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a b s t r a c t 

This paper presents an evolutionary method for modifying the behaviour of the k-Nearest-Neighbour clas- 

sifier (kNN) called Simultaneous Weighting of Attributes and Neighbours (SWAN). Unlike other weighting 

methods, SWAN presents the ability of adjusting the contribution of the neighbours and the significance 

of the features of the data. The optimization process focuses on the search of two real-valued vectors. 

One of them represents the votes of neighbours, and the other one represents the weight of each feature. 

The synergy between the two sets of weights found in the optimization process helps to improve 

significantly, the classification accuracy. The results on 35 datasets from the UCI repository suggest that 

SWAN statistically outperforms the other weighted kNN methods. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Weighting is a common technique used to optimize supervised

learning [1,2] . A proper fit of weights in the training step may lead

to an improvement in the accuracy of a model. Artificial Neural

Networks (ANNs) and Support Vector Machines (SVMs) could be

the most evident examples of using weights in learning models.

However, weighting is also commonly applied to other supervised

learning techniques such as the k-Nearest-Neighbour (kNN) classi-

fier [3] . 

Most of the proposals on weighting methods were developed

for feature or instance selection (the latter have also been known

as prototype selection [4] ). For instance, Raymer et al. [5] per-

formed a feature selection through a KNN-based genetic algorithm

that optimised a weighting vector. In a later work, they provided

an improved hybrid evolutionary algorithm which is based on the

Bayesian discriminant function [6] . A similar method using tabu

search was equally developed by Tahir et al. [7] . In recent time,

many scholars have focused on the techniques that carried out

both feature and instance selection which produced better results

at the expense of increasing execution time [8] . 

kNN can be significantly useful to weighting techniques [9] . For

that reason, Paredes and Vidal [10] used different similarity func-

tions optimized by weighting. A weight by each feature and in-

stance on training data was considered, resulting in a non-viable
∗ Corresponding author. 
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umber of parameters in the optimization process in a first ap-

roximation. Then, the authors presented three types of reduction,

amely: (1) a weight by class and feature (label dependency), (2)

 weight by prototype (prototype dependency) and (3) a combi-

ation of the previous ones i.e., 1 and 2. The optimization pro-

ess was performed by descendant gradient. Additionally, Mateos

t al. [11] have recently provided an evolutionary algorithm to

nd a matrix of weights (a weight by feature and label) beside

n optimum number of neighbours in order to better explode

abel-dependency. A similar idea is expressed in Yoon and Friel

12] where the authors tried to enhance kNN performance by ex-

licitly modelling uncertainty in the classification of each feature

ector (regardless label-dependence) and the optimal number of

eighbours. 

Weighting has also been applied to modify neighbours votes

n kNN. Hence, the distance-weighted kNN rule (WKNN) was

roposed by Dudani [13] and has been known for long. WKNN

eighted the votes of the k nearest neighbours ( w i ) according to

q. (1) where d i is the distance to the ith nearest neighbour (and

 1 to the nearest) regarding an instance to be classified. A similar

ersion using a uniform weighting (UWKNN) was also proposed.

n UWKNN, each weight was inversely proportional to the posi-

ion among the neighbours (i.e., w 

u 
i 

= 1 /i ). More recently, Gou et al.

14] have also investigated both techniques working together as a

ew kNN version called Dual-Weighted kNN (DWKNN), where each

eight was calculated according to Eq. (2) . A later work [15] of-

ered another version of DWKNN where the calculation of the

eights was improved according to Eq. (3) . One of the latest Works

arried out on the use of new distances in kNN can be seen in

iao et al. [16] where a class-conditional weighted distance metric

http://dx.doi.org/10.1016/j.neucom.2016.08.159
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.08.159&domain=pdf
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mailto:riquelme@us.es
http://dx.doi.org/10.1016/j.neucom.2016.08.159


D. Mateos-García et al. / Neurocomputing 326–327 (2019) 54–60 55 

w  

p

w

w

w

 

t  

b  

c  

b  

n  

s  

w  

t  

c  

I  

r  

o  

N  

t

 

t  

c  

i  

a  

f  

g  

t  

t  

n  

T  

s  

[

 

S  

s  

a  

t  

c

2

 

c  

T  

t  

W

2

 

w  

v  

t  

i  

a  

i  

c  

n

 

s  

t  

o  

H  

a  

t  

o  

a  

c  

E

 

(  

b

a  

n  

p  

l  

e  

s  

o  

s  

d  

a  

H  

a  

f

 

 

 

H  

2

 

t  

m  

a  

d  

t

2

 

t  

b  

s  

t  

t  

t

·  

v

 

b  
as presented beside a multi-hypothesis nearest-neighbour pro-

osal based on that metric. 

 

w 

i = 

⎧ ⎨ 

⎩ 

(d k − d i ) 

(d k − d 1 ) 
if d i � = d 1 

1 if d i = d 1 

(1) 

 

dw 1 
i = w 

w 

i ∗ w 

u 
i (2) 

 

dw 2 
i = 

⎧ ⎨ 

⎩ 

(d k − d i ) 

(d k − d 1 ) 
∗ (d k + d 1 ) 

(d k + d i ) 
if d i � = d 1 

1 if d i = d 1 

(3) 

García-Gutiérrez et al. [17] present another point of view where

he authors tried to modulate the influence of the neighbourhood

y weights obtained after an evolutionary optimization. More re-

ently, a proposal to improve the original datasets with the com-

ination of the use of individual neighbour structures, to develop

ew neighbourhood representations was also shown [18] . Other re-

earchers have worked on the locally linear reconstruction of kNN

hich provides a principled and k-insensitive way to determine

he weights of kNN learning [19] . Lately, there has been an in-

rease in the interest in kNN and its performance on Big Data [20] .

n this novel context, weighted neighbours can play an important

ole as can be seen in Xia et al. [21] where a weighted model based

n Map-Reduce and called Spatial-Temporal Weighted K-Nearest

eighbour (STW-KNN) was proposed to improve the short-term

raffic flow forecasting. 

Although, there are already a large number of literature on fea-

ure and voting system weighting (weighted distances could be in-

luded in the category of voting system weighting), yet there ex-

sts no proposal up till now (to the best of our knowledge) about

 strategy to optimize both the voting system of neighbours and

eature selection. Hence, the hypothesis for this work was that, re-

arding the issue of the improvement of kNN, ”the sum is greater

an the parts” and therefore, we proposed an evolutionary method

o improve the kNN rule by optimizing the contribution of the

eighbours and the importance of each feature simultaneously.

hen, we statistically compared its performance with that of a clas-

ic kNN and other weighted variants tested on 35 UCI datasets

22] . 

The remaining part of this study is organized as follows.

ection 2 presents the elements of the evolutionary algorithm de-

igned to calculate the contribution of the k nearest neighbours

nd the effect of every feature. The results and a number of statis-

ical tests are specified in Section 3 . Finally, Section 4 presents the

onclusions and future work. 

. Method 

In this section, we describe our weighting optimization method

alled Simultaneous Weighting of Attributes and Neighbours (SWAN).

he purpose of this work and how the weighting vectors from

he learning process are used have been presented in Section 2.1 .

hile Section 2.2 exposes the optimization algorithm in detail. 

.1. Purpose and functionality 

As previously described, the aim of our work is to find a set of

eights to optimize the influence of every neighbour when they

ote, beside the importance of every feature. Unlike common fea-

ure weighting in the literature, ours is conditioned with a weight-

ng voting (two vectors are optimized together, the feature weights

nd the weights of neighbours) fusing the synergistic ideas shown

n previous work [11,17] (although label-dependency was not in-

luded in order to avoid performance issues since a much higher

umber of parameters would have to be optimized). 
As regards the contribution of the neighbourhood, most of the

tudies focus on the distance between instances. This means that

he nearest neighbour instances are ”heavier” than the furthest

nes and therefore, their influence is greater in the final voting.

owever, in our case, the weights are calculated by an evolution-

ry algorithm regardless the distance. Obtaining a real-valued vec-

or could transform the influence of every neighbour irrespective

f the class to predict in the classification step. This means that

 vote of a labelled neighbour is a real value instead of the typi-

al value of 1. An unlabelled instance is then labelled according to

q. (5) . 

To show the learning process, we assume that the set of classes

or labels) is represented by the natural numbers from 1 to b , with

 being the number of the labels. Therefore, let D = { (e, l) | e ∈ R 

f 

nd l ∈ { 1 , 2 , . . . , b}} be the dataset under study with f being the

umber of features and b the number of labels. Let label be an ap-

lication that assigns to every element e , the class to which it be-

ongs to. Let’s suppose that D is divided in the sets TR and TS with

ach of them being the training and the testing set, respectively,

o that D = T R ∪ T S and T R ∩ T S = ∅ . In this manner, the instances

f TS (testing set) will be used to evaluate the fitness of SWAN and

o, they are not considered for the weights calculation. As will be

etailed in Section 2.2 , we obtain two vectors v = (v 1 , v 2 , . . . , v k )
nd ω = (ω 1 , ω 2 , . . . , ω f ) from the instances of TR exclusively. Let

 be a function that transforms every feature of an instance x ∈ D

ccording to a set of weights ω. To classify the instance y from TS ,

our steps are accomplished: 

• let x ′ ∈ TR ′ be the instances resulting from transform every

x ∈ TR according to Eq. (4) 

• let y ′ be the instance resulting from transform y according to

H ( y, ω) 

• calculate the k nearest instances to y ′ from TR ′ 
• if x ′ 

i 
, i : 1 ..k is each neighbour from previous step, the assigned

label to the instance y ′ is given by Eq. (5) 

(x, ω) = x ′ = (x 1 ∗ ω 1 , x 2 ∗ ω 2 , ..., x f ∗ ω f ) (4)

l abel (y ′ , v ) = arg max 
l∈{ 1 ..b} 

k ∑ 

i =1 

v i δ(l , l abel (x ′ i )) 

where 

δ(l , l abel (x ′ 
i 
)) = 

{
1 if l abel (x ′ 

i 
) = l 

0 otherwise 

(5) 

.2. Evolutionary optimization 

This subsection details the search algorithm to calculate the op-

imum contribution of every nearest neighbours and features. As

entioned above, this task is done by an evolutionary algorithm

nd therefore, it is necessary to define its main features i.e., in-

ividual encoding, genetic operators, fitness function and genera-

ional replacement policy. 

.2.1. Individual encoding 

The population for the study consisted of a set of individuals

hat are represented by two real-valued vectors. The first one sym-

olizes the relative contribution of every neighbour in the voting

tage of the kNN rule, and the second one represents the impor-

ance of every data feature (see Fig. 1 ). Although the weights of

he votes are independent of the distances of the neighbours, yet

he closest neighbour is usually the most important i.e., v 1 ≥ v 2 ≥
· · ≥ v k , and as a result, we constrained the encoding of each indi-

idual. 

Regarding the initial population, the votes are k sorted values

etween 0 and 1. To include the classic kNN, we populate with
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2.5 2.0 … 0.1
1 2 … k

1.6 0.0 2.3 1.1 3.0 … 2.7
1 2 3 4 5 … f

2.0 …

Fig. 1. Individual. 

Fig. 2. BLX- α. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6 1.4 … 0.0

1 2 … k

2.5 2.0 … 0.1 1.5 1.0 … 0.0

[min(1.6,2.0,1.0) <= 1.4 <= 1.6]

1 2 … k

1.6=BLX- (2.5,1.5)

1.6 1.4 … 0.0

2.0 … 0.1 1.5 1.0 …

1.6=BLX- (2.5,1.5))

Fig. 3. Crossover of neighbours. 

1: errorFunction(k, ω, v, TR) : error
2: error = 0
3: for 1 to m do
4: Divide TR randomly in n subsets: TR =S1 ∪ S2... ∪ Sn

5: for i = 1 to n do
6: wTrain = buildModel(TR − Si, ω)
7: error = error + evaluate(k, wTrain, Si, ω, v)
8: end for
9: end for

10: error = error/(m ∗ n)
11: return error

12: buildModel(Train, ω) : wTrain
13: wTrain = ∅
14: for each x in Train do
15: x = H(x, ω) according to the Eq. 4
16: add x to wTrain
17: end for
18: return wTrain

19: evaluate(k, Train, Test, ω, v) : error
20: error = 0
21: for each y in Test do
22: y = H(y, ω) according to the Eq. 4
23: predLabel = classify(y , Train, k, v) according to the Eq. 5
24: if predLabel = label(y) then
25: error=error+1
26: end if
27: end for
28: error = error/ |Test|
29: return error

Fig. 4. Error function. 
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several vectors with the first k values set to 1 and the remaining

set to 0 in the initial population e.g., (1 . 0 , 0 . 0 , . . . , 0 . 0) for k = 1,

(1 . 0 , 1 . 0 , . . . , 0 . 0) for k = 2, and so on. Note that, during the evo-

lutionary process, the maximum value of 1 for a weight may be

surpassed to highlight the importance of a concrete neighbour re-

garding the rest. 

The vector of weights for the features does not have any con-

straint. It consists of random values between 0 and 1 in the initial

population. The maximum value of 1 can also be exceeded. If a lo-

cal minimum could be reached during the evolution process, i.e.

the error function returns the same value n times, all individual,

except the best are substituted by a new initial population. 

2.2.2. Crossover and mutation 

After a trial-and-error procedure, we selected two concrete op-

erators for crossover and mutation as trade-off between simplicity

and quality of the results in comparison with the rest of candi-

dates: BLX- α crossover and generation-dependent mutation. 

The main goal of the crossover operator is building a new in-

dividual ( offspring ) from the genotypic features of two parents

( parent 1 and parent 2). Considering that there is a constraint in

the order of the genes in the voting, the crossover operator for

the vector of votes in the i-th gene has been described as follows

(see Fig. 3 ). 

offspring (i ) = 

{
BLX − α if i = 1 

(max − min ) ∗ γ + min otherwise 
(6)

where 

- BLX- α is the crossover operator defined in Eshelman and Schaf-

fer [23] and calculated from parent 1( i ) and parent 2( i ) 

- γ is a random value between 0 and 1 

- max = offspring ( i − 1 ) 

- min = minimum ( parent1(i) , parent2(i), offspring(i-1)) 

The weights for the features do not have any constraint in their

order, so the crossover operator can be simpler (see Fig. 2 ): 

offspring (i ) = BLX − α from parent1(i ) and parent2(i ) (7)

Regarding the mutation operator, the ith gene of the individ-

ual could change according to Eq. (8) for the votes. δ is a random

value in the interval [0, z ] with z being 1 initially. To find a better

fit, the z value is decreased every ten generations inversely pro-

portional to the current generation. For example, for an evolution

of 100 generations, z is initially 1 and decreases by a factor of 0.1

every ten generations. Therefore, in the first ten generations z = 1 ,

in the next ten z = 0 . 9 , then z = 0 . 8 and so on. The idea here is to
educe the influence of the mutation operation since the individu-

ls are closer to the end of the evolution. 

This is as a result of the fact the mutation operator for feature

eights is free of constraints, and its implementation is also sim-

ler (Eq. (9)) . 

ndi v ′ (i ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

indi v (i ) + indi v (i ) ∗ δ if i = 1 

indi v (i ) − indi v (i ) ∗ δ if i = k 

(indi v (i − 1) − indi v (i + 1)) ∗ δ
+ indi v (i + 1) otherwise 

(8)

ndi v ′ (i ) = indi v (i ) ± indi v (i ) ∗ δ (9)

.2.3. Error function 

The evolutionary algorithm uses TR ⊂ D exclusively to obtain the

ontributions of the neighbours in the training step. The fitness

unction is based on the cross-validation error rate by using a kNN-

ased classifier and the weighting vectors. 

The Fig. 4 shows the error calculation of m × n cross validations,

here m stands for the number of iterations of the validation
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rocess (line 3) and n does for the number of partitions of train-

ng data TR (line 4). Set TR is therefore divided in subsets S 1 , S 2 ... S n 
or each validation. Every subset S i is evaluated through a classifi-

ation process by using T R − S i as a training set. This evaluation is

riven by the function evaluation which we will be described later.

he classification error on every S i is accumulated by an error in

very validation (line 7). Finally, the error value is the mean of all

alidations (line 10). 

The method buildModel receives two parameters: the training

ata and the feature weighting (line 12). It creates and returns a

eighted training set with the use of Eq. (4) (lines 13–18). When

nstances are transformed, the function evaluate carries out the

esting. The result of the evaluate function is the error rate on S i 
aking wTrain as reference to calculate the neighbours (line 7). The

nput parameters of evaluate are the number of neighbours, the

ransformed training data, the current testing set and the weight-

ng vectors w and v (line 19). And so, every single instance y from

he set used to measure the error (line 21), is transformed into

 

′ according to Eq. (4) (line 22). The classify function returns the

ajority label according to the relative contribution of each neigh-

our expressed by the vector v and applying Eq. (5) (line 23). If a

eturned label does not correspond with the true label of a testing

nstance, the error is increased by 1 (line 25). Finally, the resulting

rror is normalized according to the size of the set used as test-

ng the data (line 28). The value returned by evaluation is then a

eal number between 0 (all instances are well-classified) and 1 (all

nstances are misclassified). 

.2.4. Generational policy 

As regards the transition between generations, we chose an eli-

ist design, where the best individual is part of the next offspring
Table 1 

Datasets from UCI. 

#dataset #instances #feature

Anneal 898 38 

Arrhythmia 452 279 

Audiology 226 69 

Australian 690 14 

Autos 205 25 

Balance-scale 625 4 

Breast-cancer 286 9 

Bridges_version1 105 12 

Bridges_version2 105 12 

Car 1728 6 

cmc 1473 9 

Colic 368 22 

Credit-a 690 15 

Credit-g 10 0 0 20 

Dermatology 366 34 

Diabetes 768 8 

Ecoli 336 7 

Flags 194 29 

Glass 214 9 

Haberman 306 3 

Hayes-roth_train 132 4 

Heart-c 303 13 

Heart-h 294 13 

Heart-statlog 270 13 

Ionosphere 351 34 

Labor 57 16 

Liver-disorders 345 6 

Lung-cancer 32 56 

Lymph 148 18 

mfeat-karhunen 20 0 0 64 

mfeat-morphological 20 0 0 6 

mfeat-zernike 20 0 0 47 

Monks-problems-1 124 6 

Monks-problems-2 169 6 

Monks-problems-3 122 6 
no mutation is applied). If N is the number of individuals, the re-

aining population is built as follows: C − 1 individuals are cre-

ted by cloning the best individual from the previous generation.

he next N − C individuals result from the crossover operation. The

election of the individuals to cross is carried out by the tourna-

ent method. All individuals except the first one are affected by

he mutation operator with a probability of p . 

. Results 

In the experiments, we have used Java language and 35 datasets

rom the repository UCI [22] with different types of features and

umber of classes (see Table 1 ). All the data were preprocessed

ith the same techniques i.e., binarization of nominal features,

eplacement of missing values and normalization to avoid the

ughes effect. Through a trial-and-error process, the evolutionary

lgorithm was setup with a population of 100 individuals, 200 gen-

rations, 10% of elitism and a mutation probability of 0.1. Regarding

he parameters α (crossover), and k (number of neighbours) their

alues were set at 0.5 and 5, respectively. Finally, the z value in

utation operator is decreasing at a rate of 0.1 in every genera-

ion. 

To measure the precision of our approach, we established a

omparison among IBk (implementation of kNN in the frame-

ork WEKA [24] )), EVoN [17] , WKNN, UKNN, DWKNNv1 [14] and

WKNNv2 [15] . All algorithms have been tested with k = 1, k = 3 and

 = 5, with the latter showing the best performance. Table 2 shows

he mean accuracy obtained by the analyzed algorithms using 10-

old cross-validation with 5 different seeds (50 runs in the aggre-

ate). We can see that the performance of our algorithm is the best
s #classes %minority %majority 

6 28 72 

16 0 36 

24 42 58 

2 8 46 

7 34 66 

3 0 33 

2 0 76 

6 44 56 

6 10 10 

4 42 58 

3 0 54 

2 10 42 

2 37 63 

2 36 64 

6 0 64 

2 4 70 

8 10 10 

8 50 50 

7 23 43 

2 10 10 

4 10 10 

5 5 31 

5 1 36 

2 44 56 

2 0 54 

2 0 25 

2 10 10 

2 35 65 

4 10 42 

10 1 55 

10 10 10 

10 26 74 

2 0 92 

2 9 24 

2 48 52 
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Table 2 

Accuracy of every studied algorithm throughout 35 datasets from UCI. 

Data/classifier SWAN EVoN kNN DWKNN1 DWKNN2 UWKNN WKNN 

Anneal 98,931 98,976 96,971 99,065 98,441 98,241 98,151 

Arrhythmia 58,761 58,142 58,451 53,85 55,796 56,903 55,929 

Audiology 71,327 63,186 60,708 66,726 68,142 68,584 6823 

Australian 85,478 83,478 83,478 80,116 81,478 8313 81,623 

Autos 72,098 69,659 57,756 73,171 73,463 72,683 71,024 

Balance-scale 83,232 82,592 87,872 81,824 86,592 82,528 86,592 

Breast-cancer 71,608 72,238 73,077 68,811 70,839 7021 70,839 

Bridges_version1 59,813 59,626 58,318 60,748 61,308 61,121 61,308 

Bridges_version2 63,551 62,617 59,626 59,813 59,813 61,869 59,813 

Car 95,602 87,986 92,847 88,16 92,847 8816 92,847 

cmc 48,364 44,616 45,418 44,073 4391 44,929 44,318 

Colic 80,435 79,837 79,511 72,228 75 78,261 75,109 

Credit-a 8542 83,826 83,768 79,594 81,362 83,275 81,449 

Credit-g 724 728 7276 7104 72 73,04 72 

Dermatology 96,448 96,339 96,612 94,262 95,355 95,191 95,355 

Diabetes 7349 73,906 73,984 70,417 72,474 72,708 72,396 

Ecoli 85,417 8619 8625 8131 83,214 84,464 8369 

Flags 5567 54,021 53,196 55,773 5732 58,144 5732 

Glass 72,617 68,505 65,327 68,411 69,626 68,037 69,907 

Haberman 69,281 70,327 7098 66,863 70,131 68,954 7085 

Hayes-roth_train 83,182 52,727 26,515 76,667 6803 67,879 6803 

Heart-c 80,594 81,848 82,112 76,832 79,802 80,264 79,736 

Heart-h 80,816 78,707 78,707 76,327 78,571 78,503 78,707 

Heart-statlog 78,074 79,704 79,926 74,593 76,222 78,4 4 4 76,222 

Ionosphere 88,604 88,376 84,786 86,724 86,895 85,869 86,952 

Labor 87,018 8386 81,053 86,316 84,561 85,263 84,912 

Liver-disorders 63,478 62,145 61,043 62,493 6342 6371 63,362 

Lung-cancer 73,125 73,75 76,875 6375 65,625 7375 65,625 

Lymph 8473 81,081 78,378 82,027 83,378 85,135 83,649 

mfeat-karhunen 9685 9677 9614 9636 9689 9687 9688 

mfeat-morphological 71 7113 7088 6563 6748 6812 6785 

mfeat-zernike 8101 8053 8052 789 7894 7939 7896 

Monks-problems-1_train 43,548 45 49,194 37,258 33,387 40 33,387 

Monks-problems-2_train 5574 51,716 53,136 36,095 36,805 38,107 36,805 

Monks-problems-3_train 41,311 37,377 40,164 30,164 30,492 32,131 30,492 
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in 16 out of the 35 datasets, and the second one in 4 out of the re-

maining experiments. 

Additionally, as we can see in Table 1 , there are imbalanced

datasets. The columns ”%minority” and ”%majority” present the

percentage of instances under the minority label and majority la-

bel, respectively. However, although our evolutionary weighting

methods optimize the accuracy, we can observe in Table 3 an im-

provement of kappa statistics too. In fact, the Pearson’s r between

the accuracies and kappa values is 0.81, and so, it seems that im-

proving the global accuracy with evolutionary weighting causes an

improvement of the classification performance by class. 

In spite of the overall good performance of our method in di-

rect comparison with the rest, the results must be statistically vali-

dated. For this reason, we carried out a non-parametric Friedman’s

test and a Holm’s post-hoc procedure. The reason for using non-

parametric tests lies in the high vulnerability of the necessary con-

ditions to apply parametric tests, specially for the sphericity condi-

tion [25,26] . The first step for the Friedman’s test is the calculation

of the average rankings reached by each technique (a ranking of 1

is the best). Table 4 shows the rankings. After the Friedman’s test

was applied, the resulting statistic was 48.58, distributed according

to a chi-square with 6 degrees of freedom. The p-value for Fried-

man was around 9.072E-9, and so, the null hypothesis (no statisti-

cal difference among the compared techniques) could be rejected

with an α = 0 . 05 . 

The Holm’s Post-hoc Procedure allows us to compare a control

algorithm (in this case SWAN, the best approach candidate) with

the rest avoiding problems related to family-wise error [26] . The

results of the procedure can be seen in Table 5 (Friedman’s statis-

tic, p-value and adjusted α for Holm’s procedure). In this case,
very test rejected the hypothesis of no pairwise difference (p-

alues were lower than adjusted α), so we could state that our

lgorithm was significantly better than its competitors from a sta-

istical point of view. 

. Conclusions 

This work presented a method to improve the kNN rule. We

nified two classic paradigms of weighting by evolutionary com-

utation. On the one hand, we adjusted the contribution of every

eighbour used in the classification step, but nevertheless, the sig-

ificance of the data features was modified simultaneously in or-

er to achieve a better result in the recognition of new instances.

n spite of the complexity of the solution to optimize and the in-

rease of the search space in comparison with single-vector based

ethods, the experiments showed a successful behaviour of our

pproach. 

In future researches, we will focus on adapt evolutionary

eighting algorithms, to distributed programming models such as

apReduce. By so doing, it could be possible to speed up the per-

ormance of our methods on massive data. Moreover, we will ex-

lore whether SWAN could confirm similar suitability for regres-

ion, where a change of the voting system could lead to higher

hanges in the model output. 

The use of deep learning techniques is also a target to reach.

herefore, preprocessing training data in a hierarchical structure of

ultiple layers could produce good results in our research projects

n specific domains, such as image recognition or natural language

rocessing. 
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Table 3 

Kappa of every studied algorithm (Cohen’s kappa for binary classification and Fleiss’s kappa for the 

multiclass case). 

Datas/classifier SWAN EVoN KNN DWKNN1 DWKNN2 UWKNN WKNN 

Anneal 1 1 097 1 097 1 0955 

Arrhythmia 0383 04 0156 0251 0235 0248 0235 

Audiology 0744 0684 0707 0665 0642 0738 0666 

Australian 0638 0589 0589 0626 0638 0609 0638 

autos 0662 0694 0531 0664 0662 0694 0662 

Balance-scale 0702 0728 0783 0704 0742 0717 0742 

Breast-cancer 0185 0131 0288 0225 0178 0385 0178 

Bridges_version1 0414 0329 0292 042 042 0329 042 

Bridges_version2 0476 0317 0265 0434 0476 0476 0476 

Car 0878 0718 074 0704 074 0704 074 

cmc 0128 0132 0132 0104 007 0102 0081 

Colic 0703 0631 0596 0517 0566 0676 0566 

Credit-a 0762 0702 0687 0629 0702 0702 0702 

Credit-g 024 0257 0257 0186 0252 0246 0284 

Dermatology 0966 0983 0983 0949 0949 0949 0949 

Diabetes 029 029 029 0202 0242 0225 029 

Ecoli 0825 0846 0823 0716 0782 0803 0782 

Flags 0415 0286 0356 0359 0359 0366 0359 

Glass 07 0666 0534 0607 0666 0635 0666 

Haberman 0 0 0 0 07 0242 027 0241 0323 

Hayes-roth_train 0715 041 0 065 0275 0594 0275 

Heart-c 0665 0629 0629 0656 0633 0696 0633 

Heart-h 0538 04 04 04 0454 0486 0486 

Heart-statlog 0662 0662 0662 0439 0441 0588 0515 

Ionosphere 0772 0772 0685 0657 0685 0627 0685 

Labor 0799 0307 0307 0571 0571 0571 0571 

Liver-disorders 0254 0254 0254 0047 0079 0075 0106 

Lung-cancer 0086 03 0086 0086 03 03 0695 

Lymph 0448 0377 0514 0462 051 0578 051 

mfeat-karhunen 0938 0938 0941 0947 0952 0955 0952 

mfeat-morphological 0705 0705 0657 0626 0626 0659 064 

mfeat-zernike 0766 0771 0768 0757 0763 0768 0763 

Monks-problems-1 0 009 0029 0 0 0 0 

Monks-problems-2 0242 0074 0033 0 0 0 0 

Monks-problems-3 0 0 0 0 0 0 0 

Table 4 

Average ranking reached by every 

compared technique. 

Method Ranking 

SWAN 2.314 

EvoN 3.514 

kNN 3.785 

UWKNN 3.857 

WKNN 4.285 

DWKNN2 4.514 

DWKNN1 5.728 

Table 5 

Results for Holm’s post-hoc procedure. 

Dataset z p Holm’s adjusted α

DWKNNv1 6.612 3.798E-11 0.008 

DWKNNv2 4.260 2.042E-5 0.010 

WKNN 3.817 1.347E-4 0.012 

UWKNN 2.987 0.003 0.016 

kNN 2.849 0.004 0.025 

EVoN 2.324 0.020 0.050 

R
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