry
Action=allow

Rx
Action=deny

(b) Total overlap/subset with

one rule or two rules or

superset with one or two rules

Ry
Action=allow

Rx
Action=deny

(c) Total overlap with one

and partial with the other

(mix of situations)

Ry
Action=deny

Figure 2. Graphical diagram a new

inconsistent rule introduced in a consistent
rule set

If only one rule is inserted, then it could be consistent

with all rules of the rule set, or may be inconsistent

with one or many of them. As has been explained in

the previous subsection, this case can be reduced to

checking the consistency between pairs of rules. These

pairs of rules will always be composed of the new rule

to be inserted and each of the rules in the rule set. Note

that, as Defintion 3.1 is order independent, the new

rule can be inserted anywhere in the rule set. Fig. 2

presents an example where a new rule Rz is going to be

added to a consistent rule set consisting of two rules.

More complex cases can be derived from this one.

Fig. 2(a) represents a partial overlap between the new

rule, Rz, and one of the independent rules, Rx. Note

that this case can be extended to a partial overlap with

both Rx and Ry, deriving in the situation of Fig. 1(c).

Fig. 2(b) represents the case of a total overlap between

the new rule Rz, and one of the independent ones, Rx.

This case can be extended to a subset overlap of Rz in

Rx, and also to a superset overlap (it is the inverse).

Fig. 2(c) represents an example of a combined case of

the two previous situations, where the new rule Rz

totally overlaps with Rx and partially with Ry. This

situation can also be extended to fully overlap with Rx

and Ry, or even a subset or superset of both.

If more than one rule is being inserted, then there are

three possible approximations. Note that the relative

order between the collection of rules being inserted

and their final position on the rule set to be inserted in

is not relevant, since inconsistencies are order

independent.

• The first one is to insert all rules and then check

the consistency of the full rule set with an on-line

algorithm. To the best of our knowledge, the

fastest algorithm to solve the inconsistency

diagnosis problem [6] is worst case O(n2) time

complexity with the number of rules in the rule

set. However, for big rule sets the consistency

diagnosis of the full rule set could be unfeasible in

time and space in resource constrained devices.

• The second one is to iterate over the collection of

rules to be inserted and check the consistency of

the rule set for each insertion operation, inserting

it if consistent. This case is the same as the one

explained above but repeated as many times as

rules are in the collection. In addition, if the

collection is inconsistent, then it is not detected

until two inconsistent rules of the collection are

inserted in the rule set.

• The third one is to check the consistency of the

collection of rules being inserted using one of the

reviewed offline algorithms and then use the

second approximation. In next generation

networks, the collection of new rules may be in

general very small, since these networks

(especially MANet) suffer from small but frequent

topology updates. In this case, the O(n2)

consistency diagnosis algorithm [6] can be applied

to the collection of rules being inserted. If they are

consistent, then they can be added to the rule set

using the second approximation; if not, the

process is stopped here. This approximation is

fastest than the first one and more secure than the

second one, since if the collection of new rules are

inconsistent, no rule is going to be added to the

rule set. This approximation is the one that is

going to be used in the algorithms presented in

this paper.

3.3.2. Rule removal. One or more rules can be

removed at the same time in a rule set, for example

when one or more nodes leave the network. If the rule

set has been deployed in a node, then it is consistent by

definition, as has been explained in the previous

subsection. Note that, contrary to the insertion

operation, the cases of removing one or more rules are

the same with regard to consistency, since the rules to

be removed are by definition, consistent (they are part

of a consistent rule set). No special care must be taken.

3.3.3. Rule modification. Rule modification is a

similar operation to a sequential removal and insertion,

and represents the case when access control

requirements change, or when a node leaves the

network and another enters it. Since rule removal

cannot cause any inconsistency, then this case is

reduced to rule insertion with regard to consistency. If

several rules are going to be modified, this can again

be reduced to the removal of several rules and the

insertion of the new ones. Consistency checking is

necessary in the new collection of rules being updated.

4. Local Inconsistency Detection

Algorithms

As was explained below, upon network creation

nodes must have a rule set that implement the initial

access control requirements. However, in order be as

secure as possible, this rule sets must be consistent

and, if possible, not redundant. The removal of

redundancies is not required, since redundancies can

be used to improve the performance of matching

algorithms. Any of the reviewed offline algorithms like

[4, 5, 6] can be used in this step in order to diagnose

inconsistencies prior to first deployment. In this

section, two polynomial algorithms to detect

inconsistencies in rule sets upon rule insertion are

presented; the second one is an improvement in

computational complexity over the first one. These two

algorithms implement Definition 3.1 and the process

explained in Section 3.3. Recall Note that in this paper,

consistency of the node rule set is maintained (1) not

allowing the insertion of an inconsistent group of rules

and (2) only inserting rules that are consistent with the

node rule set. Thus, the algorithm only inserts rules

that guarantee that the resulting rule set is consistent.

4.1. Local inconsistency detection algorithm

The algorithm presented in Fig. 3 receives a firewall

rule set and one or more rules to be inserted. The result

of the algorithm is a boolean matrix called

Inconsistency Matrix (Definition 4.1).

Definition 4.1. Inconsistency Matrix, IM. It is a

matrix of size n·m, where n is the number of rules in

the rule set of the node, and m is the size of the

collection of rules being inserted. Upon instantiation,

the matrix elements are set to false. An element

im[n,m] is set to true when an inconsistency is

detected between the rules in the row n and column m.

Firstly, if there is more than one rule to be inserted,

consistency of the collection is checked. If the

collection is inconsistent, the algorithm finishes with

no rules inserted. The consistency diagnosis algorithm

used in this first step has been taken from [6], and

returns a boolean indicating if the collection of rules to

be inserted is consistent or not. Then, the algorithm

enters the main loop. For each rule in the collection (if

there are more than one rule), it checks if there is an

inconsistency with any of the rule set. Note that the

detection process, like Definition 3.1, is order

independent. If there is no inconsistency with the rule

considered in that iteration, it is inserted. However, if

there is inconsistency, the corresponding element of

the IM is set to true and the rule is not inserted. The

algorithm finishes with a consistent rule set, because if

inconsistent rules are detected, they are not inserted.

Inconsistencies are given to the user in the

Inconsistency Matrix.

Time complexity of Algorithm 1 is bounded by the

diagnosis algorithm of line 7 applied to the collection

of rules being inserted, O(m2), and the two nested

loops of lines 9 and 11. Note that the general case in

next generation networks is m<<n. Complexity of the

algorithm depends on the size of the list that contains

the rules to be inserted (which will usually be very

small in next generation networks). The

inconsistency() operation of line 23 (called in line 13)

implements Definition 3.1. It is composed of an

iteration. In typical firewall rule sets the iteration runs

5 times. Anyway, the iteration is bounded by the

number of selectors, which is a constant, k. In addition,

inside the iteration there is an intersection between

each selector. The typical 5 selectors of firewall rule

sets are source and destination IP, source and

destination ports and protocol. All these selectors are

integers or ranges of them except IP address. Knowing

if two ranges of integers intersect can be done in

constant time with a naïve algorithm which compares

the limits of the intervals. Knowing if two IP addresses

intersect can also be easily done in constant time by

comparing their network addresses by using their

netmasks.

Thus, the best case for the algorithm is achieved

when only one rule is going to be inserted, m=1. In

this case, time complexity is in O(n). Worst case is

achieved when the number of rules to be inserted is

very near to the number of rules in the rule set. In this

case time complexity is very near to O(n2). However,

note that the worst case is very rare in next generation

networks. Average case is in O(m2+n·m),

m<<n�O(n·m). Complexity also depends on the

selectors of the rules being inserted, as is derived from

the implementation of the inconsistency() operation (it

uses lazy evaluation). Worst case complexity is

achieved if rules are too open (ranges in selectors or

even wildcards), which is not the usual case in next

generation networks (as was explained in the first two

sections of the paper).

Space complexity of Algorithm 1 is bounded by the

size of the rule set and the number of rules being

inserted, which in the best case is O(n), in the worst

case is close to O(n2), and in the average case is

O(n+m).

Algorithm 1. Inconsistency Detection Algorithm 2. Improved Inconsistency Detection

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26

27

28

29

30

31

32

33

34

35

Func detection(in List: ruleSet, List: insertCollection; out

Array[][]: im)

Var

 Rule ri, rj

Alg

 im=new Boolean[ruleSet.size()][insertCollection.size()]

 if (insertGroup.size()>1)

 res = consistencyDiagnosis(insertCollection)

 if (res) { // If consistent

 for each j=1..insertCollection.size() {

 rj=insertCollection.get(j)

 for each i=1..ruleSet.size() { // Main loop

 ri = ruleSet.get(i)

 if (inconsistency(ri, rj))

 im[ri.getID()][rj.getID()] = true

 else

 insertRule(ruleSet, insertCollection.get(j))

 }

 }

 }

End Alg

// This function implements the Inconsistency Definition

Func inconsistency(in Rule: rx, ry; out Boolean: b)

Var

 Integer i

Alg

 b = false

 if (rx.action != ry.action) {

 b = true

 i = 1

 while (i<=x.selectors.size() AND b)

 b = b AND intersection(rx.getSelector(i),

ry.getSelector(i))

 }

End Alg

26

27

28

29

30

31

32

33

34

35

Func detection(in List: ruleSetAllow, List: ruleSetDeny ,

List: insertCollection; out Array[][]: im)

Var

 Rule ri, rj

Alg

 im=new Boolean[ruleSet.size()][insertCollection.size()]

 if (insertCollection.size()>1)

 res = consistencyDiagnosis(insertCollection)

 if (res) {

 for each j=1..insertCollection.size() { // Main loop

 rj=insertCollection.get(j)

 if (rj.action == allow) {

 for each i=1..ruleSetDeny.size() {

 ri = ruleSetDeny.get(i)

 if (inconsistency(ri, rj))

 im[ri.getID()][rj.getID()] = true

 else

 insertRule(ruleSet, insertCollection.get(j))

 }

 }

 else { // Check with allow rule set

 for each i=1..ruleSetAllow.size() {

 ri = ruleSetAllow.get(i)

 if (inconsistency(ri, rj))

 im[ri.getPriority()][rj.getPriority()]= true

 else

 insertRule(ruleSet, insertCollection.get(j))

 }

 }

 }

 }

 }

End Alg

// This function is the same than in Algorithm 1

Func inconsistency(in Rule: rx, ry; out Boolean: b)

Figure 3. Inconsistency Detection for rule
insertion algorithm

Figure 4. Improved Inconsistency Detection for rule
insertion algorithm

4.2. Improved algorithm

An optimization can be introduced in Algorithm 1

in order to improve performance. Note that Definition

3.1 is based on the fact that two rules can only be

inconsistent if they have different actions. To improve

the algorithm, it is possible to divide the original rule

set in two, one with allow rules and the other with deny

rules. This modification can be done because the

possible inconsistencies are independent of rule

priority (Definition 3.1) The modifications needed

over Algorithm 1 are presented in Fig. 4 (lines 9-30,

the main loop). Algorithm 2 receives three lists, one

with allow rules, other with deny rules, and finally the

list of rules to be inserted. The division of the original

rule set in two can be done while parsing with no

additional cost. As in Algorithm 1, the first operation

is to check the consistency of the collection. Then, and

here is the difference, for each rule in the collection (if

there are more than one rule), it checks its action. If it

is allow, the rule is checked for inconsistency with all

of the deny rule set; if it is deny, it is checked for

consistency with all allow rules. The rest of the

algorithm is equal to Algorithm 1.

Time complexity of Algorithm 2 (Table 2) is again

bounded by the diagnosis algorithm of line 7 applied to

the collection of rules being inserted, O(m2), and the

two nested loops of lines 9 and 12 or 21.

With the improvement, the best case for the

algorithm is achieved when only one rule is going to

be inserted, m=1, and there are no rules in the opposite

action rule set. In this case, time complexity is a

constant. Worst case is achieved when the number of

rules to be inserted is very near to the number of rules

in the rule set, and most of them have the opposite

action of the smaller rule set. In this case time

complexity is very near to O(n2) and there is no real

improvement over Algorithm 1. However, note that the

worst case is very rare in next generation networks.

Average case is in O(m2+n/2·m), m<<n�O(n/2·m).

However, as in next generation networks most rules

will be allow and there will be few exceptions (deny

rules), experimental results should show a huge

improvement in real life scenarios. As in Algorithm 1,

complexity also depends on the selectors of the rules

being inserted, as is derived from the implementation

of the inconsistency() operation (it uses lazy

evaluation). Space complexity of Algorithm 2 is equal

to Algorithm 1. Thus, in most real life scenarios the

improvement should show a huge reduction in running

time over Algorithm 1.

Recall that rule removal does not need a special

algorithm, since it cannot cause inconsistencies. In

addition, rule update is equivalent to sequential rule

removal and insertion in terms of the possibility of

causing inconsistencies.

Table 2. Computational complexity of
Algorithm 2

Number of inserted rules Best case Worst case Average case

1 constant O(n) O(n/2)

m O(m) near O(n2) O(n/2·m)

5. Experimental Results

As real rule sets have been used in the experiments,

results represent an average case in the number of deny

and allow rules for each rule set. Table 3 presents the

results of the conducted tests in one node of the

network. The first column represents the size of the

rule set. The second and third ones represent the

running time of Algorithm 1 with only one rule to be

inserted. The average case (AC) is achieved when the

rule to be inserted is an arbitrary rule (in experiments,

a rule with allow action). The worst case (WC) is

achieved when the rule to be inserted is the wildcard

rule deny all. Fourth and fifth columns represent the

same but for Algorithm 2. Note that the only difference

in the presented average and worst case is a

multiplicative constant, as the type of the rule only

changes the time needed to execute the inconsistency()

method in both algorithms by a constant factor.

If more rules are going to be inserted, it is necessary

to multiply the desired results by the number of rules,

and add the needed time for the initial diagnosis of the

collection of rules. In order to test the feasibility of this

diagnosis, we have used the fastest known heuristic

Table 3. Experimental results

Rule Set

size

%Deny

rules

Algorithm 1

 AC (ms)

Algorithm 1

 WC (ms)

Algorithm 2

AC (ms)

Algorithm 2

 WC (ms)

50 28,21 2 4 1 3

144 30,91 9 13 3 11

238 66,43 16 19 9 14

450 34,73 27 41 11 33

900 14,8 48 88 13 77

algorithm [6] and used the rule set of size 50, obtaining

a result of 64ms, which is quite acceptable. However,

in real life scenarios of next generation networks,

insertions will be of few rules and time needed for the

diagnosis of the new rules may be negligible.

Experiments were performed on a Java implementation

with SableVM Java Virtual Machine implementation

1.13, and on an isolated machine with Intel XScale

IXP420@266MHz processor with 32Mb of RAM,

running Debian Etch GNU/Linux Distribution. Each

test was conducted 5000 times in order to get accurate

results (the presented results are the average). Note

that SableVM is not a just in time virtual machine (JIT

VM). If a JIT capable VM is used, results could

improve by a factor or 10 or more, depending on the

particular JIT implementation.

Figure 5(a). Running time of the algorithms.

Average case

Figure 5(b). Running time of the algorithms.

Worst case

The first thing that should be noted is the difference

between the two algorithms in the insertion of one rule

(in average and worst cases). As expected, there is a

huge reduction in the execution time of the average

case in a real life scenario for all rule set sizes (Fig.

5(a)). Even for very large rule sets in next generation

networks (900 rules) execution time is about 13ms

with the improved algorithm (a 5x speedup). This time

is very reasonable taking into account that next

generation networks may have rule sets smaller than

900 rules. However, if a very conflictive rule is going

to be added, execution time increases a lot (Fig. 5(b)).

With 900 rules, it can be eight times slower (Fig. 6).

Even in this case, the execution time is very

reasonable, about 80ms). Note how in Fig. 5(b) the

difference between worst cases of Algorithms 1 and 2

is not as big as was for the average case. The reason is

that the used rule for insertion (deny all) will cause an

inconsistency with most rules of the rule set (in

Algorithm 2 the rule is compared with the bigger of the

two lists, the one that contains allow rules).

Figure 6. Algorithm 2 running time

In conclusion, theoretical and empirical results

show that the algorithms can be used in resource

constrained devices where a quick response time is

needed, as a complement for actual distributed and

ubiquitous firewall proposals.

6. Conclusions and Future Works

This paper proposes a real time approach to detect

inconsistencies in firewall rule sets when inserting,

removing or modifying its rules. We showed that

filtering is a very important topic in next generation

networks. We showed that, to the best of our

knowledge, no algorithm to date is applicable in real

time in resource constrained devices. For these

reasons, firewall problems must be revisited. We

analyzed the consistency diagnosis problem in firewall

rule sets when inserting, removing and modifying the

rule set, and showed that inconsistencies can only be

caused in rule insertions. This analysis is based on a

previous more general theoretical one for the general

problem of firewall consistency management. Due to

the division of the consistency management process in

three steps, we realized that local inconsistency

detection does not depend on rule priorities,

identification is a naïve step and characterization is not

necessary for rule modifications. Inconsistency

detection is only a part of the inconsistency

management problem, where inconsistencies should be

automatically detected, identified, characterized and

possibly repaired [6]. In this paper we only focus in

fast algorithms for inconsistency detection.

We explained that inconsistencies can only be

caused by rule insertions, proposed three

approximations to the solution and selected one for

implementation, giving two algorithms. In this paper,

consistency of the node rule set is maintained (1) not

allowing the insertion of an inconsistent group of rules

and (2) only inserting rules that are consistent with the

node rule set.

The average case time complexity of the process in

O(n·m) with the number of rules in the rule set, n, and

with the number of updated rules, m. Space complexity

is in O(n/2+m). The proposed process is capable of

handling full ranges in all selectors without pre-

processing them. The algorithms must be run at each

node of the topology which needs a modification of its

rule set. We provide experimental results using

resource constrained devices. Results were provided. A

Java tool has been implemented and it is available

under request. To the best of our knowledge, this is the

first time a polynomial algorithm has been proposed to

automatically address this problem in resource

constrained devices. This work represents a

complement to the distributed and ubiquitous firewall

proposals.

However, our approach has some limitations that

give us opportunities for improvement in future works.

The most important one is that our process can detect

inconsistent rules but not redundancies Although

redundancies do not change the semantics of the rule

set, they can increase its size.

References

[1] D. Chapman and E. Zwicky. Building Internet Firewalls,

Second Edition, O’Reilly & Associates, Inc., 2000.

[2] Nicolas Prigent and Christophe Bidan. “Securing Devices

Communities in Spontaneous Networks.” International

Scientific Journal of Computing, Vol. 4 Issue 2, 2005.

[3] David E. Taylor. “Survey and taxonomy of packet

classification techniques.” ACM Computing Surveys, Vol.

37, No. 3, 2005. Pages 238 – 275.

[4] E. Al-Shaer, Hazem H. Hamed. “Modeling and

Management of Firewall Policies". IEEE eTransactions on

Network and Service Management (eTNSM) Vol.1, No.1,

2004.

[5] J. García-Alfaro, N. Boulahia-Cuppens, F. Cuppens.

“Complete Analysis of Configuration Rules to Guarantee

Reliable Network Security Policies.” Springer-Verlag

International Journal of Information Security (Online) (2007)

1615-5262.

[6] S. Pozo, R. Ceballos, R.M. Gasca. "Improving

Computational Complexity of the Inconsistency

Characterization Problem in Firewall Rule Sets".

International Conference on Security and Cryptography

(SECRYPT). Porto, Portugal. INSTICC Press, 2008.

[7] S. Pozo, R. Ceballos, R. M. Gasca. "CSP-based Rule Set

Diagnosis using Security Policies." International Symposium

on Frontiers in Availability, Reliability and Security

(FARES), in International Conference on Availability,

Reliability and Security (ARES), Vienna, Austria. IEEE

Computer Society Press, April 2007.

[8] M. Condell, L. Sánchez. "On the Deterministic

Enforcement of Unordered Security Policies." BBN

Technical Memorandum No. 1346, April 2004.

[9] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, P. Mohapatra.

“FIREMAN: A Toolkit for FIREwall Modelling and

Analysis.” IEEE Symposium on Security and Privacy (S&P).

Oakland, CA, USA. May 2006.

[10] B. Bollig, I. Wegener. “Improving the Variable

Ordering of OBDDs is NP-Complete”. IEEE Transactions on

Computers, Vol.45 No.9, September 1996.

[11] B. Hari, S. Suri, G. Parulkar. “Detecting and Resolving

Packet Filter Conflicts.” Proceedings of IEEE INFOCOM,

March 2000.

[12] D. Eppstein, S. Muthukrishnan. “Internet Packet Filter

Management and Rectangle Geometry.” Proceedings of the

Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), January 2001.

[13] F. Baboescu, G. Varguese. “Fast and Scalable Conflict

Detection for Packet Classifiers.” Elsevier Computers

Networks (42-6) (2003) 717-735.

[14] S. Pozo, R. Ceballos, R.M. Gasca. "AFPL, An Abstract

Language Model for Firewall ACLs". 8th International

Conference on Computational Science and Its Applications

(ICCSA). Perugia, Italy. Springer-Verlag, 2008.

[15] V. Srinivasan, G. Varguese, S. Suri, M. Waldvogel.

“Fast and Scalable Layer Four Switching.” Proceedings of

the ACM SIGCOMM conference on Applications,

Technologies, Architectures and Protocols for Computer

Communication, Vancouver, British Columbia, Canada,

ACM Press, 1998.

[16] H. Hamed, E. Al-Shaer "Taxonomy of Conflicts in

Network Security Policies." IEEE Communications

Magazine Vol.44, No.3, 2006.

[17] S. M. Bellovin, "Distributed Firewalls." ;login

Magazine:, November 1999, pp. 39-47.

[18] R. Fantacci, L. Maccari, P. Neira, R. M. Gasca.

“Efficient Packet Filtering in Wireless Ad Hoc Networks.”

IEEE Communications Magazine Vol.46, No.2, 2008.

Acknowledgements
This work has been partially funded by Spanish

Ministry of Science and Education project under grant

DPI2006-15476-C02-01, and by FEDER (under ERDF

Program).

