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Abstract

A study of the non–mesonic weak decay of light hypernuclei is performed on
the basis of the Block–Dalitz approach which allows one to extract the elemen-
tary ΛN → nN decay amplitudes and rates without detailed knowledge of the
microscopic interaction mechanism. The present work analyses the validity of
this approach using decay rates calculated within a one–meson–exchange tran-
sition potential supplemented by a two–pion–exchange mechanism. It is found
that although the Block–Dalitz model is a reliable approximation for predicting
the decay rates of s–shell hypernuclei, it fails to reproduce the 5

ΛHe asymmetry
parameter. Possible ∆I = 3/2 isospin contributions to the non–mesonic decay
rates are also investigated within the factorization approximation. Unfortu-
nately, the experimental data are still of limited precision and therefore, it is
not possible to extract the degree of violation of the ∆I = 1/2 isospin rule. The
present study introduces improvements on preceding theoretical models and,
together with forthcoming J–PARC data on the non–mesonic decay of four–
body hypernuclei, it will play an important role in establishing the detailed
spin–isospin dependence of the ΛN → nN process as well as in the design of
theoretical models.
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1 Introduction

The strangeness quantum number, S, is conserved in processes mediated by the
strong and electromagnetic interactions, but not in those involving the weak
force. Baryons which contain this quantum number are called hyperons. The
Λ baryon is the lightest hyperon, composed by u, d and s quarks and plays
an important role in a variety of processes involving strangeness. For instance,
hyperons may appear in the inner core of neutron stars and they are important
players in their evolution and balance, which is given by the weak interactions.
The mass of the Λ particle is mΛ = 1115.68 MeV and it has zero charge and
isospin. With a mean free path and a lifetime of the order of 10 cm and 10−10

seconds, respectively, hyperons decay through weak processes (except the Σ0

which decay via electromagnetic processes) which do not conserve parity, isospin
or strangeness quantum number.

A hypernucleus is a bound system which contains nucleons (N) and one or
more strange baryons (Y ). An important point to describe the hypernuclear
structure is the knowledge of the Y N and Y Y interactions in the same way
that the NN interaction serves to know the nuclear structure. Although we
could obtain more direct information of the Y N and Y Y interaction from cross
section measurements, these are very difficult due to the short hyperon mean
free path. For this reason, quantitative information of these interactions comes
mainly from the study of production and decay of hypernuclei. The existence
of these systems gives a new vision to the traditional nuclear physics, as for
example the possibility of new selection rules and states with new symmetries.
In fact, the study of strange nuclei have opens the door to studies of other exotic
systems, as the ones in the charm sector. In addition, a precise knowledge of
the baryon–baryon interactions in the strange sector would allow to determine
the amount of flavor SU(3) symmetry breaking due to the different values of the
quark masses in the light u, d and s sector.

Hypernuclear physics was born in 1952 when Marian Danysz and Jerzy Pniewski
discovered the first hypernucleus. They observed a delayed disintegration of a
heavy fragment when they were working with emulsion chamber experiments [1].
These observations based on emulsion and bubble chambers motivated new ex-
periments of hypernuclear production. With the advent of particle accelerators,
beams of particles (usually kaons and pions) collide with a nucleon producing
hyperons among the fragments of these collisions, which are then captured by
a nucleus. Different reaction mechanisms are used: strangeness exchange re-
actions such as n(π−,K−)Λ, and associated strangeness production processes
such as the hadronic n(π+,K+)Λ reaction or the electroproduction n(e, e′K+)Λ
reaction. In these processes, hypernuclei can be created in some excited state
but they reach their ground state via mechanisms mediated by the strong in-
teraction, the electromagnetic one or by particle emission [2].

The Λ decay in free space proceeds mainly via the mesonic mode, Λ → Nπ,
in which a meson (pion, in this case) and a nucleon are detected in the final
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state. This decay mode is larger than the semi–leptonic and weak radiative
ones by a factor of 103, so the Λ hyperon decays via two different mesonic
channels: Λ→ p+ π− (63.9%) and Λ→ n+ π0 (35.8%) [3]. The experimental
ratio for the free decay rates, Γfree

π− /Γ
free
π0 ≈ 1.78, is very close to 2 and strongly

suggests the dominance of ∆I = 1/2 isospin transitions over the ∆I = 3/2 ones,
which is commonly known as the ∆I = 1/2 rule for weak processes. Although
this rule is well established experimentally and it turns to be valid for different
processes that involve strangeness (such as the decay of the kaon meson [4]), its
dynamical origin is not yet understood. Neither is it if the ∆I = 3/2 suppression
is a universal feature of all weak decay processes. In case of finding a significant
relevance of ∆I = 3/2 terms in the strangeness physics sector it would be the
first indication of violation of the ∆I = 1/2 selection rule. Such experimental
evidence has not been found yet.

When the Λ particle is embedded in a nuclear medium, the mesonic decay mode
becomes Pauli blocked because the final nucleon momentum (pN ≈ 100 MeV/c)
is smaller than the Fermi one (kF ≈ 270 MeV/c). As we shall see in the
following, although this mode is blocked in infinite nuclear matter, it can occur
in finite nuclei under different circumstances, being less important as the mass
number increases [7]. The same medium which is responsible for the suppression
of the mesonic mode is also responsible for the appearance of a new decay
mode, the weak non–mesonic decay which becomes dominant in hypernuclei
with A ≥ 5. Hence, except for the very lightest ones, Λ–hypernuclei decay
mainly through the non–mesonic decay, in which mesons are not detected in
the final state and involves decay channels induced by one (ΛN → nN) and two
(ΛNN → nNN) nucleons, the two nucleon–induced channel representing the
10− 15% of the total non–mesonic weak decay rate [5].

Relevant quantities for comparison between theory and experiment are the total
decay width, which can be expressed in terms of the mesonic and non–mesonic
decay widths, the ratio between the neutron–induced (Λn → nn) and proton–
induced (Λp→ np) decays, Γn/Γp, and the asymmetry in the angular distribu-
tion of the nucleons from the weak decay of hypernuclei. This asymmetry arises
from the interference between the parity–conserving (PC) and parity–violating
(PV) amplitudes on the weak decay mechanism, as we will see in Section 3. The
total decay rate of a Λ–hypernucleus is then:

ΓT = ΓM + ΓNM , (1)

where
ΓM = Γπ− + Γπ0 , ΓNM = Γp + Γn + Γ2 , (2)

where Γ2 stands for the two–nucleon induced channel (Λnn→ nnn, Λnp→ nnp,
Λpp→ npp).

Although it is true that the total width is well reproduced by different models,
one of the problems that hypernuclear studies had to face for many years was to
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reconcile experimental and theoretical values for the Γn/Γp and for the asymme-
try parameter [2,6–8]. There were many efforts devoted to provide a theoretical
explanation of the large experimental values obtained for this ratio. These ex-
perimental results were quite scarce and not precise, so they presented large
uncertainties due to, in part, the difficulty of detecting the products of non–
mesonic decay, especially the neutrons. Essentially, two kinds of approaches are
available for predicting the decay rates and the asymmetry parameters of Λ–
hypernuclei. The first one consists in a finite nucleus formalism where by using
a weak coupling scheme and a shell model approach, the many–body transition
amplitude is expressed in terms of the two–body amplitudes calculated using a
meson–exchange potential. Other approaches include a many–body technique
in which the calculation is performed in infinite nuclear matter and then it is
extended to finite nuclei through the local density approximation. [6, 9].

Given the impossibility of generating stable hyperon beams, hypernuclear decay
offers us the best scenario to study the weak ΛN → nN interaction. More-
over, using the change of strangeness as a signature, this mechanism allows
us to extract more information than the strangeness 0 counterpart, the weak
NN interaction, since one can explore not only the the parity–violating part of
baryon–baryon interaction but also the parity–conserving one.

The non–mesonic decay can be understood in terms of the free–space mech-
anism, where the virtual pion emitted at the weak vertex, ΛNπ, is absorbed
by a nucleon in the system. Although this one–pion-exchange process (OPE)
generates good estimations for the total non–mesonic decay rate, the model
fails to reproduce the Γn/Γp ratio. The reason lies in the tensor dominance of
the pion-exchange mechanism, which favors the p–induced process leading to
np pairs in the final state. Due to the large momentum of the final nucleon (
k ≈ 400MeV/c), it is advisable to include not only long–range contributions
(those generated by the pion) but also short–range contributions generated by
heavier mesons. The OPE model was generalized to a one–meson–exchange
model (OME) including the mesons of the pseudoscalar (η, π, K) and the vec-
tor octets (ρ, w and K∗) [10]. Although the OME model describes the non–
mesonic rates and the ratio Γn/Γp satisfactorily, it predicts a too large and
negative asymmetry parameter. Fortunately, recently these problems were re-
solved [8]. The degree of development reached in the last years permitted to
achieve a reasonable agreement between theory [11–23] and experiment [24–32].
In particular, within a finite nucleus framework which adopted a OME model
supplemented by a chirally motivated (correlated plus uncorrelated) two–pion
exchange models (TPE), it was possible to reproduce the asymmetry and the
decay rates of 5

ΛHe and 5
ΛC [11]. As we will see in the following, the correlated

(2π/σ) and uncorrelated (2π) two–pion exchanges drastically modify the asym-
metry parameter while exerting a moderate effect on the decay rates. However,
although the OME+TPE model was able to reproduce the measured observables
of non–mesonic decay, the discrepancies between various models fall within the
large error bars of the experimental data, meaning that the weak decay of hy-
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pernuclei is not yet properly understood.

Other models have been developed to address some of the observed discrepancies
between theory and experiments. Among them, hybrid models combining quark
and meson degrees of freedom [33] or calculations based on effective field theories
[34].

In the present work, we will study the weak non–mesonic decay based on the
OME and OME+TPE models for different hypernuclei using the finite nucleus
approach. The Λ particle can interact with the nucleons of the s, p or higher
shells, involving a relative angular momentum of the ΛN pair L 6= 0. In our
case, we will consider s–shell hypernuclei since it has the merit of considerably
reducing the number of possible states for the initial state (and thus the final
state) by considering the ΛN pair in a relative angular momentum of L = 0.
Possible violations of the ∆I = 1/2 rule are discussed using the phenomenologi-
cal Block–Dalitz model, whose limits of applicability have not been discussed to
date. Although this approach starts from a contact interaction which does not
consider the long–range effects of the exchange model, we will see that it will
be extremely good in reproducing the decay rates of light hypernuclei in terms
of a few elementary spin–isospin rates for the Λn→ nn and Λp→ np processes
without detailed knowledge of the microscopic interaction mechanism.

This work is organized as follows. In Section 2 we briefly detail the main char-
acteristics of the mesonic and the non–mesonic weak decay, as well as the finite
nucleus formalism used for the calculation of the decay rates and asymmetries.
The weak transition potential is based on one–meson–exchange and one–meson–
exchange plus two–pion–exchange. In Section 3 the approach of Block–Dalitz
to the non–mesonic weak decay of s–shell hypernuclei is discussed. Numerical
results obtained with the finite nucleus calculation for the decay rates and the
asymmetries of four– and five–body hypernuclei are presented in Section 4, to-
gether with a discussion on the reliability of the Block–Dalitz model. Moreover,
possible violations of the selection isospin rule ∆I = 1/2 are investigated by
adopting the factorization approximation of Ref. [35]. Finally, some concluding
remarks are given in Section 5.
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2 Hypernuclear weak decay

In order to discuss the weak decay modes of hypernuclei, it is convenient to
introduce the Fermi gas model. This model defines the properties of an infi-
nite system of non–interacting identical fermions which obey the Pauli exclu-
sion principle. In the isospin picture, nuclear matter is made up of nucleons
(proton and neutron are two states of the same particle, the nucleon) with
mono–particular states described by plane wave functions. The energy and the
single–particle nucleon wave function read:

Φ~k =
1√
V
ei
~k~rχsms

χtmt
, E =

~2k2

2mN
, (3)

where the two χ’s denote the spin and isospin states. According to the Pauli
principle, each nucleon in this system occupies a different mono–particular state
with one of the two possible values of the third spin component, ms ± 1/2
and one of the two possible values of isospin, mt ± 1/2. The maximum value

of |~k| corresponding to the occupied states in the ground state is the Fermi
momentum, kF . Therefore, the density reads:

ρ(r) =
∑
k<kF

|Φ~k|
2 =

2

3π2
k3
F . (4)

Using the normal nuclear matter density, ρ(r) ≈ 0.16 fm−3, one obtains kF =
270 MeV/c .

The Λ hyperon production takes place by collision reactions between different
kind of mesons (pions and kaons) and a nucleus by means of processes such
as the n(K−, π−)Λ and n(π+,K+)Λ reactions. The creation of Λ–hypernuclei
requires that the Λ particle created in these reactions remains in the nuclear
system. As we already mentioned, the free Λ decays mainly via two mesonic
weak decay modes (Λ → π−p, π0n). Using energy–momentum conservation, it
is possible to evaluate the Q–value and the final momentum:

mΛ ≈
√
~p2 +m2

π +
√
~p2 +m2

N , (5)

Q ≈ mΛ −mπ −mN ≈ 35 MeV , (6)

p ≈ 100 MeV/c . (7)

Inside the hypernucleus, the hyperon and the nucleon feel the action of attrac-
tive mean fields UN and UΛ, which come from the NN and ΛN interactions,
respectively. The binding energies of the recoil nucleon (BN ' −8 MeV) and of
the Λ (BΛ ≥ −27 MeV) affect the above expressions [36]. Qbound = Q+BΛ−BN
is smaller than the free Q–value and hence tends to reduce p.

Since the Fermi momentum is kF ≈ 270 MeV/c, the mesonic weak decay pro-
cess becomes Pauli blocked due to the fact that final momentum (~p) is not large
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enough to access unoccupied stated in nuclear matter. This Pauli blocking is
logically much larger if one considers the Λ and N binding energy. Although
the mesonic weak decay is strictly forbidden in infinite nuclear matter it can
occur in finite nuclei due to different reasons. Firstly, the density distribution of
a finite nucleus makes the Fermi momentum to become r–dependent (namely a
local Fermi momentum) and it is smaller at the nuclear surface, allowing more
available states for the final nucleon as compared to infinite nuclear matter. Sec-
ondly, the final nucleon wave function can have larger momentum components
due to the momentum distribution of the Λ wave function in a final hypernu-
cleus. Finally, the final pion feels an attraction by the nuclear medium and,
thus, it has a smaller energy than the free one which leaves the final nucleon
with a larger energy and has more chances to exceed Pauli blocking. This in-
crease can be of one or two orders of magnitude for heavy hypernuclei whereas
is smaller for light and medium ones with respect to the value obtained without
the medium distortion [7, 36].

Nevertheless, at the end, these effects do not prevent a strong decrease of the
mesonic weak decay as the mass number increases. However, the same medium
which is responsible for the Pauli blocking is also responsible for the non–mesonic
weak decay. In this new mechanism pions do not appear in the final state.
Proceeding as in the previous case, the final nucleon momentum and the Q–
value are:

mΛ +mN ≈
√
~p2 +m2

N +
√
~p2 +m2

N , (8)

Q ≈ mΛ −mN = 175 MeV , (9)

p ≈ 415 MeV/c , (10)

for one–nucleon– (ΛN → nN) and

mΛ + 2mN ≈ 3
√
~p2 +m2

N , (11)

Q ≈ mΛ −mN = 175 MeV , (12)

p ≈ 340 MeV/c (13)

for two–nucleon–induced processes (ΛNN → nNN).

As we can see, the final momentum is larger than the Fermi one, so the pro-
duced nucleons are almost free from Pauli blocking. In case of assuming a finite
nucleus, the transition will even be more favorable. As a consequence, the non–
mesonic decay mode dominates over the mesonic one for all but the s–shell
hypernuclei. For very light systems the two decay modes are competitive.

2.1 Non–mesonic decay rate

In this section, we describe the hypernuclear weak decay rates in terms of the
initial and final wave function and the two–body mechanism, which involves the
weak and the strong interactions.
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The decay rate for a hypernucleus decaying non–mesonically in finite nuclei is
written in terms of a transition amplitude, Mfi, from an initial hypernuclear
state (AΛZ) to a final state, which is divided into two final free nucleons (1 and
2) and a residual nucleus state (R) composed by (A 9 2) particles [37]. The
finite nucleus approach has been used only for describing one–nucleon–induced
decays in such a way that:

Γ1 =

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∑
M3I(R)
(1)(2)

(2π)δ(MH − ER − E1 − E2)

× 1

2JI + 1
| Mfi |2 ,

(14)

where MH , ER, E1 and E2 are the mass of the initial hypernucleus, the energy
of the residual state and the energies of the final nucleons, respectively. The
integrals in the momentum space cover the momenta ~k1 and ~k2 of the two final
outgoing nucleons. In this expression, the integration over the momentum of
the residual nucleus has already been performed using momentum conservation.
Since we consider the case in which we do not measure the final polarization
and we do not know the initial one, we average over the initial hypernucleus
spin projections (M3I) and sum over all final spin projection quantum numbers
((R), (1), (2)).

The nuclear transition amplitude is expressed as:

Mfi = 〈F |M | I〉 = 〈Φ~k1ms1
t31

,~k2ms2
t32
· ΦA−2

R | ÔΛN→nN |AΛ Z〉 , (15)

where ÔΛN→nN is the two–body operator acting over all initial ΛN pairs. For
the purpose of describing this matrix element in terms of the two–body tran-
sition, the final state has been decomposed in products of two–nucleon (NN)
Φ~k1ms1

t31
,~k2ms2

t32
wave functions and a residual core ΦA−2

R one.

Following the approach used in Ref. [10] and in order to evaluate the decay rate
in terms of the two–body amplitudes involving a ΛN pair in the initial state
and a NN pair in the final state, it is necessary to decouple the Λ–particle and
the interacting nucleon from the nuclear system. The starting point is the weak
coupling scheme in which the Λ–particle in the αΛ = nΛlΛsΛjΛmΛ orbit couples
only to the nuclear–(A− 1) core wave function in its ground state:

|AΛ Z〉 ≡|AΛ Z〉JI ,M3I

TI ,T3I
=| αΛ〉⊗ | A− 1〉

=
∑

mΛMC

〈jΛmΛJCMC | JIM3I〉 | (nΛlΛsΛ)jΛmΛ〉⊗ | JCMCTIT3I〉 , (16)

where the initial hypernuclear total angular momentum and isospin are denoted
by JI and TI , with third projections and M3I and T3I , respectively. The quan-
tum numbers of the Λ baryon are nΛ = 0, lΛ = 0, sΛ = 1

2 , jΛ = 1
2 and tΛ = 0

and those of the nuclear core are denoted by JC , TC = T3, MC and T3I .
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Now, the nuclear core (A−1) can be written in terms of the product of a nucleon
in a αN = nN lNsN jNmN orbit and a residual nuclear system composed by (A−
2)–particles. This can be achieved by using the technique of the coefficients of
fractional parentage which maintains the antisymmetry character of this residual
system [38]:

| JCMCTIT3I〉 =
∑

JRTRjN

〈JCTI{| JRTR, jN tN 〉[| JRTR〉× | (nN lNsN )jN tN 〉]JCMC

TIT3I

=
∑

JRTRjN

〈JCTI{| JRTR, jN tN 〉

×
∑

MRmN

∑
T3Rt3i

(JRjNJC ,MRmNMC)(TRtNTI , T3Rt3iT3I)

× | JRMR〉 | TRT3R〉 | (nN lNsN )jNmN 〉 | tN t3i〉,
(17)

where we denote with the subscript R the quantum numbers of the residual nu-
clear core, and 〈JcMI{| JRTR, jN tN 〉 are the coefficients of fractional parentage.

It is convenient, at this point, to define the total momentum, ~P ≡ ~k1 + ~k2, and
relative momentum, ~k ≡ (~k1 −~k2)/2, of the two outgoing final nucleons in such
a way that, if we also work in a coupled two–body spin and isospin basis, the
the nuclear transition amplitude can be expressed as the following form:

Mfi = 〈ΦA−2
R ; ~P~kSMSTT3 | ÔΛN→nN |AΛ Z〉 . (18)

2.1.1 Two–body Spin-Isospin states

In order to establish a connection with the two–body operator in the amplitude
of Eq. (18), it is convenient to work in the coupled basis. We may add the spin
angular momentum ~s1 = 1/2 of a single–particle to the spin angular momentum
~s2 = 1/2 to of another single–particle. The total spin angular momentum is
~S = ~s1 + ~s2 = 1/2⊗1/2 = 1⊕0. To these quantum numbers, the corresponding
isospin ones are added. The isospin adds an extra degree of freedom which is
analogous to spin. By definition, the proton state is t = 1/2 and t3 = 1/2 and
the neutron state is then, t = 1/2 and t3 = 91/2, where t3 is the isospin third
component. Thus, for a system of two interacting nucleons, the total isospin
operator is given by ~T = ~t1 + ~t2 = 1/2⊗ 1/2 = 1⊕ 0.

The two nucleon total wave function is:

Ψ(1, 2) = φcoord(1, 2)χSMS
(1, 2)χTT3

(1, 2) , (19)

where χSMS
and χTT3

are the total spin and isospin wave functions with third pro-
jections MS and T3 respectively. Regarding the two–body radial wave function
φ(1, 2), we will discuss the details later.
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In the coupled scheme, the two nucleons can be either in isospin triplet (T = 1)
or singlet (T = 0) and in spin triplet (S = 1) or singlet (S = 0). The total spin
wave function are:

χSMS
(1, 2;S = 1,MS = 1) = χs↑(1)χs↑(2) ,

χSMS
(1, 2;S = 1,MS = 0) =

1√
2

(χs↑(1)χs↓(2) + χs↓(2)χs↑(1)) ,

χSMS
(1, 2;S = 1,MS = −1) = χs↓(1)χs↓(2) ,

χSMS
(1, 2;S = 0,MS = 0) =

1√
2

(χs↑(1)χs↓(2)− χs↓(2)χs↑(1)) ,

(20)

and isospin wave functions are:

χTT3
(1, 2;T = 1, T3 = 1) = χtp(1)χtp(2) ,

χTT3
(1, 2;T = 1, T3 = 0) =

1√
2

(χtp(1)χsn(2) + χtn(2)χtp(1)) ,

χTT3
(1, 2;T = 1, T3 = −1) = χtn(1)χtn(2) ,

χTT3
(1, 2;T = 0, T3 = 0) =

1√
2

(χtp(1)χtn(2)− χtn(2)χtp(1)) .

(21)

Note that spin and isospin triplet states are symmetric while singlets are an-
tisymmetric. By convention, we use the spectroscopic notation. The quantum
state is denoted as 2S+1LJ being ~J = ~L+ ~S the total angular momentum.

Then, let us now show the available states for each ΛN and NN pair of the
ΛN → NN transition.

ΛN initial state :

As we already mentioned, the benefit of light hypernuclei, meaning s–shell hy-
pernuclei, is the fact that the ΛN pair is in L = 0. As just discussed, the total
spin state can be in spin–triplet or spin–singlet state.

Thus, only 1S0 and 3S1 states are possible.

NN final state :

The total angular momentum conservation (∆J = 0) in the non–mesonic weak
transition implies certain restrictions for the available final NN state. The
action of the central potential (∆L = 0,∆S = 0), tensor (∆L = 2,∆S = 2) and
PV (∆L = 1,∆S = 1) terms makes that the only allowed transitions are the
following:

1S0 → 1S0
1S0 → 3P0

3S1 → 3S1
3S1 → 3D1

3S1 → 1P1
3S1 → 3P1

12



Table 1: Amplitudes for the ΛN → nN decay in s–shell hypernuclei. The
spectroscopic notation 2S+1LJ is used. If is the isospin of the final NN pair. PC
and PV denotes parity–conserving and parity–violating channels, respectively.

Amplitude Channel If Parity
ap, an

1S0 → 1S0 1 PC
bp, bn

1S0 → 3P0 1 PV
cp

3S1 → 3S1 0 PC
dp

3S1 → 3D1 0 PC
ep

3S1 → 1P1 0 PV
fp, fn

3S1 → 3P1 1 PV

As we already discussed, the final states in these process are np and nn pairs.
The constraint from the Pauli principle requires that the total wave function
must be completely antisymmetric. For the two nucleon system, the isospin T
can either be 1 or 0. If we use +1 to represent a symmetric wave function and
−1 to represent an antisymmetric one, then, the isospin wave function has a
symmetry factor (−1)T+1 and the spin wave function has (91)S+1. With regard
to the space wave function, states with L=even are symmetric while L=odd are
antisymmetric, being L the orbital angular momentum of the relative motion.
Therefore, the orbital wave function has the (−1)L symmetry factor. To sum up,
the total symmetry factor is (−1)L+T+S which has to be −1. Hence, L+S+T
must be odd. Now, we will analyse the symmetric (S) and antisymmetric (A)
properties of the available final states in order to assign them to the np and/or
nn states.

1S0 → S = 0 (A) L = 0 (S) → If = 1 (S) (22)
3P0 → S = 1 (S) L = 1 (A) → If = 1 (S)
3S1 → S = 1 (S) L = 0 (S) → If = 0 (A)
3D1 → S = 1 (S) L = 2 (S) → If = 0 (A)
3P1 → S = 1 (S) L = 1 (A) → If = 1 (S)
1P1 → S = 0 (A) L = 1 (A) → If = 0 (A)

To sum up, the available ΛN → nN transition channels are given in Table 1
together with their main properties. For each transition there is an elementary
ΛN → nN decay amplitude and the subscript n and p denotes the neutron–
induced channel and proton–induced one, respectively. Note that Λn → nn
process has final states with isospin If = 1 only, while for Λp→ np both If = 1
and If = 0 are allowed.

The non–mesonic decay rate becomes

ΓNM = Γn + Γp , (23)
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where the partial decay rates are written as

Γi =

∫
d3PT
(2π)3

∫
d3kr
(2π)3

(2π)δ(MH − ER − E1 − E2)
∑
S,MS

∑
JR,MR

∑
TR,T3R

1

2JI + 1

×
∑
MI

| (TR
1

2
TI , T3Rt3iT3I) |2 × |

∑
T,T3

(
1

2

1

2
T, t1t2T3)

∑
mΛMC

(jΛJCJI ,mΛMCMI)

×
∑
jN

√
S(JCTI ; JRTR, jN t3i)

∑
MRmN

(JRjNJC ,MRmNMC)

×
∑

mlN
msN

(lN
1

2
jN ;mlNmsNmN )

∑
mlΛ

msΛ

(lN
1

2
jΛ,msΛmsNmΛ)

×
∑

S0MS0

(
1

2

1

2
S0;msΛmsNSM0)

∑
T0T30

(
1

2

1

2
T0, 9

1

2
t3iT30)

× tΛN→NN (S,MS , T, T3, S0,MS0
, T0, T30

, lΛ, lN , ~PT ,~kr) |2 ,

(24)

with t1 = −1/2, t2 = 1/2, t3i = 1/2 for the p–induced rate and t1 = −1/2,
t2 = −1/2, t3i = −1/2 for the n–induced one. We denote the initial ΛN system
with spin S0 and isospin T0 and the final antisymmetric NN state with spin
S and isospin T . We note that Eq. (24) is written in terms of the two–body
transition, tΛN→NN , which contains the details of the non–mesonic weak decay
process. In Eq. (24) the Λ–particle is assumed to be in a tΛ = 1/2, t3Λ

= −1/2
state, which is a practical way to impose the phenomenological ∆I = 1/2 isospin
rule observed in weak hadronic processes. Moreover, we write the coefficients
of fractional parentage as spectroscopic factors, S(JCTI ; JRTR, jN t3i) ≡ (A −
1)〈JCTI{| JRTR, jN tN 〉2 [10].

2.1.2 ∆I = 1/2 rule

The ∆I = 1/2 isospin rule reflects the dominance of the ∆I = 1/2 transitions
over the ∆I = 3/2 ones. In the mesonic decay of a free Λ (tΛ = 0) into a
nucleon (tN = 1/2) and a pion (tπ = 1), both T = 1/2 and T = 3/2 isospin
final state are possible. Using isospin coupling algebra and the Clebsch–Gordan
coefficients, it is possible to evaluate the relative importance of the two mesonic
channels for each ∆I value.

|n〉|π0〉 ≡ |1
2
− 1

2
〉|10〉 =

√
1

3
|1
2
, 1;

1

2
, 9

1

2
〉+

√
2

3
|1
2
, 1;

3

2
, 9

1

2
〉 , (25)

|p〉|π−〉 ≡ |1
2

1

2
〉|1 9 1〉 = −

√
2

3
|1
2
, 1;

1

2
, 9

1

2
〉+

√
1

3
|1
2
, 1;

3

2
, 9

1

2
〉 . (26)
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Denoting by Γfree
π0 the mesonic Λ→ n+π0 decay width and by Γfree

π− the mesonic
Λ→ p+ π− ones, the ratio of rates for ∆I = 1/2 yields:

Γfree
π−

Γfree
π0

≈
| 〈π−p|T̂1/2,91/2|Λ〉 |2

| 〈π0n|T̂1/2,91/2|Λ〉 |2
=

∣∣∣∣∣
√

2/3√
1/3

∣∣∣∣∣
2

= 2 , (27)

while for ∆I = 3/2 processes one finds:

Γfree
π−

Γfree
π0

≈
| 〈π−p|T̂3/2,91/2|Λ〉 |2

| 〈π0n|T̂3/2,91/2|Λ〉 |2
=

∣∣∣∣∣
√

1/3√
2/3

∣∣∣∣∣
2

=
1

2
, (28)

where the T̂1/2 and T̂3/2 operators change 1/2 and 3/2 units of isospin, respec-

tively. Experimentally the ratio of the relevant widths is Γfree
π− /Γ

free
π0 ≈ 1.78 [2].

As we can see above, only in the first case seems the experimental prediction to
be recovered, although there is room for some amount of ∆I = 3/2 contribu-
tions.

2.1.3 Initial ΛN wave function

Although the total hypernuclear system has been decomposed in terms of angu-
lar momentum coupling between the ΛN pair and the (A 9 2) nuclear core, it is
still necessary to know the initial and final two–body wave functions. As for the
Λ and N wave functions in the initial state, we use the solutions of a harmonic
oscillator potential, with appropriate values of the oscillator parameters bΛ and
bN that are adjusted to reproduce the binding energy of the Λ–particle in the
considered hypernucleus and the form factor for the (A–1)–particle core, respec-
tively. For 5

ΛHe we use bΛ = 1.85 fm and bN = 1.39 fm, while bΛ = 2.04 fm and
bN = 1.54 fm are taken for 4

ΛHe and 4
ΛH. Working in the center of mass frame

system, the initial Λ and N wave functions can be written in terms of relative
(rel) and center of mass (CM) harmonic oscillator wave functions describing the
ΛN system as:

ΦΛ
100(

~r1

b
)ΦN100(

~r2

b
) = Φrel100(

~r√
2b

)ΦCM100 (
~R√
2b

) , (29)

where b = bΛ+bN
2 is the average oscillator parameter. Consequently, the two–

body transition in Eq. (24) can be factorized in terms of other transition ampli-
tudes, which depend on relative (Nr,Lr) and CM (NR,LR) principal and orbital
angular momentum quantum numbers of the ΛN and NN systems:

tΛN→NN =
∑

NrLrNRLR

X(NrLrNRLRlΛlN )tNrLrNRLR

ΛN→NN , (30)

where X(NrLrNRLR, lΛlN ) are called the Moshinky brackets. For lΛ = lN = 0
the value is X(101000) = 1 [39].
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Using this approach, the initial nucleon and Λ are assumed to be independent
but there is a correlation between them due to the action of the strong inter-
action. To take this initial interactions into account, the harmonic oscillator
wave function is replaced by a correlated ΛN wave function which is obtained
by multiplying the uncorrelated Λ and N wave functions by a function that
is adjusted to microscopic G–matrix calculations in nuclear matter. For the
baryon–baryon strong interactions we take the Nijmegen soft–core model, ver-
sion NSC97f [40], which has been used with success in hypernuclear structure
and decay calculations. We follow the Ref. [10], where the correlation function
is parametrized as:

fΛN (r) = (1− exp
{
−r2/a2

}
)n + br2 exp

{
−r2/c2

}
, (31)

with a = 0.5 fm, b = 0.25 fm, c = 1.28 fm and n = 2.

2.1.4 Final NN wave function

The final wave function of the two outgoing free nucleons can be written as

〈~r1~r2 | ~k1
~k1s1ms1s2ms2t1mt1t2mt2〉 = ei

~k1~r1ei
~k2~r2χs1ms1

χs2ms2
χt1mt1

χt2mt2
(32)

where the four χ’s are the spin and isospin states. We use relative and CM
coordinates in such a way that the final state is rewritten as follows:

〈~R~r | ~P~kSMSTMT 〉 = ei
~P ~Rei

~k~rχSMS
χTT3

, (33)

where χSMS
and χTT3

are the aforementioned total spin and isospin wave function,
respectively. In order to incorporate the antisymmetrization of the two–nucleon
wave function, it is necessary to include the exchange of their coordinates and
quantum numbers. This involves exchanging ~k → 9~k and adding the factor
(−1)S+T . Therefore, Eq. (33) is rewritten as:

〈~R~r | ~P~kSMSTMT 〉 =
1√
2
ei
~P ~R
(
ei
~k~r − (−1)S+T e−i

~k~r
)
χSMS

χTMT
. (34)

Moreover, it is also possible to incorporate interaction effects between the two
outgoing nucleons by substituting the plane wave function by a distorted wave
function, which is the solution of the Lippmann–Schwinger equation with an
appropriate NN potential. The Lippmann–Schwinger equation is

| Φ(±)〉 =| φ〉+
1

E −H0 ± iε
V | Φ(±)〉 , (35)

where | φ〉 represents a solution of the free HamiltonianH0, E is the energy of the
two final nucleon state represented by | Φ(±)〉. The plus (minus) signs denotes
states at infinite time before (after) the interaction. Multiplying Eq. (35) by
the potential V and defining V | Φ(±)〉 ≡ T± | φ〉, one obtains the T–matrix
equation.

T± = V + V G±0 T
±, (36)
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Table 2: Possible 2S+1LJ channels in the weak decay (WD) of s–shell hypernu-
clei incorporating the strong final state interaction (FSI)

ΛN(Lr) WD NN (L′) FSI NN (L)
1S0 −→ 1S0 −→ 1S0
3S1 −→ 3S1 −→ 3S1, 3D1
3S1 −→ 3D1 −→ 3D1, 3S1
1S0 −→ 3P0 −→ 3P0
3S1 −→ 1P1 −→ 1P1
3S1 −→ 3P1 −→ 3P1

where G±0 = (E − H0 ± iε)91 is the free–space Green’s function. Once the
T–matrix equation has been solved and using the previous equations and defi-
nitions, the correlated NN wave function (Φ) is obtained. We will denote as Φ~k
in the relative and center of mass coordinates. Therefore, the free wave function

ei
~k~r, which is a solution of Schrödinger equation, is replaced by the correlated

wave function of the two nucleons Φ~k.

In Table 2 we present all the possible final states starting from ΛN initial states
with L = 0 and considering the final state interaction after the action of the weak
transition potential. The strong interaction conserves, among other properties,
parity (−1)L and total angular momentum (∆J = 0). Specifically, the tensor
component (∆L = 2) of the strong final state interaction produces a mixing
between 3S1 and 3D1 NN final state whereas the central part (∆L = 0) does
not produce an overlap between different channels.

Based on these considerations, the matrix elements of Eq. (30) are:

tNrLrNRLR

ΛN→NN =
1√
2

∫
d3R

∫
d3re−i

~P ·~RΦ∗~k(~r)χ†SMS
χ†TT3

V (~r)ΦCMNRLR

(
~R

b/
√

2

)

× ΦrelNrLr

(
~r√
2b

)
χS0

MS0
χT0

T30

= (2π)3/2ΦCMNRLR

(
~P
b√
2

)
trel ,

(37)

with ΦCMNRLR

(
~P
b√
2

)
is the Fourier transform of the ΛN center of mass oscillator

wave function and

trel =
1√
2

∫
d3rΦ∗~k(~r)χ†SMS

χ†TT3
V (~r)ΦrelNrLr

(
~r√
2b

)
χS0

MS0
χT0

T30
. (38)
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2.2 Weak Transition Potential

The weak transition potential is built from the exchange of virtual mesons be-
longing to the ground state pseudoscalar (π, ρ, K) and vector octets (K∗, ω,
η) [10], to which we add the uncorrelated (2π) and correlated (2π/σ) two–pion–
exchange [11]. One of the merits of this weak potential was that for the first
time it was possible to reproduce the experimental data of both the asymmetry
parameters and the decay rates for 5

ΛHe and 12
Λ C. In this work we show the final

expressions of the transition potentials.

The one-meson exchange contributions are obtained from the corresponding
Feynman amplitudes, displayed in Figure 1, conveniently Fourier transformed
to coordinate space. In order to account for the finite size of the hadrons involved
in the transition, form factors are included at the weak and strong vertices of
these amplitudes. More details are given in Ref. [10]. We note that, while the
baryon–baryon strong coupling constants are taken from the model NSC97f, in
the present work we employ monopole–type form factors at the meson–baryon–
baryon vertices, typical of the Juelich BB interaction models [41] with similar
cut–off values, instead of the exponential–type form–factor of the Nijmegen
models adopted in [11]. This new procedure gives rise to similar results as those
obtained in Ref. [11] and has the advantage of permitting a more straightforward
comparison with the parameters employed by other models in the literature.

Within the OME model, the decomposition of the weak interaction potential
for the ΛN → nN transition is given in the following way:

V (~r) =
∑
i

Vi(~r) =
∑
i

∑
α

V (i)
α (r)ÔαÎ

(i)
α , (39)

where the index i runs over all exchanged mesons and the index α over the
different spin–space operational structures. The spin operators Ôα are:

Ôα =


1̂ central spin-independent (C)
~σ1 · ~σ2 central spin-dependent (SS)
S12(~r) = 3(~σ1 · ~r)(~σ2 · ~r)− ~σ1 · ~σ2 tensor (T)
~σ2 · ~r PV for pseudoescalar mesons
(~σ1 × ~σ2) · ~r PV for vector mesons

and the isospin operators Î
(i)
α are:

Î(i)
α =

 1̂ isoescalar mesons (η, ω)
~τ1 · ~τ2 isovector mesons (π, ρ)

linear combination of 1̂ and ~τ1 · ~τ2 isodoublet mesons (K,K∗)
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Figure 1: Feynman diagrams corresponding to the weak ΛN → NN transition
amplitudes mediated by the exchange of the non–strange (π, ρ, η, ω) and the
strange (K,K∗) mesons. The circle and the square stand for a weak and a
strong vertex, respectively.

The different pieces of V
(i)
α can be written in terms of Yukawa or Yukawa–like

functions multiplied by certain factors, K
(i)
α , which contain weak and strong

coupling constants:

V
(i)
C (r) = K

(i)
C

exp−µir

4πr
≡ K(i)

C VC(r, µi) , (40)

V
(i)
SS (r) = K

(i)
SS

1

3

[
µ2
i

exp−µir

4πr
− δ(r)

]
≡ K(i)

SSVSS(r, µi) , (41)

V
(i)
T (r) = K

(i)
T

1

3
µ2
i exp−µir

(
1 +

3

µir
+

3

(µir)2

)
≡ K(i)

T VT (r, µi) , (42)

V
(i)
PV (r) = K

(i)
PV µi exp−µir

(
1 +

1

µir

)
≡ KPV VPV (r, µi) , (43)

where µi denotes the mass of the different mesons. The expressions for K
(i)
α are

given in [10].

19



Figure 2: Uncorrelated [(a) and (b)] and correlated [(c)] two–pion–exchange
Feynman diagrams corresponding to the weak ΛN → NN transition ampli-
tudes. The circle and the square stand for a weak and a strong vertex, respec-
tively.

This OME potential is supplemented by chirally motivated contributions of
uncorrelated (2π) and correlated (2π/σ) two–pion–exchange mechanism. The
relevant diagrams are shown in Fig. 2. The two–pion–exchange (TPE) interac-
tion takes place only in the scalar–isoscalar channel. This is due to the fact that
the ρ meson is already represented in the OME mechanism and, therefore, the
vector–isovector channel (2π/ρ) is not implemented here. Also, the intermedi-
ate NN states are not considered in these diagrams to avoid double counting
when including the NN strong correlations. Furthermore, we note that the full
TPE potential is of pure parity–conserving nature.

Once the expression for the potential is known, what remains to be done in
Eq. (38) is to perform a partial–wave expansion of the final wave function, so
that the relative ΛN → nN amplitude trel in Eq. (38) can be written as follows:

trel =
1√
2

∑
i

∑
α

∑
LL′J

4πi−L
′
〈LMLSMS |JMJ〉YLML

(k̂r)

× 〈LrMLr
S0MS0

|JMJ〉〈(L′S)JMJ |Ôα|(LrS0)JMJ〉

× 〈TT3|Îiα|T0T30
〉
∫
r2drΦ∗

J

LL′(kr, r)V
i
α(r)

× ΦrelNrLr
(r/
√

2b) ,

(44)

where the function Φ∗
J

LL′(kr, r) is the scattering solution of the two final nucleons
moving under the influence of the strong interaction. The explicit expressions for
the expectation value of the spin–space piece of Ôα can be found in Appendix B.
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2.3 Decay rate asymmetry

Λ–hypernuclei can be created with a certain degree of polarization depending on
the kinematic conditions employed in the production reactions. This means that
the hypernucleus has a total angular momentum (JI) in a preferred direction
in space, known as polarization axis. JI comes from the addition between
the spin of the Λ–particle and the nuclear core angular momentum, JC . The
two dominant decay mechanisms are the proton– and neutron–induced decay,
where we have added a vector index in the Λ to indicate that the hypernucleus
is polarized:

~Λp→ np

~Λn→ nn

Protons from the proton–stimulated decay are emitted asymmetrically with re-
spect the polarization axis of Λ–hypernuclei. We denote as θ the angle between
the direction of the outgoing protons and the polarization axis. This asymmet-
ric emission means that the number of protons emerging in a certain direction
(θ) is different from the number of protons in the opposite direction (180◦+ θ).
As we will see later, this asymmetry comes from the interference between the
PC and PV amplitudes. Therefore, the study of polarized hypernuclei provides
us with extra information on the non–mesonic weak decay, such as the relative
phases between PC and PV amplitudes, which puts additional restrictions to the
theoretical models. In principle, there is also an asymmetry with respect to the
neutrons emitted in the proton–stimulated decay, but its measurement is hard
to reach. In addition to this, it should be pointed out that there is no neutron–
asymmetry from neutron–stimulated decay because one can not distinguish the
two final neutrons.

From now on we will focus on the asymmetry generated in the accessible ~Λp→
np process. It is obtained from the intensity of protons emitted along a direction
forming an angle θ with respect to the hypernuclear polarization axis [37]:

I(θ, JI) ≡ Tr[Mρ(JI)M†](θ) =
∑

F,M,M ′

〈F ; θ|M|I; JI ,MI〉

× 〈I; JI ,MI |ρ(JI)|I; JI ,M
′〉〈I; JI ,M

′|M†|F ; θ〉 ,
(45)

where M is the operator describing the elementary transition, |I; JI ,MI〉 is
the initial hypernuclear state, MI denoting the third component of the total
hypernuclear spin JI and |F ; θ〉 is the final state, which is composed by the
residual nucleus and the two outgoing nucleons, and ρ(JI) is the density matrix
of the polarized hypernucleus. For pure vector polarization perpendicular to
the plane of the n(K+, π+)Λ reaction producing the hypernucleus, the density
matrix is given in Ref. [7] as:

ρ(J) =
1

2J + 1
[1 + Py(JI)Sy

3

JI + 1
] , (46)
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where Py is the hypernuclear polarization, which depends on the kinematics
and dynamics of the hypernuclear production reaction, and Sy is the J–spin
operator along the polarization axis. From Eq. (46) one can obtain the proton
distribution in the following form:

I(θ, JI) = I0(JI)[1 +A(θ, JI)] = I0(JI)[1 + Py(JI)Ap(θ, JI)] , (47)

where I0 is the isotopic intensity for an unpolarized hypernucleus and Ap is the
hypernuclear asymmetry parameter which read:

I0(JI) =
Tr(MM†)

2JI + 1
≡ Γp , (48)

A(θ, JI) = Py(JI)
3

JI + 1

Tr(MSyM†)(θ)
Tr(MM†)

. (49)

It is clear that, by construction, we can write down two properties of I(θ, JI)
and A(θ, JI). ∫ π

0

dθI(θ, JI) = I0(JI) . (50)∫ π

0

dθA(θ, JI) = 0 . (51)

From the last equation, the function A(θ, JI) can be expressed as a series of odd
powers of cos θ. If we truncate to first order in the expansion, we have:

A(θ, JH) = C cos θ . (52)

It is clear that if the hypernucleus is generated without polarization, there is no
asymmetry in the protons emitted in proton-stimulated decay. This means that
A(θ, JH) = 0. For this reason, and as shown in Eq. (47), the constant C can be
expressed as a product of the hypernucleus polarization, Py times a remainder
quantity, called by exclusion as the asymmetry parameter, Ap.

C ≡ PyAp . (53)

Using these considerations, the Eq. (47) is rewritten as follows:

I(θ, JI) = I0(JI)[1 +A(θ, JI)] = I0(JI)[1 + Py(JI)Ap(JI) cos(θ)] . (54)

The shell model weak–coupling scheme allows rewriting the asymmetry in terms
of the polarization of the hyperon spin, pΛ and the so–called intrinsic asymmetry
parameter, aΛ:

A = PyAp cos(θ) = pΛaΛ cos(θ) . (55)

This is as if we considered that the process responsible for the appearance of
the asymmetry is the elementary process ~Λp → np taking place in the nuclear
medium. In other words, the polarization and the asymmetry parameter of
the entire hypernucleus are referred to as those of the elemental decay process.
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This representation implies that the asymmetry parameter should be practically
independent of the decaying hypernucleus. Several calculations [2, 6, 10, 11,
15, 17, 37, 42] of the asymmetry parameter of different hypernuclei show only
moderate dependence on the hypernuclear structure. Although this property is
also supported by experimental data [28], one has to note that there are still
large error bars.

Using the weak–coupling scheme, the relation between the hypernuclear and the
Λ polarization is:

pΛ =

{
− J
J+1Py if J = JC − 1

2

Py if J = JC + 1
2

(56)

From Eq. (55) it then follows:

aΛ =

{
−J+1

J Ap if J = JC − 1
2

Ap if J = JC + 1
2

(57)

where aΛ can be reinterpreted as an intrinsic value of the process as mentioned
above. Note that, for example, in case of 5

Λ
~He, J = 1/2 and JC=0, the intrinsic

asymmetry parameter is aΛ = Ap(
5
Λ
~He). Note also that aΛ = Ap = 0 if J = 0. In

relation to this last result, the four–body hypernuclei have J = 0 and, therefore,
the asymmetry parameter vanish in this approach.

In Appendix C one can find the expression of the asymmetry parameter for
s–shell hypernuclei in terms of the elementary amplitudes appearing in Table 1.
From all these considerations we can rewrite Eq. (54) as:

I(θ, JI) = I0(JI) [1 + pΛaΛ cos θ] . (58)

Experimentally, the asymmetry is determined by measuring I(0◦) and I(180◦)
as:

aΛ =
1

pΛ

I(0◦, JI)− I(180◦, JI)

I(0◦, JI) + I(180◦, JI)
. (59)
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3 Block–Dalitz model for s–shell hypernuclei

An approach was proposed by Block and Dalitz [43] which allows one to de-
termine the neutron– and proton–induced decays in terms of a few rates for
the elementary process ΛN → nN in s–shell hypernuclei. As we will see in this
chapter, the relationship between this elementary rates is affected by the isospin
change involved in the non–mesonic weak decay. In principle, both ∆I = 1/2
and ∆I = 1/3 transitions are possible, but most of the models impose the phe-
nomenological ∆I = 1/2 rule observed in hadronic weak processes. In previous
works these rates were determined phenomenologically by fitting the available
data on s–shell hypernuclei for total and partial decay widths [44–49]. The
usual outcome was the large error bars prevent from drawing any definitive
conclusions. For this reason, more precise measurements of the decay rates are
necessary, especially for four–body hypernuclei, in order to obtain reliable con-
clusions on the identification of possible violation of the ∆I = 1/2 selection rule.
Fortunately, an upcoming experiment at J-PARC will measure these decay rates
more precisely [50].

The Block–Dalitz approach obtains the decay rates employing simple arguments.
In terms of classical physics, the interaction probability of a particle which
crosses an infinite homogeneous system is dP = ds/λ, where ds is the thickness,
λ = 1/(σρ) is the mean free path of this particle, σ is the cross section and ρ is
the particle density of the homogeneous system. In this way, one can evaluate
the width for the non–mesonic weak decay by:

ΓNM =
dPΛN→nN

dt
=

ds

λdt
= σρ

ds

dt
= σρv , (60)

where v is the speed of Λ particle in the rest frame of the system. Within a
semiclassical approximation for a finite nuclei one can evaluate the width by
performing an average over spin and isospin states. In addition, if one assumes
the zero range approximation of the non–mesonic process, the decay rate is
proportional to the overlap between the Λ and nuclear densities [2].

ΓNM = 〈σv〉
∫
d(~r)ρ(~r) | ψΛ(~r) |2= 〈σv〉ρA , (61)

being ρA the nuclear density normalized to the mass number A = Z + N at
the position of the Λ particle and ψΛ(~r) is the Λ wave function normalized to
unity. Consequently, in the Block and Dalitz approach, the non–mesonic width
ΓNM = Γn + Γp of the hypernucleus A+1

Λ Z turns out to be factorized into a
density–dependent factor (ρA) and a term incorporating the dynamics of the
non–mesonic decay [43].

Γ(A+1
Λ Z) = R(A+1

Λ Z)ρA =
NRn(A+1

Λ Z) + ZRp(
A+1
Λ Z)

A
ρA , (62)

where R denotes a rate (per unit nucleon density at the Λ position) average
over spin and isospin and is given in the second equality in Eq. (62) in terms of

24



spin–averaged rates Rn and Rp for the neutron– and proton–induced processes,
respectively.

For s–shell hypernuclei the ΛN pair is in the L = 0 relative orbital angular
momentum state and the possible ΛN → nN transition channels are given in
Table 1. Now, we may introduce the Block–Dalitz rates RNJ for spin–singlet
(J = 0 ⇒ Rn0 and Rp0) and spin–triplet (J = 1 ⇒ Rn1 and Rp1) elementary
ΛN → nN interactions in terms of the rates associated to the partial–wave
transitions and the elementary amplitudes of Table 1 in such a way that:

Rn0 = Rn(1S0) +Rn(3P0) = |an|2 + |bn|2 , (63)

Rn1 = Rn(3P1) = |fn|2 ,
Rp0 = Rp(

1S0) +Rp(
3P0) = |ap|2 + |bp|2 ,

Rp1 = Rp(
3S1) +Rp(

3D1) +Rp(
1P1) +Rp(

3P1)

= |cp|2 + |dp|2 + |ep|2 + |fp|2 .

The quantum numbers of the final state being reported in brackets. Observe
that the R is the spin–isospin average of the RNJ rates. The non–mesonic decay
widths of s–shell hypernuclei are thus easily derived using angular momentum
coupling as one can see in Appendix A:

ΓNM(3
ΛH) = (3Rn0 +Rn1 + 3Rp0 +Rp1)

ρ2

8
, (64)

ΓNM(4
ΛH) = (Rn0 + 3Rn1 + 2Rp0)

ρ3

6
, (65)

ΓNM(4
ΛHe) = (2Rn0 +Rp0 + 3Rp1)

ρ3

6
, (66)

ΓNM(5
ΛHe) = (Rn0 + 3Rn1 +Rp0 + 3Rp1)

ρ4

8
. (67)

In these relations it has been taken into account that the total hypernuclear
angular momentum is JI = 0 for 4

ΛH and 4
ΛHe and JI = 1/2 for 3

ΛHe and 5
ΛHe [5].

Note that, for both 4
ΛH and 4

ΛHe rates, the same density factor ρ3 has been used.
We observe, for example, that only the spin–singlet interactions is effective for
neutron–induced transitions in 4

ΛHe whereas only the proton–induced ones for
4
ΛH.

Within the Block–Dalitz model the intrinsic Λ asymmetry parameter is given
by

aΛ =
2
√

3Re
[
ape
∗
p − 1√

3
bp(c

∗
p −
√

2d∗p) + fp(
√

2c∗p + d∗p)
]

|ap|2 + |bp|2 + 3(|cp|2 + |dp|2 + |ep|2 + |fp|2)
, (68)

as is shown in detail in Appendix C. Although the above equation is only valid
for the ~Λp → np free space process, it makes evident that the asymmetry is
due to the interference between parity–conserving (ap, cp and dp) and parity–

violating (bp, ep and fp) ~Λp → np elementary amplitudes with the same value
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of np intrinsic spin S. As we shall see in the following, this expression has an
approximate validity for the proton–induced decay of 5

ΛHe.

As we discussed at the beginning of this section, the Block–Dalitz phenomeno-
logical model (i.e, Eqs. (64)–(67)) makes use of a few assumptions, which should
be verified before one employs this model for predictions or extrapolations to
other hypernuclei. The decays are treated incoherently on the stimulating nucle-
ons and a local point–like Λ–N interaction is assumed, thus interference effects
originated from antisymmetrization of the two–nucleon final state commented
in Section 2.1.4, are neglected. The use of a point–like interaction allows to
write the decay rates in a simple and factorized form as in Eq. (62), although
it could be an inadequate approximation since the long–range meson exchange
(via pion and kaon mesons) gives a dominant contribution to the non–mesonic
decay [11]. Moreover, the calculation employs an average nuclear density at
the position of the Λ particle (here, the same density is employed for 4

ΛHe and
4
ΛH). In addition, processes induced by two nucleons or more are not taken
into account in this model, although their relevance has been established both
theoretically [20, 51, 52] and experimentally [30–32]. Despite of all of this, one
could argue that some assumptions can be expected to be quite satisfactory.
First, hypernuclear structure effects are expected to be unimportant due to the
high momentum of the outgoing nucleons. Secondly, the experimental data
are still quite limited and not precise since it is difficult to detect the prod-
ucts of the non–mesonic decay, especially for the neutron–induced one. This
would imply that the above approximations could be enough for interpreting
the present data. Finally, multinucleon induced decays are quite negligible in
the light system studied here. Section 4.1 will be devoted study the reliability
of Block–Dalitz approach by means of a finite nucleus calculation of the RNJ
elementary rates.

The non–mesonic weak transition occurs mainly with a ∆I = 1/2 isospin change.
If we assume pure ∆I = 1/2 transitions, the following relations hold among the
rates and elementary amplitudes for transitions to If = 1 states:

Rn(1S0) = 2Rp(
1S0) , Rn(3P0) = 2Rp(

3P0) , Rn(3P1) = 2Rp(
3P1) . (69)

an =
√

2ap , bn =
√

2bp , fn =
√

2fp . (70)

These relations have been obtained from the Clebsch–Gordan coefficients and
the Wigner–Eckart theorem. By definition, we may assume that Rn(2S+1LJ)
and Rp(

2S+1LJ) differ only by the isospin factors (for a given 2S+1LJ). The

∆I = 1/2 isospin change is represented by the T̂ J1/2 operator with ∆T J3 = 91/2.

Then, for instance, the spin–averaged rates for the 1S0 → 1S0 neutron–induced
transition is

Rn(1S0) =| 〈nn | T̂ J=0
1/2 | Λn〉 |

2=| 〈1 9 1 | T̂ J=0
1/2 |

1

2
9

1

2
〉 |2

=| 〈1
2
9

1

2

1

2
9

1

2
| 1 9 1〉〈1 || T̂ J=0

1/2 ||
1

2
〉 |2=| 〈1 || T̂ J=0

1/2 ||
1

2
〉 |2 ,

(71)
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and for the proton–induced is

Rp(
1S0) =| 〈np | T̂ J=0

1/2 | Λp〉 |
2=| 〈10 | T̂ J=0

1/2 |
1

2

1

2
〉 |2

=| 〈1
2

1

2

1

2
9

1

2
| 10〉〈1 || T̂ J=0

1/2 ||
1

2
〉 |2=

1

2
| 〈1 || T̂ J=0

1/2 ||
1

2
〉 |2 .

(72)

Note that, although the np pair can be either in isospin If = 0 and If = 1,
due to the antisymmetry issues summarized in Eq. (22), the 1S0 np state is an
isotriplet state (If = 1) with I3 = 0 (via Eq. (21)). Then, the ratio is

Rn(1S0)

Rp(1S0)
= 2 . (73)

In consequence, the following expressions are valid

Rn0 = Rn(1S0) +Rn(3P0) = 2Rp(
1S0) + 2Rp(

3P0) , (74)

Rn1 = Rn(3P1) = 2Rp(
3P1) .

The isospin–dependence of the ΛN → nN process is summarized by the follow-
ing ratios:

Rn0

Rp0
=

2
(
Rp(

1S0) +Rp(
3P0)

)
Rp(1S0) +Rp(3P0)

= 2 , (75)

Rn1

Rp1
=

2Rp(
3P1)

Rp(3S1) +Rp(3D1) +Rp(1P1) +Rp(3P1)
≤ Rn0

Rp0
= 2 . (76)

Therefore,

Rn1

Rp1
≤ Rn0

Rp0
= 2 (77)

The procedure is analogous in case of considering that the non–mesonic weak
decay occurs with pure ∆I = 3/2 isospin change. The transition operator will
be T̂ J3/2 with ∆T J3 = 91/2. The following relations hold for a pure ∆I = 3/2
transitions.

Rn(1S0) =
1

2
Rp(

1S0) , Rn(3P0) =
1

2
Rp(

3P0) , Rn(3P1) =
1

2
Rp(

3P1) .(78)

an =

√
1

2
ap , bn =

√
1

2
bp , fn =

√
1

2
fp . (79)

In a consequence of above expressions, the factor 2 in Eq. (77) are replaced by
1/2 and one can obtains:

Rn1

Rp1
=
Rn0

Rp0
=

1

2
(80)

Now, let us show how the previous inequalities are modified in case of the
transition does not occur purely. This implies that the transition occurs with a
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mixture between ∆I = 1/2 and ∆I = 3/2 isospin change. The study proceeds
by introducing the ratios:

δ0 =
〈If = 1||T̂ J=0

3/2 ||Ii = 1
2 〉

〈If = 1||T̂ J=0
1/2 ||Ii = 1

2 〉
≡
AJ=0

3/2 (If = 1)

AJ=0
1/2 (If = 1)

(81)

δ1 =
〈If = 1||T̂ J=1

3/2 ||Ii = 1
2 〉

〈If = 1||T̂ J=1
1/2 ||Ii = 1

2 〉
≡
AJ=1

3/2 (If = 1)

AJ=1
1/2 (If = 1)

(82)

between the ∆I = 3/2 and ∆I = 1/2 ΛN → nN reduced transition ampli-
tudes with total angular momentum J = 0 and J = 1 for If = 1 final state,
respectively, and

ε =
〈If = 0||T̂ J=1

1/2 ||Ii = 1
2 〉

〈If = 1||T̂ J=1
1/2 ||Ii = 1

2 〉
≡
AJ=1

1/2 (If = 0)

AJ=1
1/2 (If = 1)

(83)

between the ∆I = 1/2 transition amplitudes with total angular momentum J =
1 having isospin If = 0 and If = 1 in the final state. Note that, in this case, the
reduced transition amplitude AJ=1

1/2 (If = 0) contains the sum of all contributions

with If = 0, meaning |AJ=1
1/2 (If = 0)|2 ≈ R(3S1) + R(3D1) + R(1P1) while

AJ=1
1/2 (If = 1) only contains the R(3P1) contribution.

In general, we may define the transition operator T̂ J as a sum of ∆I = 1/2 and
∆I = 3/2 contributions, T̂ J = T̂ J1/2 + T̂ J3/2. Thus, one gets:

Rn0

Rp0
=

δ2
0 − 4δ0 + 4

2δ2
0 + 4δ0 + 2

, (84)

Rn1

Rp1
=

δ2
1 − 4δ1 + 4

2δ2
1 + 4δ1 + 2 + 2ε2

, (85)

where Eq. (84) has been obtained from:

Rn0 =

∣∣∣∣〈1 9 1 | T̂ J=0 | 1

2
9

1

2
〉
∣∣∣∣2 =

∣∣∣∣〈1 9 1 | T̂ J=0
1/2 |

1

2
9

1

2
〉+ | 〈1 9 1 | T̂ J=0

3/2 |
1

2
9

1

2
〉
∣∣∣∣2

=

∣∣∣∣〈12 9
1

2

1

2
9

1

2
| 1 9 1〉AJ=0

1/2 (If = 1) + 〈1
2
9

1

2

3

2
9

1

2
| 1 9 1〉AJ=0

3/2 (If = 1)

∣∣∣∣2
=

∣∣∣∣AJ=0
1/2 (If = 1)− 1

2
AJ=0

3/2 (If = 1)

∣∣∣∣2 =
∣∣∣AJ=0

1/2 (If = 1)
∣∣∣2 ∣∣∣∣1− δ0

2

∣∣∣∣2 ,
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Rp0 =

∣∣∣∣〈10 | T̂ J=0 | 1

2

1

2
〉
∣∣∣∣2 =

∣∣∣∣〈10 | T̂ J=0
1/2 |

1

2

1

2
〉〉
∣∣∣∣2 +

∣∣∣∣〈10 | T̂ J=0
3/2 |

1

2

1

2
〉
∣∣∣∣2

=

∣∣∣∣〈12 1

2

1

2

1

2
| 10〉AJ=0

1/2 (If = 1) + 〈1
2

1

2

3

2

1

2
| 10〉AJ=0

3/2 (If = 1)

∣∣∣∣2
=

∣∣∣∣ 1√
2
AJ=0

1/2 (If = 1) +
1√
2
AJ=0

3/2 (If = 1)

∣∣∣∣2
=

1

2

∣∣∣AJ=0
1/2 (If = 1)

∣∣∣2 |1 + δ0|2 ,

whereas Eq. (85) by means of the following steps:

Rn1 =

∣∣∣∣〈1 9 1 | T̂ J=1 | 1

2
9

1

2
〉
∣∣∣∣2 =

∣∣∣∣〈1 9 1|T̂ J=0
1/2 |

1

2
9

1

2
〉+ 〈1 9 1|T̂ J=0

3/2 |
1

2

1

2
〉
∣∣∣∣2

=

∣∣∣∣〈12 9
1

2

1

2
9

1

2
| 1 9 1〉AJ=1

1/2 (If = 1)) + 〈1
2
9

1

2

3

2
9

1

2
|1 9 1〉AJ=1

3/2 (If = 1)

∣∣∣∣2
=

∣∣∣∣AJ=1
1/2 (If = 1)− 1

2
AJ=1

3/2 (If = 1)

∣∣∣∣2 =
∣∣∣AJ=1

1/2 (If = 1)
∣∣∣2 ∣∣∣∣1− δ1

2

∣∣∣∣2 ,

Rp1 =

∣∣∣∣〈00 | T̂ J=1 | 1

2

1

2
〉
∣∣∣∣2 +

∣∣∣∣〈10 | T̂ J=1 | 1

2

1

2
〉
∣∣∣∣2

=

∣∣∣∣〈00 | T̂1/2 + T̂3/2 |
1

2

1

2
〉
∣∣∣∣2 +

∣∣∣∣〈10 | T̂1/2 + T̂3/2 |
1

2

1

2
〉
∣∣∣∣2

=

∣∣∣∣〈00|T̂1/2|
1

2

1

2
〉+ 〈00|T̂3/2|

1

2

1

2
〉
∣∣∣∣2 +

∣∣∣∣〈10|T̂1/2|
1

2

1

2
〉+ 〈10|T̂3/2|

1

2

1

2
〉
∣∣∣∣2

=

∣∣∣∣〈12 1

2

1

2
9

1

2
| 00〉AJ=1

1/2 (If = 0)

∣∣∣∣2
+

∣∣∣∣〈12 1

2

1

2
9

1

2
| 10〉AJ=1

1/2 (If = 1) + 〈1
2

1

2

3

2
9

1

2
| 10〉AJ=1

3/2 (If = 1)

∣∣∣∣2
=

∣∣∣∣ 1√
2
AJ=1

1/2 (If = 0)

∣∣∣∣2 +

∣∣∣∣ 1√
2

(AJ=1
1/2 (If = 1) +AJ=1

3/2 (If = 1))

∣∣∣∣2
=

1

2

∣∣∣(AJ=1
1/2 (If = 1)

∣∣∣2 (|ε|2+ | 1 + δ1 |2
)
.

By using Eqs. (64)–(67) and Eq. (84)–(85) together with the available data of
decay rates one can extract the spin and isospin structure of the ΛN → nN
interaction without needing a detailed of knowledge of the hypernuclear struc-
ture or the weak transition interaction. Such an approach had been employed
in various works [44–48]. The subsequent analysis of Ref. [49], performed with
the most recent available data at that moment, was not able to provide clearer
indications either on the spin–isospin structure of the non–mesonic weak decay
and the possible violation of the ∆I = 1/2 rule.
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Let us be more specific. Eqs. (84)–(85) provide a isospin–dependence of the
Block–Dalitz rates for the ΛN → nN process. Starting from Eqs. (64)-(67), the
relation between spin–singlet and spin–triplet decay rates can be rewritten in
terms of the measurable non–mesonic decay widths:

Γn(3
ΛH)

Γp(3
ΛH)

=
3Rn0 +Rn1

3Rp0 +Rp1
,

Γn(4
ΛH)

Γp(4
ΛH)

=
Rn0 + 3Rn1

2Rp0
(86)

Γn(4
ΛHe)

Γp(4
ΛHe)

=
2Rn0

Rp0 + 3Rp1
,

Γn(5
ΛHe)

Γp(5
ΛHe)

=
Rn0 + 3Rn1

Rp0 +Rp1

By using the above equations, the isospin–dependence of the RNJ rates is sum-
marized by the ratios Rn0/Rp0 and Rn1

/Rp1
and it can be rewritten in terms

of the measurable decay rates of four–body 4
ΛH and 4

ΛHe hypernuclei.

Rn0

Rp0
=

Γn(4
ΛHe)

Γp(4
ΛH)

. (87)

Rn1

Rp1
=

2Γn(4
ΛH)− Γn(4

ΛHe)

2Γp(4
ΛHe)− Γp(4

ΛH)
. (88)

In addition, the spin–dependence of the RNJ rates can be summarized by the
following ratios:

Rn1

Rn0
=

1

3

(
2

Γn(4
ΛH)

Γn(4
ΛHe)

− 1

)
(89)

Rp1
Rp0

=
1

3

(
2

Γp(
4
ΛHe)

Γp(4
ΛH)

− 1

)
(90)

However, the amount of information that can be extract from the spin–isospin
dependence of the elementary non–mesonic process directly from the available
hypernuclear data will depend, to a large extend, on the reliability of the Block–
Dalitz model. The test of this model is discussed in Section 4.1.

To conclude, from the previous identities a few expressions that depend on the
Γp and Γn observables of the considered s–shell hypernuclei can be extracted.
These expressions turn out to be useful for testing the Block–Dalitz approach
and can be easily obtained from Eqs. (86). One finds:

Γn(4
ΛH)

Γp(4
ΛHe)

=
Γn(5

ΛHe)

Γp(5
ΛHe)

, (91)

Γp(
4
ΛH)

Γp(4
ΛHe)

≤ 2 , (92)

Γn(4
ΛHe)

Γn(4
ΛH)

≤ 2 , (93)

Γn(4
ΛHe)

Γp(4
ΛHe)

≤ 2
Γn(5

ΛHe)

Γp(5
ΛHe)

≤ 4
Γn(4

ΛH)

Γp(4
ΛH)

, (94)

where Eq. (91) could be directly verified if the data of Γn(4
ΛHe) and Γp(

4
ΛH)

were available. In particular, it provides an important restriction for four– and
five–body hypernuclei that can be directly checked by experimentalists.
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3.1 Pure ∆I = 1/2 and ∆I = 3/2 transitions

We have already mentioned the characteristics in case of assuming that the
ΛN → nN transition occurs with a ∆I = 1/2 and ∆I = 3/2 pure isospin
change. For pure ∆I = 1/2, Eqs. (84) and (85) taking δ0 = 0 and δ1 = 0 give:

Rn1

Rp1
=

2

1 + ε2
≤ Rn0

Rp0

= 2 . (95)

For pure ∆I = 3/2 one has (δ0 →∞ and δ1 →∞):

Rn1

Rp1
=
Rn0

Rp0
=

1

2
. (96)

We note that, although the ratio Rn0/Rp0 = 2 is implied by the ∆I = 1/2,
Rn0/Rp0 also equals 2 for a particular mixture of ∆I = 1/2 and ∆I = 3/2
transitions (using δ0 = −4 in Eq. (84)). Similarly occurs for pure ∆I = 3/2
transitions, with the ratio Rn0/Rp0 taking a value of 1/2 for a specific com-
bination of ∆I = 1/2 and ∆I = 3/2 transitions. Therefore, a result with
Rn0/Rp0 = 2 does not necessarily imply the validity of the ∆I = 1/2 rule,
although a result different from 2 would certainly imply the violability of this
selection rule.

Two equalities among the hypernuclear decay rates can be obtained from Eq. (95)
and Eqs. (64)–(67) for pure ∆I = 1/2 transitions:

Rn0

Rp0
≡ Γn(4

ΛHe)

Γp(4
ΛH)

= 2 , (97)

which can be equivalently rewritten as:

Rn0

Rp0
≡

Γn
Γp

(4
ΛH)

Γn
Γp

(4
ΛHe)

Γn
Γp

(5
ΛHe)

= 2 . (98)
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4 Results

4.1 On the reliability of the Block–Dalitz model

In this section we show how a finite calculation of four– and five–body hyper-
nuclei allows one to study the reliability of the Block–Dalitz approach.

First, we evaluate the amplitudes for the proton–induced non–mesonic decay of
5
ΛHe with the shell model calculation. The results are given in Table 3 and, as we
previously commented, we have employed two weak transition potentials: the
one–meson–exchange (OME) and one–meson–exchange plus two–pion–exchange
(OME+TPE) models that were built imposing the ∆I = 1/2 transitions rule.
The non–vanishing neutron–induced amplitudes, equally as in Eq. (70), verify:

An =
√

2Ap, Bn =
√

2Bp, Fn =
√

2Fp. (99)

Within the shell–model approach, the partial non–mesonic decay rates of 5
ΛHe

read:

Γn(5
ΛHe) = |An|2 + |Bn|2 + |Fn|2 = 2(|Ap|2 + |Bp|2 + |Fp|2) , (100)

Γp(
5
ΛHe) = |Ap|2 + |Bp|2 + |Cp|2 + |Dp|2 + |Ep|2 + |Fp|2 .

Before proceeding, it is necessary to discuss the difference between the uppercase
amplitudes shown here and the lowercase ones, which were introduced in the
previous chapter. The uppercase amplitudes include the effect of the realistic
NN final state interaction (FSI) and details of the hypernuclear structure. For
this reason, uppercase amplitudes are denoted as hypernuclear amplitudes. As
we commented in Section 2.1.4, FSI introduce a mixing between the 3S1 and 3D1

NN final state after the action of the weak transition because other transitions
mediated by the strong interaction are possible. This mixing only affects the
parity–conserving amplitudes Cp and Dp because the tensor component (∆L =
2) of the NN strong interaction couples relative angular states having the same
parity and total angular momentum. These amplitudes are modified as follows:

Cp = Cp(
3S1 → 3S1 → 3S1) + Cp(

3S1 → 3D1 → 3S1) ,

Dp = Dp(
3S1 → 3S1 → 3D1) +Dp(

3S1 → 3D1 → 3D1) ,

where the first arrow in each amplitude denotes the weak transition Λp → np
and the second one denotes the strong transition np→ np. It is expected that,
by introducing a TPE central potential such as the one of Ref. [11], their effects
would only be seen on the Ap and Cp amplitudes. However, as we can see in
Table 3, the TPE mechanism also modifies the tensor transition amplitude Dp

due to the mixing mentioned above.

In order to obtain a relationship between the elementary amplitudes of the
Block–Dalitz model (ap to fp) and the hypernuclear amplitudes (Ap to Fp), it
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Table 3: Proton–induced non–mesonic weak decay amplitudes for 5
ΛHe obtained

with the one–meson–exchange (OME) and one–meson–exchange plus two–pion–
exchange (OME+TPE) finite nucleus approach.

OME OME+TPE
Ap : 1S0 → 1S0 −0.1057 +0.0823
Bp : 1S0 → 3P0 +0.0056 +0.0056
Cp : 3S1 → 3S1 −0.1818 +0.0739
Dp : 3S1 → 3D1 −0.1483 −0.2772
Ep : 3S1 → 1P1 +0.4593 +0.4593
Fp : 3S1 → 3P1 +0.2045 +0.2045

is convenient to express Eq. (67) as follows:

Γn(5
ΛHe) = 2(|ap|2 + |bp|2 + |fp|2)

ρ4

8
, (101)

Γp(
5
ΛHe) = (|ap|2 + |bp|2 + |cp|2 + |dp|2 + |ep|2 + |fp|2)

ρ4

8
.

From Eq. (100) and (101) one immediately obtains the elementary Block–Dalitz
amplitudes from the calculated hypernuclear ones:

ap = Ap

√
8

ρ4
, bp = Bp

√
8

ρ4
, cp = Cp

√
8

3 ρ4
, (102)

dp = Dp

√
8

3 ρ4
, ep = Ep

√
8

3 ρ4
, fp = Fp

√
8

3 ρ4
.

Therefore, by construction, with the Block–Dalitz amplitudes of Eq. (102) one
reproduces the 5

ΛHe calculated decay rates, as can seen in Table 5 when compar-
ing the Block–Dalitz results with those of the OME (lines OME and OME–BD)
and the OME+TPE (lines OME+TPE and OME+TPE–BD) models.

The decay amplitudes of Table 3 together with the Block–Dalitz approach allows
one to extend the prediction to the other s–shell hypernuclei. The procedure is
the following: by comparing Eqs. (100) with Eq. (67) one first obtains the RNJ
rates and, subsequently, these rates are employed in Eqs. (64)–(66) to obtain
the decay widths for 3

ΛH, 4
ΛH and 4

ΛHe.

The results for the RNJ rates obtained with the OME and OME+TPE models
are reported in Table 4, where the value ρ4 = 0.045 fm−3, evaluated in Ref. [47]
through a quark model based Λ wave–function and a Gaussian nuclear density
that reproduced the experimental mean square radius of 4He, has been taken.

The isospin–dependence of the ΛN → nN process is summarized by the ratios
Rn0/Rp0 and Rn1/Rn1. The first one equals 2 for both models due to the
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Table 4: Elementary ΛN → nN Block–Dalitz decay rates RNJ (in units of
fm−3) obtained with the one–meson–exchange (OME) and one–meson–exchange
plus two–pion–exchange (OME+TPE) weak potential models enforcing the
∆I = 1/2 isospin rule.

Model Rn0 Rp0 Rn1 Rp1
Rn0

Rp0

Rn1

Rp1

Rn1

Rn0

Rp1
Rp0

OME 3.98 1.99 4.96 18.24 2.00 0.27 1.24 9.16
OME+TPE 2.42 1.21 4.96 19.86 2.00 0.25 2.05 16.41

enforced ∆I = 1/2 rule. The second one gives, via Eq. (95), |ε| = 2.53 for the
OME while |ε| = 2.65 for the OME+TPE potential. These results imply that, by
inspecting the definition of the parameter ε in Eq. (83), the ΛN → nN reduced
amplitudes into isospin 0 and 1 final states are of the same order of magnitude,
that is, the ∆I = 1/2 transition gives the same probability of leaving the final
state in a isosinglet–state or in a isotriplet–state. The spin–dependence of the
ΛN → nN process is instead summarized by the ratios Rn1/Rn0 and Rp1/Rp0.
We observe that the TPE terms contribute in the same amount in both ratios,
almost doubling their value compared to the OME result. This is due to the
fact that the TPE terms decrease the central amplitude Ap and, therefore,
reduce the value of Rn0 and Rp0 with the same factor. On the other hand, the
calculation predicts the dominance of the spin–triplet channels , especially for
the proton–induced transitions and the OME+TPE model.

As we previously mentioned, the RNJ ’s values adjusted for the five–body hy-
pernuclei 5

ΛHe allows one to obtain the Block–Dalitz decay rates to three– and
four–body hypernuclei. In this work we limit to 4

ΛH and 4
ΛHe since for hyper-

triton (3
ΛH) there is still no data available on non–mesonic decay rates, which

complicates the discussion of the results. Moreover, a realistic theoretical ap-
proach implies knowing the exact solution of a three–body problem. Let us
point out that the lifetime of the 3

ΛH has been a controversial observable for
many years, since several experiments have claimed it to be as much as 30%
shorter [53–55] than the lifetime of the free Λ, which is the value that one expects
due to loosely bound Λ in the hypertriton. Although some theoretical works
assigned a possible explanation to the effect of pion final–state interactions [56],
recent experiments [57] have obtained a value within 1σ of the free Λ lifetime,
being also compatible with the result obtained in a recent theoretical study
that employs state–of–the–art nuclear and hypernuclear hamiltonians, consid-
ers ΣNN admixtures in the wave–function and accounts for pion distortion [58].
The non–mesonic decay channels of the hypertriton have been theoretically es-
tablished to represent only about 1.5% of the total decay rate [59] and would
not help in explaining an hypothetical smaller lifetime than that of the free Λ.

The results for four–body hypernuclei have been obtained from Eqs. (65)–(66)
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and are summarized in Table 5 (lines OME–BD and OME+TPE–BD) together
with the results of the finite nucleus calculations (lines OME and OME+TPE).
The value employed for the density ρ3 (= 0.0259 fm−3) has been fixed in order
to reproduce the OME+TPE finite nucleus prediction for ΓNM(4

ΛHe).

From Table 5, we observe that the OME and OME+TPE models predict similar
values for both the Γn and Γp rates of 5

ΛHe, while this does not hold for Γn in
4
ΛHe and Γp in 4

ΛH. This is due to the fact that the OME+TPE model reduces
the spin–singlet rates Rn0 and Rp0 in relation to those of the OME model, while
taking approximately equal values for Rn1 and Rp1 in both models. The lack
of spin–triplet Rn1 contribution in Γn(4

ΛHe) and Rp1 in Γn(4
ΛH) but present in

Γp(
4
ΛHe) and Γp(

4
ΛH), respectively, aggravates the effect. On the contrary, this

does not take place in 5
ΛHe because the spin–triplet contributions dominate in

the rates Γn(5
ΛHe) and Γp(

5
ΛHe).

The decay rates obtained with the Block–Dalitz model for four–body hyper-
nuclei are very similar to the ones calculated within the finite nucleus calcu-
lation. Despite the fact that no assumptions were made on the dynamics of
the ΛN → nN interaction mechanism and in view of the results obtained in
Table 5, we conclude that the Block–Dalitz model can be used to infer directly
from the experimental hypernuclear rates the spin–isospin dependence of the
non–mesonic weak decay. We think that this result is especially important in
view of the forthcoming E22 J–PARC experiment [50].

In contrast to what is obtained for the decay rates, Table 5 shows that the Block–
Dalitz model is unable to reproduce the asymmetry parameter obtained with
the finite nucleus calculation for 5

ΛHe. We have seen that the two approaches
turn out to predict different contributions for all the interference terms building
up the asymmetry. Note that the asymmetry parameter aΛ in the Block–Dalitz
model is given by Eq. (68) which is strictly valid only for the ~Λp→ np free space
process and the effects of the FSI and the hypernuclear structure have not been
included.

In view of the results in Table 5, we may conclude that by looking at the
decay rates there is a reasonable agreement between the finite nucleus OME
and OME+TPE results and the available data. However, the OME badly fails
in reproducing the experimental asymmetry parameter for 5

ΛHe. We note that
the negative value of the asymmetry in the OME model comes mainly from the
interference between the Ap and Ep amplitudes and the sum of interferences
of the Fp amplitude with the Cp and Dp ones. On the other hand, the TPE
mechanism transforms the negative interferences ApEp, BpCp and FpCp into
positive contributions that cancel the negative interferences FpDp and BpDp.
In consequence, the large and negative aΛ in the OME model becomes a positive
value in the OME+TPE one.

The OME+TPE model corrects the OME defect to reproduce aΛ but it seems to
slightly imbalance the decay rates. Specifically, the OME+TPE model predicts
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Table 5: The s–shell hypernuclei non–mesonic weak decay rates (in units of the
free Λ decay width, ΓΛ = 3.8 × 109 s−1) and intrinsic asymmetry parameters
predicted by the finite nucleus calculation and the Block–Dalitz model (BD)
for the one–meson–exchange (OME) and one–meson–exchange plus two–pion–
exchange (OME+TPE) weak potential models. Results are shown for pure
∆I = 1/2 decays and by including ∆I = 3/2 contributions evaluated with the
factorization approximation of Ref. [35]. Comparison with the most recent data
is also given

5
ΛHe

Model Γn Γp ΓNM = Γn + Γp Γn/Γp aΛ

OME 0.106 0.319 0.425 0.332 -0.516

OME–BD 0.106 0.319 0.425 0.332 -0.605

OME ∆I = 3/2 0.086–0.145 0.308–0.367 0.425–0.453 0.236–0.468 -0.761– -0.162

OME+TPE 0.097 0.342 0.439 0.284 +0.070

OME+TPE–BD 0.097 0.342 0.439 0.284 +0.111

OME+TPE ∆I = 3/2 0.084–0.129 0.335–0.383 0.439–0.468 0.220–0.381 -0.249–+0.346

KEK–E462 [25,26] 0.424±0.024 0.45±0.11±0.03

KEK–E462 [28] 0.07±0.08+0.08
−0.00

4
ΛHe

Model Γn Γp ΓNM = Γn + Γp Γn/Γp

OME 0.032 0.248 0.280 0.128

OME–BD 0.034 0.245 0.279 0.140

OME ∆I = 3/2 0.004–0.086 0.241–0.282 0.276–0.328 0.014–0.359

OME+TPE 0.016 0.267 0.283 0.062

OME+TPE–BD 0.021 0.262 0.283 0.080

OME+TPE ∆I = 3/2 0.001–0.059 0.263–0.294 0.281–0.324 0.003–0.220

BNL07 [29] ≤ 0.035 0.180± 0.028 0.177± 0.029 ≤ 0.19

BNL98 [60] 0.04± 0.02 0.16± 0.02 0.20± 0.03 0.25± 0.13

KEK98 [61] 0.01+0.04
−0.01 0.16± 0.02 0.17± 0.05 0.06+0.28

−0.06

4
ΛH

Model Γn Γp ΓNM = Γn + Γp Γn/Γp

OME 0.080 0.016 0.095 4.992

OME–BD 0.081 0.017 0.099 4.734

OME ∆I = 3/2 0.066–0.107 2E-4–0.084 0.093–0.150 0.785–411.292

OME+TPE 0.072 0.008 0.080 8.764

OME+TPE–BD 0.075 0.010 0.086 7.264

OME+TPE ∆I = 3/2 0.064–0.093 0.001–0.064 0.079–0.128 1.008–117.359

BNL98 [60] 0.17± 0.11

a relative large value of Γp(
5
ΛHe), thus increasing the value of ΓNM(5

ΛHe) and
reducing Γn/Γp(

5
ΛHe) away from the central value of the experimental results.

However, one has to note that in several cases the available data are of limited
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precision, lacking or even missing. For this reason and despite the scarcity
experimental data, we may conclude that the OME+TPE model obtains results
approximately in accordance with the experimental data. Future experimental
data on the decay rates and Γn/Γp ratio, especially in four–body hypernuclei
will be of utmost importance in order to infer the best potential model for the
ΛN → nN weak decay. Furthermore, an improvement of experimental data
could represent an important advance on the discussion of the reliability of the
Block–Dalitz model, since as we previously commented, Eqs. (91)–(94) turn out
to be useful for testing it.

4.2 Four–body hypernuclei and test of the ∆I = 1/2

The results discussed so far have been obtained enforcing the ∆I = 1/2 isospin
rule for all the meson–baryon weak couplings involved in the meson–exchange
weak transition potential (OME and OME+TPE). As we previously mentioned,
the transition ΛN → nN is assumed to proceed via the exchange of virtual
pseudoescalar and vector mesons. The transition involves a weak (HWBB′M )
and a strong vertex (HSBB′M ). Now, we study possible contributions of the
∆I = 3/2 terms to the non–mesonic weak decay. The BB′M weak couplings for
the ∆I = 3/2 transitions are negligible for pions and this result is generalized to
the entire pseudoscalar octet. Therefore, the weak vertices that will be modified
to include the violation of the ∆I = 1/2 rule are ΛNρ, ΛNK∗ and ΛNω.
Unfortunately, these couplings are not known experimentally. They will be
obtained from the factorization approximation, in which each BB′M vertex is
factorized into the product of baryon–to–baryon and vacuum–to–meson matrix
elements of quarks currents. The ∆I = 3/2 ΛNω coupling vanishes in the
factorization approximation [62] . In order to take into account the limitations
of this approximation, we allow for a variation of up to a factor ±3 (sM ) in the
∆I = 3/2 ρ and K∗ couplings. Since the relative sign between the ∆I = 1/2
and ∆I = 3/2 amplitudes is not predicted within this approach we allow for
both possibilities. For details on the factorization approximation we refer to
Refs. [35, 62].

The results for the decay rates and the asymmetry parameter of four– and five–
body hypernuclei are also given in Table 5 for the OME and OME+TPE models
including ∆I = 3/2 contributions. The range of variability of the ∆I = 3/2
contributions depends on these scaling factors sρ and sK∗ ∈ [−3,+3]. From
Table 5 we see that the effect of ∆I = 3/2 contributions is moderate in all
the decay rates except for Γn(4

ΛHe), Γp(
4
ΛH) and the asymmetry parameter. A

comparison between our results and the experimental data can inform us about
possible violations of the ∆I = 1/2 rule. Unfortunately, as we mentioned in
Section 4.1, the available data are scarce or still present large experimental error
bars and therefore, it is not appropriate to draw conclusions yet. We hope that
the future E22 experiment at J–PARC [50] can obtain improved data, especially
for 4

ΛHe and 4
ΛH.
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Table 6: Predictions for the isospin ratios Rn0/Rp0 and corresponding value
of δ0 ≡ AJ=0

3/2 (If = 1)/AJ=0
1/2 (If = 1) obtained with the OME+TPE model

introducing different ∆I = 3/2 contributions. The value of δ0 is obtained from
Eq. (84).

sρ sK∗ Rn0/Rp0 δ0
−3 −3 0.18 0.88
−3 0 3.89 −0.21
−3 3 9.68 −0.44

0 −3 0.07 1.18
0 0 2 0
0 3 7.29 −0.38
3 −3 0.01 1.56
3 0 0.83 0.31
3 3 3.74 −0.20

We have seen in Section 3.1 that the available data of Γn(4
ΛHe) and Γn(4

ΛH) are
especially useful for testing the ∆I = 1/2 isospin selection rule. As we see in
Eq. (97), the ratio Rn0/Rp0 can be obtained by the OME and OME+TPE finite
nucleus calculation as Γn(4

ΛHe)/Γp(4
ΛH) and can be expressed, via Eq. (84),

as a function of the ratio δ0 of Eq. (81) between the ∆I = 3/2 and ∆I =
1/2 ΛN → nN reduced amplitudes for isospin 1 final states. In Table 6 we show
the numerical values of Rn0/Rp0 and δ0 obtained for the different contributions
of the sρ and sK∗ scaling factors. Pure ∆I = 1/2 transitions corresponds to
δ0 = 0, Rn0/Rp0 = 2 and sK∗ = sρ = 0. As we mentioned, Rn0/Rp0 = 2
does not imply that the ∆I = 1/2 rule is valid but deviations from this value
are clearly signal of the violation of this selection rule. By a simple inspection
of Figure 3 and Table 6 we conclude that the Rn0/Rp0 is very sensitive to the
∆I = 3/2 contributions.

We have seen that the ratio Rn1/Rp1 is not sensitive to the ∆I = 3/2 transitions.
This is due to the fact that the only transition with total spin J = 1 that leaves
the final state with If = 1 (note that T̂3/2 acting on an I = 1/2 initial state
cannot leave the final state at If = 0) is the one corresponding to the parity–
violating (PV) amplitude F , 1S1 → 3P1. The PV operator for vector mesons is
given in Section 2.2 and has the following form: ÔPV = (~σ1 × ~σ2) · ~r. With the
quantum numbers of the initial (Lr,S0) and final state (L,S) we see that the
vector mesons (ρ and K∗) do not contribute to this amplitude because the 9j
symbol appearing in this matrix element is equal to 0, so (See Appendix B.4):

〈(LS)JMJ |Ô|(LrS0)JMJ)〉 = 0 . (103)

This is the reason why the ratio Rn1/Rp1 is insensitive to 1S1 → 3P1 ∆I = 3/2
contributions. Based on these conclusions, we will study the degree of violation
of the ∆I = 1/2 rule in terms of the parameter δ0, which measures the strength
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of ∆I = 3/2 contributions.

Figure 3: The ratio Rn0/Rp0 is given versus δ0 = AJ=0
3/2 (If = 1)/AJ=0

1/2 (If = 1).

The following figures show the dependence of the the asymmetry parameter, the
total non–mesonic decay rate and the Γn/Γp ratio of 5

ΛHe on the amount of ∆I =
1/2 violation, measured by the parameter δ0, for the OME and OME+TPE
models. The experimental value together with the margin of error (faded grey
box) are also shown. In Figure 4 it can be seen that the asymmetry parameter
is very sensitive to the meson–exchange model. As we already commented,
the OME+TPE model transforms the large and negative value of the OME
model into a positive value, more aligned with the experimental result. The
∆I = 3/2 maintain the positive sign of the asymmetry parameter as long as
δ0 ≥ −0.17. Moreover, the asymmetry parameter becomes relatively sensitive
to δ0 and changes from −0.3 to 0.2 in OME+TPE and from −0.3 to −0.6 in
OME for the considered δ0 range.

As for the total rate ΓNM and Γn/Γp ratio, we observe in Figure 5 and Figure 6,
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Figure 4: The asymmetry parameter aΛ of 5
ΛHe obtained with OME and

OME+TPE model is given versus δ0 = AJ=0
3/2 (If = 1)/AJ=0

1/2 (If = 1). Faded
grey box represents the margin of error of the experimental central value repre-
sented by the continuous line (exp).

respectively, that they are relatively insensitive to the model, while Γn/Γp is
moderately sensitive to δ0.

To finalize, we conclude that more precise data of the hypernuclear decay ob-
servables are needed in order to learn about the details of the non–mesonic
weak decay. In this respect, the asymmetry parameter stands out for being
strongly sensitive to the model, and the present measured value has already
discarded some of the existing models in the literature. In order to learn about
the ∆I = 1/2 isospin rule, it is necessary to obtain Rn0/Rp0 with good preci-
sion because a deviation of the value 2 would indicate the presence of ∆I = 3/2
terms. Thanks to the Block–Dalitz model validated in the present work, we can
identify the former ratio to the ratio Γn(4

ΛHe)/Γp(4
ΛH), built up from the rates

of light hypernuclei. A forthcoming experiment in J–PARC that focuses in the
measurement of the non–mesonic rates of light hypernuclei will being new light
to this subject.
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Figure 5: The total decay rate ΓNM of 5
ΛHe obtained with OME and OME+TPE

model is given versus δ0 = AJ=0
3/2 (If = 1)/AJ=0

1/2 (If = 1). Faded grey box
represents the margin of error of the experimental central value represented by
the continuous line (exp).
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Figure 6: The ratio Γn/Γp of 5
ΛHe obtained with OME and OME+TPE model

is given versus δ0 = AJ=0
3/2 (If = 1)/AJ=0

1/2 (If = 1). Faded grey box represents the
margin of error of the experimental central value represented by the continuous
line (exp).
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5 Conclusions

The non–mesonic weak decay of s–shell hypernuclei is studied within a finite nu-
cleus approach, using a one–meson–exchange plus two–pion–exchange transition
potential.

In the Block–Dalitz phenomenological approach, a contact interaction between
the four–baryons is assumed and the nucleon final state interaction are ne-
glected. This approach together with the experimental data allows to extract
the spin and isospin behavior of the ΛN → nN interaction without detailing
the present interaction mechanisms. Through the finite nucleus calculation we
have demonstrated that, despite its simplicity, this approach allows one to set
certain conditions and equalities among the partial decay rates for s–shell hy-
pernuclei. Moreover, the Block–Dalitz approach allows one to deduce the four
ΛN → nN spin–isospin elementary RNJ rates, and, subsequently, these rates
are employed to obtain the decay widths of s–shell hypernuclei. Although this
approach predicts the experimental results of the decay rates to a certain degree
of agreement, this model is not able to reproduce the value of the asymmetry
parameter calculated with a finite nucleus model. FSI and details of the hyper-
nuclear structure make the Block–Dalitz formula an approximate result.

In view of the results obtained, the OME+TPE model modifies moderately the
partial decay rates but has a tremendous influence on the asymmetry parameter,
due to the change of sign of the negative interference terms ApEp, BpCp and
FpCp into positive contributions. Therefore, the OME+TPE model is able to
reproduce the positive value of the asymmetry parameter, although it slightly
increases Γp giving rise to values further away from the experimental ones. For
these reasons, more theoretical research is needed together with an improvement
of the experimental data, especially in the asymmetry parameter for 5

ΛHe and
partial decay rates for four–body hypernuclei, in order to establish the most
appropriate model for the non–mesonic weak decay.

The testing of the validity of the ∆I = 1/2 isospin rule has been studied by
analysing possible effects of ∆I = 3/2 contributions in the finite nucleus ap-
proach using the factorization approximation. We have seen that the ΛN → nN
spin–isospin channels with J = 0 (i.e., the Block–Dalitz ratio Rn0/Rp0) becomes
especially sensitive to the ∆I = 3/2 transitions. A more accurate experimental
determination of this ratio will be of utmost importance in helping to estab-
lish the degree of ∆I = 1/2 violation. On the other hand, the ratio Rn1/Rp1
is insensitive to these incorporations due to the fact that in the factorization
approximation the K∗ and ρ mesons do not contribute to 3S1 → 1P1, that is,
the only ∆I = 3/2 with J = 1 and If = 1. Although the asymmetry parame-
ter, Γn/Γp and the total width ΓNM for 5

ΛHe become relatively sensitive to the
∆I = 3/2 contributions, better data for these observables will help in evaluating
the validity of the ∆I = 1/2 rule. Unfortunately, the present data do not allow
us to establish the relevance of ∆I = 3/2 contributions. Hopefully, these results
together with forthcoming J–PARC data on the non–mesonic decay of Γn(4

ΛHe)
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and Γn(4
ΛH), will allow us to establish the degree of violation of the ∆I = 1/2

rule in non–mesonic weak decay of hypernuclei.
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Appendix A The Block–Dalitz non–mesonic de-
cay rates

In this appendix we review the methodology used to isolate the Block–Dalitz
amplitudes. First, to study the hypernucleus we will use the weak coupling
scheme. As we have already mentioned, the hypernuclear state is the result of
the coupling between the Λ and the nuclear core states:

|AΛ Z〉 =| Λ〉 ⊗ |Core〉 . (104)

To study the non–mesonic weak decay, it will be necessary to decouple one of
the nucleons of the core, leaving a residual (A− 1) nuclear system. Being both,
Λ and N , in the lower energy state of the ground state hypernucleus, only two
initial ΛN states are possible, the singlet 1S0 and the triplet 3S1 states.

A.1 3
ΛH rate

The hypertriton 3
ΛH is a bound state of a proton, a neutron and a Λ with total

spin JH = 1/2 and MH = ±1/2. The initial state is defined by

|3Λ H〉 ≡| 1

2
MH〉 =| Λ〉⊗ | np〉 . (105)

As we have already commented, antisymmetry of the final NN system imposes
some restrictions to the relevant quantum numbers. The np pair is in total
orbital momentum L = 0 and therefore, J = S. Due to the fact that the Λ is
an isosinglet state (tΛ = 0) the total isospin of the initial hypernucleus is the
same as the nuclear core. Experimentally, there is no evidence of Λnn and Λpp
bound states, which would imply that the ΛNN system could form an isotriplet
(I = 1) state. The np pair, and consequently the hypertriton, are in isospin
singlet states (I = 0). Therefore, only the S = 1 np state is allowed, leading
to a total spin and projection of J = 1 and M = ±1, 0. Taking JH = 1/2 and
jΛ = 1/2 we can write:

| 1

2
MH〉 =

∑
mΛ,M

〈1
2
mΛ 1 M | 1

2
MH〉 |

1

2
mΛ〉Λ | 1 M〉np . (106)

Without loss of generality, one can impose MH = + 1
2 and therefore,

MH = 1
2 = mΛ +M ⇒ mΛ = 1

2 −M

| 1

2

1

2
〉 =

∑
M

〈1
2

1

2
9M 1 M | 1

2

1

2
〉 | 1

2

1

2
9M〉Λ | 1 M〉np . (107)

Now, we decouple the np pair in the neutron and the proton states.

| 1 M〉np =
∑
mn

∑
mp

= 〈1
2
mn

1

2
mp |

1

2

1

2
〉 | 1

2
mn〉 |

1

2
mp〉 ,
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so, the initial hypernuclear state is rewritten as

| 1

2

1

2
〉 =

∑
M,mp

〈1
2

1

2
9M 1 M | 1

2

1

2
〉〈1

2
M 9mp

1

2
mp | 1 M〉

| 1

2

1

2
9M〉Λ |

1

2
M 9mp〉n |

1

2
mp〉p .

(108)

To describe the Λn → nn and Λp → np transitions, one needs to couple the Λ
with a neutron n and with a proton p, respectively. We will denote the coupled
ΛN state as |SiMi〉:

Λn :| 1

2

1

2
9M〉Λ |

1

2
M 9mp〉n =

∑
Si,Mi

〈1
2

1

2
−M 1

2
M −mp | SiMi〉 | SiMi〉Λn ,

(109)
where Mi = 1/2−M +M −mp = 1/2−mp ⇒ mp = 1/2−Mi.

Λp :| 1

2

1

2
9M〉Λ |

1

2
mp〉p =

∑
Si,Mi

〈1
2

1

2
9M

1

2
mp | SiMi〉 | Si Mi〉Λp ,

(110)
where Mi = 1/2−M +mp ⇒ mp = M +Mi − 1/2

Rewriting the sum in Eq. (108) one obtains:

| 1

2

1

2
〉 =

∑
Si

∑
Mi

∑
M

〈1
2

1

2
9M 1 M | 1

2

1

2
〉〈1

2
M +Mi 9 1

1

2

1

2
9Mi | 1 M〉

〈1
2

1

2
9M

1

2
M +Mi −

1

2
| Si Mi〉 | Si Mi〉Λn |

1

2

1

2
9Mi〉p ,

(111)

for the Λn→ nn transition and

| 1

2

1

2
〉 =

∑
Si

∑
Mi

∑
M

〈1
2

1

2
9M 1 M | 1

2

1

2
〉〈1

2

1

2
9Mi

1

2
M +Mi 9

1

2
| 1 M〉

〈1
2

1

2
9M

1

2
M +Mi 9

1

2
| Si Mi〉 | Si Mi〉Λp |

1

2

1

2
9Mi〉n ,

(112)

for the Λp→ np one.

We focus on the Λn → nn transition, but the Λp → np case proceeds analo-
gously. If Si = 0 ⇒ Mi = 0 and M = ±1, 0, the contribution to Eq. (111)
reads:
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∑
M

〈1
2

1

2
9M 1 M | 1

2

1

2
〉〈1

2
M 9

1

2

1

2

1

2
| 1 M〉

× 〈1
2

1

2
9M

1

2
M 9

1

2
| 0 0〉 | 0 0〉Λn |

1

2

1

2
〉p

= 〈1
2
− 1

2
1 1 | 1

2

1

2
〉〈1

2

1

2

1

2

1

2
| 1 1〉〈1

2
− 1

2

1

2

1

2
| 0 0〉 | 0 0〉Λn |

1

2

1

2
〉p

+ 〈1
2

1

2
1 0 | 1

2

1

2
〉〈1

2
− 1

2

1

2

1

2
| 1 0〉〈1

2

1

2

1

2
− 1

2
| 0 0〉 | 0 0〉Λn |

1

2

1

2
〉p

+ 〈1
2

3

2
1 − 1 | 1

2

1

2
〉〈1

2
− 3

2

1

2

1

2
| 1 − 1〉

× 〈1
2
− 1

2

1

2
− 3

2
| 0 0〉 | 0 0〉Λn |

1

2

1

2
〉p

=

(
−
√

2

3
· 1 · −1√

2
+

1√
3
· 1√

2
· 1√

2
+ 0

)
| 0 0〉Λn |

1

2

1

2
〉p

=

√
3

2
| 0 0〉Λn |

1

2

1

2
〉p .

(113)

Then, the probability is calculated as follows:

P =

∣∣∣∣〈12 1

2
| 1

2

1

2
〉
∣∣∣∣2
Si=0

=
3

4
. (114)

If Si = 1⇒Mi = ±1, 0 and M = ±1, 0, the contribution to Eq. (111) reads:∑
Mi

∑
M

〈1
2

1

2
9M 1 M | 1

2

1

2
〉〈1

2
M +Mi 9

1

2

1

2

1

2
9Mi|1 0〉

〈1
2

1

2
9M

1

2
M +Mi 9

1

2
|1 M〉|1 Mi〉|

1

2

1

2
9Mi〉 .

(115)

From the previous equation, we can extract some restrictions:

• The state | 12
1
2−Mi〉 implies that the Mi = −1 spin projection is forbidden.

• The CG coefficient 〈 12
1
2 −M 1 M | 12

1
2 〉 implies that the M = −1 spin

projection is forbidden.

• M +Mi − 1
2 = ± 1

2 ⇒ M +Mi = 1 or M +Mi = 0 .

To sum up, if Mi = 1⇒M = 0 and if Mi = 0⇒M = 0, 1. Therefore,
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2
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2

1

2
〉

=

(
1√
3
· 1√

2
· 1
)
| 1 1〉 | 1

2
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2
〉

+

(
−
√

2

3
· 1 · 1√

2
+

1√
3
· 1√

2
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2

)
| 1 0〉 | 1

2

1

2
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=
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6
| 1 1〉|1

2
− 1

2
〉 − 1

2
√

3
| 1 0〉 | 1

2

1

2
〉 .

(116)

The probability is:

P =

∣∣∣∣〈12 1

2
| 1

2

1

2
〉
∣∣∣∣2
Si=1

=

(
1√
6

)2

+

(
− 1

2
√

3

)2

=
1

4
. (117)

As a result, the n–induced and p–induced rates read:

Rn =
3

4
Rn0 +

1

4
Rn1 . Rp =

3

4
Rp0 +

1

4
Rp1 . (118)

Finally, if we go back to Eq. (62), the total width for 3
ΛH reads:

ΓNM(3
ΛH) =

NRn(3
ΛH) + ZRp(

3
ΛH)

2
ρ2 = (3Rn0 +Rn1 + 3Rp0 +Rp1)

ρ2

8
.

A.2 4
ΛH rate

The 4
ΛH is a bound state of a proton, two neutrons and a Λ with total spin JH = 0

and MH = 0. Assuming a weak coupling scheme, the initial hypernuclear state
is defined as

|4Λ H〉 ≡| 0 0〉 =| Λ〉⊗ | pnn〉 . (119)

The nuclear core composed by three baryons (nnp) can only be coupled to
Jc = 1/2 due to the total angular momentum conservation (0 = 1/2Λ⊗1/2nnp).
In consequence, the initial hypernuclear state can be treated as

| 0 0〉 =| 1

2
mΛ〉Λ |

1

2
MJ〉nnp , (120)

with 0 = mΛ +MJ .

To define the n–induced and the p–induced transitions, it is necessary to study
the nuclear core. Assuming the pairing hypothesis of nuclear physics, the nuclear
core can be treated as the coupling between nn and p states.

| nnp〉 =| nn〉⊗ | p〉 (121)
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As we already commented, the total antisymmetric wave function of the nn
pair requires J = 0. In accordance with these considerations, the initial state
described in Eq. (120) can be rewritten as

| 0 0〉 =| 1

2
mΛ〉Λ |

1

2
mp〉p | 0 0〉nn , (122)

where mΛ +mp = 0.

In the first place, we study the p–induced transition. Starting from Eq. (122),
the Λp→ np transition is described with the coupling between Λ and p states.
We will denote the Λp state with |Si Mi〉. The angular momentum conservation
requires that the Λp pair is in a spin–singlet state (Si = 0) in order to satisfy
JH = 0. As a consequence, the probability of this configuration is

P (Si = 0) = 1 . (123)

In the second place, we study the n–induced process. Starting from the initial
state defined in Eq. (122), the procedure will be as follows. To describe the
Λn → nn transition it is necessary to uncouple the nn pair and subsequently,
to define the |SiMi〉 state coupling the Λ with one n:

| 0 0〉nn =
∑
mnm′n

〈1
2
mn

1

2
m′n | 0 0〉 | 1

2
mn〉n |

1

2
m′n〉n

=
∑
mn

〈1
2
mn

1

2
9mn | 0 0〉 | 1

2
mn〉n |

1

2
−mn〉n ,

(124)

where 0 = mn +m′n ⇒ m′n = −mn .

Now, we couple the Λn pair in a |SiMi〉 state.

| 1

2
mΛ〉Λ |

1

2
mn〉n =

∑
SiMi

〈1
2
mΛ

1

2
mn | Si Mi〉 | Si Mi〉Λn . (125)

As a result, the 4
ΛH hypernuclear state can be written as:

| 0 0〉 =
∑
mn

∑
SiMi

〈1
2
mn

1

2
−mn | 0 0〉〈1

2
mΛ

1

2
mn | Si Mi〉

| 1

2
mp〉p |

1

2
−mn〉n | Si Mi〉Λn ,

(126)

where Mi = mΛ +mn .

If Si = 0⇒Mi = 0 and mΛ = −mn. Using mΛ = 1/2 without loss of generality,
the Si = 0 contribution from the above equation reads:

〈1
2
− 1

2

1

2

1

2
| 0 0〉〈1

2

1

2

1

2
− 1

2
| 0 0〉 | 1

2
− 1

2
〉p |

1

2

1

2
〉n | 0 0〉Λn

=

(
− 1√

2
· 1√

2

)
| 1

2
mp〉p |

1

2

1

2
〉n | 00〉Λn

= −1

2
| 1

2
− 1

2
〉p |

1

2

1

2
〉n | 0 0〉Λn .

(127)
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The probability of this configuration is:

P (Si = 0) = |〈0 0 | 0 0〉|2Si=0 =
1

4
, (128)

and for completeness,

P (Si = 1) = 1− P (Si = 0) =
3

4
. (129)

As a result, the n–induced and p–induced rates read:

Rn =
1

4
Rn0 +

3

4
Rn1 . Rp = Rp0 . (130)

Finally, if we go back to Eq. (62), the total width for 4
ΛH reads:

ΓNM(4
ΛH) =

NRn(4
ΛH) + ZRp(

4
ΛH)

3
ρ3 = (Rn0 + 3Rn1 + 2Rp0)

ρ3

6
. (131)

A.3 4
ΛHe rate

This case is completely analogous to the 4
ΛH, but exchanging the role of the

neutrons by that of the protons.

Therefore, the n–induced and p–induced rates read:

Rn = Rn0 . Rp =
1

4
Rp0 +

3

4
Rp1 . (132)

Finally, if we go back to Eq. (62), the total width for 4
ΛHe is

Γ(4
ΛHe) =

NRn(4
ΛHe) + ZRp(

4
ΛHe)

3
ρ3 = (Rp0 + 3Rp1 + 2Rn0)

ρ3

6
. (133)

A.4 5
ΛHe rate

The 5
ΛHe is a bound state composed by a Λ, two protons and two neutrons. The

total initial angular momentum is JH = 1/2 and we assume MH = 1/2 without
loss of generality. So, the initial state is defined as

|5Λ He〉 ≡| 1

2

1

2
〉 =| Λ〉⊗ | nnpp〉 . (134)

As it is well known, the nuclear core is the 4He state and has J = 0. Assuming
the pairing hypothesis of nuclear physics, we will describe this system from the
coupling between nn and pp pairs.

| nnpp〉 ≡| 4He〉 ≡ |nn〉 ⊗ |pp〉 (135)
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As we have already commented, the nn and pp pairs are in L = 0 and I = 1
states, therefore S = J = 0. By using these considerations, the total hypernu-
clear state reads:

| 1

2

1

2
〉 =| 1

2
mΛ〉Λ | 0 0〉nn | 0 0〉pp , (136)

with MH = 1
2 = mΛ .

As in the previous cases, the procedure will be as follows. First of all, it will be
advisable to decouple the nn and pp pairs in two single nucleon states and then,
it will be necessary to couple the Λ with n and the Λ with p states to study the
n–induced and the p–induced processes, respectively.

| 0 0〉nn =
∑
mn

〈1
2
mn

1

2
−mn | 0 0〉 | 1

2
mn〉n |

1

2
−mn〉n , (137)

| 0 0〉pp =
∑
mp

〈1
2
mp

1

2
−mp | 0 0〉 | 1

2
mp〉p |

1

2
−mp〉p . (138)

We analyse the n–induced process, but the p–induced one proceeds analogously.
The initial state is defined as:

| 1

2

1

2
〉 =| Λ〉⊗ | 00〉nn⊗ | 00〉pp . (139)

After decoupling | 00〉nn, as shown in Eq. (137), we couple Λ with n to the
|Si Mi〉 state:

| 1

2
mΛ〉Λ |

1

2
mp〉n =

∑
SiMi

〈1
2
mΛ

1

2
mn | Si Mi〉 | Si Mi〉Λn , (140)

where Mi = mΛ +mn .

Therefore, the total initial state read:

| 1

2

1

2
〉 =

∑
mn

∑
SiMi

〈1
2
mn

1

2
−mn | 0 0〉〈1

2
mΛ

1

2
mn | Si Mi〉

| 1

2
−mn〉n | Si Mi〉Λn | 0 0〉pp

(141)

If Si = 0 ⇒ Mi = 0 and mΛ = −mn with mΛ = 1/2. Then, the Si = 0
contribution reads:

〈1
2
− 1

2

1

2

1

2
| 0 0〉〈1

2

1

2

1

2
− 1

2
| 0 0〉 | 1

2

1

2
〉n | 0 0〉Λn | 0 0〉pp

= −1

2
| 1

2

1

2
〉n | 0 0〉Λn | 0 0〉pp

(142)

The probability of this configuration is:

P (Si = 0) =

∣∣∣∣〈12 1

2
| 1

2

1

2
〉
∣∣∣∣2 =

1

4
, (143)
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and for completeness ,

P (Si = 1) = 1− P (Si = 0) =
3

4
. (144)

An analogous procedure is followed for the p–induced process. As a result, the
n–induced and p–induced rates read:

Rn =
1

4
Rn0 +

3

4
Rn1 . Rp =

1

4
Rp0 +

3

4
Rp1 . (145)

Finally, if we go back to Eq. (62), the total width for 5
ΛHe read:

Γ(5
ΛHe) =

NRn(5
ΛHe) + ZRp(

5
ΛHe)

4
ρ4 = (Rn0 + 3Rn1 +Rp0 + 3Rp1)

ρ4

8
. (146)
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Appendix B Spin matrix elements

For completeness, in this section we show the spin matrix coefficients appearing
in the ΛN → nN weak transition potential [10]. We denote the initial pair of
ΛN with spin and angular momentum S0 and Lr and a final NN pair with spin
and angular momentum S and L′. The total spin angular momentum and its
third projection are denoted by J and MJ , respectively.

B.1 Spin–Spin Transition

〈(L′S)JMJ |Ôα|(LrS0)JMJ〉 = (2S(S + 1)− 3)δLrL′δS0S

B.2 Tensor Transition

〈(L′S)JMJ |Ôα|(LrS0)JMJ〉 = SJLrL′δLrL′δS0S

where SJLrL′
are given in the following table.

SJLrL′
L′ = J + 1 L′ = J L′ = J − 1

Lr = J + 1 −2(J+2)
2J+1 0

6
√
J(J+1)

2J+1

Lr = J 0 0 0

Lr = J − 1
6
√
J(J+1)

2J+1 0 −2(J−1)
2J+1

B.3 PV Transition: Pseudoscalar Mesons

〈(L′S)JMJ |Ôα|(LrS0)JMJ〉 = (−1)J+1−L′√6
√

2S0 + 1

×
√

2S + 1
√

2Lr + 1〈10Lr0|L′0〉
(

1/2 1/2 S0

S 1 1/2

)(
L′ Lr 1
S0 S J

)

B.4 PV Transition: Vector Mesons

〈(L′S)JMJ |Ôα|(LrS0)JMJ〉 = i(−1)J−L
′+S)6

√
6
√

2S0 + 1

×
√

2S + 1
√

2Lr + 1〈10Lr0|L′0〉
(
L′ Lr 1
S0 S J

) 1 1 1
1/2 1/2 S
1/2 1/2 S0


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Appendix C The asymmetry parameter

In this section we will obtain the spin observable of the non–mesonic weak decay
through the study of the inverse reaction pn→ pΛ. In the inverse reaction one
can employ polarized proton beams in such a way that the polarization of Λ
generated in the reaction can be measured from the asymmetry parameter of the
Λ → π−p decay. In Ref. [63] they restrict the treatment to s–wave production
of pΛ states to focus the discussion on the relation to the inverse non–mesonic
decay process. By this truncation, the spin structure of the T̂–matrix can be
written as a function of the matrix elements written in Table 1. Therefore, and
following the steps detailed in Ref. [63] the T̂ -matrix is given as:

T̂ = a
1− ~σ1 · ~σ2

4
− b1− ~σ1 · ~σ2

8
( ~σ1 − ~σ2) · p̂+ c

3 + ~σ1 · ~σ2

4

+ d
1

2
√

2
(3 ~σ1 · p̂ ~σ2 · p̂− ~σ1 · ~σ2) + e

√
3(3 + ~σ1 · ~σ2)

8
( ~σ1 − ~σ2) · p̂

− f
√

6

4
( ~σ1 + ~σ2) · p̂ ,

(147)

where p̂ = ~p/|~p| is the momentum carried by the emitted proton.

In order to calculate the polarization observables induced by a Λ with polariza-
tion ~pΛ, we introduce the following density matrix:

ρΛ =
1 + ~σΛ · ~pΛ

2
. (148)

The intensity of protons can be calculated by taking the following trace:

Ip(θ) = Tr[T̂ T̂ †ρΛ] = I0 + IA(θ) , (149)

where I0 and IA are defined as

I0 =
1

2
Tr[T̂ T̂ †] , (150)

IA(θ) =
1

2
Tr[T̂ T̂ †~σΛ · ~pΛ] . (151)

We perform the trace–summation in the last equations, and by using trace
properties of Pauli matrices, after some algebra, we have [See C.1–C.6]:

I0 =
1

2
(|a|2 + |b|2 + 3(|c|2 + |d|2 + |e|2 + |f |2) , (152)

IA(θ) =
1

2
2
√

3Re
[
ae∗ − 1√

3
b(c∗ −

√
2d∗) + f(

√
2c∗ + d∗)

]
~q · ~pΛ, (153)

where ~q is the transferred momentum. If we assume the Λ particle at rest, we
have ~p = −~q.
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From Eq. (149) one can introduce the asymmetry of the angular distribution
for the outgoing protons in such a way that

Ip(θ) = I0 + IA(θ) = I0(1 +Ay(θ)) , (154)

where Ay is defined as

AY (θ) =
IA(θ)

I0
= aΛ~q · ~pΛ . (155)

Finally, the intrinsic asymmetry parameter reads:

aΛ =
2
√

3Re
[
ae∗ − 1√

3
b(c∗ −

√
2d∗) + f(

√
2c∗ + d∗)

]
|a|2 + |b|2 + 3(|c|2 + |d|2 + |e|2 + |f |2)

. (156)

TRACE− SUMMATION

On account of the fact that T̂ T̂ † presents 6×6 terms and it would not be intuitive
to perform a direct trace–summation, the procedure to perform the traces will be
the following: Firstly, we will take the first term (terms with a) of the operator
T̂ and we will multiply it by the first term of the operator T̂ †, then the second
and so on (denoted as aa, ab, ac, ad, ae and af terms). Secondly, we will do the
same for the second term of T̂ (the one that contains b) and we will multiplying
it for the first term of the operator T̂ †, then the second and so on (denoted as
ba, bb, bc, bd, be and bf terms). This way until all the combinations are made.
In addition, we note that the trace is made on two different spin–spaces, (σ1)
and (σ2), so that, as an example, Tr(σ1σ2) = Tr(σ1)Tr(σ2).

The main properties of Pauli matrices (σi) used to perform the trace–summations
are as follows:

σ†i = σi , (157)

Tr[σi] = 0 , (158)

Tr[σiσj ] = 2δij , (159)

Tr[σiσjσk] = 2iεijk , (160)

Tr[σiσjσkσm] = 2(δijδkm − δikδjm + δimδjk) , (161)

Tr[σiσjσkσmσn] = 2i(δijεkmn + δmkεijn + δnkεimj + δmnεijk) . (162)

C.1 A terms

C.1.1 aa∗ combination

T̂ T̂ † =
|a|2

16
(1− ~σ1 · ~σ2) (1− ~σ1 · ~σ2) =

|a|2

16
(4− 4 ~σ1 · ~σ2)

=
|a|2

4
(1− ~σ1 · ~σ2)

(163)
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Tr[T̂ T̂ †] =
|a|2

4
· Tr[I1I2 − σ1iσ2i] =

|a|2

4
· Tr[I1I2] = |a|2 (164)

Tr[~p2 · ~σ2T̂ T̂
†] =

|a|2

4
· Tr[p2kσ2kI1I2 − P2kσ2kσ2iσ1i] = 0 (165)

C.1.2 ab∗ combination

T̂ T̂ † =
ab∗

32
(1− ~σ1 · ~σ2)( ~σ1 − ~σ2) · q(1− ~σ1 · ~σ2)

=
ab∗

32
(1− σ1iσ2i)(σ1j − σ2j)qj(1− σ1kσ2k)

=
ab∗

32
(1− σ1iσ2i)(σ1j − σ2j − σ1jσ1kσ2k + σ1kσ2jσ2k)qj

=
ab∗

32
(σ1j − σ2j − σ1jσ1kσ2k + σ1kσ2jσ2k

− σ1iσ1jσ2i + σ1iσ2iσ2j + σ1iσ1jσ1kσ2iσ2k − σ1iσ1kσ2iσ2jσ2k)qj

(166)

Tr[T̂ T̂ †] =
ab∗

32
Tr[(σ1iσ1jσ1kσ2iσ2k − σ1iσ1jσ2iσ2jσ2k)qj ]

=
ab∗

32
[(4iδijεijk − 4iδijεijk)qj ] = 0

(167)

Tr[~p2 · ~σ2T̂ T̂
†] =

ab∗

32
· Tr[p2l(−I1σ2lσ2j − σ1jσ1kσ2lσ2k − σ1iσ1jσ2lσ2i

+ σ1iσ1jσ1kσ2lσ2iσ2k − σ1iσ1kσ2lσ2iσ2jσ2k)qj ]

=
ab∗

32
[p2l(−2 · 2δlj − 4δjkδlk − 4δijδli + (2iεijk2iεlik)

− 2δik(2(δliδjk − δljδik + δlkδij)qk]

=
ab∗

32
[p2l(−4δlj − 4δlj − 4δlj − 4 · −2δlj

− 4(δlj − 3δlj + δlj))qj ] = 0

(168)

C.1.3 ac∗ combination

T̂ T̂ † =
ac∗

16
(1− ~σ1 · ~σ2)(3 + ~σ1 · ~σ2) =

ac∗

16
(3− 2 ~σ1 · ~σ2− 3 + 2 ~σ1 · ~σ2) = 0 (169)

Tr(T̂ T̂ †) = 0 (170)

Tr[~p2 · ~σ2T̂ T̂
†] = 0 (171)

C.1.4 ad∗ combination

T̂ T̂ † =
ad∗

8
√

2
(1− ~σ1 · ~σ2)(3 ~σ1 · q ~σ2 · q − ~σ1 · ~σ2)

=
ad∗

8
√

2
(1− σ1iσ2i)(3σ1jqjσ2kqk − σ1mσ2m)

=
ad∗

8
√

2
[(3σ1jσ2k − 3σ1iσ1jσ2iσ2k)qjqk − σ1mσ2m + σ1iσ1mσ2iσ2m]

(172)
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Tr[T̂ T̂ †] =
ad∗

8
√

2
Tr[−3σ1iσ1jσ2iσ2kqjqk + σ1iσ1mσ2iσ2m]

=
ad∗

8
√

2
[−3 · 2δij2δikqjqk + 2δim2δim]

=
ad∗

8
√

2
[−12δjkqjqk + 12] = 0

(173)

Tr[~p2 · ~σ2T̂ T̂
†] =

ad∗

8
√

2
Tr[p2l(−3σ1iσ1jσ2lσ2iσ2kqjqk + σ1iσ1mσ2lσ2iσ2m)]

=
ad∗

8
√

2
[p2l(−3 · 2δij2iεlikqjqk + 2δim2iεlim)]

=
ad∗

8
√

2
[p2l(−12iεljkpjpk)] = −12ad∗

8
√

2
[~p2 · (~q × ~q)] = 0

(174)

C.1.5 ae∗ combination

T̂ T̂ † = −
√

3

32
ae∗(1− ~σ1 · ~σ2)( ~σ1 − ~σ2) · q(3 + ~σ1 · ~σ2)

= −
√

3

32
ae∗(1− σ1iσ2i)(σ1j − σ2j)qj(3 + σ1kσ2k)

= −
√

3

8
ae∗(1− σ1iσ2i)(3σ1j − 3σ2j + σ1jσ1kσ2k − σ1kσ2jσ2k)qj

= −
√

3

32
ae∗(3σ1j − 3σ2j + σ1jσ1kσ2k − σ1kσ2jσ2k

− 3σ1iσ1jσ2i + 3σ1iσ2iσ2j − σ1iσ1jσ1kσ2iσ2k + σ1iσ1kσ2iσ2jσ2k)qj

(175)

Tr[T̂ T̂ †] = −
√

3

32
ae∗Tr[−σ1iσ1jσ1kσ2iσ2k + σ1iσ1kσ2iσ2jσ2k)qj ]

= −
√

3

32
ae∗(−2iεijkδik + 2iεijkδik)qj = 0

(176)

Tr[~p2 · ~σ2T̂ T̂
†] = −

√
3

32
ae∗Tr[p2l(−3I1σ2lσ2j + σ1jσ1kσ2lσ2k − 3σ1iσ1jσ2lσ2i

− σ1iσ1jσ1kσ2lσ2iσ2k + σ1iσ1kσ2lσ2iσ2jσ2k)qj ]

= −
√

3

32
ae∗[−12δlj + 4δjkδlk − 12δijδli − (2iεijk2iεlik)

+ 2δik2(δliδjk − δljδik + δlkδij)p2lqj ]

= −
√

3

32
ae∗[−12δlj + 4δlj − 12δlj + 4(−2δlj)

+ 4(δlj − 3δlj + δlj)P2lqj ] = −
√

3

32
ae∗[−32p2 · q]

=
√

3ae∗~p2 · ~q
(177)
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C.1.6 af∗ combination

T̂ T̂ † =

√
6

16
af∗(1− ~σ1 · ~σ2)( ~σ1 + ~σ2) · q

=

√
6

16
af∗(1− σ1iσ2i)(σ1j + σ2j)qj

=

√
6

16
af∗(σ1j + σ2j − σ1iσ1jσ2i − σ1iσ2iσ2j)qj

(178)

Tr[T̂ T̂ †] =

√
6

16
af∗Tr[σ1jI2 + σ2jI1 − σ1iσ1jσ2i − σ1iσ2iσ2j ] = 0 (179)

Tr[~p2 · ~σ2T̂ T̂
†] =

√
6

16
af∗Tr[p2k(I1σ2kσ2j − σ1iσ1jσ2kσ2i)qj ]

=

√
6

16
af∗[p2k(2 · 2δkj − 2δij · 2δki)qj ] = 0

(180)

C.2 B terms

C.2.1 ba∗ combination

T̂ T̂ † =
ba∗

32
(1− ~σ1 · ~σ2)( ~σ1 − ~σ2) · q(1− ~σ1 · ~σ2)

=
ba∗

32
(1− σ1iσ2i)(σ1j − σ2j)qj(1− σ1kσ2k)

=
ba∗

32
(σ1j − σ2j − σ1iσ1jσ2i + σ1iσ2iσ2j)(1− σ1kσ2k)qj

=
ba∗

32
(σ1j − σ2j − σ1iσ1jσ2i + σ1iσ2iσ2j

− σ1jσ1kσ2k + σ1kσ2jσ2k + σ1iσ1jσ1kσ2iσ2k − σ1iσ1kσ2iσ2jσ2k)qj

(181)

Tr[T̂ T̂ †] =
ba∗

32
Tr[(σ1iσ1jσ1kσ2iσ2k − σ1iσ1kσ2iσ2jσ2k)qj ]

=
ba∗

32
[(2iεijk2δik − 2δik2iεijk)qj ] = 0

(182)

Tr[~p2 · ~σ2T̂ T̂
†] =

ba∗

32
Tr(P2l(−I1σ2lσ2j − σ1iσ1jσ2lσ2i − σ1jσ1kσ2lσ2k

+ σ1iσ1jσ1kσ2lσ2iσ2k − σ1iσ1kσ2lσ2iσ2jσ2k)qj)

=
ba∗

32
[p2l(−4δlj − 4δlj − 4δlj + (2iεijk2iεlik)

− 4δik(δliδjk − δljδik + δlkδij))qj ]

=
ba∗

32
[p2l(−12δlj + 4 · 2δlj − 4(δlj − 3δlj + δlj))qj ] = 0

(183)
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C.2.2 bb∗ combination

T̂ T̂ † =
|b|2

64
(1− ~σ1 · ~σ2)( ~σ1 − ~σ2) · q(1− ~σ1 · ~σ2)( ~σ1 − ~σ2) · q

=
|b|2

64
4(1− ~σ1 · ~σ2)( ~σ1 − ~σ2) · q( ~σ1 − ~σ2) · q

=
|b|2

16
(1− σ1iσ2i)(σ1jσ1k + σ2jσ2k − σ1jσ2k − σ2jσ1k)qjqk

=
|b|2

16
(σ1jσ1k + σ2jσ2k − σ1jσ2k − σ2jσ1k − σ1iσ1jσ1kσ2i

− σ1iσ2iσ2jσ2k + σ1iσ1jσ2iσ2k + σ1iσ1kσ2iσ2j)qjqk

(184)

Tr[T̂ T̂ †] =
|b|2

16
Tr[(σ1jσ1kI2 + I1σ2jσ2k

+ σ1iσ1jσ2iσ2k + σ1iσ1kσ2iσ2j)qjqk]

=
|b|2

16
(16δij)pipj = |b|2

(185)

Tr[~p2 · ~σ2T̂ T̂
†] =

|b|2

16
Tr[p2l(I1σ2lσ2jσ2k − σ1iσ1jσ1kσ2lσ2i + σ1iσ1jσ2lσ2iσ2k

+ σ1iσ1kσ2lσ2iσ2j)qjqk] =
|b|2

16
[p2l(2 · 2iεljk − 2iεijk2δli

+ 2δij2iεlik + 2δik2iεlij)qjqk] =
|b|2

16
[p2l(4iεljk − 4iεljk

+ 4εljk + 4iεlkj)qjqk] = 0

(186)

C.2.3 bc∗ combination

T̂ T̂ † =
bc∗

32
(1− ~σ1 · ~σ2)( ~σ1 − ~σ2) · q(3 + ~σ1 · ~σ2)

=
bc∗

32
(1− σ1iσ2i)(σ1j − σ2j)qj(3 + σ1kσ2k)

=
bc∗

32
(σ1j − σ2j − σ1iσ1jσ2i + σ1iσ2iσ2j)(3 + σ1kσ2k)qj

=
bc∗

32
(3σ1j − 3σ2j − 3σ1iσ1jσ2i + 3σ1iσ2iσ2j

+ σ1jσ1kσ2k − σ1kσ2jσ2k − σ1iσ1jσ1kσ2iσ2k + σ1iσ1kσ2iσ2jσ2k)qj

(187)

Tr[T̂ T̂ †] =
bc∗

32
Tr[(−σ1iσ1jσ1kσ2iσ2k + σ1iσ1kσ2iσ2jσ2k)qj ]

=
bc∗

32
[(−2iεijk2δik + 2δik2iεijk)qj ] = 0

(188)
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Tr[~p2 · ~σ2T̂ T̂
†] =

bc∗

32
Tr[p2l(−3I1σ2lσ2j − 3σ1iσ1jσ2lσ2i + σ1jσ1kσ2lσ2k

− σ1iσ1jσ1kσ2lσ2iσ2k + σ1iσ1kσ2lσ2iσ2jσ2k)qj ]

=
bc∗

32
[p2l(−12δlj − 12δlj + 4δlj + 4εijkεlik

+ 4δik(δliδjk − δljδik + δlkδij))qj ]

=
bc∗

32
[p2l(−20δlj − 4 · 2δlj + 4(δlj − 3δlj + δlj)qj ]

=
bc∗

32
[p2l(−32δlj)qj ] = −bc∗~p2 · ~q

(189)

C.2.4 bd∗ combination

T̂ T̂ † =
bd∗

16
√

2
(1− ~σ1 · ~σ2)( ~σ1 − ~σ2) · q(3 ~σ1 · p ~σ2 · q − ~σ1 · ~σ2)

=
bd∗

16
√

2
(1− σ1iσ2i)(σ1j − σ2j)qj(3σ1kqkσ2mqm − σ1nσ2n)

=
bd∗

16
√

2
[(3σ1jσ1kσ2m − 3σ1kσ2jσ2m − 3σ1iσ1jσ1kσ2iσ2m

+ 3σ1iσ1kσ2iσ2jσ2m)qjqkqm + (σ1nσ2jσ2n − σ1jσ1nσ2n

+ σ1iσ1jσ1nσ2iσ2n − σ1iσ1nσ2iσ2jσ2n)qj ]

(190)

Tr[T̂ T̂ †] =
bd∗

16
√

2
Tr[(−3σ1iσ1jσ1kσ2iσ2m + 3σ1iσ1kσ2iσ2jσ2m)qjqkqm

+ (σ1iσ1jσ1nσ2iσ2n − σ1iσ1nσ2iσ2jσ2n)qj ] = 0

(191)

Tr[~p2 · ~σ2T̂ T̂
†] =

bd∗

16
√

2
Tr[p2l[(3σ1jσ1kσ2lσ2m − 3σ1iσ1jσ1kσ2lσ2iσ2m

+ 3σ1iσ1kσ2lσ2iσ2jσ2m)qjqkqm + (−σ1jσ1nσ2lσ2n

+ σ1iσ1jσ1nσ2lσ2iσ2n − σ1iσ1nσ2lσ2iσ2jσ2n)qj ]]

=
bd∗

16
√

2
(p2l[(12δjkδlm + 12εijkεlim

+ 12δik(δliδjm − δljδim + δlmδij))qjqkqm

+ (−4δlj − 4εijnεlin − 4δin(δliδjn − δljδin + δlnδij))qj ]]

=
bd∗

16
√

2
[p2l[12δjkδlm − 12(δljδkm − δjmδkl)

+ 12(δlkδjm − δljδkm + δlmδkj))qjqkqm + 8δljqj ]]

=
bd∗

16
√

2
[32~p2 · ~q] =

2√
2
bd∗~p2 · ~q =

√
2bd∗~p2 · ~q

(192)
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C.2.5 be∗ combination

T̂ T̂ † = −
√

3

64
be∗(1− ~σ1 · ~σ2)( ~σ1 − ~σ2) · q( ~σ1 − ~σ2) · q(3 + ~σ1 · ~σ2)

= −
√

3

64
be∗(1− σ1iσ2i)(σ1j − σ2j)(3σ1k − 3σ2k + σ1kσ1mσ2m

− σ1mσ2kσ2m)qjqk = −
√

3

64
be∗(1− σ1iσ2i)(3σ1jσ1k − 3σ1jσ2k

+ σ1jσ1kσ1mσ2m − σ1jσ1mσ2kσ2m − 3σ1kσ2j + 3σ2jσ2k

− σ1kσ1mσ2jσ2m + σ1mσ2jσ2kσ2m)qjqk

(193)

Tr[T̂ T̂ †] = −
√

3

64
be∗Tr[(3σ1jσ1kI2 − σ1jσ1mσ2kσ2m + 3I1σ2jσ2k

− σ1kσ1mσ2jσ2m + 3σ1iσ1jσ2iσ2k − σ1iσ1jσ1kσ1mσ2iσ2m

+ σ1iσ1jσ1mσ2iσ2kσ2m + 3σ1iσ1kσ2iσ2j

+ σ1iσ1kσ1mσ2iσ2jσ2m − σ1iσ1mσ2iσ2jσ2kσ2m)qjqk]

= −
√

3

64
be∗[(12δjk − 4δjk + 12δjk − 4δjk + 12δjk − 12δjk

− 8δjk + 12δjk − 8δjk − 12δjk)qjqk] = 0

(194)

Tr[~p2 · ~σ2T̂ T̂
†] = −

√
3

64
be∗Tr[p2l(σ2l − σ1iσ2lσ2i)(3σ1jσ1k − 3σ1jσ2k

+ σ1jσ1kσ1mσ2m − σ1jσ1mσ2kσ2m − 3σ1kσ2j + 3σ2jσ2k

− σ1kσ1mσ2lσ2kσ2m + σ1mσ2jσ2kσ2m)qjqk]

= −
√

3

64
be∗Tr[p2l(σ1jσ1kσ1mσ2lσ2m

− σ1jσ1mσ2lσ2kσ2m + 3σ2lσ2jσ2k − σ1kσ1mσ12lσ2jσ2m

− 3σ1iσ1jσ1kσ2lσ2i + 3σ1iσ1jσ1kσ2lσ2i

− σ1iσ1jσ1kσ1mσ2lσ2iσ2m + σ1iσ1jσ1mσ2lσ2iσ2kσ2m

+ 3σ1iσ1kσ2lσ2iσ2j + σ1iσ1kσ1mσ2lσ2iσ2jσ2m

− σ1iσ1mσ2lσ2iσ2jσ2kσ2m)qjqk]

= −
√

3

64
be∗[ip2l(4εjkl − 4εlkj + 12εljk − 4εljk − 12εljk

+ 12εljk − 4εljk + 4εlkj + 4εljk + 4εkjl + 12εlkj + 4εlkj

+ 4εjkl − 4εjkl − 4εlkj − 4εlkj)qjqk] = 0

(195)
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C.2.6 bf∗ combination

T̂ T̂ † =

√
6

32
bf∗(1− ~σ1 · ~σ2)( ~σ1 − ~σ2) · q( ~σ1 + ~σ2) · q

=

√
6

32
bf∗(1− σ1iσ2i)(σ1j − σ2j)qj(σ1k + σ2k)qk

=

√
6

32
bf∗(σ1j − σ2j − σ1iσ1jσ2i + σ1iσ2iσ2j)(σ1k + σ2k)qjqk

=

√
6

32
bf∗(σ1jσ1k + σ1jσ2k − σ2jσ1k − σ2jσ2k − σ1iσ1jσ1kσ2i

− σ1iσ1jσ2iσ2k + σ1iσ1kσ2iσ2j + σ1iσ2iσ2jσ2k)qjqk

(196)

Tr[T̂ T̂ †] =

√
6

32
bf∗Tr[(σ1jσ1kI2 − I1σ2jσ2k − σ1iσ1jσ2iσ2k

+ σ1iσ1kσ2iσ2j)qjqk] =

√
6

32
bf∗[(2δjk2− 2 · 2δjk − 2δij2δik

+ 2δik2δij)qjqk] = 0

(197)

Tr[~p2 · ~σ2T̂ T̂
†] =

√
6

32
bf∗Tr[P2l(−I1σ2lσ2jσ2k − σ1iσ1jσ1kσ2lσ2i

− σ1iσ1jσ2lσ2iσ2k + σ1iσ1kσ2lσ2iσ2j)qjqk]

=

√
6

32
bf∗[p2l(−2 · 2iεljk − 2iεijk2δli

− 2δij2iεlik + 2δik2iεlij)qlqk]

=

√
6

32
bf∗[p2l(−16iεljk)qjpk] = −

√
6

2
bf∗~p2 · (~q × ~q) = 0

(198)

C.3 C terms

C.3.1 ca∗ combination

T̂ T̂ † =
ca∗

16
(3 + ~σ1 · ~σ2)(1− ~σ1 · ~σ2)

TT ∗ =
ca∗

16
(3− 2 ~σ1 · ~σ2 − 3 + 2 ~σ1 · ~σ2) = 0

(199)

Tr[T̂ T̂ †] = 0 (200)

Tr[~p2 · ~σ2T̂ T̂
†] = 0 (201)
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C.3.2 cb∗ combination

T̂ T̂ † =
cb∗

32
(3 + ~σ1 · ~σ2)( ~σ1 − ~σ2) · q(1− ~σ1 · ~σ2)

=
cb∗

32
(3 + σ1iσ2i)(σ1j − σ2j − σ1jσ1kσ2k + σ1kσ2jσ2k)qj

=
cb∗

32
(3σ1j − 3σ2j − 3σ1jσ1kσ2k + 3σ1kσ2jσ2k

+ σ1iσ1jσ2i − σ1iσ2iσ2j − σ1iσ1jσ1kσ2iσ2k + σ1iσ1kσ2iσ2jσ2k)qj

(202)

Tr[T̂ T̂ †] =
cb∗

32
Tr[(−σ1iσ1jσ1kσ2iσ2k + σ1iσ1kσ2iσ2jσ2k)qj ] = 0 (203)

Tr[~p2 · ~σ2T̂ T̂
†] =

cb∗

32
Tr[p2l(−3I1σ2lσ2j − 3σ1jσ1kσ2lσ2k + σ1iσ1jσ2lσ2i

− σ1iσ1jσ1kσ2lσ2iσ2k + σ1iσ1kσ2lσ2iσ2jσ2k)qj ]

=
cb∗

32
[p2k(−3 · 2 · 2δlj − 3 · 2δjk2δlk + 2δij2δli

− 2iεijk2iεlik + 2δik2(δliδjk − δljδik + δlkδij))qj ]

=
cb∗

32
[p2l(−12δlj − 12δlj + 4δlj − 4 · 2δlj

+ 4(δlj − 3δlj + δlj)qj)] = −cb∗(~p2 · ~q)

(204)

C.3.3 cc∗ combination

T̂ T̂ † =
|c|2

16
(3 + ~σ1 · ~σ2)(3 + ~σ1 · ~σ2)

=
|c|2

16
(9 + 6 ~σ1 · ~σ2 + ( ~σ1 · ~σ2)2)

=
|c|2

16
(12 + 4( ~σ1 · ~σ2)) =

|c|2

4
(3 + ~σ1 · ~σ2)

(205)

Tr[T̂ T̂ †] =
|c|2

4
Tr[3 + ~σ1 · ~σ2] =

|c|2

4
Tr[3I1I2 + σ1iσ2i] = 3|c|2 (206)

Tr[~p2 · ~σ2T̂ T̂
†] =

|c|2

4
Tr[p2(3I1σ2k + σ1iσ2kσ2i)] = 0 (207)

C.3.4 cd∗ combination

T̂ T̂ † =
cd∗

8
√

2
(3 + ~σ1 · ~σ2)(3 ~σ1 · q ~σ2 · q − ~σ1 · ~σ2)

=
cd∗

8
√

2
(3 + σ1iσ2i)(3σ1jqjσ2kqk − σ1mσ2m)

=
cd∗

8
√

2
[(9σ1jσ2k + 3σ1iσ1jσ2iσ2k)qjqk − 3σ1mσ2m − σ1iσ1mσ2iσ2m]

(208)
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Tr[T̂ T̂ †] =
cd∗

8
√

2
Tr[3σ1iσ1jσ2iσ2kqjqk − σ1iσ1mσ2iσ2m]

=
cd∗

8
√

2
[12δjkqjqk − 4δimδim] = 0

(209)

Tr[~p2 · ~σ2T̂ T̂
†] =

cd∗

8
√

2
Tr[p2l(3σ1iσ1jσ2lσ2iσ2kqjqk − σ1iσ1mσ2lσ2iσ2m)]

=
cd∗

8
√

2
[p2l(12iδijεljkqjqk − 4iδimεlim)]

=
cd∗

8
√

2
12[~p2 · (~q × ~q)] = 0

(210)

C.3.5 ce∗ combination

T̂ T̂ † = −
√

3

32
ce∗(3 + ~σ1 · ~σ2)( ~σ1 − ~σ2) · q(3 + ~σ1 · ~σ2)

= −
√

3

32
ce∗(3 + σ1iσ2i)(σ1j − σ2j)qj(3 + σ1kσ2k)

= −
√

3

32
ce∗(3 + σ1iσ2i)(3σ1j − 3σ2j + σ1jσ1kσ2k − σ1kσ2jσ2k)qj

= −
√

3

32
ce∗(9σ1j − 9σ2j + 3σ1jσ1kσ2k − 3σ1kσ2jσ2k

+ 3σ1iσ1jσ2i − 3σ1iσ2iσ2j + σ1iσ1jσ1kσ2iσ2k − σ1iσ1kσ2iσ2jσ2k)qj

(211)

Tr[T̂ T̂ †] = −
√

3

32
ce∗Tr[(σ1iσ1jσ1kσ2iσ2k − σ1iσ1kσ2iσ2jσ2k)qj ] = 0 (212)

Tr[~p2 · ~σ2T̂ T̂
†] = −

√
3

32
ce∗Tr[p2l(−9I1σ2lσ2j + 3σ1jσ1kσ2lσ2k + 3σ1iσ1jσ2lσ2i

+ σ1iσ1jσ1kσ2lσ2iσ2k − σ1iσ1kσ2lσ2iσ2jσ2k)qj ]

= −
√

3

32
ce∗[p2l(−9 · 2 · 2δlj + 3 · 2δjk2δlk + 3 · 2δij2δli

+ 2iεijk2iεlik − 2δik2(δliδjk − δljδik + δlkδij)qj ]

= −
√

3

32
ce∗[p2l(−36δlj + 12δlj + 12δlk + 8δlj

− 4(δlj − 3δlj + δlj))qj ] = 0

(213)

C.3.6 cf∗ combination

T̂ T̂ † =

√
6

16
cf∗(3 + ~σ1 · ~σ2)( ~σ1 + ~σ2) · q

=

√
6

16
cf∗(3 + σ1iσ2i)(σ1j + σ2j)qj

=

√
6

16
cf∗(3σ1j + 3σ2j + σ1iσ1jσ2i + σ1iσ2iσ2j)qj

(214)
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Tr[T̂ T̂ †] = 0 (215)

Tr[~p2 · ~σ2T̂ T̂
†] =

√
6

16
cf∗Tr[p2k(3I1σ2lσ2j + σ1iσ1jσ2lσ2i)qj ]

=

√
6

16
cf∗[p2k(3 · 2 · 2δkj + 2δij2δki)qj ]

=

√
6

16
cf∗[p2k(16δkj)qj ] =

√
6cf∗(~p2 · ~q)

(216)

C.4 D terms

C.4.1 da∗ combination

T̂ T̂ † =
da∗

8
√

2
(3 ~σ1 · q ~σ2 · q − ~σ1 · ~σ2)(1− ~σ1 · ~σ2)

=
da∗

8
√

2
(3σ1iqiσ2jqj − σ1kσ2k)(1− σ1mσ2m)

=
da∗

8
√

2
[(3σ1iσ2j − 3σ1iσ1mσ2jσ2m)qiqj − σ1kσ2k

+ σ1kσ1mσ2kσ2m]

(217)

Tr[T̂ T̂ †] =
ad∗

8
√

2
Tr[−3σ1iσ1mσ2jσ2mqiqj + σ1kσ1mσ2kσ2m]

=
ad∗

8
√

2
[−3 · 2δim2δjmqiqj + 2δkm2δkm]

=
ad∗

8
√

2
[−12δijqiqj + 4δkmδkm] = 0

(218)

Tr[~p2 · ~σ2T̂ T̂
†] =

ad∗

8
√

2
Tr[P2l(−3σ1iσ1mσ2lσ2jσ2mqiqj + σ1kσ1mσ2lσ2kσ2m)]

=
ad∗

8
√

2
[p2l(−3 · 2δim2iεljmqiqj + 2δkm2iεikm)]

=
ad∗

8
√

2
[p2l(−12iεljiqiqj)] = − ad

∗

8
√

2
12[~p2 · (~q × ~q)] = 0

(219)

C.4.2 db∗ combination

T̂ T̂ † =
db∗

16
√

2
(3 ~σ1 · q ~σ2 · q − ~σ1 · ~σ2)( ~σ1 − ~σ2) · ~q(1− ~σ1 · ~σ2)

=
db∗

16
√

2
(3σ1iσ2jqiqj − σ1kσ2k)(σ1m − σ2m)(1− σ1nσ2n)qm

=
db∗

16
√

2
[(3σ1iσ1mσ2j − 3σ1iσ2jσ2m − 3σ1iσ1mσ1nσ2jσ2n

+ 3σ1iσ1nσ2jσ2mσ2n)qiqjqm + (−σ1kσ1mσ2k + σ1kσ2kσ2m

+ σ1kσ1mσ1nσ2kσ2n − σ1kσ1nσ2kσ2mσ2n)qm]

(220)
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Tr[T̂ T̂ †] =
db∗

16
√

2
Tr[(−3σ1iσ1mσ1nσ2jσ2n + 3σ1iσ1nσ2jσ2mσ2n)qiqjqm

+ (σ1kσ1mσ1nσ2kσ2n − σ1kσ1nσ2kσ2mσ2n)qm]

=
db∗

16
√

2
[(−12iεimnδjn + 12iεjmnδin)qiqjqm

+ (4iεkmnδkn − 4iεkmnδkn)qm] = 0

(221)

Tr[~p2 · ~σ2T̂ T̂
†] =

db∗

16
√

2
Tr[p2l[(3σ1iσ1mσ2lσ2j − 3σ1iσ1mσ1nσ2lσ2jσ2n

+ 3σ1iσ1nσ2lσ2jσ2mσ2n)qiqjqm + (−σ1kσ1mσ2lσ2k

+ σ1kσ1mσ1nσ2lσ2kσ2n − σ1kσ1nσ2lσ2kσ2mσ2n)qm]]

=
db∗

16
√

2
[p2l[(12δimδlj + 12(δilδmj − δijδml)

+ 12δin(δljδmn − δlmδjn + δlnδjm))qiqjqm]

+ (−4δlm + 8δlm + 4δlm)qm

=
db∗

16
√

2
[(24q2 + 8)~p2 · ~q] =

√
2db∗(~p2 · ~q)

(222)

C.4.3 dc∗ combination

T̂ T̂ † =
dc∗

8
√

2
(3 ~σ1 · q ~σ2 · q − ~σ1 · ~σ2)(3 + ~σ1 · ~σ2)

=
dc∗

8
√

2
(3σ1iqiσ2jqj − σ1kσ2k)(3 + σ1mσ2m)

=
dc∗

8
√

2
[(9σ1iσ2j + 3σ1iσ1mσ2jσ2m)qiqj − 3σ1kσ2k − σ1kσ1mσ2kσ2m]

(223)

Tr[T̂ T̂ †] =
dc∗

8
√

2
Tr[3σ1iσ1mσ2jσ2mqiqj − σ1kσ1mσ2kσ2m]

=
dc∗

8
√

2
[12δijqiqj − 4δkmδkm] = 0

(224)

Tr[~p2 · ~σ2T̂ T̂
†] =

dc∗

8
√

2
Tr[p2l(3σ1iσ1mσ2lσ2jσ2mqiqj − σ1kσ1mσ2lσ2kσ2m)]

=
dc∗

8
√

2
[p2l(12iδimεljm − 4iδkmεlkm)] = 0

(225)
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C.4.4 dd∗ combination

T̂ T̂ † =
|d|2

8
(S12(p))2 =

|d|2

8
(4S2 − 2S12)

=
|d|2

8
(4(

3

2
+

~σ1 · ~σ2

2
)− 2(3 ~σ1 · p ~σ2 · p− ~σ1 · ~σ2)

=
|d|2

8
(6 + 4 ~σ1 · ~σ2 − 6 ~σ1 · p ~σ2 · p)

(226)

Tr[T̂ T̂ †] =
|d|2

8
Tr(6) =

3

4
|d|2Tr(I) = 3|d|2 (227)

Tr[~p2 · ~σ2T̂ T̂
†] = 0 (228)

C.4.5 de∗ combination

T̂ T̂ † = −
√

3√
2

de∗

16
(3 ~σ1 · q ~σ2 · q − ~σ1 · ~σ2)( ~σ1 − ~σ2) · q(3 + ~σ1 · ~σ2)

= −
√

3√
2

de∗

16
(3σ1iqiσ2jqj − σ1kσ2k)

× (3σ1m − 3σ2m + σ1mσ1nσ2n − σ1nσ2mσ2n)qm

= −
√

3√
2

de∗

16
[(9σ1iσ1mσ2j − 9σ1iσ2jσ2m + 3σ1iσ1mσ1nσ2jσ2n

− 3σ1iσ1nσ2jσ2mσ2n)qiqjqm + (3σ1kσ2kσ2m − 3σ1kσ1mσ2k

− σ1kσ1mσ1nσ2kσ2n + σ1kσ1nσ2kσ2mσ2n)qm]

(229)

Tr[T̂ T̂ †] = −
√

3√
2

de∗

16
Tr[(3σ1iσ1mσ1nσ2jσ2n − 3σ1iσ1nσ2jσ2mσ2n)qiqjqm

+ (−σ1kσ1mσ1nσ2kσ2n + σ1kσ1nσ2kσ2mσ2n)qm]

= −
√

3√
2

de∗

16
[(12iεimnδjn − 12iεjmnδin)qiqjqm

+ (−4iδknεkmn + 4iδknεkmn)qm] = 0

(230)
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Tr[~p2 · ~σ2T̂ T̂
†] = −

√
3√
2

de∗

16
Tr[p2l[(9σ1iσ1mσ2lσ2j + 3σ1iσ1mσ1nσ2lσ2jσ2n

− 3σ1iσ1nσ2lσ2jσ2mσ2n)qiqjqm + (−3σ1kσ1mσ2lσ2k

− σ1kσ1mσ1nσ2lσ2kσ2n + σ1kσ1nσ2lσ2kσ2mσ2n)qm]]

= −
√

3√
2

de∗

16
[p2l[(36δimδlj − 12(δilδmj − δijδml)

− 12δin(δljδmn − δlmδjn + δlnδjm)qiqjqm]

+ (−12δlm − 8δlm − 4δlm)qm]

= −
√

3√
2

de∗

16
[24q2~p2 · ~q − 24~p2 · ~q] = 0

(231)

C.4.6 df∗ combination

T̂ T̂ † =

√
3

8
df∗(3 ~σ1 · q ~σ2 · q − ~σ1 · ~σ2)( ~σ1 + ~σ2) · q

=

√
3

8
df∗(3σ1ipiσ2jpj − σ1kσ2k)(σ1m + σ2m)pm

=

√
3

8
df∗[(3σ1iσ1mσ2j + 3σ1iσ2jσ2m)pipjpm

− (σ1kσ1mσ2k + σ1kσ2kσ2m)pm]

(232)

Tr[T̂ T̂ †] = 0 (233)

Tr[~p2 · ~σ2T̂ T̂
†] =

√
3

8
df∗Tr[P2l(3σ1iσ1mσ2lσ2jpipjpm − σ1kσ1mσ2lσ2kpm)]

=

√
3

8
df∗[p2l(12δimδljpipjpm − 4δkmδlmpm)]

=

√
3

8
df∗[12q2~p2 · ~q − 4~p2 · ~q]

=
√

3df∗(~p2 · ~q)
(234)
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C.5 E terms

C.5.1 ea∗ combination

T̂ T̂ † = −
√

3

32
ea∗(3 + ~σ1 · ~σ2)( ~σ1 − ~σ2)q(1− ~σ1 · ~σ2)

= −
√

3

32
ea∗(3 + σ1iσ2i)(σ1j − σ2j)qj(1− σ1kσ2k)

= −
√

3

32
ea∗(3σ1j − 3σ2j + σ1iσ1jσ2i − σ1iσ2iσ2j)(1− σ1kσ2k)qj

= −
√

3

32
ea∗(3σ1j − 3σ2j + σ1iσ1jσ2i − σ1iσ2iσ2j

− 3σ1jσ1kσ2k + 3σ1kσ2jσ2k − σ1iσ1jσ1kσ2iσ2k + σ1iσ1kσ2iσ2jσ2k)qj
(235)

Tr[T̂ T̂ †] = −
√

3

32
ea∗Tr[(−σ1iσ1jσ1kσ2iσ2k + σ1iσ1kσ2iσ2jσ2k)qj ] = 0 (236)

Tr[~p2 · ~σ2T̂ T̂
†] = −

√
3

32
ea∗Tr[p2l(−3I1σ2lσ2j + σ1iσ1jσ2lσ2i − 3σ1jσ1kσ2lσ2k

− σ1iσ1jσ1kσ2lσ2iσ2k + σ1iσ1kσ2lσ2iσ2jσ2k)qj ]

= −
√

3

32
ea∗[p2l(−3 · 2 · 2δlj + 2δij2δli − 3 · 2δjk2δlk

− 2iεijk2iεlik + 2δik2(δliδjk − δlkδik + δlkδij))qj ]

= −
√

3

32
ea∗[p2l(−12δlj + 4δlj − 12δlj − 4 · 2δlj

+ 4(δlj − 3δlj + δlj))pj ] = −
√

3

32
ea∗[p2l(−32δlj)qj ]

=
√

3ea∗(~p2 · ~q)
(237)

C.5.2 eb∗ combination

T̂ T̂ † =

√
3

64
eb∗(3 + ~σ1 · ~σ2)( ~σ1 − ~σ2) · q( ~σ1 − ~σ2) · q(1− ~σ1 · ~σ2)

=

√
3

64
eb∗(3 + σ1iσ2i)(σ1j − σ2j)(σ1k − σ2k − σ1kσ1mσ2m

+ σ1mσ2kσ2m)qjqk =

√
3

64
eb∗(3 + σ1iσ2i)(σ1jσ1k − σ1jσ2k

− σ1jσ1kσ1mσ2m + σ1jσ1mσ2kσ2m − σ1kσ2j

+ σ2jσ2k + σ1kσ1mσ2jσ2m − σ1mσ2jσ2kσ2m)qjqk

(238)

72



Tr[T̂ T̂ †] =

√
3

64
eb∗Tr[(3σ1jσ1kI2 + 3σ1jσ1mσ2kσ2m + 3I1σ2jσ2k

+ 3σ1kσ1mσ2jσ2m − σ1iσ1jσ2iσ2k − σ1iσ1jσ1kσ1mσ2iσ2m

+ σ1iσ1jσ1mσ2iσ2kσ2m − σ1iσ1kσ2iσ2j + σ1iσ1kσ1mσ2iσ2jσ2m

− σ1iσ1mσ2iσ2jσ2kσ2m)qjqk]

=

√
3

64
eb∗[12δjk + 12δjk + δjk − 4δjk − 12δjk − 8δjk − 4δjk

− 8δjk − 12δjk] = 0

(239)

Tr[~p2 · ~σ2T̂ T̂
†] =

√
3

64
eb∗Tr[p2l(−3σ1jσ1kσ1mσ2lσ2m + 3σ1jσ1mσ2lσ2kσ2m

+ 3σ2lσ2jσ2k + 3σ1kσ1mσ2lσ2jσ2m + σ1iσ1jσ1kσ2lσ2i

− σ1iσ1jσ2lσ2iσ2k − σ1iσ1jσ1kσ1mσ2lσ2iσ2m

+ σ1iσ1jσ1mσ2lσ2iσ2kσ2m − σ1iσ1kσ2lσ2iσ2j

+ σ1iσ1kσ1mσ2lσ2iσ2jσ2m − σ1iσ1mσ2lσ2iσ2jσ2kσ2m)qjqk]

=

√
3

64
eb∗[ip2l(−12εjkl + 12εjkj + 12εljk + 12εljk + 4εljk

− 4εljk − 4εljk + 4εlkj + 4εljk + 4εkjl − 4εlkj + 4εlkj

+ 4εjkl − 4εjkl − 4εlkj − 4εlkj)qjqk] = 0

(240)

C.5.3 ec∗ combination

T̂ T̂ † = −
√

3

32
(ec∗)(3 + ~σ1 · ~σ2)( ~σ1 − ~σ2)q(3 + ~σ1 · ~σ2)

= −
√

3

32
(ec∗)(3 + σ1iσ2i)(σ1j − σ2j)qj(3 + σ1kσ2k)

= −
√

3

32
(ec∗)(3σ1j − 3σ2j + σ1iσ1jσ2i − σ1iσ2iσ2j)(3 + σ1kσ2k)qj

= −
√

3

32
(ec∗)(9σ1j − 9σ2j + 3σ1iσ1jσ2i − 3σ1iσ2iσ2j + 3σ1jσ1kσ2k

− 3σ1kσ2jσ2k + σ1iσ1jσ1kσ2iσ2k − σ1iσ1kσ2iσ2jσ2k)qj

(241)

Tr[T̂ T̂ †] = −
√

3

32
(ec∗)Tr[(σ1iσ1jσ1kσ2iσ2k − σ1iσ1kσ2iσ2jσ2k)pj ] = 0 (242)
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Tr[~p2 · ~σ2T̂ T̂
†] = −

√
3

32
(ec∗)Tr[p2l(−9I1σ2lσ2j + 3σ1iσ1jσ2lσ2i + 3σ1jσ1kσ2lσ2k

+ σ1iσ1jσ1kσ2lσ2iσ2k − σ1iσ1kσ2lσ2iσ2jσ2k)qj ]

= −
√

3

32
(ec∗)[p2l(−9 · 2 · 2δlj + 3 · 2δij2δli + 3 · 2δjk2δlk

+ 2iεijk2iεlik − 2δik2(δliδjk − δljδik + δlkδij))qj ]

= −
√

3

32
(ec∗)[p2l(−36δlj + 12δlj + 12δlj + 8δlj

− 4(δlj − 3δlj + δlj))qj ] = 0

(243)

C.5.4 ed∗ combination

T̂ T̂ † = −
√

3

2

ed∗

16
(3 + ~σ1 · ~σ2)( ~σ1 − ~σ2)q(3 ~σ1 · q ~σ2 · q − ~σ1 · ~σ2)

= −
√

3

2

ed∗

16
(3 + σ1iσ2i)(σ1j − σ2j)qj(3σ1kqkσ2mqm − σ1nσ2n)

= −
√

3

2

ed∗

16
(3σ1j − 3σ2j + σ1iσ1jσ2i − σ1iσ2iσ2j)qj

× (3σ1kqkσ2mqm − σ1nσ2n)

= −
√

3

2

ed∗

16
[(9σ1jσ1kσ2m − 9σ1kσ2jσ2m + 3σ1iσ1jσ1kσ2iσ2m

− 3σ1iσ1kσ2iσ2jσ2m)qjqkqm + (−3σ1jσ1nσ2n + 3σ1nσ2jσ2n

− σ1iσ1jσ1nσ2iσ2n + σ1iσ1nσ2iσ2jσ2n)qj ]

(244)

Tr[T̂ T̂ †] = −
√

3

2

ed∗

16
Tr[(3σ1iσ1jσ1kσ2iσ2m − 3σ1iσ1kσ2iσ2jσ2m)qjqkqm

+ (−σ1iσ1jσ1nσ2iσ2n + σ1iσ1nσ2iσ2jσ2n)qj ]

= −
√

3

2

ed∗

16
[(3 · 2iεijk2δim − 3 · 2δik2iεijm)qjqkqm

+ (−2iεijn2δin + 2δin2iεijn)qj ]

= −
√

3

2

ed∗

16
[(12iεmjk − 12iεkjm)qjqkqm]

= −
√

3

2

24

16
ed∗[i~q · (~q × ~q)] = 0

(245)
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Tr[~p2~σ2T̂ T̂
†] = −

√
3

2

ed∗

16
Tr[p2l[(9σ1jσ1kσ2lσ2m + 3σ1iσ1jσ1kσ2lσ2iσ2m

− 3σ1iσ1kσ2lσ2iσ2jσ2m)qjqkqm + (−3σ1jσ1nσ2lσ2n

− σ1iσ1jσ1nσ2lσ2iσ2n + σ1iσ1nσ2lσ2iσ2jσ2n)qj ]]

= −
√

3

2

ed∗

16
[p2l[(36δjkδlm − 12εijkεlim

− 12δik(δliδjm − δljδim + δlmδij))qjqkqm]

+ (−12δlj + 4εijnεlin + 4δin(δliδjn − δljδin + δlnδij))qj ]

= −
√

3

2

ed∗

16
[p2l[36δjkδlm + 12(δjlδkm − δjmδkl)

− 12(δlkδjm − δljδkm + δlmδkj)]qjqkqm

+ (−12δlj − 8δlj − 4δlj)qj ]

= −
√

3

2

ed∗

16
(24)p2l[(δjkδlm + δljδkm − δlkδjm)qjqkqm

− δlkδjmqj ] = −
√

3

2

ed∗

16
(24) · 2q2[~p2 · ~q − ~p2 · ~q] = 0

(246)

C.5.5 ee∗ combination

T̂ T̂ † =
3

64
|e|2(3 + ~σ1 · ~σ2)( ~σ1 − ~σ2)q(3 + ~σ1 · ~σ2)( ~σ1 − ~σ2)q

=
3

64
|e|2(12 + 4σ1iσ2i)(σ1jσ1k + σ2jσ2k − σ1jσ2k − σ2jσ1k)qjqk

=
3

64
|e|2(12(σ1jσ1k + σ2jσ2k − σ1jσ2k − σ2jσ1k) + 4(σ1iσ1jσ1kσ2i

+ σ1iσ2iσ2jσ2k − σ1iσ1jσ2iσ2k − σ1iσ1kσ2iσ2k)qjqk)

=
3

16
|e|2(3σ1jσ1k + 3σ2jσ2k − 3σ1jσ2k − 3σ2jσ1k + σ1iσ1jσ1kσ2i

+ σ1iσ2iσ2jσ2k − σ1iσ1jσ2iσ2k − σ1iσ1kσ2iσ2j)qjqk

(247)

Tr[T̂ T̂ †] =
3

16
|e|2Tr[(3σ1jσ1kI2 + 3I1σ2jσ2k

− σ1iσ1jσ2iσ2k − σ1iσ1kσ2iσ2j)qjqk]

=
3

16
|e|2[3 · 2 · 2δjk + 3 · 2δjk · 2− 2δij2δik − 2δikδij ]qjqk

= 3|e|2

(248)
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Tr[~p2 · ~σ2T̂ T̂
†] =

3

16
|e|2Tr[p2l(3I1σ2lσ2jσ2k + σ1iσ1jσ1kσ2lσ2i

− σ1iσ1jσ2lσ2iσ2k − σ1iσ1kσ2lσ2iσ2j)qjqk]

=
3

16
|e|2[p2l(3 · 2 · 2iεljk + 2iεijk2δli − 2δij2iεlik

− 2δik2iεlij)pjpk] =
3

16
|e|2[p2l(12iεljk + 4iεljk

− 4iεljk − 4iεlkj)qjqk] =
3

16
|e|2[p2l(16iεljk)qjqk]

= 3|e|2~p2 · (~q × ~q) = 0

(249)

C.5.6 ef∗ combination

T̂ T̂ † =

√
18

32
(−ef∗)(3 + ~σ1 · ~σ2)( ~σ1 − ~σ2) · q( ~σ1 + ~σ1) · q

=

√
18

32
(−ef∗)(3 + σ1iσ2i)(σ1j − σ2j)qj(σ1k + σ2k)qk

=

√
18

32
(−ef∗)(3σ1j − 3σ2j + σ1iσ1jσ2i − σ1iσ2iσ2j)(σ1k + σ2k)qjqk

=

√
18

32
(−ef∗)(3σ1jσ1k − 3σ2jσ1k + σ1iσ1jσ1kσ2i − σ1iσ1kσ2iσ2j

+ 3σ1jσ2k − 3σ2jσ2k + σ1iσ1jσ2iσ2k − σ1iσ2iσ2jσ2k)qjqk
(250)

Tr[T̂ T̂ †] =

√
18

32
(−ef∗)Tr[3σ1jσ1kI2 − σ1iσ1kσ2iσ2j

− 3I1σ2jσ2k + σ1iσ1jσ2iσ2k] = 0

(251)

Tr[~p2 · ~σ2T̂ T̂
†] =

√
18

32
(−ef∗)Tr[p2l(σ1iσ1jσ1kσ2lσ2i − σ1iσ1kσ2lσ2iσ2j

− 3I1σ2lσ2jσ2k + σ1iσ1jσ2lσ2iσ2k)qjqk]

=

√
18

32
(−ef∗)Tr[p2l(2iεijk2δli − 2δik2iεlij

− 3 · 2 · 2iεljk + 2δij2iεlik)qjqk]

=

√
18

32
(−ef∗)[p2l(4iεljk + 4iεlkj − 12iεljk + 4iεljk)qjqk]

= 0

(252)
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C.6 F terms

C.6.1 fa∗ combination

T̂ T̂ † =

√
6

16
fa∗( ~σ1 + ~σ2) · q(1− ~σ1 · ~σ2)

=

√
6

16
fa∗(σ1i + σ2i)qi(1− σ1jσ2j)

=

√
6

16
fa∗(σ1i + σ2i − σ1iσ1jσ2j + σ1iσ2iσ2j)qi

(253)

Tr[T̂ T̂ †] =

√
6

16
fa∗Tr[σ1i + σ2i − σ1iσ1jσ2j + σ1iσ2iσ2j)qi] = 0 (254)

Tr[~p2 · ~σ2T̂ T̂
†] =

√
6

16
fa∗Tr[p2k(I1σ2lσ2i − σ1iσ1jσ2lσ2j)qi]

=

√
6

16
fa∗[p2l(2 · 2δli − 2δij2δlj)qi] = 0

(255)

C.6.2 fb∗ combination

T̂ T̂ † =

√
6

32
fb∗( ~σ1 + ~σ2) · q( ~σ1 − ~σ2) · q(1− ~σ1 · ~σ2)

=

√
6

32
fb∗(σ1i + σ2i)qi(σ1j − σ2j)qj(1− σ1kσ2k)

=

√
6

32
fb∗(σ1i + σ2i)(σ1j − σ2j − σ1jσ1kσ2k + σ1kσ2jσ2k)qiqj

=

√
6

32
fb∗(σ1iσ1j − σ1iσ2j − σ1iσ1jσ1kσ2k + σ1iσ1kσ2jσ2k

+ σ1jσ2i − σ2iσ2j − σ1jσ1kσ2iσ2k + σ1kσ2iσ2jσ2k)qiqj

(256)

Tr[T̂ T̂ †] =

√
6

32
fb∗Tr[(σ1iσ1jI2 + σ1iσ1kσ2jσ2k

− I1σ2iσ2j − σ1jσ1kσ2iσ2k)qiqj ]

=

√
6

32
fb∗[4δij + 4δij − 4δij − 4δij ]qiqj = 0

(257)

Tr[~p2 · ~σ2T̂ T̂
†] =

√
6

32
fb∗Tr[p2l(−σ1iσ1jσ1kσ2lσ2j + σ1iσ1jσ2lσ2jσ2k

− I1σ2lσ2iσ2k − σ1jσ1kσ2lσ2iσ2j)qiqk]

=

√
6

32
fb∗[p2l(−2iεijk2δlj + 2δij2iεljk

− 2 · 2iεlik − 2iεjkl2δij)qiqk]

=

√
6

32
fb∗[p2l(−4iεilk + 4iεlik − 4iεlik − 4iεikl)qiqk] = 0

(258)
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C.6.3 fc∗ combination

T̂ T̂ † =

√
6

16
fc∗( ~σ1 + ~σ2) · q(3 + ~σ1 · ~σ2)

=

√
6

16
fc∗(σ1i + σ2i)pi(3 + σ1jσ2j)

=

√
6

16
fc∗(3σ1i + 3σ2i + σ1iσ1jσ2j + σ1jσ2iσ2j)qi

(259)

Tr[T̂ T̂ †] = 0 (260)

Tr[~p2 · ~σ2T̂ T̂
†] =

√
6

16
fc∗Tr[p2k(3I1σ2kσ2i + σ1iσ1jσ2kσ2j)qi]

=

√
6

16
fc∗[p2k(3 · 2 · 2δki + 2δij2δkj)qi]

=

√
6

16
fc∗[p2k(12δik + 4δik)qi] =

√
6fc∗(~p2 · ~q)

(261)

C.6.4 fd∗ combination

TT ∗ =

√
3fd∗

8
( ~σ1 + ~σ2) · q(3 ~σ1 · q ~σ2 · q − ~σ1 · ~σ2)

=

√
3fd∗

8
(σ1i + σ2i)qi(3σ1jqjσ2kqk − σ1mσ2m)

=

√
3fd∗

8
(3σ1iσ1jσ2kqiqjqk − σ1iσ1mσ2mqi

+ 3σ1jσ2iσ2kqiqjqk − σ1mσ2iσ2mqi)

(262)

Tr[T̂ T̂ †] = 0 (263)

Tr[~p2 · ~σ2T̂ T̂
†] =

√
3fd∗

8
Tr[p2l(3σ1iσ1jσ2lσ2kqiqjqk − σ1iσ1mσ2lσ2mqi)]

=

√
3fd∗

8
[p2l(3 · 2δij2δlkqiqjqk − 2δim2δlmqi)]

=

√
3fd∗

8
[12q2p2lql − 4P2lql]

=
√

3fd∗(~p2 · ~q)

(264)
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C.6.5 fe∗ combination

T̂ T̂ † = −
√

18

32
fe∗( ~σ1 + ~σ2) · q( ~σ1 − ~σ2) · q(3 + ~σ1 · ~σ2)

= −
√

18

32
fe∗(σ1i + σ2i)qi(σ1j − σ2j)qj(3 + σ1kσ2k)

= −
√

18

32
fe∗(σ1i + σ2i)(3σ1j − 3σ2j + σ1jσ1kσ2k − σ1kσ2jσ2k)qiqj

= −
√

18

32
fe∗(3σ1iσ1j − 3σ1iσ2j + σ1iσ1jσ1kσ2k − σ1iσ1kσ2jσ2k

+ 3σ1jσ2i − 3σ2iσ2j + σ1jσ1kσ2iσ2k − σ1kσ2iσ2jσ2k)qiqj

(265)

Tr[T̂ T̂ †] = −
√

18

32
fe∗Tr[(3σ1iσ1jI2 − σ1iσ1kσ2jσ2k

− 3I1σ2iσ2j + σ1jσ1kσ2iσ2k)qiqj ] = 0

(266)

Tr[~p2 · ~σ2T̂ T̂
†] = −

√
18

32
fe∗Tr[p2l(σ1iσ1jσ1kσ2lσ2k − σ1iσ1kσ2lσ2jσ2k

− 3I1σ2lσ2iσ2j + σ1jσ1kσ2lσ2iσ2k)qiqj ]

= −
√

18

32
fe∗[p2l(2iεijk2δlk − 2δik2iεljk

− 3 · 2 · 2iεlij + 2δjk2iεlij)qiqj ]

= −
√

18

8
fe∗[p2l(iεijl − iεlji − 3iεlij + iεlij)qiqj ] = 0

(267)

C.6.6 ff∗ combination

T̂ T̂ † =
6

16
|f |2( ~σ1 + ~σ2) · q( ~σ1 + ~σ2) · q

=
6

16
|f |2(σ1i + σ2i)qi(σ1j + σ2j)qj

=
6

16
|f |2(σ1iσ1j + σ2iσ2j + σ1iσ2j + σ2iσ1j)pipj

(268)

Tr[T̂ T̂ †] =
6

16
|f |2Tr[(σ1iσ1jI2 + I1σ2iσ2j)]

=
6

16
|f |2[(2 · 2δij + 2 · 2δij)qiqj ] = 3|f |2

(269)

Tr[~p2 · ~σ2T̂ T̂
†] =

6

16
|f |2Tr[p2l(I1σ2lσ2iσ2j)qiqj ]

=
6

16
|f |2[p2l(2 · 2iεlijqiqj)]

=
6

4
|f |2[~p2 · (~q × ~q)] = 0

(270)
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