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Abstract

A study of the non—mesonic weak decay of light hypernuclei is performed on
the basis of the Block—Dalitz approach which allows one to extract the elemen-
tary AN — nN decay amplitudes and rates without detailed knowledge of the
microscopic interaction mechanism. The present work analyses the validity of
this approach using decay rates calculated within a one-meson—exchange tran-
sition potential supplemented by a two—pion—exchange mechanism. It is found
that although the Block—Dalitz model is a reliable approximation for predicting
the decay rates of s—shell hypernuclei, it fails to reproduce the 3 He asymmetry
parameter. Possible Al = 3/2 isospin contributions to the non—mesonic decay
rates are also investigated within the factorization approximation. Unfortu-
nately, the experimental data are still of limited precision and therefore, it is
not possible to extract the degree of violation of the AT = 1/2 isospin rule. The
present study introduces improvements on preceding theoretical models and,
together with forthcoming J-PARC data on the non—mesonic decay of four—
body hypernuclei, it will play an important role in establishing the detailed
spin—isospin dependence of the AN — niN process as well as in the design of
theoretical models.
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1 Introduction

The strangeness quantum number, .S, is conserved in processes mediated by the
strong and electromagnetic interactions, but not in those involving the weak
force. Baryons which contain this quantum number are called hyperons. The
A baryon is the lightest hyperon, composed by u, d and s quarks and plays
an important role in a variety of processes involving strangeness. For instance,
hyperons may appear in the inner core of neutron stars and they are important
players in their evolution and balance, which is given by the weak interactions.
The mass of the A particle is my = 1115.68 MeV and it has zero charge and
isospin. With a mean free path and a lifetime of the order of 10 cm and 10~ !°
seconds, respectively, hyperons decay through weak processes (except the X°
which decay via electromagnetic processes) which do not conserve parity, isospin
or strangeness quantum number.

A hypernucleus is a bound system which contains nucleons (/N) and one or
more strange baryons (Y). An important point to describe the hypernuclear
structure is the knowledge of the YN and Y'Y interactions in the same way
that the NN interaction serves to know the nuclear structure. Although we
could obtain more direct information of the YN and Y'Y interaction from cross
section measurements, these are very difficult due to the short hyperon mean
free path. For this reason, quantitative information of these interactions comes
mainly from the study of production and decay of hypernuclei. The existence
of these systems gives a new vision to the traditional nuclear physics, as for
example the possibility of new selection rules and states with new symmetries.
In fact, the study of strange nuclei have opens the door to studies of other exotic
systems, as the ones in the charm sector. In addition, a precise knowledge of
the baryon-baryon interactions in the strange sector would allow to determine
the amount of flavor SU(3) symmetry breaking due to the different values of the
quark masses in the light u, d and s sector.

Hypernuclear physics was born in 1952 when Marian Danysz and Jerzy Pniewski
discovered the first hypernucleus. They observed a delayed disintegration of a
heavy fragment when they were working with emulsion chamber experiments [1].
These observations based on emulsion and bubble chambers motivated new ex-
periments of hypernuclear production. With the advent of particle accelerators,
beams of particles (usually kaons and pions) collide with a nucleon producing
hyperons among the fragments of these collisions, which are then captured by
a nucleus. Different reaction mechanisms are used: strangeness exchange re-
actions such as n(n—, K~)A, and associated strangeness production processes
such as the hadronic n(7+, K)A reaction or the electroproduction n(e, e’ K+)A
reaction. In these processes, hypernuclei can be created in some excited state
but they reach their ground state via mechanisms mediated by the strong in-
teraction, the electromagnetic one or by particle emission [2].

The A decay in free space proceeds mainly via the mesonic mode, A — N,
in which a meson (pion, in this case) and a nucleon are detected in the final



state. This decay mode is larger than the semi-leptonic and weak radiative
ones by a factor of 103, so the A hyperon decays via two different mesonic
channels: A — p+ 7~ (63.9%) and A — n + 7° (35.8%) [3]. The experimental
ratio for the free decay rates, Fff?e / Fgf(?e ~ 1.78, is very close to 2 and strongly
suggests the dominance of AI = 1/2 isospin transitions over the AI = 3/2 ones,
which is commonly known as the AT = 1/2 rule for weak processes. Although
this rule is well established experimentally and it turns to be valid for different
processes that involve strangeness (such as the decay of the kaon meson [4]), its
dynamical origin is not yet understood. Neither is it if the AT = 3/2 suppression
is a universal feature of all weak decay processes. In case of finding a significant
relevance of AI = 3/2 terms in the strangeness physics sector it would be the
first indication of violation of the AT = 1/2 selection rule. Such experimental
evidence has not been found yet.

When the A particle is embedded in a nuclear medium, the mesonic decay mode
becomes Pauli blocked because the final nucleon momentum (py =~ 100 MeV /c)
is smaller than the Fermi one (krp =~ 270 MeV/c). As we shall see in the
following, although this mode is blocked in infinite nuclear matter, it can occur
in finite nuclei under different circumstances, being less important as the mass
number increases [7]. The same medium which is responsible for the suppression
of the mesonic mode is also responsible for the appearance of a new decay
mode, the weak non—mesonic decay which becomes dominant in hypernuclei
with A > 5. Hence, except for the very lightest ones, A—hypernuclei decay
mainly through the non—-mesonic decay, in which mesons are not detected in
the final state and involves decay channels induced by one (AN — nN) and two
(ANN — nNN) nucleons, the two nucleon—induced channel representing the
10 — 15% of the total non—mesonic weak decay rate [5].

Relevant quantities for comparison between theory and experiment are the total
decay width, which can be expressed in terms of the mesonic and non—mesonic
decay widths, the ratio between the neutron—induced (An — nn) and proton—
induced (Ap — np) decays, I', /T, and the asymmetry in the angular distribu-
tion of the nucleons from the weak decay of hypernuclei. This asymmetry arises
from the interference between the parity—conserving (PC) and parity—violating
(PV) amplitudes on the weak decay mechanism, as we will see in Section 3. The
total decay rate of a A~hypernucleus is then:

't =Tm+Tnu, (1)

where

'v=T,-4+Tr0, FNM:FP+Fn+F2 R (2)
where I'y stands for the two—nucleon induced channel (Ann — nnn, Anp — nnp,
App — npp).

Although it is true that the total width is well reproduced by different models,
one of the problems that hypernuclear studies had to face for many years was to



reconcile experimental and theoretical values for the I',, /T, and for the asymme-
try parameter [2,6-8]. There were many efforts devoted to provide a theoretical
explanation of the large experimental values obtained for this ratio. These ex-
perimental results were quite scarce and not precise, so they presented large
uncertainties due to, in part, the difficulty of detecting the products of non—
mesonic decay, especially the neutrons. Essentially, two kinds of approaches are
available for predicting the decay rates and the asymmetry parameters of A—
hypernuclei. The first one consists in a finite nucleus formalism where by using
a weak coupling scheme and a shell model approach, the many—body transition
amplitude is expressed in terms of the two—body amplitudes calculated using a
meson—exchange potential. Other approaches include a many—body technique
in which the calculation is performed in infinite nuclear matter and then it is
extended to finite nuclei through the local density approximation. [6,9].

Given the impossibility of generating stable hyperon beams, hypernuclear decay
offers us the best scenario to study the weak AN — nN interaction. More-
over, using the change of strangeness as a signature, this mechanism allows
us to extract more information than the strangeness 0 counterpart, the weak
NN interaction, since one can explore not only the the parity—violating part of
baryon—baryon interaction but also the parity—conserving one.

The non—mesonic decay can be understood in terms of the free-space mech-
anism, where the virtual pion emitted at the weak vertex, ANw, is absorbed
by a nucleon in the system. Although this one—pion-exchange process (OPE)
generates good estimations for the total non—mesonic decay rate, the model
fails to reproduce the Ty, /T, ratio. The reason lies in the tensor dominance of
the pion-exchange mechanism, which favors the p-induced process leading to
np pairs in the final state. Due to the large momentum of the final nucleon (
k = 400MeV/c), it is advisable to include not only long-range contributions
(those generated by the pion) but also short-range contributions generated by
heavier mesons. The OPE model was generalized to a one-meson—exchange
model (OME) including the mesons of the pseudoscalar (n, m, K) and the vec-
tor octets (p, w and K*) [10]. Although the OME model describes the non—
mesonic rates and the ratio I', /T, satisfactorily, it predicts a too large and
negative asymmetry parameter. Fortunately, recently these problems were re-
solved [8]. The degree of development reached in the last years permitted to
achieve a reasonable agreement between theory [11-23] and experiment [24-32].
In particular, within a finite nucleus framework which adopted a OME model
supplemented by a chirally motivated (correlated plus uncorrelated) two—pion
exchange models (TPE), it was possible to reproduce the asymmetry and the
decay rates of 3 He and 3C [11]. As we will see in the following, the correlated
(27/0) and uncorrelated (27) two—pion exchanges drastically modify the asym-
metry parameter while exerting a moderate effect on the decay rates. However,
although the OME+TPE model was able to reproduce the measured observables
of non—mesonic decay, the discrepancies between various models fall within the
large error bars of the experimental data, meaning that the weak decay of hy-



pernuclei is not yet properly understood.

Other models have been developed to address some of the observed discrepancies
between theory and experiments. Among them, hybrid models combining quark
and meson degrees of freedom [33] or calculations based on effective field theories
[34].

In the present work, we will study the weak non—mesonic decay based on the
OME and OME+TPE models for different hypernuclei using the finite nucleus
approach. The A particle can interact with the nucleons of the s, p or higher
shells, involving a relative angular momentum of the AN pair L # 0. In our
case, we will consider s—shell hypernuclei since it has the merit of considerably
reducing the number of possible states for the initial state (and thus the final
state) by considering the AN pair in a relative angular momentum of L = 0.
Possible violations of the Al = 1/2 rule are discussed using the phenomenologi-
cal Block—Dalitz model, whose limits of applicability have not been discussed to
date. Although this approach starts from a contact interaction which does not
consider the long-range effects of the exchange model, we will see that it will
be extremely good in reproducing the decay rates of light hypernuclei in terms
of a few elementary spin—isospin rates for the An — nn and Ap — np processes
without detailed knowledge of the microscopic interaction mechanism.

This work is organized as follows. In Section 2 we briefly detail the main char-
acteristics of the mesonic and the non—mesonic weak decay, as well as the finite
nucleus formalism used for the calculation of the decay rates and asymmetries.
The weak transition potential is based on one-meson—exchange and one-meson—
exchange plus two—pion—exchange. In Section 3 the approach of Block—Dalitz
to the non—mesonic weak decay of s—shell hypernuclei is discussed. Numerical
results obtained with the finite nucleus calculation for the decay rates and the
asymmetries of four— and five-body hypernuclei are presented in Section 4, to-
gether with a discussion on the reliability of the Block—Dalitz model. Moreover,
possible violations of the selection isospin rule AT = 1/2 are investigated by
adopting the factorization approximation of Ref. [35]. Finally, some concluding
remarks are given in Section 5.



2 Hypernuclear weak decay

In order to discuss the weak decay modes of hypernuclei, it is convenient to
introduce the Fermi gas model. This model defines the properties of an infi-
nite system of non-interacting identical fermions which obey the Pauli exclu-
sion principle. In the isospin picture, nuclear matter is made up of nucleons
(proton and neutron are two states of the same particle, the nucleon) with
mono—particular states described by plane wave functions. The energy and the
single—particle nucleon wave function read:

. o PR
QﬂQN

: (3)

where the two x’s denote the spin and isospin states. According to the Pauli
principle, each nucleon in this system occupies a different mono—particular state
with one of the two possible values of the third spin component, mg &+ 1/2
and one of the two possible values of isospin, m; + 1/2. The maximum value
of \E| corresponding to the occupied states in the ground state is the Fermi
momentum, kg. Therefore, the density reads:
2 2 3
o) = 3 10 = 5k @

k<kp

Using the normal nuclear matter density, p(r) ~ 0.16 fm~3, one obtains kp =
270 MeV /c .

The A hyperon production takes place by collision reactions between different
kind of mesons (pions and kaons) and a nucleus by means of processes such
as the n(K~,77)A and n(r", K*)A reactions. The creation of A~hypernuclei
requires that the A particle created in these reactions remains in the nuclear
system. As we already mentioned, the free A decays mainly via two mesonic
weak decay modes (A — 7 p,7%n). Using energy-momentum conservation, it
is possible to evaluate the Q—value and the final momentum:

ma & VPR mE [Py (5)
Q =~ mp—m;—my =35 MeV , (6)
p~ 100 MeV/c . (7)

Inside the hypernucleus, the hyperon and the nucleon feel the action of attrac-
tive mean fields Uy and Uy, which come from the NN and AN interactions,
respectively. The binding energies of the recoil nucleon (By ~ —8 MeV) and of
the A (Bp > —27 MeV) affect the above expressions [36]. Qbounda = @+Ba—By
is smaller than the free ()—value and hence tends to reduce p.

Since the Fermi momentum is kr ~ 270 MeV /c, the mesonic weak decay pro-
cess becomes Pauli blocked due to the fact that final momentum (p) is not large



enough to access unoccupied stated in nuclear matter. This Pauli blocking is
logically much larger if one considers the A and N binding energy. Although
the mesonic weak decay is strictly forbidden in infinite nuclear matter it can
occur in finite nuclei due to different reasons. Firstly, the density distribution of
a finite nucleus makes the Fermi momentum to become r—dependent (namely a
local Fermi momentum) and it is smaller at the nuclear surface, allowing more
available states for the final nucleon as compared to infinite nuclear matter. Sec-
ondly, the final nucleon wave function can have larger momentum components
due to the momentum distribution of the A wave function in a final hypernu-
cleus. Finally, the final pion feels an attraction by the nuclear medium and,
thus, it has a smaller energy than the free one which leaves the final nucleon
with a larger energy and has more chances to exceed Pauli blocking. This in-
crease can be of one or two orders of magnitude for heavy hypernuclei whereas
is smaller for light and medium ones with respect to the value obtained without
the medium distortion [7,36].

Nevertheless, at the end, these effects do not prevent a strong decrease of the
mesonic weak decay as the mass number increases. However, the same medium
which is responsible for the Pauli blocking is also responsible for the non—mesonic
weak decay. In this new mechanism pions do not appear in the final state.
Proceeding as in the previous case, the final nucleon momentum and the Q—
value are:

ma+my &R+ md iR (8)
Q%mA—mN:175MeV, (9)
p ~ 415 MeV/c , (10)

for one—nucleon— (AN — nN) and

mA+2mN%3\/;52+m%v R (11)
Q~mp—my =175 MeV | (12)
p = 340 MeV/c (13)

for two—nucleon—induced processes (ANN — nNN).

As we can see, the final momentum is larger than the Fermi one, so the pro-
duced nucleons are almost free from Pauli blocking. In case of assuming a finite
nucleus, the transition will even be more favorable. As a consequence, the non—
mesonic decay mode dominates over the mesonic one for all but the s—shell
hypernuclei. For very light systems the two decay modes are competitive.

2.1 Non—mesonic decay rate

In this section, we describe the hypernuclear weak decay rates in terms of the
initial and final wave function and the two—body mechanism, which involves the
weak and the strong interactions.



The decay rate for a hypernucleus decaying non—mesonically in finite nuclei is
written in terms of a transition amplitude, My;, from an initial hypernuclear
state (£Z) to a final state, which is divided into two final free nucleons (1 and
2) and a residual nucleus state (R) composed by (A - 2) particles [37]. The
finite nucleus approach has been used only for describing one—nucleon—induced
decays in such a way that:

3 3
R E Y E SIS

M. R
8 (14)

1
|Mfi |2 )

Xi
2Jr+1

where My, Er, E1 and Es are the mass of the initial hypernucleus, the energy
of the residual state and the energies of the final nucleons, respectively. The
integrals in the momentum space cover the momenta k_i and Eg of the two final
outgoing nucleons. In this expression, the integration over the momentum of
the residual nucleus has already been performed using momentum conservation.
Since we consider the case in which we do not measure the final polarization
and we do not know the initial one, we average over the initial hypernucleus
spin projections (Ms5;) and sum over all final spin projection quantum numbers

((R), (1), (2)).

The nuclear transition amplitude is expressed as:

Myi=(F | M|I)=(® 1037 [ Oanonn [X2) - (15)

Elmslt317g2m52t32
where OA N_nn 1s the two—body operator acting over all initial AN pairs. For
the purpose of describing this matrix element in terms of the two—body tran-
sition, the final state has been decomposed in products of two—nucleon (NN)
Rumia, tay Ramayts, WAVE functions and a residual core ®42 one.

Following the approach used in Ref. [10] and in order to evaluate the decay rate
in terms of the two-body amplitudes involving a AN pair in the initial state
and a NN pair in the final state, it is necessary to decouple the A—particle and
the interacting nucleon from the nuclear system. The starting point is the weak
coupling scheme in which the A—particle in the ay = nalasajama orbit couples
only to the nuclear—(A — 1) core wave function in its ground state:

X 2) =1k 27 =l an)® | A1)

= > (amaJeMe | JiMsp) | (nalasa)jama)® | JeMcTiTsy) (

TILAMC

16)

where the initial hypernuclear total angular momentum and isospin are denoted
by Jr and T7, with third projections and Ms; and T5;, respectively. The quan-
tum numbers of the A baryon are ny =0, [y =0, sp = %, ja = % and tp =0
and those of the nuclear core are denoted by Jo, Te = T3, M¢ and T3;.

10



Now, the nuclear core (A—1) can be written in terms of the product of a nucleon
inaay =nylysyjnmy orbit and a residual nuclear system composed by (4 —
2)-particles. This can be achieved by using the technique of the coefficients of
fractional parentage which maintains the antisymmetry character of this residual
system [38]:

| JeMcTiTsr) = Z (JeTr{| JrTR, jntN)[| JRTR) X | (”NZNSN)J'NtNH%f%IC
JrRTRIN

= > {(JeTi{| JrTr, jntn)

JrRTRIN

X > > (JrinJo, Mpmy M) (TrtnTr, TartsiTsr)
Mprmpy T3rts3:
x | JRMR) | TrT3r) | (nninsn)inmn) | tntsi),
(17)

where we denote with the subscript R the quantum numbers of the residual nu-
clear core, and (J.M{| JrTRr, jntn) are the coefficients of fractional parentage.

It is convenient, at this point, to define the total momentum, P=k + Eg, and
relative momentum, k = (k1 — k2)/2, of the two outgoing final nucleons in such
a way that, if we also work in a coupled two—body spin and isospin basis, the
the nuclear transition amplitude can be expressed as the following form:

My = (8472, PESMSTTs | Oannn |4 Z) . (18)

2.1.1 Two—body Spin-Isospin states

In order to establish a connection with the two—body operator in the amplitude
of Eq. (18), it is convenient to work in the coupled basis. We may add the spin
angular momentum 57 = 1/2 of a single—particle to the spin angular momentum
S5 = 1/2 to of another single—particle. The total spin angular momentum is
S=514+5=1/201/2 =160. To these quantum numbers, the corresponding
isospin ones are added. The isospin adds an extra degree of freedom which is
analogous to spin. By definition, the proton state is t = 1/2 and t3 = 1/2 and
the neutron state is then, t = 1/2 and t3 = -1/2, where ¢3 is the isospin third
component. Thus, for a system of two interacting nucleons, the total isospin
operator is given by T=1 +1y= 1/2@1/2=1®0.

The two nucleon total wave function is:
U(1,2) = deooral(l; 2)X71, (1,2)x7, (1,2) (19)

where X}?/[ ; and X%; are the total spin and isospin wave functions with third pro-
jections Mg and T3 respectively. Regarding the two—body radial wave function
¢(1,2), we will discuss the details later.

11



In the coupled scheme, the two nucleons can be either in isospin triplet (7' = 1)
or singlet (T'=0) and in spin triplet (S = 1) or singlet (S = 0). The total spin
wave function are:

e (1205 = 15 = 0) = (G (2) + @)
Xars (1,28 = 1, Mg = 1) = x (1)x}(2) 20)
(1,208 = 0.M5 = 0) = = (G ON2) — RG)
and isospin wave functions are:
X1y (1,2:T = 1,T5 = 1) = x5 (1)x5(2) |
W (LET = LT3 =0) = (4 0(R)+ 6 2(1) o

X (L2 T =1,T5 = —1) = x5, (1)x4L(2) ,

1
X1, (L2 T =0,T3 = 0) = —=(x,(1)x7(2) — x5, (2)x,(1)) -
V2
Note that spin and isospin triplet states are symmetric while singlets are an-
tisymmetric. By convention, we use the spectroscopic notation. The quantum
state is denoted as 2°*1L; being J = L + S the total angular momentum.

Then, let us now show the available states for each AN and NN pair of the
AN — NN transition.

AN initial state :

As we already mentioned, the benefit of light hypernuclei, meaning s—shell hy-
pernuclei, is the fact that the AN pair is in L = 0. As just discussed, the total
spin state can be in spin—triplet or spin—singlet state.

Thus, only 'Sy and 35, states are possible.
NN final state :

The total angular momentum conservation (AJ = 0) in the non—-mesonic weak
transition implies certain restrictions for the available final NN state. The
action of the central potential (AL = 0,AS = 0), tensor (AL = 2,AS = 2) and
PV (AL = 1,AS = 1) terms makes that the only allowed transitions are the
following:

150 — 150 150 — 3P0
351 — 351 351 — 3D1
351 — 1P1 351 — 3P1

12



Table 1: Amplitudes for the AN — nN decay in s—shell hypernuclei. The
spectroscopic notation 291 L ; is used. I; is the isospin of the final NN pair. PC
and PV denotes parity—conserving and parity—violating channels, respectively.

Amplitude Channel I; Parity
ap, Qp 1S0 — 150 1 PC
by, bn 1Sy =3P 1 PV
Cp 331 — 351 0 PC
dp 351 — 3D1 0 PC
€p 351 — 1P1 0 PV
fp, fn 351 — 3P1 1 PV

As we already discussed, the final states in these process are np and nn pairs.
The constraint from the Pauli principle requires that the total wave function
must be completely antisymmetric. For the two nucleon system, the isospin T’
can either be 1 or 0. If we use +1 to represent a symmetric wave function and
—1 to represent an antisymmetric one, then, the isospin wave function has a
symmetry factor (—1)7*! and the spin wave function has (-1)°*!. With regard
to the space wave function, states with L=even are symmetric while L=odd are
antisymmetric, being L the orbital angular momentum of the relative motion.
Therefore, the orbital wave function has the (—1)* symmetry factor. To sum up,
the total symmetry factor is (—1)X+7+5 which has to be —1. Hence, L + S+ T
must be odd. Now, we will analyse the symmetric (S) and antisymmetric (A)
properties of the available final states in order to assign them to the np and/or
nn states.

1So— S=0(A)L=0(S) —I;=1(S) (22)
5Pp— S=1(8)L=1(A) —I;=1(S)
38— S=1(S)L=0(S) —1I;=0(A)
Dy —» S=1(S)L=2(S) —1I;=0(A)
Pp— S=1(8)L=1(A) —I;=1(S)
'Pp— S=0(A)L=1(A) —I;=0(A)

To sum up, the available AN — nN transition channels are given in Table 1
together with their main properties. For each transition there is an elementary
AN — nN decay amplitude and the subscript n and p denotes the neutron—
induced channel and proton—induced one, respectively. Note that An — nn
process has final states with isospin Iy = 1 only, while for Ap — np both Iy =1
and Iy = 0 are allowed.

The non—mesonic decay rate becomes

I'nm=T,+ Fp s (23)
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where the partial decay rates are written as

d*Pr [ &k, -
Fi/(2ﬂ_)€‘/(2ﬂ_)3(2ﬂ)5(MHERE1E2)Z Z Z 2Jr+1

S,Ms Jr,Mgr Tr,T3r

1 , 11 .
x> (Tr5Tr TartsiTsr) [ x| Z(iiT’tthTS) > (indedr,maMeMy)

My T,T3 maMc
x> /S(JcTr; JrTr, dntsi) Y (JrinJo, Mpmy M)
JN Mprmny
1. 1.
x> (v 5 M s N ) > (v 578 sy s 1A )
mlesN mlAmSA
11 11, 1
> (§§So;msAmsNSMo) > (§§T0;‘§t3iT30)
SoMs, ToTs,

X tAN%NN(S7 MSvTvTSaSOvMSoaT07T307lA7ZN7ﬁTaET) |2 )
(24)

with ¢, = —1/2, to = 1/2, t3; = 1/2 for the p-induced rate and t; = —1/2,
to = —1/2, t3; = —1/2 for the n—induced one. We denote the initial AN system
with spin Sy and isospin Ty and the final antisymmetric NN state with spin
S and isospin 7. We note that Eq. (24) is written in terms of the two—body
transition, tA sy, Which contains the details of the non—mesonic weak decay
process. In Eq. (24) the A—particle is assumed to be in a ty = 1/2, t5, = —1/2
state, which is a practical way to impose the phenomenological AT = 1/2 isospin
rule observed in weak hadronic processes. Moreover, we write the coefficients
of fractional parentage as spectroscopic factors, S(JoTr; JRTR, jntsi) = (A —
){(JcTr{| JrTr,intn)? [10].

2.1.2 Al =1/2rule

The AI = 1/2 isospin rule reflects the dominance of the Al = 1/2 transitions
over the AT = 3/2 ones. In the mesonic decay of a free A (o = 0) into a
nucleon (txy = 1/2) and a pion (t; = 1), both T'= 1/2 and T' = 3/2 isospin
final state are possible. Using isospin coupling algebra and the Clebsch—Gordan
coeflicients, it is possible to evaluate the relative importance of the two mesonic
channels for each AT value.

1 1 11 1 1 21 3 1
0 —
= |- —\10)=4/2|>,1; =, -= 222, -2 25
11 21 1 1 11 3 1
o= 211 ==y 2 ] 1S, - Z15,152,-2) . (26
Plr) = 5ll-T=—/2l5 55 + /5l e g) - (26)
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Denoting by 1’“::58 the mesonic A — n+7° decay width and by Fffﬁe the mesonic
A — p+ 7 ones, the ratio of rates for AI = 1/2 yields:

Ff;ie ~ | <7T p|T1/2 1/2|A \/ 2 (27)
Fgge | <7T07’Z|T1/2 1/2|A
while for AT = 3/2 processes one finds:
[free 7 p|T: A) 1
T~ | { Op| 3/2, 1/2| - (28)
To5e | (nOn|Ty s, 1/2|A

where the Tl /2 and T3 /2 operators change 1/2 and 3/2 units of isospin, respec-
tively. Experimentally the ratio of the relevant widths is I're/I'free ~ 1.78 [2].
As we can see above, only in the first case seems the experimental prediction to
be recovered, although there is room for some amount of AI = 3/2 contribu-
tions.

2.1.3 Initial AN wave function

Although the total hypernuclear system has been decomposed in terms of angu-
lar momentum coupling between the AN pair and the (A - 2) nuclear core, it is
still necessary to know the initial and final two—-body wave functions. As for the
A and N wave functions in the initial state, we use the solutions of a harmonic
oscillator potential, with appropriate values of the oscillator parameters by and
by that are adjusted to reproduce the binding energy of the A—particle in the
considered hypernucleus and the form factor for the (A-1)—particle core, respec-
tively. For 3 He we use by = 1.85 fm and by = 1.39 fm, while by = 2.04 fm and
by = 1.54 fm are taken for 1 He and 3 H. Working in the center of mass frame
system, the initial A and N wave functions can be written in terms of relative
(rel) and center of mass (CM) harmonic oscillator wave functions describing the
AN system as:

] e, T R

where b = is the average oscillator parameter. Consequently, the two—
body transition in Eq. (24) can be factorized in terms of other transition ampli-
tudes, which depend on relative (N,.,L,) and CM (Ng,Lg) principal and orbital
angular momentum quantum numbers of the AN and NN systems:

@o0(+ ), (29)

bat+bn
2

IANSNN = Z X (N, L, NrLRlpln N v nkr (30)
N,L.NrLg

where X (N, L,NrLg,lxlyn) are called the Moshinky brackets. For [y =iy =0
the value is X (101000) = 1 [39].
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Using this approach, the initial nucleon and A are assumed to be independent
but there is a correlation between them due to the action of the strong inter-
action. To take this initial interactions into account, the harmonic oscillator
wave function is replaced by a correlated AN wave function which is obtained
by multiplying the uncorrelated A and N wave functions by a function that
is adjusted to microscopic G—matrix calculations in nuclear matter. For the
baryon—baryon strong interactions we take the Nijmegen soft—core model, ver-
sion NSC97f [40], which has been used with success in hypernuclear structure
and decay calculations. We follow the Ref. [10], where the correlation function
is parametrized as:

fan(r)=(1- exp{—rz/a2})" + br? exp{—rz/cz} , (31)

with ¢ = 0.5 fm, b = 0.25 fm, ¢ = 1.28 fm and n = 2.

2.1.4 Final NN wave function
The final wave function of the two outgoing free nucleons can be written as

(117 | k1k1s1ms, sams,time, tamye,) = 6ik1?1€ik2?2x251X2352 Xite, X, (32)
where the four x’s are the spin and isospin states. We use relative and CM
coordinates in such a way that the final state is rewritten as follows:

(RF| PkSMsTMy) = e Re* ™5 1., (33)

where X}\q@ and X%, are the aforementioned total spin and isospin wave function,
respectively. In order to incorporate the antisymmetrization of the two—nucleon
wave function, it is necessary to include the exchange of their coordinates and
quantum numbers. This involves exchanging k — -k and adding the factor
(=1)5*+T. Therefore, Eq. (33) is rewritten as:

B~ PL L iR ( ikF S+T —iki\ S T
<RT ‘ PkSMSTMT> = ﬁel (61 T (71) + (& ¢ T) XMSX]\/[T . (34)
Moreover, it is also possible to incorporate interaction effects between the two
outgoing nucleons by substituting the plane wave function by a distorted wave
function, which is the solution of the Lippmann—Schwinger equation with an
appropriate NN potential. The Lippmann—Schwinger equation is

1

PN — -
| ) |¢>+E—H0:|:i6

Vo), (35)
where | ¢) represents a solution of the free Hamiltonian Hy, E is the energy of the
two final nucleon state represented by | ®(+)). The plus (minus) signs denotes
states at infinite time before (after) the interaction. Multiplying Eq. (35) by
the potential V' and defining V' | ®*)) = T+ | ¢), one obtains the T-matrix
equation.

T =V +VGET™, (36)
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Table 2: Possible 29! ; channels in the weak decay (WD) of s-shell hypernu-
clei incorporating the strong final state interaction (FSI)

AN(L,) WD NN (L') FSI NN (L)
150 — 150 — 150
351 — 351 — 3517 3D1
351 — 3D1 — 3D1, 351
150 — 3P0 — 3P0
351 — 1P1 — 1P1
351 — 3P1 — 3P1

where GOi = (E — Hy +ie)™! is the free-space Green’s function. Once the
T—matrix equation has been solved and using the previous equations and defi-
nitions, the correlated NN wave function (®) is obtained. We will denote as @,
in the relative and center of mass coordinates. Therefore, the free wave function

e“;?, which is a solution of Schrodinger equation, is replaced by the correlated
wave function of the two nucleons ®.

In Table 2 we present all the possible final states starting from AN initial states
with L = 0 and considering the final state interaction after the action of the weak
transition potential. The strong interaction conserves, among other properties,
parity (—1)* and total angular momentum (A.J = 0). Specifically, the tensor
component (AL = 2) of the strong final state interaction produces a mixing
between 397 and >D; NN final state whereas the central part (AL = 0) does
not produce an overlap between different channels.

Based on these considerations, the matrix elements of Eq. (30) are:

_ R
tiVNi%J}VLR = f/ng/d?’Te i R‘I’ (ijAISXTSV(m NRLR (W)

re r S|
X (I)NZL (ﬂb) XJ\/?SOX%,O
L p
3/2gCM
= (2m)* 2%, (P\@) bret
(37)

with NR Ln ( ) is the Fourier transform of the AN center of mass oscillator

wave function and

'l"e F
trel = 7/6137’@ F)XM XT3 (ﬂ l (\/ib) Xi/?so)(%:go . (38)
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2.2 Weak Transition Potential

The weak transition potential is built from the exchange of virtual mesons be-
longing to the ground state pseudoscalar (7, p, K) and vector octets (K*, w,
n) [10], to which we add the uncorrelated (27) and correlated (27/0) two—pion—
exchange [11]. One of the merits of this weak potential was that for the first
time it was possible to reproduce the experimental data of both the asymmetry
parameters and the decay rates for 3 He and }*C. In this work we show the final
expressions of the transition potentials.

The one-meson exchange contributions are obtained from the corresponding
Feynman amplitudes, displayed in Figure 1, conveniently Fourier transformed
to coordinate space. In order to account for the finite size of the hadrons involved
in the transition, form factors are included at the weak and strong vertices of
these amplitudes. More details are given in Ref. [10]. We note that, while the
baryon—baryon strong coupling constants are taken from the model NSC97f, in
the present work we employ monopole-type form factors at the meson—baryon—
baryon vertices, typical of the Juelich BB interaction models [41] with similar
cut—off values, instead of the exponential-type form—factor of the Nijmegen
models adopted in [11]. This new procedure gives rise to similar results as those
obtained in Ref. [11] and has the advantage of permitting a more straightforward
comparison with the parameters employed by other models in the literature.

Within the OME model, the decomposition of the weak interaction potential
for the AN — nlV transition is given in the following way:

V() =Y Vi@ => > Vi(r)0aI, (39)

where the index ¢ runs over all exchanged mesons and the index a over the
different spin—space operational structures. The spin operators O, are:

1 central spin-independent (C)
A &1 - F9 central spin-dependent (SS)
Oa: 512(7_’):3(0_"1~F)(52-77)—51-0_:2 tensor (T)

09T PV for pseudoescalar mesons

(01 x &) - T PV for vector mesons

and the isospin operators IA((f) are:

1 isoescalar mesons (1, w)

O S o .
D=9 AT ) isovector mesons (7, p)
linear combination of 1 and 71 - 72 isodoublet mesons (K, K*)
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Figure 1: Feynman diagrams corresponding to the weak AN — NN transition
amplitudes mediated by the exchange of the non-strange (m, p,n,w) and the
strange (K, K*) mesons. The circle and the square stand for a weak and a
strong vertex, respectively.

The different pieces of Va(i) can be written in terms of Yukawa or Yukawa-like

)

functions multiplied by certain factors, K&i , which contain weak and strong

coupling constants:

i qexp” i
VO = KQ=— = K& Velrm) | (40)
mr
i i 1| gexp™ " i
Vidr) = Kz |u? —3(r)| = K$3Vss(r, ) (41)
3 4dmr
@D — @ o 3\ 2 g
VT (T) = KT g,ui exp HiT (1 + T + (,LLi’I’)2> = KT VT(T, ,ui) R (42)
i i i 1
Vzg\)/(r) = Kfvz/ﬂi exp (1 + M'T) = KpyVpv (7, i) , (43)

where p; denotes the mass of the different mesons. The expressions for K S) are

given in [10].
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Figure 2: Uncorrelated [(a) and (b)] and correlated [(c)] two—pion-exchange
Feynman diagrams corresponding to the weak AN — NN transition ampli-
tudes. The circle and the square stand for a weak and a strong vertex, respec-
tively.

This OME potential is supplemented by chirally motivated contributions of
uncorrelated (27) and correlated (27/0) two—pion—exchange mechanism. The
relevant diagrams are shown in Fig. 2. The two—pion—exchange (TPE) interac-
tion takes place only in the scalar—isoscalar channel. This is due to the fact that
the p meson is already represented in the OME mechanism and, therefore, the
vector—isovector channel (27/p) is not implemented here. Also, the intermedi-
ate NN states are not considered in these diagrams to avoid double counting
when including the NN strong correlations. Furthermore, we note that the full
TPE potential is of pure parity—conserving nature.

Once the expression for the potential is known, what remains to be done in
Eq. (38) is to perform a partial-wave expansion of the final wave function, so
that the relative AN — nN amplitude ¢,; in Eq. (38) can be written as follows:

1 I I
trol = 7 ZZ Z Ari~ " (LM SMg|JM )Y, (kr)

a LL'J

X (Ly My, SoMs,|JM){(L'S)JM|Oul(LySo)J M) (44)

A . J .
x (TT3|Z:|ToTs,) / r2drd®% . (ky, )VEi(r)

x O, (r/V2D),
where the function <I>2JL, (kr,7) is the scattering solution of the two final nucleons

moving under the influence of the strong interaction. The explicit expressions for
the expectation value of the spin—space piece of O, can be found in Appendix B.
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2.3 Decay rate asymmetry

A-hypernuclei can be created with a certain degree of polarization depending on
the kinematic conditions employed in the production reactions. This means that
the hypernucleus has a total angular momentum (J;) in a preferred direction
in space, known as polarization axis. J; comes from the addition between
the spin of the A—particle and the nuclear core angular momentum, Jo. The
two dominant decay mechanisms are the proton— and neutron—induced decay,
where we have added a vector index in the A to indicate that the hypernucleus
is polarized:

/_\’TL%TL’N‘

Protons from the proton—stimulated decay are emitted asymmetrically with re-
spect the polarization axis of A~hypernuclei. We denote as 6 the angle between
the direction of the outgoing protons and the polarization axis. This asymmet-
ric emission means that the number of protons emerging in a certain direction
(9) is different from the number of protons in the opposite direction (180° + ).
As we will see later, this asymmetry comes from the interference between the
PC and PV amplitudes. Therefore, the study of polarized hypernuclei provides
us with extra information on the non—mesonic weak decay, such as the relative
phases between PC and PV amplitudes, which puts additional restrictions to the
theoretical models. In principle, there is also an asymmetry with respect to the
neutrons emitted in the proton—stimulated decay, but its measurement is hard
to reach. In addition to this, it should be pointed out that there is no neutron—
asymmetry from neutron—stimulated decay because one can not distinguish the
two final neutrons.

From now on we will focus on the asymmetry generated in the accessible Kp —
np process. It is obtained from the intensity of protons emitted along a direction
forming an angle 6 with respect to the hypernuclear polarization axis [37]:

1(0,J1) = TrMp(J))MT)(0) = > (F;0|M|T; 1, M)
F,M,M’ (45)
x (I; Jr, M| p(Jp)\I; Jp, MUY Jp, M| MT|F;6)

where M is the operator describing the elementary transition, |I;Jr, M) is
the initial hypernuclear state, M; denoting the third component of the total
hypernuclear spin J; and |F;0) is the final state, which is composed by the
residual nucleus and the two outgoing nucleons, and p(Jy) is the density matrix
of the polarized hypernucleus. For pure vector polarization perpendicular to
the plane of the n(K*,7)A reaction producing the hypernucleus, the density
matrix is given in Ref. [7] as:

1 3

p(J) = 5T+ 1[1 +Py(JI)5ym

I (46)
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where P, is the hypernuclear polarization, which depends on the kinematics
and dynamics of the hypernuclear production reaction, and S, is the J-spin
operator along the polarization axis. From Eq. (46) one can obtain the proton
distribution in the following form:

10, Jr) = Io(Jr)[1 + A0, Jr)] = Io(J)[1 + Py (J1)Ap(0, J1)] ,  (47)
where Ij is the isotopic intensity for an unpolarized hypernucleus and A, is the
hypernuclear asymmetry parameter which read:

Tr(MMT)
2Jr+1

3 Tr(MS,M ()
Jr+1  Tr(Mm)

It is clear that, by construction, we can write down two properties of I(6, J;)
and A(@, J[)

]()(J]) = = Fp s (48)

A0, Jr) = Py(Jr)

(49)

/[WdQI(G,Jj)::]b(Jj). (50)
0

/wd&Aw“h):O. (51)
0

From the last equation, the function A(0, Jr) can be expressed as a series of odd
powers of cosf. If we truncate to first order in the expansion, we have:

A0, Jgr) = Ccos . (52)

It is clear that if the hypernucleus is generated without polarization, there is no
asymmetry in the protons emitted in proton-stimulated decay. This means that
A(0, Jg) = 0. For this reason, and as shown in Eq. (47), the constant C can be
expressed as a product of the hypernucleus polarization, P, times a remainder
quantity, called by exclusion as the asymmetry parameter, A,.

C=PA,. (53)
Using these considerations, the Eq. (47) is rewritten as follows:
10, Jr) = In(Jr)[1 + A0, Jr)] = Io(Jr)[1 + Py(Jr)Ap(Jr) cos(0)] . (54)

The shell model weak—coupling scheme allows rewriting the asymmetry in terms
of the polarization of the hyperon spin, py and the so—called intrinsic asymmetry
parameter, ax:

A = PyA, cos(0) = paay cos(0) . (55)

This is as if we considered that the process responsible for the appearance of
the asymmetry is the elementary process Kp — np taking place in the nuclear
medium. In other words, the polarization and the asymmetry parameter of
the entire hypernucleus are referred to as those of the elemental decay process.
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This representation implies that the asymmetry parameter should be practically
independent of the decaying hypernucleus. Several calculations [2, 6,10, 11,
15,17,37,42] of the asymmetry parameter of different hypernuclei show only
moderate dependence on the hypernuclear structure. Although this property is
also supported by experimental data [28], one has to note that there are still
large error bars.

Using the weak—coupling scheme, the relation between the hypernuclear and the
A polarization is:

—Lp, ifJ=Jc—1
_ J+1°Y 2
ba { P, ifJ=Jo+1 (56)
From Eq. (55) it then follows:
LA i =1
= J p
“a { A, i =Jo+ 1 (57)

where ap can be reinterpreted as an intrinsic value of the process as mentioned
above. Note that, for example, in case of ?\I-fe, J =1/2 and Jo=0, the intrinsic
asymmetry parameter is ay = A, (f\IjIe) Note also that ay = A, =0if J = 0. In
relation to this last result, the four—body hypernuclei have J = 0 and, therefore,
the asymmetry parameter vanish in this approach.

In Appendix C one can find the expression of the asymmetry parameter for
s—shell hypernuclei in terms of the elementary amplitudes appearing in Table 1.
From all these considerations we can rewrite Eq. (54) as:

I1(0, Jr) = In(Jr) [1 + paas cosb] . (58)

Experimentally, the asymmetry is determined by measuring I(0°) and I(180°)

as:
1 I(0°, Jp) — I(180°, J7)

DA I(Oo, JI) + 1(1800, J[) '

ap = (59)
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3 Block—Dalitz model for s—shell hypernuclei

An approach was proposed by Block and Dalitz [43] which allows one to de-
termine the neutron— and proton—induced decays in terms of a few rates for
the elementary process AN — nN in s—shell hypernuclei. As we will see in this
chapter, the relationship between this elementary rates is affected by the isospin
change involved in the non—mesonic weak decay. In principle, both AT = 1/2
and A = 1/3 transitions are possible, but most of the models impose the phe-
nomenological AT = 1/2 rule observed in hadronic weak processes. In previous
works these rates were determined phenomenologically by fitting the available
data on s—shell hypernuclei for total and partial decay widths [44-49]. The
usual outcome was the large error bars prevent from drawing any definitive
conclusions. For this reason, more precise measurements of the decay rates are
necessary, especially for four-body hypernuclei, in order to obtain reliable con-
clusions on the identification of possible violation of the AT = 1/2 selection rule.
Fortunately, an upcoming experiment at J-PARC will measure these decay rates
more precisely [50].

The Block—Dalitz approach obtains the decay rates employing simple arguments.
In terms of classical physics, the interaction probability of a particle which
crosses an infinite homogeneous system is dP = ds/)\, where ds is the thickness,
A =1/(op) is the mean free path of this particle, o is the cross section and p is
the particle density of the homogeneous system. In this way, one can evaluate
the width for the non-mesonic weak decay by:

P,
FNMZM;%WZ%ZUP%ZUWa (60)
where v is the speed of A particle in the rest frame of the system. Within a
semiclassical approximation for a finite nuclei one can evaluate the width by
performing an average over spin and isospin states. In addition, if one assumes
the zero range approximation of the non—mesonic process, the decay rate is
proportional to the overlap between the A and nuclear densities [2].

I'nm = {ov) /d(f’)p(F) | A () = (ov)pa (61)

being pa the nuclear density normalized to the mass number A = Z + N at
the position of the A particle and 1, () is the A wave function normalized to
unity. Consequently, in the Block and Dalitz approach, the non—mesonic width
I'm = I'y, + T', of the hypernucleus ﬁHZ turns out to be factorized into a
density—dependent factor (p4) and a term incorporating the dynamics of the
non-mesonic decay [43].

NR, (311 2) + ZR,(17 2)
A

where R denotes a rate (per unit nucleon density at the A position) average
over spin and isospin and is given in the second equality in Eq. (62) in terms of

P(3M2) =R 2)pa = pA (62)
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spin—averaged rates R,, and R, for the neutron— and proton-induced processes,
respectively.

For s—shell hypernuclei the AN pair is in the L = 0 relative orbital angular
momentum state and the possible AN — nN transition channels are given in
Table 1. Now, we may introduce the Block—Dalitz rates Ry s for spin—singlet
(J =0 = R,o and Ryo) and spin-triplet (J = 1 = R,; and R,1) elementary
AN — nN interactions in terms of the rates associated to the partial-wave
transitions and the elementary amplitudes of Table 1 in such a way that:

Rno = Rn(lso) + Rn(SPO) = ‘an‘Q + ‘bn‘Q ) (63)
R, = Rn(gpl) = |fn|2 >

Rpo = Rp(lso) + Rp(?)PO) = |ap|2 + |b;D|2 )

Ry = Ry(>S1) + R,(*D1) + Ry('P1) + Ry ()

= |‘3p|2 + |d;o|2 + |e;o|2 + |fp|2 .

The quantum numbers of the final state being reported in brackets. Observe
that the R is the spin-isospin average of the Ry rates. The non-mesonic decay
widths of s—shell hypernuclei are thus easily derived using angular momentum
coupling as one can see in Appendix A:

Txn(BH) = (38Rno + Rt + 3Rpo + Rp1) % , (64)
Txn(AH) = (Rpy + 3R, + 2R,,) % , (65)
Taar(AHe) = (2Rn0 + Rypo + 3Rp1) % , (66)
Taa(GHe) =  (Ruo+ 3Rn1 + Rpo + 3Rp1) 22 (67)

8

In these relations it has been taken into account that the total hypernuclear
angular momentum is J; = 0 for 4H and } He and J; = 1/2 for 3 He and 3 He [5].
Note that, for both 4 H and % He rates, the same density factor p3 has been used.
We observe, for example, that only the spin—singlet interactions is effective for
neutron—induced transitions in 4 He whereas only the proton-induced ones for
1.

Within the Block—Dalitz model the intrinsic A asymmetry parameter is given
by

2V3Re |ape;, — J=by(cy — V2d5) + fo(V2e) + dy)
lap|® + [bp|? + 3(|cp|? + |dp|? + lep]> + | fp]?)
as is shown in detail in Appendix C. Although the above equation is only valid

for the Kp — np free space process, it makes evident that the asymmetry is
due to the interference between parity—conserving (a,, ¢, and d,) and parity—

apn = s (68)

violating (b, e, and f,) Ap — np elementary amplitudes with the same value

25



of np intrinsic spin S. As we shall see in the following, this expression has an
approximate validity for the proton-induced decay of 3 He.

As we discussed at the beginning of this section, the Block—Dalitz phenomeno-
logical model (i.e, Egs. (64)—(67)) makes use of a few assumptions, which should
be verified before one employs this model for predictions or extrapolations to
other hypernuclei. The decays are treated incoherently on the stimulating nucle-
ons and a local point-like A—N interaction is assumed, thus interference effects
originated from antisymmetrization of the two—nucleon final state commented
in Section 2.1.4, are neglected. The use of a point—like interaction allows to
write the decay rates in a simple and factorized form as in Eq. (62), although
it could be an inadequate approximation since the long-range meson exchange
(via pion and kaon mesons) gives a dominant contribution to the non—mesonic
decay [11]. Moreover, the calculation employs an average nuclear density at
the position of the A particle (here, the same density is employed for 4 He and
1H). In addition, processes induced by two nucleons or more are not taken
into account in this model, although their relevance has been established both
theoretically [20,51,52] and experimentally [30-32]. Despite of all of this, one
could argue that some assumptions can be expected to be quite satisfactory.
First, hypernuclear structure effects are expected to be unimportant due to the
high momentum of the outgoing nucleons. Secondly, the experimental data
are still quite limited and not precise since it is difficult to detect the prod-
ucts of the non—mesonic decay, especially for the neutron—-induced one. This
would imply that the above approximations could be enough for interpreting
the present data. Finally, multinucleon induced decays are quite negligible in
the light system studied here. Section 4.1 will be devoted study the reliability
of Block—Dalitz approach by means of a finite nucleus calculation of the Ry s
elementary rates.

The non—mesonic weak transition occurs mainly with a AT = 1/2 isospin change.
If we assume pure AT = 1/2 transitions, the following relations hold among the
rates and elementary amplitudes for transitions to Iy = 1 states:

R,(*So) =2R,(*So) , R.(*Py) =2R,(*Ry), R,(®P1)=2R,(*P1) . (69)
an =V2a, , by=v2b,, f.=V2f,. (70)

These relations have been obtained from the Clebsch-Gordan coefficients and
the Wigner-Eckart theorem. By definition, we may assume that R, (?>*1L;)
and R,(?°*1L;) differ only by the isospin factors (for a given 25+1L;). The
AT = 1/2 isospin change is represented by the T1J/2 operator with ATy = -1/2.
Then, for instance, the spin-averaged rates for the 'Sy — 'Sy neutron-induced
transition is

- |
Ry (*So) =| (nn | TYZ0 | An) |P=| (1-1 | TY35° 5735 2
11 ooy Ly e g o Ly 2 (71)
=5 -5 55 11-DANTR I = A T ) 17
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and for the proton—induced is

P 11
Byl o) =| (op | TY5° | Ap) [P=]| (10| 73" 22>|
111 (72)
{55 55 | IOMUNFE0 5 P= 2 L300 ) P

Note that, although the np pair can be either in isospin Iy = 0 and Iy = 1,
due to the antisymmetry issues summarized in Eq. (22), the 1Sy np state is an
isotriplet state (Iy = 1) with I3 = 0 (via Eq. (21)). Then, the ratio is

R, (*S0)
Ry (*50)

In consequence, the following expressions are valid

—2. (73)

Roo = Ru.(*So)+ R.(*Py) =2R,(*So) + 2R, (*Ry) , (74)
R, = R,(P)=2R,(*P)).

The isospin—dependence of the AN — nlN process is summarized by the follow-
ing ratios:

Rno 2 (Ry("So) + Ry(*Fp)) —9

20 75
B Ry(S0) + ByCR0) (%)
R, 2R,(3P R,
nl - _ p( 1)1 . <=2 —9. (76)
Rpl Rp( Sl)+Rp( D1)+Rp( P1)+Rp( Pl) Rpo
Therefore,
Rnl Rn(]
<= =2 it
S R (77)

The procedure is analogous in case of considering that the non—mesonic weak
decay occurs with pure AI = 3/2 isospin change. The transition operator will
be T?;]/2 with ATy = -1/2. The following relations hold for a pure AI = 3/2
transitions.

Ra('50) = 5 B(S0) , RaC*Ro) = 5Ry(CRo) . Ra(*Pr) = SRy(°P1) (78)

N ff,,. ™

In a consequence of above expressions, the factor 2 in Eq. (77) are replaced by

1/2 and one can obtains:

Rnl RnO 1
=m0 80
Ry Ry 2 (80)

Now, let us show how the previous inequalities are modified in case of the
transition does not occur purely. This implies that the transition occurs with a
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mixture between Al = 1/2 and AT = 3/2 isospin change. The study proceeds
by introducing the ratios:

(I =UTR° = %) AJR U =1)
0= - = —=

(Ip =T/R0NL = 5)  A{RUr=1)

(I =T =5) AR Iy =1) (82
1= < =52

(Ip=UT/SE=5) AR Ur=1)

between the AT = 3/2 and ATl = 1/2 AN — nN reduced transition ampli-
tudes with total angular momentum J = 0 and J =1 for I; = 1 final state,
respectively, and

(83)

Iy = OITEH I = 1) A{5 L, =0)
(I =T =3) Al Iy =1)
between the AT = 1/2 transition amplitudes with total angular momentum J =
1 having isospin Iy = 0 and Iy = 1 in the final state. Note that, in this case, the

reduced transition amplitude A{/:Ql (Iy = 0) contains the sum of all contributions
with Iy = 0, meaning |A1J/:21(If = 0)]> ~ R(3S1) + R(®D;) + R(*P;) while
A{7'(Iy = 1) only contains the R(*Py) contribution.

In general, we may define the transition operator T7 as a sum of AI =1 /2 and

AT = 3/2 contributions, T = Tl‘jv/z + Téj/z Thus, one gets:

R0 _ (58 — 469 + 4 (84)
Ry 22 +400+2"’
R _ (5% — 46, + 4 (85)
Ry 267 +46; +2+2€%
where Eq. (84) has been obtained from:
2
. 1 1 . 1 1 . 1 1
— J=0 _ J=0 J=0
Ryo=|(1-1|T |§—§> _‘<1—1|T1/2 §—§)+\<1—1|T3/2 5—5)
1 11 1 _ 1 13 1 2
= <§*§§*§|1 1>Ai]/30([f:1)+<§*55*5\1*1>A3J/30(If:1)
1 ? 8 |?
= Az =1 - jagpas = | =|aa = 0[ -3
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11 11
Ry =|(10 | 7770 | = 10 10 —=
o= |01 770 30| = a0 17701 30| + |01 30153
1111 _ 1131 2
=|(z= 22 | 10VA7Z0 T = 1) + (== == | 10)AJZ0 (I, = 1
<2222| 0) A5 (Iy )+<2222| 0) 3/2(f )
1 2
= fA1/2( 1)+ \[AB/Q Iy =1)
A1/2 (Ile)’ 11460,
whereas Eq. (85) by means of the following steps:
1 o101 11
— J=1 _ J=0 J=0
O R e R L R )
1 11 1 _ 1 13 2
= <§*§ 57 % |1 1>A1J/31(If:1))+<§*§ 5**|1 A3 Iy =1)
1 2 & 2
= |arztas = - jagstas =) =z =0 -3
2 2
11 11
— TJ=1 - - 1 TJ:l -
Ry = |00 7721 | 550+ |10 7971 55)

112

10T Ty/o | ==
+‘< | Tv2 + 3/2|22>

A N 11
= ({00 | T} T ——
(00 | Ty o + T2 | 22)

2 11

>

. 11 N 11
= <00|T1/2|§§> + <00|T3/2|§§>

A 1
+ ‘<10T1/22> <10|T3/2|

2

111
= (555 2|00> 1/2 (I =0)
111 1 113 1 2
+ ‘(22 5" | 10)A{R Iy = 1) + <§§ 373 | 10)A35! (I = 1)
2 1 2
‘\f 1/2 =0)| + \f(Al/2 (Iy=1) +A3/2 (Iy=1))

= 3 |z If—1>\ (IeP+ 146 2) -

By using Eqs. (64)—(67) and Eq. (84)—(85) together with the available data of
decay rates one can extract the spin and isospin structure of the AN — nN
interaction without needing a detailed of knowledge of the hypernuclear struc-
ture or the weak transition interaction. Such an approach had been employed
in various works [44-48]. The subsequent analysis of Ref. [49], performed with
the most recent available data at that moment, was not able to provide clearer
indications either on the spin—isospin structure of the non—mesonic weak decay
and the possible violation of the AT = 1/2 rule.
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Let us be more specific. Egs. (84)—(85) provide a isospin—dependence of the
Block-Dalitz rates for the AN — nN process. Starting from Eqs. (64)-(67), the
relation between spin—singlet and spin—triplet decay rates can be rewritten in
terms of the measurable non—-mesonic decay widths:

= —, = 86

FP(:/))\H) 3Rp0 + Rpl Fp(jl\H) 2Rp0 ( )
Fn(j{He) . 2R.0 Fn(?\He) . R0+ 3R
Iy (jl\He) Rpo + 3Rp1 ’ Iy (‘;’\He) Rpo + Ry

By using the above equations, the isospin—dependence of the Ry rates is sum-
marized by the ratios R,o/Rp0 and R,,/R,, and it can be rewritten in terms
of the measurable decay rates of four-body 4H and } He hypernuclei.

RnO Fn (‘}\He)

R0~ Ty(4H) (&7)

Ro 2T, (4H) — 'y (3 He) (88)
Ry 2T, (1He) — Tp(RH)
In addition, the spin—dependence of the Ry, rates can be summarized by the
following ratios:

R, 1/, T,(3H)
Ruo 3 (2rn<‘fHe> - 1) (89)
Rpl o 1 Fp(4 He)
=5 (e ) (90)

However, the amount of information that can be extract from the spin—isospin
dependence of the elementary non—mesonic process directly from the available
hypernuclear data will depend, to a large extend, on the reliability of the Block—
Dalitz model. The test of this model is discussed in Section 4.1.

To conclude, from the previous identities a few expressions that depend on the
I', and I',, observables of the considered s—shell hypernuclei can be extracted.
These expressions turn out to be useful for testing the Block—Dalitz approach
and can be easily obtained from Egs. (86). One finds:

I'(AH)  I',(3He)

Pp(;l\He) - FP(E/)\HQ) ’ (91)
I, (A H)
T (iHe) < 2 (%2
i <2 .
Lu(iHe) _ Tu@He) _ Tu(4H) o)

Ip(3He) = "Tp(RHe) = Tp(RH) ’
where Eq. (91) could be directly verified if the data of T',(}He) and T',(1H)
were available. In particular, it provides an important restriction for four— and
five-body hypernuclei that can be directly checked by experimentalists.
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3.1 Pure Al =1/2 and Al = 3/2 transitions

We have already mentioned the characteristics in case of assuming that the
AN — nN transition occurs with a Al = 1/2 and AI = 3/2 pure isospin
change. For pure Al =1/2, Egs. (84) and (85) taking 6y = 0 and é; = 0 give:

Rnl 2 Rno

-nl <
Rpl 1+ — R;DO

For pure AI = 3/2 one has (69 — oo and §; — 00):

—2. (95)

[t

B _ B 1 (96)

Ry Ry 2
We note that, although the ratio R,o/Rpo = 2 is implied by the AI = 1/2,
R0/ Rpo also equals 2 for a particular mixture of AI = 1/2 and AI = 3/2
transitions (using dgp = —4 in Eq. (84)). Similarly occurs for pure AT = 3/2
transitions, with the ratio R,/Rpo taking a value of 1/2 for a specific com-
bination of AI = 1/2 and AI = 3/2 transitions. Therefore, a result with
R,o/Rp0 = 2 does not necessarily imply the validity of the AI = 1/2 rule,
although a result different from 2 would certainly imply the violability of this
selection rule.

Two equalities among the hypernuclear decay rates can be obtained from Eq. (95)
and Eqs. (64)—(67) for pure Al = 1/2 transitions:

Rno Fn (iHe)

— =2 =2 97
Ry~ (41 e
which can be equivalently rewritten as:
Iy Iy,
= (AH) =" (1 He)
R T, I,
7 = N =2. (98)
W R

p
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4 Results

4.1 On the reliability of the Block—Dalitz model

In this section we show how a finite calculation of four— and five-body hyper-
nuclei allows one to study the reliability of the Block—Dalitz approach.

First, we evaluate the amplitudes for the proton—induced non—mesonic decay of
2 He with the shell model calculation. The results are given in Table 3 and, as we
previously commented, we have employed two weak transition potentials: the
one-meson—exchange (OME) and one-meson—exchange plus two—pion—exchange
(OME+TPE) models that were built imposing the Al = 1/2 transitions rule.
The non—vanishing neutron—induced amplitudes, equally as in Eq. (70), verify:

A, =24,  B,=V2B,  F,=2F,. (99)

Within the shell-model approach, the partial non—mesonic decay rates of 3 He
read:

Lu(RHe) = [Anf® + [Bal* + [Ful? = 2014, + B, + | F,[) , (100)
Dp(RHe) = [Ap] +1B,* + [Col* + [Dy* + [Bp|* + |F | .

Before proceeding, it is necessary to discuss the difference between the uppercase
amplitudes shown here and the lowercase ones, which were introduced in the
previous chapter. The uppercase amplitudes include the effect of the realistic
NN final state interaction (FSI) and details of the hypernuclear structure. For
this reason, uppercase amplitudes are denoted as hypernuclear amplitudes. As
we commented in Section 2.1.4, FSI introduce a mixing between the 3S; and 3D,
NN final state after the action of the weak transition because other transitions
mediated by the strong interaction are possible. This mixing only affects the
parity—conserving amplitudes C), and D), because the tensor component (AL =
2) of the NN strong interaction couples relative angular states having the same
parity and total angular momentum. These amplitudes are modified as follows:

Cp = Cp(351 — 351 — 351) + Cp(le — 3D1 — 351) s
Dp = Dp(3S1 — 351 — 3D1) + Dp(3S1 — 3D1 — le) s

where the first arrow in each amplitude denotes the weak transition Ap — np
and the second one denotes the strong transition np — np. It is expected that,
by introducing a TPE central potential such as the one of Ref. [11], their effects
would only be seen on the A, and C, amplitudes. However, as we can see in
Table 3, the TPE mechanism also modifies the tensor transition amplitude D,
due to the mixing mentioned above.

In order to obtain a relationship between the elementary amplitudes of the
Block—Dalitz model (a, to f,) and the hypernuclear amplitudes (A, to F,), it
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Table 3: Proton-induced non—mesonic weak decay amplitudes for 3 He obtained
with the one-meson-exchange (OME) and one-meson—exchange plus two—pion—
exchange (OME+TPE) finite nucleus approach.

OME  OME+TPE
1Sy — 1Sy —0.1057 +0.0823

Ap

B, : 'Sy =3P  40.0056  40.0056
Cp:35 =38 —0.1818  40.0739
D,:38 —3D; —0.1483  —0.2772
E,:3S — P 4+0.4593  +0.4593
F,:3S) =3P 40.2045  40.2045

is convenient to express Eq. (67) as follows:

p

Fa(RHe) = 2(lapl* +1bp° + 11,1°) g - (101)
P4

(R He) = (‘ap|2 + |bp|2 + ‘Cp|2 + |dp‘2 + |6p|2 + |fp|2)§ .

From Eq. (100) and (101) one immediately obtains the elementary Block-Dalitz
amplitudes from the calculated hypernuclear ones:

8 8 8
ap = Apy [~ | by =Bypy/—, cp=Cpy/ o 102
P P P4 P P pa P P 3p4 ( )
8 8 8
dy =Dpy/5—, ep=Epy/ 77—, =Fp/o— .
P p 3p4 P p 3p4 p p 3p4

Therefore, by construction, with the Block—Dalitz amplitudes of Eq. (102) one
reproduces the 3 He calculated decay rates, as can seen in Table 5 when compar-
ing the Block-Dalitz results with those of the OME (lines OME and OME-BD)
and the OME+4TPE (lines OME4+TPE and OME+TPE-BD) models.

The decay amplitudes of Table 3 together with the Block—Dalitz approach allows
one to extend the prediction to the other s—shell hypernuclei. The procedure is
the following: by comparing Egs. (100) with Eq. (67) one first obtains the Ry s
rates and, subsequently, these rates are employed in Egs. (64)—(66) to obtain
the decay widths for 3H, 4H and 4 He.

The results for the Ry rates obtained with the OME and OME-+TPE models
are reported in Table 4, where the value ps = 0.045 fm 3, evaluated in Ref. [47]
through a quark model based A wave—function and a Gaussian nuclear density
that reproduced the experimental mean square radius of *He, has been taken.

The isospin—dependence of the AN — nN process is summarized by the ratios
Roo/Rpo and R,i1/Rp1. The first one equals 2 for both models due to the
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Table 4: Elementary AN — nN Block—Dalitz decay rates Ry (in units of
fm~3) obtained with the one-meson—exchange (OME) and one-meson—exchange
plus two—pion—exchange (OME+TPE) weak potential models enforcing the
AT = 1/2 isospin rule.

oo Tor R Tou
RpO Rpl RnO RpO
OME 3.98 1.99 496 18.24 2.00 0.27 124 9.16

OME+4+TPE 242 121 496 19.86 2.00 0.25 2.05 16.41

Model RnO Rpo Rnl Rpl

enforced AT = 1/2 rule. The second one gives, via Eq. (95), |¢| = 2.53 for the
OME while |e| = 2.65 for the OME+TPE potential. These results imply that, by
inspecting the definition of the parameter € in Eq. (83), the AN — nN reduced
amplitudes into isospin 0 and 1 final states are of the same order of magnitude,
that is, the AT = 1/2 transition gives the same probability of leaving the final
state in a isosinglet—state or in a isotriplet—state. The spin—-dependence of the
AN — nN process is instead summarized by the ratios R,1/Rpo and Rp1/Rpo.
We observe that the TPE terms contribute in the same amount in both ratios,
almost doubling their value compared to the OME result. This is due to the
fact that the TPE terms decrease the central amplitude A, and, therefore,
reduce the value of R,y and R,p with the same factor. On the other hand, the
calculation predicts the dominance of the spin—triplet channels , especially for
the proton-induced transitions and the OME+TPE model.

As we previously mentioned, the Ry ;’s values adjusted for the five-body hy-
pernuclei 3 He allows one to obtain the Block-Dalitz decay rates to three— and
four-body hypernuclei. In this work we limit to 4H and % He since for hyper-
triton (3H) there is still no data available on non—mesonic decay rates, which
complicates the discussion of the results. Moreover, a realistic theoretical ap-
proach implies knowing the exact solution of a three-body problem. Let us
point out that the lifetime of the 3H has been a controversial observable for
many years, since several experiments have claimed it to be as much as 30%
shorter [53-55] than the lifetime of the free A, which is the value that one expects
due to loosely bound A in the hypertriton. Although some theoretical works
assigned a possible explanation to the effect of pion final-state interactions [56],
recent experiments [57] have obtained a value within 1o of the free A lifetime,
being also compatible with the result obtained in a recent theoretical study
that employs state—of—the—art nuclear and hypernuclear hamiltonians, consid-
ers XN N admixtures in the wave—function and accounts for pion distortion [58].
The non—mesonic decay channels of the hypertriton have been theoretically es-
tablished to represent only about 1.5% of the total decay rate [59] and would
not help in explaining an hypothetical smaller lifetime than that of the free A.

The results for four-body hypernuclei have been obtained from Egs. (65)—(66)
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and are summarized in Table 5 (lines OME-BD and OME+TPE-BD) together
with the results of the finite nucleus calculations (lines OME and OME+TPE).
The value employed for the density ps (= 0.0259 fm~2) has been fixed in order
to reproduce the OME+TPE finite nucleus prediction for I'ny (3 He).

From Table 5, we observe that the OME and OME+TPE models predict similar
values for both the I',, and T, rates of 3 He, while this does not hold for T, in
AHe and ', in 4H. This is due to the fact that the OME+TPE model reduces
the spin—singlet rates R,o and R in relation to those of the OME model, while
taking approximately equal values for R,; and R,; in both models. The lack
of spin-triplet R,,; contribution in I'y,(3He) and R, in T',(3H) but present in
I',(41He) and ', (4 H), respectively, aggravates the effect. On the contrary, this
does not take place in 3 He because the spin—triplet contributions dominate in
the rates I', (3 He) and T',(3 He).

The decay rates obtained with the Block—Dalitz model for four-body hyper-
nuclei are very similar to the ones calculated within the finite nucleus calcu-
lation. Despite the fact that no assumptions were made on the dynamics of
the AN — nN interaction mechanism and in view of the results obtained in
Table 5, we conclude that the Block—Dalitz model can be used to infer directly
from the experimental hypernuclear rates the spin—isospin dependence of the
non-mesonic weak decay. We think that this result is especially important in
view of the forthcoming E22 J-PARC experiment [50].

In contrast to what is obtained for the decay rates, Table 5 shows that the Block—
Dalitz model is unable to reproduce the asymmetry parameter obtained with
the finite nucleus calculation for 3He. We have seen that the two approaches
turn out to predict different contributions for all the interference terms building
up the asymmetry. Note that the asymmetry parameter a, in the Block—Dalitz
model is given by Eq. (68) which is strictly valid only for the Ap — np free space
process and the effects of the FSI and the hypernuclear structure have not been
included.

In view of the results in Table 5, we may conclude that by looking at the
decay rates there is a reasonable agreement between the finite nucleus OME
and OME4TPE results and the available data. However, the OME badly fails
in reproducing the experimental asymmetry parameter for 3 He. We note that
the negative value of the asymmetry in the OME model comes mainly from the
interference between the A, and E, amplitudes and the sum of interferences
of the F, amplitude with the C), and D, ones. On the other hand, the TPE
mechanism transforms the negative interferences A,E,, B,C, and F,C, into
positive contributions that cancel the negative interferences F, D, and B,D,.
In consequence, the large and negative a, in the OME model becomes a positive
value in the OME+TPE one.

The OME+TPE model corrects the OME defect to reproduce a, but it seems to
slightly imbalance the decay rates. Specifically, the OME+TPE model predicts
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Table 5: The s—shell hypernuclei non—mesonic weak decay rates (in units of the
free A decay width, I'y = 3.8 x 10% s71) and intrinsic asymmetry parameters
predicted by the finite nucleus calculation and the Block-Dalitz model (BD)
for the one-meson—exchange (OME) and one-meson—exchange plus two-pion—
exchange (OME+TPE) weak potential models. Results are shown for pure
Al = 1/2 decays and by including AI = 3/2 contributions evaluated with the
factorization approximation of Ref. [35]. Comparison with the most recent data
is also given

‘?\He
Model T, T, Tnvy =T, +T, /T, an
OME 0.106 0.319 0.425 0.332 -0.516
OME-BD 0.106 0.319 0.425 0.332 -0.605
OME Al = 3/2 0.086-0.145 0.3080.367 04250453  0.236-0.468  -0.761 -0.162
OME+TPE 0.097 0.342 0.439 0.284 +0.070
OME+TPE-BD 0.097 0.342 0.439 0.284 +0.111
OME+TPE Al =3/2 0.084-0.120 0.335-0.383  0.439-0.468  0.220-0.381  -0.249-+0.346
KEK-E462 [25,26] 0.424+0.024  0.4540.11£0.03
KEK-E462 [28] 0.0740.08700%
f\He
Model T, T, Tny =T, +T, T,/T,
OME 0.032 0.248 0.280 0.128
OME-BD 0.034 0.245 0.279 0.140
OME Al =3/2 0.004-0.086  0.241-0.282  0.276-0.328  0.014-0.359
OME+TPE 0.016 0.267 0.283 0.062
OME+TPE-BD 0.021 0.262 0.283 0.080
OME+TPE A =3/2 0.001-0.059 0.263-0.294  0.281-0.324  0.003-0.220
BNLO7 [29] <0035  0.180+0.028 0.177 + 0.029 <0.19
BNL9S8 [60] 0.04+0.02 016+0.02  0.20+0.03 0.25+0.13
KEK98 [61] 0.0179%  0.16+0.02  0.17+0.05 0.061923
iH
Model T, T, Txv =T +1, r,/T,
OME 0.080 0.016 0.095 4.992
OME-BD 0.081 0.017 0.099 4.734
OME Al =3/2 0.066-0.107 2E-4-0.084  0.093-0.150  0.785-411.292
OME+TPE 0.072 0.008 0.080 8.764
OME+TPE-BD 0.075 0.010 0.086 7.264
OME+TPE Al =3/2 0.064-0.093 0.001-0.064  0.079-0.128  1.008-117.359
BNL98 [60] 0.17+0.11

a relative large value of T',(3 He), thus increasing the value of I'ny (3 He) and
reducing I',, /T, (3 He) away from the central value of the experimental results.
However, one has to note that in several cases the available data are of limited
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precision, lacking or even missing. For this reason and despite the scarcity
experimental data, we may conclude that the OME+TPE model obtains results
approximately in accordance with the experimental data. Future experimental
data on the decay rates and I, /T, ratio, especially in four-body hypernuclei
will be of utmost importance in order to infer the best potential model for the
AN — nN weak decay. Furthermore, an improvement of experimental data
could represent an important advance on the discussion of the reliability of the
Block-Dalitz model, since as we previously commented, Eqgs. (91)—(94) turn out
to be useful for testing it.

4.2 Four-body hypernuclei and test of the Al =1/2

The results discussed so far have been obtained enforcing the AT = 1/2 isospin
rule for all the meson—baryon weak couplings involved in the meson—exchange
weak transition potential (OME and OME+4TPE). As we previously mentioned,
the transition AN — nN is assumed to proceed via the exchange of virtual
pseudoescalar and vector mesons. The transition involves a weak (H%g5 /)
and a strong vertex (Hpp ). Now, we study possible contributions of the
AT = 3/2 terms to the non—mesonic weak decay. The BB’ M weak couplings for
the AI = 3/2 transitions are negligible for pions and this result is generalized to
the entire pseudoscalar octet. Therefore, the weak vertices that will be modified
to include the violation of the AI = 1/2 rule are ANp, ANK* and ANw.
Unfortunately, these couplings are not known experimentally. They will be
obtained from the factorization approximation, in which each BB'M vertex is
factorized into the product of baryon—to—baryon and vacuum—to—meson matrix
elements of quarks currents. The Al = 3/2 ANw coupling vanishes in the
factorization approximation [62] . In order to take into account the limitations
of this approximation, we allow for a variation of up to a factor £3 (sp/) in the
Al = 3/2 p and K* couplings. Since the relative sign between the AT = 1/2
and AI = 3/2 amplitudes is not predicted within this approach we allow for
both possibilities. For details on the factorization approximation we refer to
Refs. [35,62].

The results for the decay rates and the asymmetry parameter of four— and five—
body hypernuclei are also given in Table 5 for the OME and OME+TPE models
including AI = 3/2 contributions. The range of variability of the AT = 3/2
contributions depends on these scaling factors s, and sg+« € [—3,+3]. From
Table 5 we see that the effect of AI = 3/2 contributions is moderate in all
the decay rates except for I';, (1 He), I',(1H) and the asymmetry parameter. A
comparison between our results and the experimental data can inform us about
possible violations of the AT = 1/2 rule. Unfortunately, as we mentioned in
Section 4.1, the available data are scarce or still present large experimental error
bars and therefore, it is not appropriate to draw conclusions yet. We hope that
the future E22 experiment at J-PARC [50] can obtain improved data, especially
for 4 He and 4 H.
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Table 6: Predictions for the isospin ratios R,o/Rpo and corresponding value
of §p = Ag/:zo(lf = 1)/A1J/:20(If = 1) obtained with the OME+TPE model
introducing different AI = 3/2 contributions. The value of d¢ is obtained from
Eq. (84).

Sp SK* Rno/Rpo (50
-3 -3 0.18 0.88

-3 0 3.89 —-0.21
-3 3 9.68 —0.44
0 -3 0.07 1.18

0 0 2 0

0 3 7.29 —0.38
3 -3 0.01 1.56
3 0 0.83 0.31
3 3 3.74 —0.20

We have seen in Section 3.1 that the available data of ', (3 He) and I',, (1 H) are
especially useful for testing the AT = 1/2 isospin selection rule. As we see in
Eq. (97), the ratio R,/ Rpo can be obtained by the OME and OME+TPE finite
nucleus calculation as T',(4He)/I'p(4H) and can be expressed, via Eq. (84),
as a function of the ratio Jp of Eq. (81) between the Al = 3/2 and Al =
1/2 AN — nN reduced amplitudes for isospin 1 final states. In Table 6 we show
the numerical values of R0/ R0 and dp obtained for the different contributions
of the s, and sk~ scaling factors. Pure AI = 1/2 transitions corresponds to
do = 0, Rpo/Rpo = 2 and sg- = s, = 0. As we mentioned, Ry,o/Ry = 2
does not imply that the AI = 1/2 rule is valid but deviations from this value
are clearly signal of the violation of this selection rule. By a simple inspection
of Figure 3 and Table 6 we conclude that the R,o/Rpo is very sensitive to the
AT = 3/2 contributions.

We have seen that the ratio R,1/Rp1 is not sensitive to the AI = 3/2 transitions.
This is due to the fact that the only transition with total spin J = 1 that leaves
the final state with Iy = 1 (note that T3/2 acting on an I = 1/2 initial state
cannot leave the final state at Iy = 0) is the one corresponding to the parity—
violating (PV) amplitude F, 1S; — 3P;. The PV operator for vector mesons is
given in Section 2.2 and has the following form: Opy = (61 x &2) - 7. With the
quantum numbers of the initial (L,,Sp) and final state (L,S) we see that the
vector mesons (p and K*) do not contribute to this amplitude because the 9j
symbol appearing in this matrix element is equal to 0, so (See Appendix B.4):

((LS)IM |O(LSp) I My)) =0 . (103)

This is the reason why the ratio R,,1/R,1 is insensitive to 18, =3P AI =3/2
contributions. Based on these conclusions, we will study the degree of violation
of the AT = 1/2 rule in terms of the parameter dp, which measures the strength
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of AT = 3/2 contributions.

[ Pued=12 [0 |

04 02 0 0.2 0.4

Figure 3: The ratio Ryo/Ryo is given versus 8 = Af7 (I = 1)/A{7(I; = 1).

The following figures show the dependence of the the asymmetry parameter, the
total non-mesonic decay rate and the I',, /T, ratio of 3 He on the amount of A =
1/2 violation, measured by the parameter dy, for the OME and OME+TPE
models. The experimental value together with the margin of error (faded grey
box) are also shown. In Figure 4 it can be seen that the asymmetry parameter
is very sensitive to the meson-exchange model. As we already commented,
the OME+4TPE model transforms the large and negative value of the OME
model into a positive value, more aligned with the experimental result. The
AT = 3/2 maintain the positive sign of the asymmetry parameter as long as
6o > —0.17. Moreover, the asymmetry parameter becomes relatively sensitive
to dg and changes from —0.3 to 0.2 in OME+4+TPE and from —0.3 to —0.6 in
OME for the considered dy range.

As for the total rate I'yv and Ty, /T, ratio, we observe in Figure 5 and Figure 6,
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OME+TPE = OME = exp ——
0.6

04 | 1

an [

04 02 0 0.2 0.4
8o

Figure 4: The asymmetry parameter ay of 3He obtained with OME and
OME+TPE model is given versus & = A3 (I = 1)/A{3’(I; = 1). Faded
grey box represents the margin of error of the experimental central value repre-
sented by the continuous line (exp).

respectively, that they are relatively insensitive to the model, while I, /T', is
moderately sensitive to dy.

To finalize, we conclude that more precise data of the hypernuclear decay ob-
servables are needed in order to learn about the details of the non-mesonic
weak decay. In this respect, the asymmetry parameter stands out for being
strongly sensitive to the model, and the present measured value has already
discarded some of the existing models in the literature. In order to learn about
the AI = 1/2 isospin rule, it is necessary to obtain R,o/Rpyo with good preci-
sion because a deviation of the value 2 would indicate the presence of Al = 3/2
terms. Thanks to the Block—Dalitz model validated in the present work, we can
identify the former ratio to the ratio I', (3 He)/T', (3 H), built up from the rates
of light hypernuclei. A forthcoming experiment in J-PARC that focuses in the
measurement of the non—mesonic rates of light hypernuclei will being new light
to this subject.
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041
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04 02 0 0.2 04

o
Figure 5: The total decay rate I'ny of ?\He obtained with OME and OME+TPE
model is given versus 0 = Aj7(I; = 1)/A{7’(I; = 1). Faded grey box

represents the margin of error of the experimental central value represented by
the continuous line (exp).
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0.2

Figure 6: The ratio I',/T", of 3 He obtained with OME and OME+TPE model
is given versus §g = A§750(I; = 1)/A{7°(Iy = 1). Faded grey box represents the
margin of error of the experimental central value represented by the continuous

line (exp).
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5 Conclusions

The non—mesonic weak decay of s—shell hypernuclei is studied within a finite nu-
cleus approach, using a one-meson—exchange plus two—pion—exchange transition
potential.

In the Block—Dalitz phenomenological approach, a contact interaction between
the four-baryons is assumed and the nucleon final state interaction are ne-
glected. This approach together with the experimental data allows to extract
the spin and isospin behavior of the AN — nN interaction without detailing
the present interaction mechanisms. Through the finite nucleus calculation we
have demonstrated that, despite its simplicity, this approach allows one to set
certain conditions and equalities among the partial decay rates for s—shell hy-
pernuclei. Moreover, the Block—Dalitz approach allows one to deduce the four
AN — nN spin—-isospin elementary Ry rates, and, subsequently, these rates
are employed to obtain the decay widths of s—shell hypernuclei. Although this
approach predicts the experimental results of the decay rates to a certain degree
of agreement, this model is not able to reproduce the value of the asymmetry
parameter calculated with a finite nucleus model. FSI and details of the hyper-
nuclear structure make the Block—Dalitz formula an approximate result.

In view of the results obtained, the OME+TPE model modifies moderately the
partial decay rates but has a tremendous influence on the asymmetry parameter,
due to the change of sign of the negative interference terms A,E,, B,C, and
F,C), into positive contributions. Therefore, the OME+TPE model is able to
reproduce the positive value of the asymmetry parameter, although it slightly
increases I', giving rise to values further away from the experimental ones. For
these reasons, more theoretical research is needed together with an improvement
of the experimental data, especially in the asymmetry parameter for 3 He and
partial decay rates for four—-body hypernuclei, in order to establish the most
appropriate model for the non—mesonic weak decay.

The testing of the validity of the Al = 1/2 isospin rule has been studied by
analysing possible effects of AI = 3/2 contributions in the finite nucleus ap-
proach using the factorization approximation. We have seen that the AN — nN
spin-isospin channels with J = 0 (i.e., the Block-Dalitz ratio R,0/Rp0) becomes
especially sensitive to the AI = 3/2 transitions. A more accurate experimental
determination of this ratio will be of utmost importance in helping to estab-
lish the degree of AI = 1/2 violation. On the other hand, the ratio R,1/Rp
is insensitive to these incorporations due to the fact that in the factorization
approximation the K* and p mesons do not contribute to 3S; — 'P;, that is,
the only AT = 3/2 with J =1 and Iy = 1. Although the asymmetry parame-
ter, I',/T', and the total width I'ny for ?\He become relatively sensitive to the
AT = 3/2 contributions, better data for these observables will help in evaluating
the validity of the Al = 1/2 rule. Unfortunately, the present data do not allow
us to establish the relevance of AT = 3/2 contributions. Hopefully, these results
together with forthcoming J-PARC data on the non-mesonic decay of T',, (4 He)
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and I',,(1H), will allow us to establish the degree of violation of the AT = 1/2
rule in non—mesonic weak decay of hypernuclei.
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Appendix A The Block—Dalitz non—mesonic de-
cay rates

In this appendix we review the methodology used to isolate the Block-Dalitz
amplitudes. First, to study the hypernucleus we will use the weak coupling
scheme. As we have already mentioned, the hypernuclear state is the result of
the coupling between the A and the nuclear core states:

|4 Z) =| A) @ |Core) . (104)

To study the non—mesonic weak decay, it will be necessary to decouple one of
the nucleons of the core, leaving a residual (A — 1) nuclear system. Being both,
A and N, in the lower energy state of the ground state hypernucleus, only two
initial AN states are possible, the singlet 1Sy and the triplet 3.5; states.

A.1 3H rate

The hypertriton 3H is a bound state of a proton, a neutron and a A with total
spin Jy = 1/2 and My = £1/2. The initial state is defined by

R H) =] 5 M) =l Ao | p) (105)

As we have already commented, antisymmetry of the final NN system imposes
some restrictions to the relevant quantum numbers. The np pair is in total
orbital momentum L = 0 and therefore, J = S. Due to the fact that the A is
an isosinglet state (4 = 0) the total isospin of the initial hypernucleus is the
same as the nuclear core. Experimentally, there is no evidence of Ann and App
bound states, which would imply that the AN N system could form an isotriplet
(I = 1) state. The np pair, and consequently the hypertriton, are in isospin
singlet states (I = 0). Therefore, only the S = 1 np state is allowed, leading
to a total spin and projection of J =1 and M = £+1,0. Taking Jy = 1/2 and
ja =1/2 we can write:

1 1 1 1
— My) = — 1M |- M — 1 M), . 1
|5 Mn) > (3 ma |5 Ma) |5 ma)a Ynp (106)

ma,M

Without loss of generality, one can impose My = —&—% and therefore,

My=3=ma+M=my=3%-M
11 11 11,11
SNV =N (S -MIM| =2 = =-Mup|1M,,. 107
135 =243 3 53135 MallMu, (107)

M

Now, we decouple the np pair in the neutron and the proton states.

1 1 11,1 1
|1M>np:ZZ:<§mn§mp|§§>|§mn>\§mp>,

Mp Mp
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so, the initial hypernuclear state is rewritten as

11 11 11,1 1
|§*>=Z<**‘M1M|§§><§M‘mp§mp|1M>

2 2 2
M,myp (108)
11 1
|§ §‘M>A \ 5 M -myp)n | B mp)p

To describe the An — nn and Ap — np transitions, one needs to couple the A
with a neutron n and with a proton p, respectively. We will denote the coupled
AN state as |S;M;):

11
An|77—M) |2M Mp)n = > { 35 M M —my, | SiM;) | SiMi)an
84, M;
(109)
where M; =1/2—-M+M —mp =1/2—m, = m, =1/2 - M,
11 1 11 1
Ap:| 5 5 -Malg mp)y = Z<§ 5 M 5 myp | SiMi) | S Mi)ap
Si,M;
(110)
where M; =1/2—-M+m, = mp, =M+ M; —1/2
Rewriting the sum in Eq. (108) one obtains:
11 11 11,1 11
|§§>:ZZZ<§§*M1M|**><§M+Mr1§isz‘|1M>
S My M
11 1 11
(55-Mg5M+M-— |S M) | Si MiJan | 5 5 - Midp
(111)
for the An — nn transition and
11,11
77-M1M S oNE - My s MAM - |1 M
I I RNV IR PP
S My M
11 1 1 11
(55 Mg M+M-g |8 M)|Si Miap| 5 5 - Min
(112)

for the Ap — np one.

We focus on the An — nn transition, but the Ap — np case proceeds analo-
gously. If S; =0 = M; = 0 and M = +1,0, the contribution to Eq. (111)

reads:
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11 11,1 111
So s -M1IM[s )= M-> == |1M)
2 2 22 222
M
11 1 1 11
. _M=M-= i
1 1 11,1111 1 111 11
=(= —=11]==N====[11){= —= = = —
(5 -511155M5 5551106 —555100 10015 3
11 11,1 111 111 1 11
| TV 221100 = I R
+<22 0‘22><2 222| O><222 2|OO>|OO>“‘22>13
13 11,1 311
— =1 -1]= == —===1]1 -1
Jr<22 |22><2 222‘ >
1 11 3 11
{3 =55 531000 [00an] 5 5w
2 -1 1 1 11
— — ,.1.7_’_7.7.74'_0 00 n —
f£|00> |11>
2 Anlg g/e-
(113)
Then, the probability is calculated as follows:
11,11 3
P=|iz-152) == (114)
22 22 g_, 4

If S;=1= M; ==£1,0 and M = £1,0, the contribution to Eq. (111) reads:

11 111 111
2.0 Mg g MAMIg )G M+Mi-g 55 Mo
M; M (115)
11 1 1 11
S - M = M+ M;-=|1 MY]1M)|= = - M) .
(35 M 5 M+ M- 5|1 M)[L M)l 5 - M)

From the previous equation, we can extract some restrictions:
e The state % %fMﬁ implies that the M; = —1 spin projection is forbidden.

e The CG coefficient (3 2 — M 1 M|} 1) implies that the M = —1 spin
projection is forbidden.

To sum up, if M; =1 = M =0 and if M; =0 = M = 0,1. Therefore,
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11 11,111 1 1111 1 1
G053 55 ~5l 0G5 TN =5)
= ;?;?1)'11)'; _%> (116)

+
/‘ N TN
| DO
—_
=
+
—_
—
=
=
2
| =
| —

The probability is:

11,11 1\? 1\° 1
P — I _ — _ + _—— = - . 117
’<2 213 2>si:1 (Vé) < 2\/§> 4 (1)
As a result, the n—induced and p—-induced rates read:
_ 3 1 — 3 1
Rn == ZRTLO + ZRnl . Rp = ZRPO + ZRpl . (118)

Finally, if we go back to Eq. (62), the total width for 3 H reads:

NR,(GH) + ZR,(1H)
2

Txu(RH) = p2 = (3Ruo + Ry + 3Rpo + Rm)% :

A.2 4H rate

The 4 H is a bound state of a proton, two neutrons and a A with total spin Jy = 0
and My = 0. Assuming a weak coupling scheme, the initial hypernuclear state
is defined as

A H) =[00) =[ A)® | pnn) . (119)

The nuclear core composed by three baryons (nnp) can only be coupled to
Je = 1/2 due to the total angular momentum conservation (0 = 1/25 ®1/2,,,).
In consequence, the initial hypernuclear state can be treated as

1 1
| 0 0> :| 5 mA>A | 5 MJ>nnp ) (120)
withO:mA+MJ.

To define the n—induced and the p-induced transitions, it is necessary to study
the nuclear core. Assuming the pairing hypothesis of nuclear physics, the nuclear
core can be treated as the coupling between nn and p states.

| nnp) =[ nn)® | p) (121)
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As we already commented, the total antisymmetric wave function of the nn
pair requires J = 0. In accordance with these considerations, the initial state
described in Eq. (120) can be rewritten as

1
5 mp>;D ‘ 0 0>nn y (122)

1
|00>f|§mA>A\2

where ma +m,, = 0.

In the first place, we study the p—induced transition. Starting from Eq. (122),
the Ap — np transition is described with the coupling between A and p states.
We will denote the Ap state with |\S; M;). The angular momentum conservation
requires that the Ap pair is in a spin—singlet state (S; = 0) in order to satisfy
Jg = 0. As a consequence, the probability of this configuration is

P(S;i=0)=1. (123)

In the second place, we study the n—induced process. Starting from the initial
state defined in Eq. (122), the procedure will be as follows. To describe the
An — mn transition it is necessary to uncouple the nn pair and subsequently,
to define the |S;M;) state coupling the A with one n:

11, 1 1,
10 0)nn :mZ’;/ <§ Mn §mn 100) | 5 M) | 5 My )n
1 1 1 1 (124)
= <§mn§"mn‘00>‘§mn>n‘§_mn>na
where 0 = m,, + m}, = m!, = —m,, .

Now, we couple the An pair in a |S; M;) state.

1 1 1 1
|5 mada | 5 mda = 5%;<5 ma 5 ma | Si M) | Si Mian . (125)

As a result, the 4 H hypernuclear state can be written as:

1 1 1 1
|oo>:§:§:<5 my 5 = | 00) (5 ma 5 ma | S; M)
My S M; (126)

1 1
| 5 mp>p | 5 - mn>n ‘ Si Mi>An s

where M; = max +m,, .

IfS; =0= M; = 0and my = —m,,. Using my = 1/2 without loss of generality,
the S; = 0 contribution from the above equation reads:

1 111 111 1 1 1 11

77777 000 (=== —=100Y]= —=)p] = =)n|00)an
1 1 1 11

S . = — ), 100 An 127
1,1 1 11

— |5 =)l =)n [0 0)A,



The probability of this configuration is:

P(Si=0)=100[00)[§ o= 7 (128)
and for completeness,
3
P(S;=1)=1-P(S;=0) = 1 (129)
As a result, the n—-induced and p—induced rates read:
_ 1 3 _
R, = ZRno + ERM . R, =Ry - (130)

Finally, if we go back to Eq. (62), the total width for 3 H reads:

NR,(RH) + ZR,(3H)
3

Inv(RH) = p3 = (Rno + 3Rt + 2Rp0)% . (131)

A.3 {He rate

This case is completely analogous to the 4H, but exchanging the role of the
neutrons by that of the protons.

Therefore, the n—induced and p—induced rates read:

_ — 1 3
R, =R, . Rp = 1 p0 1 ZRPl . (132)

Finally, if we go back to Eq. (62), the total width for } He is

NR,(4He) + ZR,(}He)
3

I'(4He) = ps = (R0 + 3Ry +2R,0) % . (133)

A.4 3He rate

The 3 He is a bound state composed by a A, two protons and two neutrons. The
total initial angular momentum is Jy = 1/2 and we assume My = 1/2 without
loss of generality. So, the initial state is defined as

A He) =[ 5 5) =[ A)® | nnpp) . (134)

DN | =

1
2
As it is well known, the nuclear core is the “He state and has J = 0. Assuming

the pairing hypothesis of nuclear physics, we will describe this system from the
coupling between nn and pp pairs.

| nnpp) =| *He) = |nn) © |pp) (135)

93



As we have already commented, the nn and pp pairs are in L =0 and [ = 1
states, therefore S = J = 0. By using these considerations, the total hypernu-
clear state reads:

ma)A | 0 0)nn ‘ 0 O>pp ) (136)

1 1
153 =13

WithMH:%:mA.
As in the previous cases, the procedure will be as follows. First of all, it will be
advisable to decouple the nn and pp pairs in two single nucleon states and then,

it will be necessary to couple the A with n and the A with p states to study the
n—induced and the p-induced processes, respectively.

1 1 1

1
= Smg o — - - 1
| 0 0)nn, mz<2 M, D) mn|00>|2mn>n|2 Mp)n ,  (137)
1 1 1 1
100)pp = Z<§ Mp 5 *mp|00>|§mp>p|§ — Mp)p - (138)

We analyse the n—-induced process, but the p—induced one proceeds analogously.
The initial state is defined as:
11

55) = M@ [ 00),® | 00}, . (139)

After decoupling | 00),,, as shown in Eq. (137), we couple A with n to the
|Si M;) state:
1

| 1
2

1 1
mA>A | 5 mp>n — Z <§ ma 5 mp | Si Mz> | Si Mi>An 5 (140)
S M;

where M; = max +m,, .

Therefore, the total initial state read:

11 1 1 1 1
§§>—ZZ<§’I’)’L”§—mn|00><§mA§mn|SiM’i>
mn S;M; (141)
1
| 5 - mn>n ‘ S Mi>/\n | 0 O>PP

IfS; =0= M, =0 and mpy = —m,, with my = 1/2. Then, the S; = 0
contribution reads:
1 11

1 1

- —=— == |00)(z = = — = 00)| = =)n]00)A, |00

= 1|11> [ 0.0)an | 00) "
- 219 9 n An pp

The probability of this configuration is:
2
11 11 1
P P = — —_ = | = = = -, 14




and for completeness ,
P(S;=1)=1—-P(S;=0)=-. (144)
An analogous procedure is followed for the p—-induced process. As a result, the

n—induced and p-induced rates read:

_ 1 3 — 1 3
Rn = ZRnO + ZRnl . RP = ZRPO + ZRpl : (145)

Finally, if we go back to Eq. (62), the total width for 3 He read:

NR,(3He) + ZR,(3He)

I'(3He) = 1

ps = (Rno+3Rp1 + Rpo + 3Rpl)% . (146)
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Appendix B Spin matrix elements

For completeness, in this section we show the spin matrix coefficients appearing
in the AN — nN weak transition potential [10]. We denote the initial pair of
AN with spin and angular momentum Sy and L, and a final NN pair with spin
and angular momentum S and L’. The total spin angular momentum and its
third projection are denoted by J and M, respectively.

B.1 Spin—Spin Transition
((L'S)TMy|Ou|(LySo) T Ms) = (25(S +1) — 3)0L 1/05,5

B.2 Tensor Transition
(L'S)IM|Oa|(LySo) IM ) = Si 1,01, 1055

where 57 |, are given in the following table.

SiTL/ L'=J+1 L'=J L'=J-1
—2(J+2 64/ J(J+1)
Ly=J+1 25+1 ) 0 \/2J+1
L,.=J 0 0 0
B 64/ T(J+1) —2(J—1)
Ly=J-1 2J+1 0 2J+1

B.3 PV Transition: Pseudoscalar Mesons
((L'S)TM|On|(LySo) I M) = (—1)"H1-E'\/6:/28, + 1

x V28 +11/2L, + 1(10L,.0|L'0) (1/2 1/2 So><L’ L, 1)

S 1 1/2)\Sy S J

B.4 PV Transition: Vector Mesons
(L'S)IM |08 |(LySo) M) = i(—1)7 "L +%)6v/61/28, + 1
L 1> 1 1 1

s, § y)\w2 2 s

X V25 + 1\/2L, + 1(10L,.0|L'0) (
1/2 1/2 S,
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Appendix C The asymmetry parameter

In this section we will obtain the spin observable of the non—mesonic weak decay
through the study of the inverse reaction pn — pA. In the inverse reaction one
can employ polarized proton beams in such a way that the polarization of A
generated in the reaction can be measured from the asymmetry parameter of the
A — 77 p decay. In Ref. [63] they restrict the treatment to s—wave production
of pA states to focus the discussion on the relation to the inverse non—mesonic
decay process. By this truncation, the spin structure of the T-matrix can be
written as a function of the matrix elements written in Table 1. Therefore, and
following the steps detailed in Ref. [63] the T-matrix is given as:

. 1—01 0% 1—0] c?g(_, 5) b+ 3+01 03
=aq — 01— 0 c
1 3 1 2) D 1
1 I, V3(B+di-a .
+ (301 -poa-p—o1-03) +e ( ! 2)( 1—03)-D (147)

where p = j/|p] is the momentum carried by the emitted proton.

In order to calculate the polarization observables induced by a A with polariza-
tion P, we introduce the following density matrix:

1405 P,
pn = # , (148)
The intensity of protons can be calculated by taking the following trace:
1,(0) = Tr[TT pa] = Io + L4(6) , (149)
where Iy and I 4 are defined as
1 P
Iy = 5Tr[TTT] : (150)
1 PN
I4(0) = §TT[TTT5A Al - (151)

We perform the trace-summation in the last equations, and by using trace
properties of Pauli matrices, after some algebra, we have [See C.1-C.6]:

1
I = §(Ia\2 + [0 + 3(|ef? + [d]* + [e]* + [ £1%) (152)
1 1

I4(0) = 52\/3726 ae* — ﬁb(c* — V20 + f(V2¢* +d*)| T Pa, (153)

where ¢ is the transferred momentum. If we assume the A particle at rest, we
have p= —¢.
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From Eq. (149) one can introduce the asymmetry of the angular distribution
for the outgoing protons in such a way that

1p(0) = Io + Ta(0) = Io(1 + Ay(0)) , (154)

where A, is defined as

Ay(e) = = aAqg " PA - (155)

Finally, the intrinsic asymmetry parameter reads:

2v/3Re [ae* — %b(c* —V2d*) + f(v/2e¢ + d*)}
|al? + 6] + 3(Icl* + [dI* + [e]* + | f?)

ay = (156)

TRACE — SUMMATION

On account of the fact that 77" presents 6 x 6 terms and it would not be intuitive
to perform a direct trace-summation, the procedure to perform the traces will be
the following: Firstly, we will take the first term (terms with a) of the operator
T and we will multiply it by the first term of the operator T t, then the second
and so on (denoted as aa, ab, ac, ad, ae and af terms). Secondly, we will do the
same for the second term of 7' (the one that contains b) and we will multiplying
it for the first term of the operator 17, then the second and so on (denoted as
ba, bb, be, bd, be and bf terms). This way until all the combinations are made.
In addition, we note that the trace is made on two different spin-spaces, (o1)
and (o2), so that, as an example, Tr(c102) = Tr(o1)Tr(o2).

The main properties of Pauli matrices (¢;) used to perform the trace-summations
are as follows:

Trlo) = 0, (158)
TT[O'1 J} = 251] 5 (159)
Trioiocjor] = 2i€j , (160)
TT[UzUjUkUm} = 2(6136km - 6ik:5jm + 617716]1@) P (161)
Tr(0i00k0mon] = 2i(0ij€kmn + Imk€ijn + Onk€imj + Omn€ijr) . (162)
C.1 A terms
C.1.1 aa* combination
2 2
1T = la® (1—01-0 )(1—0’1-0}):ﬂ(4—4¢ﬂ-0_§)
_|a?

4 (1—0’1 0'2)
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. |a|? |af? 2
T’I"[TT ] = T . TT[Ilfg - 011'0'21’] = T . TT[]&IQ} = |a| (164)

2
VNP a
T?"[pg . O'QTTT] = % -T?"[pgkagk]lfg — nga'gkdgidh‘] =0 (165)

C.1.2 ab* combination

PN ab* N oL oL
TTT: (1—0‘1'0’2)(0‘1—02>-q(1—0’1'0'2)

32
ab*
=3 (1 = 01402i) (015 — 025)q;(1 — o1102k)
ab* 166
=33 (1 = 01402i) (015 — 025 — 01;01k02% + O1k02j02k )G (166)
ab*
= 37(01j — 095 — 010102k + 01£02;02k
— 01i01j02i + 01i02i02j + 01i01;01k02i02k — 01i01k02i02j02% )q;
I ab*
Tr(TT'] = 5 Tr((01i01j01k02i02k — 01i01;02i02j02%)q;]
(167)
ab* . .
= 5 [(4idijeijn — 4idijeijn)gs] = 0
N o A.I. ab*
Trips - 6TT"] = 5 “Trlpa(—1102025 — 0101k02102k — 01;01;02102;
+ 01i01;01502102;02 — 01101k02l02i02j02k)%’]
ab*
= U (=226, — 48,500 — 48,05 + (2iesn2ier;
39 [p2i( 1 ik OLk 501 + (2i€5520€1) (168)
— 20:x(2(61:6 % — 0150k + 011045 )qk)
ab*
= T [pau(—48; — 45, — 43, —4- ~25,,

—4(d1j — 3015 + 05))g;] = 0

C.1.3 ac* combination

Tt = ‘1106 (1-61 ) (3471 53) = %(37251 Gy —3+251-53) =0 (169)
Tr(TTt) =0 (170)
Trlpy - 3TTT =0 (171)

C.1.4 ad* combination

N ad* L . . oL
T = 8\7@(1 —01-02)(301 - qo% - ¢ — 01 - 03)
ad*
= 8\@(1 — 01i02;) (30140260 — T1mT2m) (172)
ad*

= m[(?)UljUQk —301i01j02i02k)4;qk — T1mO2m + 01i01m02i02m)
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i = 2 g + }
= —901;01709;0 i 01;01m02i02m
8\/5 1:01502i02k4jqk 1i01m02i02
ad*
ad*
= —120,xq:q +12] =0
8\@[ jkd;dk ]

*

oL e a
Trlpy - 32TTT] = WTT[])%(_3Uli0'1j02102i0'2ijQk + 01i01m0210202m )]

8
ad* . .
= 87\/5[1721(—3 - 205 20€1510; @ + 20im 2i€1im))
ad* 12ad*
= — —12i€1p5 =———|p2- (g% =0
8\/§[p2l( ljkpjpk)] 8v2 [P2 (q 67)]
(174)
C.1.5 ae* combination
~A 3 o . . L.
T‘T‘]L = 7£CL€*(1 — 01 02)(0’1 - 0'2) . q(3 + o1 - 02)

=———ae" (1 — 01;02;)(01j — 025)q; (3 + T1,02k)

V3 (175)

k%
=—goae (1 — 01402i)(301; — 3025 + 01;01k02k — O1602;02k)q;

3
*
= —732 ae (30’1j — 30’2j + 01j01k02k — O1K02;j02k
— 301i01j02; + 301,02i02; — 01010150202k + 01;01k02i02;02k)q;

V3

Tr(TT) = —ﬁae*TT'[—O'liffllekU%Oék + 01i01£02i02;021) 4]
3 (176)
= 75116*(722'6”]65% + 2i€ijk5ik)Qj =0

NN 3
Tr[pg 'UQTTT] = —ﬁae*TT[pzl(—3I1O'250'2j + Ulj01k0'2l0'2k — 30’11‘0'1]'0'2[0'22'

— 01401j01k02]02;02k + Uli01k0'210'2102j0'2k)%]

3
= —%aeﬂ—lQéU + 46jk6lk — 1262’]’51@‘ — (22'62‘3‘}922'6“/@)

+ 20;12(0150,% — 0150ik + O110i5)D214;]

= —gae*[—l%u + 45[]' — 1251;’ + 4(—251]')

V3
+ 4(01; — 3015 + 015) Porgs] = ——=

3 ae*[—32ps - q]
= V3ae*pz - ¢

(177)
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C.1.6 af* combination

Al 6
T — %af*(l —01-03)(01 +02) - q
_ VG
- 16
V6 .
= 1—6af (01]- + 025 — 01i0102; — 011021‘023')%'
_ VG
- 16

af*(1 —o1i02:) (015 + 025)q; (178)

T’I‘[TTT] le*T’I“[O'leQ =+ O'lel — 0'11‘0'13'0'21‘ — 0'11'0'21‘0'23'] = 0 (179)

V6

Trips - &TT" = Tﬁaf*TT[pzk(hUkuzj — 01i01j0202;)q;]

180
VB (180)
= TGaf [P2k (2 - 2085 — 2045 - 20ki)q;] = 0
C.2 B terms
C.2.1 ba* combination
N ba* N . L
TTT = 32 (1 — 01 0'2)(01 — 02) . q(l — 01 0'2)
ba*
=33 (1 = 01402i) (015 — 025)q; (1 — o1x02k)
ba* 181
= 5(0—1]‘ — 095 — 01;,0102; + 01,0202 )(1 — 01,021)4; (181)
ba*
= 5(0—1]‘ — 025 — 0130102 + 010202
— 01;01k02k + 0110202, + 01;01;01k02i02% — 01;01£02;02j02% )q;
PN ba*
Tr(TT' = D) Tr[(01:0101602i02k — 01;01k02i02;02k) ;]
(182)
ba* . .
= 5[(216ijk25ik — 25ik226ijk)qﬂ =0
N o A.‘_ ba*
Trips - 62TT") = 5 Tr(Poy(—1109102j — 01i01j02102; — 0101502102k
+ 01i0101k02102;02k — 01i01k02l02i02j02k)%’)
ba* . .
= 39 [pgl(—4(51j — 45lj — 45lj + (22€ijk2%lik) (183)

— 40k (0105 — 0150k + O16045))q;)

ba*
= 5[}?21(—12&]' +4- 25lj — 4(5lj — 351]’ + §lj))Qj] =0
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C.2.2 bb* combination

N b|? L . L . i,
TTT = |6|4 (1—01-03) (01 —02)-q(1 —a1-03)(d1 —02) - q
] I L
= 674(1 —01-02)(01 —03) - q(G1 — 02) - q
_ ol? (184)
=16 (1 = 01402;)(01j01% + 02j02k — T1;02k — 02j01k)qjqk
_ ol?
=16 (01;01k + 0202, — 01j02% — 0201 — 01;01;01k02;
— 01;02i02;02; + 01,0102;02% + 01i01£02i02;);
N
TT‘[TT ] 16 T’I"[(O’ljalkfg + Ilo'QJO'Qk
+ 01i0102i02k + 01i01£02i02;)q; k] (185)
_ol? 2
=16 (160;5)pip; = [b]

b
6 TT[P21(-7102102g02k — 01i01j01k02]02; + 01;01j02102;02

TT[ﬁQ . 52TTT]

2

[2721(2 Qquk 2i€ijk25li
[bf? : ,
f[p2l(415ljk — 47f€ljk

+ 011'011@021021'023')%%]

+ 26,5 2€18 + 20;12%€145)qjqr) =

+ degjr + di€j)qiqr] = 0

(186)
C.2.3 bc* combination
N be* N . L.
TT]L = 3 (1 — 0] -0'2)((71 — 02) . q(3 +o01- 0'2)
_ bc”
=33 (1 = 01502i) (015 — 025)q;(3 + o1k02k)
_be” 187
= 33 —(01; — 025 — 01:01j02; + 01,02i02;) (3 + 01102k ¢; (187)
_ bc”
32 (30’13 30’2j _301i01j02i+301i02i02j
+ 01j01502% — O1102j02% — 01;01;01k02i02% + 01;01602;02j021 )
I bc*
Tr(TTV = 5 [(—01i01j01602i02k + 01i01102i02j021 ) q;)
(188)
bc* ) .
= 3 [(—Q’Leiij(Sik + 251‘1@2161‘3']@)(]]‘] =0
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*

o o be
Trlpy - 3:TTT] = D Tripa(—31109102; — 301i01;02102; + 0101602102k

— 01401;01k02102;02k + 01i01,02102i02;02% ) ;]

*

be
= 32 [p2l(*12(;lj — 125” + 45lj + 4€ijk€lik

+ 46,5 (01505 — 0150ik + d116:5))q;5)

C

3 [p21(—206;; — 4 - 285 + 4(615 — 3015 + d15)q5]
c* o o

=3 [p21(—32015)q;] = —bc™pa - ¢

(189)

C.2.4 bd* combination

A bd* Y N o o oL L
TTT:m(l—dl'(jg)(dl—0’2)'(](30'1‘]70'2'(]—01'0'2)

= 16\f(1 — 01,02i)(01j — 025)05 (301£qkT2mGm — O1n02n)
bl (190)
= m[(301j01k02m — 301k02j02m — 301;0101502;02m
+ 301i01£02i0202m )4 Qkdm + (T1n02j02n — 01;01n02n
+ 01i01j01002i02n — 01i010,02i0202) ;]
TT’[TTT] = ﬂTT[(—3011'01]‘0116021‘027;@ + 301i01k02:0202m, ) ¢k Gm
16v/2 (191)
+ (01i01j010n02i02n — 01i01,,0202j025,)q;] = 0
bd*
16v/2
+ 301i01k02l02i02j02m)QijQm + (—U1j01n02l02n
+ 01i01j01n0210202n, — 01i01n02102;02j02,)q;]]
= lzci@(pzl[(lmjkiglm + 12€; k€1im
+ 1203 (0156 jm — 010im + 6im0i5)) ¢ A Gm (192)
+ (=405 — deijneiin — 46in (0100 — 0150in + Oindij)) ;]

Trips - &TT =

TT[pm [(301j01k02502m - 301i01j01k02102i02m

bd*

= — 126101 — 12(010km — 0im0
16\@[2721[ kOl ( 179k J kl)

+ 12(010m — 010km + 01mOk;)) 5 QkGm + 80154;]]
bd* 2

= 3205 - G| = —=bd*Ps - § = V2bd* P> - ¢
16\/5[1?261 N P2 q
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C.2.5 be* combination

= V3 L "

TTH = —6—41)6*(1 —01-03)(01 —032) - q(d1 — d2) - ¢(3+ 01 - 73)

V3

= —abe*(l — 01i02;) (015 — 025) (301K — 302k + O1KT1IMT2m

5 (193)
— O1m02%02m )0 qk = *67456*(1 — 01402;)(301j01k — 30102k
+ 01j01k01m02m — 01j01m02k02m — 3015025 + 30202k
— 01501m02j02m + O1m02;02602m )k
oo V3
TT[TT ] = 7@1)6 TT'[(?)O’lj(leIQ — 01501m0O2k02m + 3[10’2j0'2k
— 01k01m02;02m + 301i01j02i02k — 01i01501k01m02i02m
+ 01i01j01m02i025x02m + 301;01k02;02; (194)
+ 01i01k01m02i02;02m — 01i01m02i02j02k02m )45 k]
V3.,
= —abe [(12(5]]€ — 45]k + 12§jk — 46jk + ]-25jk — 126jk
— 8(Sjk + 125j}€ — 8(5jk — 125jk)q;‘q1€] =0
L o V3
Tripy - GTT'] = —6756 Trlpai(o2 — 01i02102;) (3015016 — 30102k
+ 0101k 1m02m — 01;01m02k02m — 301,025 + 30202k
= O1k01mO202k02m + O1m02j02k02m )¢5 qk]
V3, .,
= 7674176 Trp2i(01;01601m0202m
— 01j01m02102k02m + 30210202k — 01601m012102j02m
— 3010101502102 + 301,01j01,02102; (195)

— 01i01;01k01m02102i02m + 01i01;01m02102i02k02m
+ 301i01k02l02i02j + 01i01k01m02102;02j02m
- 01i01m02102i02jUzkdzm)%%]
V3, L
= —abe [Zp21(4€jkl —degpy + 12€155 — 4egjr — 12¢y5

+ 12¢)5, — dern + degpy + degjr + degy + 12€85 + deggj
+deji — d€jp — de — 4erj)qiqr] =0
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C.2.6 Dbf* combination
RN )

35 0 (1 =01 -02)(d1 —3) - q(d1 +2) - ¢

V6

= 55 0f (1 = 01502i)(01j — 025)a;(01k + 21 )an
V6

= 37bf*(01j — 09j — 01,0102 + 01;02;02;)(01% + 02k)q; Gk
V6

= ﬁbf*(o'ljo'lk + 0102k — 0201k — 0202k — 01i01j01k02;

— 01i0102{02 + 01;01£02;025 + 01i02i02j02k)%%

V6

%
bf*Tr[(o1jo1xls — 110202k — 01;01j02;024,

@bf*[(zajkz — 226 — 26,26

+ UliUlkUQiUQj)Qij] = 32

+20:120i5)q5qr] = 0
V6
32
— 0140102102;02k + Ulﬂlk@l@i@j)%ﬂk]

V6
T 32
— 20;;21€5 + 20;121€5) 1]

V6
T 32

TT[ﬁz ’ 52TATAW = bf*TT[le(*Ilszl@jU% — 01401501k02102;

bf* [par(—2 - 2ieyjp — 2i€;jx20

* . \/6 * = —
bf*[pai(—16i€sk)qpr] = —7bf P2 (7x§) =0

C.3 C terms

C.3.1 ca* combination

*

PN ca
7T =
16

*

ca
16

(3+01-02)(1 — a1 02)

Tr* =

(3—201-05—3+4+201-03)=0
e[ = 0
T’f'[ﬁg . 52TTT] =0
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C.3.2 cb* combination
PR cb* W . L.
TTT = 39 (3+01-03)(01 —03) - q(l — a1 -03)
cb*
= 37(3 + 01i02i) (015 — 025 — 01;01k02% + O140202k)G;
cb*

=39 (301 — 302 — 30101k02k + 301025025

+ 01i0102;i — 01i02;02j — 01;01;01k02i02k + 01i01£02;02j02% )

(202)

T’I“[TTT] = 32 TT[(_Ulio'le'lkO'Qio'Qk + 0'1i0'1k0'2i02j0'2k)q]'] =0 (203)

cb*
D Trpa(—31109102; — 3010150202k + 010102102
— 01401501k02(02;02k + 01i01k02l02i02j02k)(b']
cb*
= 3—2[p2k(—3 22281 — 3+ 20,1200 + 20,1201
— 20€;5520€58 + 25ik2(5li6jk — 5lj6ik + 5lk5ij))qj}
cb*
= 32 [p2l(_12§lj — 125”‘ =+ 45lj —4. 261]’
+ 4(81; — 3615 + 05)q;)] = —cb™ (P2 - G)

T?"[ﬁg . 6')2TTW =

(204)

C.3.3 cc* combination

_ e

16

2
=0+ 6610+ (1)) (205)
[ Lo L
:T6(12—|—4(0'1~0'2)): (3+O’1'0'2)

il (34 01-02)(3+ 71 - 02)

|c[? N 2
=—Tr[3+ 01 03] = TTT[?)IJQ + 01i09;] = 3|¢| (206)

2
= C
T’I”[pg . O’QTTT] = %T’r‘[p2(3110’2k + 0'11'0'2]472@‘)} =0 (207)

C.3.4 cd* combination

PN cd* L. . . oL
TTT = 8\/5(3 +01-02)(301-qo2 - q— 01 - 03)
cd*

ﬁ(?’ + 01i02i)(301j¢j 026Gk — T1mT2m)

cd*
= ﬁ[(901j02k + 301¢01j02i02k)Qij —301m02am — 01i01m02z’02m]

(208)
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PN cd*
Tr(TTV) = —=Tr[301i01j02i02k 4k — T1iT1m02iT2m
8v/2
e (209)
8\/5[ jkd;jdk }

L L o cd*
Trips - GoTTT) = 8\/ET""[p2l(30'1i0'1j0'2l0'2i0'2k%q1c — 01;01m02102;02m)]
cd* . .
= 87\/5[])%(1215”6%%% — 4i0im€rim)] (210)
cd*

C.3.5 ce* combination
~ ~ 3 . . . . . N
TTJr = —37\/2»06*(3 + o1 - 02)(0'1 — 0'2) '(](3 + o1 '02)
V3

= —506*(3 + 01i02i) (015 — 02;)q;(3 + o1k02k)

V3 (211)

= —566*(3 + 01i02;) (3015 — 3025 + 0101602k — O1K02j02k) 4

= —ﬁce*@alj — 90’2j + 301j01k02k - 301k02j02k

+ 301101]'021' - 3017:(721023' + 01i01j01£02;02 — O'lio'lk0'210'2j0'2k)Qj

V3 .
T?"[TTT] = —566 T’I’[(O’lia'ljdlkﬂgidgk — 0'11'0'1]60'22'0'2]'0'2]@)(]]'} = 0 (212)

RN V3
T?“[pg . O—QTTT:I = 737206 T?"[pgl(fgjldgldgj -+ 301j01k02l02k + 30’11‘01]'0'210'21‘
+ 01i0101502102;02% — 01i01k02102i02j02k)q]‘]

V3
= =35 ¢ [pau(=9 -2+ 265 + 3 204200 + 3 - 20:;200

+ 2i€i5,20€, — 20312(013055 — 0105k + 01045)q5]

3
= —%ce* [p2[(-36(5[j + 126, + 126;1 + 80y

— 4(01j — 3015 + 01))gq;] = 0

(213)
C.3.6 cf* combination
771 = Yoop (3401 )i+ ) g
= \l/Tiécf*(?)-FUuUzi)(Ju + 02;)g; (214)

V6

= TGCf*<301j + 3025 + 01i01j02; + 01i02i025)4;
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Tr[IT =0 (215)
\/6

Trpa - 7:TTT) = ch*TT[ka(MlUm@j + 01i01;02102;)4;]

VG
= ch [pgk.(3 -2 25@‘ + 251‘3'25/“')(]]‘} (216)

V6
16

cf* [par(1604;)q;] = Vocf* (ps - §)

C.4 D terms

C.4.1 da* combination

ATT - da*

T 8V2

(301 -qo%-q— 01 -02)(1 — a1 - 03)

da*
= ——(301;4;02iq; — 0110 1 — o01m0om
8\/5( 1i4i0254; 1k 2k)( 1m0O2 L) (217)
da*
= 87\/5[(3011‘02]' —301i01m02j02m)qiqj — T1k02k
+ 01O 1mO2k02m)
ad*
8\/§T’I"[—30'11‘0'1m0'2j0'2m(ﬁq;' + O1kO1mO2k02m]
ad*
[—3 . 25im26jmqiqj + 25km25km} (218)

8v2
ad*
8\7@[*1251';'%%’ + 46kmOkm] =0

ad*

Tr(ps - 6-TTT) = &%TT[PQZ(_301i01m02102j0277LQin + 01k01m 02102k 02m )]

ad*

= ﬁ[p%(_?) : 25im27;€lj’mqiqj + 25k7n2i€ikm)]

ad* ad*
= 2 pa(—12i€1;5q:;)] = ———=12[Fs - (T x §)] =0
sﬁ[pzl( 11945 )] 573 (P2 - (7 % q)]
(219)
C.4.2 db* combination
A db*
TT = —— (36, - qo% - q — 7, - 52) (61 — %) - G(1 — G} - 5
16\/5(1(12(1 12)(1 2)(1( 12)
db*
= ——=(301i02j4iq5 — 01k02k)(T1m — T2m) (1 — O1.020)Gm
16v/2
i (220)

1612

[(301i01m02j — 301i02j02m — 301i01m01n02;02n

+301i01n02j02m 020 )0iqjqm + (—01k01m T2k + O1602602m

+ 01601mO1n 026020 — 0160 1n02602m 020 ) Gm)
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A db*
Tr[TT = —=Tr —301;01m01n02i 025 + 301:011n02:02m 021 )4i Qi Gm
[ ] 16v2 [( 1i01m01n02502 1i01n02502 2)(]%(1

+ (01k01mO1n02k02n — O1k01002k02m 02 ) Gm] (221)

db* . .
= W[(_12Z€imn5jn + 12Z€jmn51n)QinQm
+ (4i€kmn5kn - 4i€kmn6kn)Qm} =0
an db*
Tr(ps - 3TTH =
[p2 2 ] 16\/§
+301i01n02102j02m02n)qiQjqm + (—01601m 0202k
+ 01kO1m T 100210202 — O16010.02102k02m02n ) Gm)]

TT[le[(301i01m02lU2j - 301i01m01n02l02j0271

(12650015 + 12(8518mj — 0150mi) (222)

db*
= 1673 ﬂ[pzz
+ 126, (61 0mn
+ (_46l7n + 85l7n + 46lm)‘]m
db*
= 24¢° + 8)f - 4 = V2db* (> -
16\/5[( q )2 - 4] (P2 - q)

- 5lm5jn + 5ln5jm))QlQqu]

C.4.3 dc* combination

o de* . L oo
TTT:Sﬂ(Sal-q02~q—al~02)(3+01-02)

dc*
= 87\/5(3011'%‘02]‘(];' — 01k02k) (3 + T1mO2m)

dc*
ﬁ[(901i02j + 301i01m02j02m)qiqj — 301602k — T1601m0T2k02m)

T8
(223)
~ ’\1. dC*
TrTT'] = 87\/§TT[301i0'1m02j0—2mqiqj — 01501m02602m]
e (224)

= 7[125“(]1(]]‘ — 46kmOkm] =0

82

o dc*
Tr(py - G2TTT) = 8\/§Tr[p21(301i01m02102j02m%’qj — 0160 1mO2102k02m )]

(12i§im6ljm - 4i§km€lkm)] =0

dc*
= s/a b
(225)
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C.4.4 dd* combination

TTT—@<S 2—@452—25
=5 (512(p))" =~ 12)
d?, 3 &i-ds
U TR s p-io) (220)
|d|? Lo
= ?(6—1-401 -0 — 601 - pas - p)
A d|?
Tr[TT7] = %TT(G) = %|d|2Tr(I) = 3ld|? (227)
Trlps - G@TT =0 (228)

C.4.5 de* combination
Gt V3de

V2 16

V3 de*

= —Eﬁ(?)auqmgjqj — O1102k)

(301 - qo2 - ¢ — 01 - 02) (01 — 62) - q(3+ 71 - 02)

X (301m - 30—2m + 01m01n02n — 01n02m02n>Qm (229)
_V3der
V2 16

—301i01n02j02m020)4iqj4m + (301k02k02m — 301x01m 02k

[(901:01m02j — 901:02;02m + 301i01m01n02j02n

— 01501m01n02k02n + 01601n02602m 020 ) Gim]

A V3 de*

Tr(TT = *ﬁﬁTT[(?ﬂuglmUanzj@n — 301i01n.02j02m021)4iqjqm

+ (_Ulkalmo'anQk:UQn + 01k01n02k02m02n)Qm]

V3 de* ) .
= _Eﬁ[(IZLGimnéjn - 122€<jmn6in)qiqum

+ (— 480k kmn + 416k €xmn)Gm] = 0
(230)
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S V3 de*

Tr(py - GTTT) = T3 16 Tr[p2i[(901i01m02102; + 301,01m 0100210202,
— 301i01n02102j02m02n)4iqjGm + (—301k01m 02102k

— O1kO1mO1n02102k02n + 016017,02102k02m02n ) Gm ]|

V3 de*
N 7%@[}?21[(36&@” = 12(0u0m;j — dij0mi)
— 1281, (810mn — SimOjn + 01n0jm ) 0iddm]
=+ (_1261171 — 8(5[m - 45lm)Qm]

V3 de* 9
:—7724 _"_‘_24_" :0
7516 24¢°p2 - ¢ — 247> - q]
(231)
C.4.6 df* combination
e V3L L
7Tt = ?df (301 - qo5-q— 01 -03) (01 +72) - ¢q
V3 .
= ?df (301ipio2jPj — 01k02k) (T1m + O2m)Pm (232)
V3 o
= ?df [(301i01m02j + 301i02;02m )il Pm
— (0160 1mO2k + T1K02602m ) P
Tr[IT =0 (233)
B
Tr(ps - 6TT"] = ydf Tr[Psi(301i01m02102;PiPiPm — O1kO1m02102kDm )]
V3 .
= ?df [P21(120510.0150iP P — 40kmOimPm)]
V3

= ?df*[12q2]5'2 -G — 4p2 - 4]

= V3df* (5> - )
(234)
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C.5 E terms

C.5.1 ea* combination

. V3 o, oo L
T‘T‘]L = 756(1 (3+O’1 . 02)(0’1 - O'Q)q(]. — 01 02)
V3

= —ﬁea*(i’) + UliUZi)(Ulj — O’Qj)(]j(]. — Ulkdgk)

*
= —732 ea (3U1j — 30’2j + 01i01502; — O’1i0'22‘0'2j)(1 — UlkO'gk)Qj

«
=30 (301 — 3025 + 01i01j02; — 01,02i02;

— 301;01k02k + 30160202k — 01,01j01:02;02k + 01,01k02i02;02k)q;
(235)
PN V3
T

TT[T T] = *ﬁea*TT[(*GliﬂljﬂlkUQigzk + GuﬂlkUinszzk)Qj] =0 (236)

B 3 .
Tr(py - G2TTT) = 35 ¢ Trpoi(—3I102,02; + 01,0102102; — 30101502102k

— 01i01j01k02102;02 + 01i01k02102;02;02}) 4]

- —gea*[pgl(—s £ 20); + 264201 — 3 - 20,5200
— 2i€;j120€k + 20i12(010 5% — Oidir + 016045)) ;]
= —gea*[pgl(—mélj + 46, — 126, — 4 - 20
+4(81; — 3015 + 015))ps] = —gea* [p21(—32615) g5
= V/3ea* (f - §)

(237)
C.5.2 eb* combination
. NEE Lo L oL L
7T = 6—461) 3+ 71 -03) (1 —0d3) - q(o1 —a3) - q(1 — a1 - 73)
V3 .
= —c¢eb (3 + 011'021')(013‘ - Uzj)(Ulk — 02k — 01k0O1m02m
64
(238)
+ 01m02k02m)CIij = 674619*(3 + J1i02i)(01j01k — 01502k

— 01j01k01m02m + 0101m02k02m — O1k02;

+ 0209k + O1601m02j02m — T1m02;02602m )¢ 0k
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3

T’I“[TTT] = 78b*TT[(301j01k[2 + 301j01m02k02m =+ 3110'23‘0'2/@

64

+ 301k01m02j02m — 01;01j02;02k — 01;01;01k01m02i02m

+ 01i01j01m02;02k02m — 01i01k02;02j + 01;01k01m02;02j02m
- 01i01m02i02j02k02m)q]‘qﬂ

= gebﬂl?%k + 126jk + (Sjk — 45jk — 125jk — 85jk — 45jk

— 86,5 — 120;,] = 0
V3

(239)

TTLﬁQ . 52TTT] = aeb*TT[p%(_301j0—1k0—1m02l02m =+ 301j01m02l02k02m

+ 30210202k + 301k01m02102j02m + 01;0101£02,02;

— 0140150210202k — 01;01j01k01m02102;02m

+ 01i01;01m02102i02k02m — 01;01k02102;02;

+ 01i01k01m02102i02;02m — Uli01m02l02i02j02k02m)qjqk]
V3 oL

= 6766 [Zp21(7126jk1 + 12¢;; + 12¢;51, + 12€;51 + 4egji

— deyj — ey + dey + degjn + depg — degg + de

+ 4dejp — e — de; — der;)giqr] =0

(240)
C.5.3 ec* combination
PN 3 RN - R
Tt = —%(60*)(3 +01-02)(01 — 02)q(3 + 71 - 03)
YR
= — 35 (e€") (B + 01102:) (015 — 027)4;(3 + T1k021)
V3, (241)
= —5(60 V(301 — 3025 + 01501502 — 01i02i025)(3 + 01602k ) q;
YR
= —5(60 )(90’1j — 90'2j + 30’11‘0'1]'0'21' — 30’11'0'21'0'2]‘ + 30’1j0’1k0'2k
- 301k0'2j0'2k + 01i01j01502;02k — Uli01k02102j02k)%’
Al \/§ * 242
TT[TT ] = — 39 (GC )T?’[(O’lia'ljdlkdgidgk — O’lidlkdgiggjdgk)pj] = 0 ( )
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P NEP
Trlpy - 32TTT) = —37(60 VT'r[par(—91109102; + 301,01;02102; + 30101502102k

+ 01i0101k02102i02) — 0101021020202k )q;]

V3
Y
+ 2i€; 12i€ — 20,,2(01:051 — 010ik + 011045))4;]

(66*)[]72[(—9 -2 251j +3- 2(51']'2(5[7; +3- 26jk251k

3
= 73%(60*)[[721(736513' + 125lj + 125lj + 8(5”

—4(b15 — 3615 + 015))a;] = 0

(243)
C.5.4 ed* combination
A 3ed* o, . . R L
7Tt = —\/g 15 3+ 01 -03) (01 —03)q(301 - qo2 - g — 01 - 03)
3ed*
=516 (3 + 01i02i) (015 — 025)45 (30 1Ak T2mGm — T1n02n)
3 ed*
——\/;16(30'1]'—30'2j+0'11'0'1j0'2i—O'lio'2i0'2j)Qj (244)
X (301kqkO2mm — O1n02n)
3ed*
= - iTG[(9U1,j01kU2m —901x02j02m + 301:01j01k02:02m
— 301i01£02i02j02m )4 qkGm + (—30101n02n + 30100202,
— 0101j01n02;02p + 01i01n02i02j02n)%‘]
At 3 ed*
Tr[TT'] = — 3716 Tr((301i01j01£02i02m — 301i01£02i02;02m )4 qkdm
+ (—01i01;01n0202n + 01i01n02i02;025,) ;]
3 ed* . .
= —\/; 16 [(3 - 2i€ik20im — 3 - 20ik2i€;jm ) Qi qkGm
(245)

—+ (72161]n26m + 2(2”226””)(]]]

3 ed* . .
= \/g T: [(126€mk — 12i€k5m)q5q0qm]

324 B
2 e (@ a1 =0
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PSP 3 ed*
Tr(padTT') = —\/g 16 Trp2i[(901;01602102m + 301:01;01k02102i02m

— 301i01k02102i02j02m )4 qkqm + (—301;01002102n

— 01i{01j01n02102;02n + U1i01n02102i02j02n)%‘ﬂ
3 ed*

= 2716 —[P21((366101m — 12€i k€1im

- 125ik(6li§jm - 5lj5im + 5lm5ij))QijQm]

+ (=120 + 4€ijn€rin + 40in(01:0 50 — 01j0in + O1n045))q;]
3 ed*

= \/; 6 [P21[36001m + 12(3;10km — djmOki)

= 12(005m — 010km + Oim ;)] d; 4K dm

+ (—1251j - 85lj — 46”)(]]-]

(246)

3 ed*
= \/; 16 (24)p21[(001m + 010km — 01k0m )5 QkGm

3 ed* S,
— O1k0jm ;] = _\/; 16 (24) - 2¢*[Po - §—Po -] =0

C.5.5 ee* combination

~ A 3 N . . N
TTT = e| (3401 -02)(01 — 72)q(3 + 01 - 03) (01 — 02)q

64
=6 e|?(12 4 401;09;)(0101k + 0202k — 0102k — 02;01%)q;qk
=& el*(12(o1j01, + 0202k — 01502k — 02;01%) + 4010101602 (247)

+ 0110210202k — 01,0102i02% — 01;01k02i02k )q;j k)
=16 e[*(30101% + 302;02% — 30102k — 30201k + 01i01;01%02;
+ 014020202k — 01i01j02;02% — Uli01k02i02j)qjqk
N 3
T?“[TTT] = E|€|2T7‘[(301j01k12 + 3110'23‘0'2/@
— 01i01j02i02k — 01;01k02i02;5)q;qk
191w ~ OO o1
= E|6|2[3 -2 26]]{7 + 3 . 26jk -2 — 251J251k2 — 257,]@(5”}(]]611@

= 3Je/?
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RPN 3
Trlps - 62177 = E|6|2T7“[p21(31102102j02k + 01i01j01k02102;
— 01010210202k — 01;01,02102;02;)q;qk]
= T6|6|2[p2l(3 -2 QZéljk + 216ijk2(sli - 25”'216“'16

5 (249)
— 25ik2i€lij)pjpk] = T6|6|2h921(12i61jk —+ 4i€ljk

— i€y, — de;)qiqk] = ﬁ|6|2[]321(16261jk)q]‘%]
=3lel’p2- (7x§) =0

C.5.6 ef* combination

VIR,
TTT:@(—ef )3+ a1 -02)(01 —02) - q(d1 + 1) - q

V18 .
= g(—ef )3+ 01502i) (01 — 025)q; (01K + 02k ) qk

V18

= ——(—ef")(Bo1; — 3025 + 01i0102; — 01i02i02;)(O1k + T2k )45k

32
Vs,
= 732 (—ef )(301j01k - 302j01k + 01i01j01k02; — 01i01k02i02;
+ 30102k — 302502k + 01i01;02i02k — 01:02i02;02 )4 Ik
(250)
o VIS,
TT[TTT] = g(—ef )T’I“[?)O’lja'lklg — 01i01k02;02; (251)
— 30309k + 01;01;02;02k] = 0
e VIS,
Trlpy - 3;TTT] = g(—ef VI'7[p21(01:01j01K02102; — 01;01K02102;02;
— 3110910202k + 01i01;02102:02k ) qk]
V18 N . .
= 32 (—ef )T’I“[pgl(Q’Leiij(sli — 25ik226lij (252)

—3-2- 2ie i, + 2(5ij2ielik)qjqk}

V18 N . . . .
= 372(—€f )[pgl(ﬁllqjk + 426“”‘ — 1226[jk + 4Z€ljk)qj'qk]

=0
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C.6 F terms

C.6.1 fa* combination

V6

Tt = 1—6fa*(a’i +03)-q(1 —01-03)
= \I/fgfa*(l?u +02;)qi(1 — o15095)
= \{—gfa*(ali + 09, — 0101025 + 01:02i02;)4;
Tr(TT) = \{—ffa*TT[Uu + 02i — 01015025 + 0102i025)q;] =0

L V6, .,
Trlpy - 72TTT] = Efa Trpok(I102102; — 01:01;02102;)4;]
Y.
= T6fa [p21(2 - 20y — 26;;20;5)q;] =0

C.6.2 fb* combination

VB L

Tt 3—2fb*((?1 +03)-q(o1 —03) - q(1 — g1 - 73)
Y
= 37fb (010 + 02i)qi(015 — 025)q;(1 — o1,021)
V6

+ 0102 — 02i02; — 01j01k02i02k + 01k02i02j02k) ¢4

V6
32
— 10909 — 01j01k02i02k )i ;]
Ve
T 32

P V6, .,
Tr(ps - G2TTT] = 372fb Trlpa(—01i01j01k02102) + 01;01;02102j02k
— 110910909 — 01010210202 )i k]
V6, ., . .
= gfb (D21 (—2i€;;3201; + 26;52i€r55
— 2 20, — 20€5120,5)Giqx)

TT[TTT] = fb*TT[(O'liO'leQ + 01i01k02;02k

f0*[40;; 4+ 49,5 — 40;5 — 49;5]qiq; =0

= 37fb [pai(—4ieqy, + dierin, — diey, — 4i€in)qiqr] =0

7

(253)

(254)

(255)

(256)

(257)

(258)



C.6.3 fc* combination

T’I"[ﬁg . &QTTT] =

V6

V6
16
V6
16

. 6 L o
T = ﬁfC*(Ul +03) - q(3 4 71 - 02)
fe (o1 + 02:)pi(3 + 015025)

*
fc*(301; + 302; + 01401025 + 01j02;02;)q;

Tr[TT =0

V6, .
TGfC Trpak (31102602 + 01i0102k02;5) 4]

V6

~ 16
_ Ve
T 16

fc* [par (1265 + 46i1)qs] = V6. fc* (P - §)

C.6.4 f{fd* combination

TT*

TT‘[ﬁQ . 52TTT] =

V3fdr, L L.

= Sf (01 +032)-q(301 - q02 - q — 01 - 02)
V3fd*

:Tf(01i+02i)qi(3alejU2ka_UlmU2m)
V3fd*

=3 (301i01j02k4i0jQk — T1i01mT2m s

+ 301j02i02k4i 0 QK — O1mO2i02m Qi)

V3fd*
8
V3fd*
8
V3fd*

8

Tr[TT =0
Tr[pzl(3011'013'02102in‘]ij — 01i01m02102m ;)]
[P21(3 - 204520164509k — 20im201m ;)]

[12¢°parqr — 4Py qi]

= V3fd*(p> - q)

8

(259)

(260)

(261)

(262)

(263)

(264)



C.6.5 fe* combination

= —3Tf€ (0'1 +0'2)'

V18
V18

—

q(01 — 02) - q(3+ 01 - 02)

———fe*(o1i + 02i)qi(01; — 025)q; (3 + T1K02k)

32
V18

7372]06*(0“ +02;)(301; — 3092; + 0101602k — 010202k )i 4;

V18

%k
“ 33 fe (301015 — 301i025 + 01i0101x02k — 01i01x02;02k

+ 30109; — 302,025 + 01;01£02i02k — O1502i02;02% )44

o VI8

Tr [ﬁg .

8 *
T’I“[T T] = —7‘]“6 T’I“[(?)O’lia'ljlg — 01i01k02502k

32

— 3110209 + 01;01£02i02k)qiq;] = 0

V18

*
fe Tr[p2l(0'1i0'1j0'1k0'2l0'2k — 01i01k02]02;02k

— 3110910209 + 01;01502102:02k)¢iG;]

V18

_ _STfe*[le(Qieiij(slk — 20;121€)1,

_3'2'2i€lij

V18

= —— fe" [puliei — i€ — i€ + i€ij)qiqs) = 0

8

C.6.6 fI* combination

6 -
Tt = 1P (o

6
— P
6

= ‘f|2(0'1i01j + 02,09; + 01,025 + 02i01;)PiP;

16

+ 20121€155)qiq;]

+03) - q(d1 +02) - q

+02i)qi(01; + 025)g;

PN 6
TT[TTT} = E|f|2TT‘[(0'MO'1jIQ + 110'21‘0'2]')]
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