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In this paper, a sample-based procedure for obtaining simple and computable approximations of
chance-constrained sets is proposed. The procedure allows to control the complexity of the approx-
imating set, by defining families of simple-approximating sets of given complexity. A probabilistic
scaling procedure then scales these sets to obtain the desired probabilistic guarantees. The proposed
approach is shown to be applicable in several problems in systems and control, such as the design of
Stochastic Model Predictive Control schemes or the solution of probabilistic set membership estimation
problems.

© 2021 Published by Elsevier Ltd.
1. Introduction

In real-world applications, the complexity of the phenom-
na encountered and the random nature of data makes dealing
ith uncertainty essential. In many cases, uncertainty arises in
he modeling phase, in some others it is intrinsic to both the
ystem and the operative environment, as for instance wind
peed and turbulence in aircraft or wind turbine control (Prékopa,
995). Deriving results in the presence of uncertainty is of major
elevance in different areas, including, but not limited to, op-
imization (Sahinidis, 2004) and robustness analysis (Ben-Tal &
emirovski, 1998). However, with respect to robust approaches,
here the goal is to determine a feasible solution which is opti-
al in some sense for all possible uncertainty instances, the goal

n the stochastic framework is to find a solution that is feasible for
lmost all possible uncertainty realizations, (Calafiore, Dabbene,
Tempo, 2011; Tempo, Calafiore, & Dabbene, 2012). In several

pplications, including engineering and finance, uncertainties in
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price, demand, supply, currency exchange rate, recycle and feed
rate, and demographic condition are common. In these situations,
it is acceptable, up to a certain safe level, to relax the inher-
ent conservativeness of robust constraints enforcing probabilistic
constraints. More recently, this probabilistic approach has been
used also in unmanned autonomous vehicle navigation (Li, Zhan,
Hu, & Tomizuka, 2020; Mammarella, Capello, Dabbene, & Guglieri,
2018) as well as in optimal power flow (Chamanbaz, Dabbene, &
Lagoa, 2019; Chamanbaz, Dabbene, & Lagoa, 2020).

In the optimization framework, constraints involving stochas-
tic parameters that are required to be satisfied with a pre-
specified probability threshold are called chance constraints (CC).
In general, dealing with CC implies facing two serious challenges:
the solution of difficult parametrized probability integrals and
the nonconvexity of the ensuing constraints (Geng & Xie, 2019).
Consequently, while being attractive from a modeling viewpoint,
problems involving CC are often computationally intractable,
generally shown to be NP-hard, which seriously limits their appli-
cability. However, being able to efficiently solve or approximate
chance-constrained problems remains an important challenge,
especially in systems and control. In the case of approximated
solutions, there exists of course a fundamental trade-off between
complexity of the approach and goodness of the approximation.

The scientific community has devoted large research in de-
vising computationally efficient approaches to deal with chance-
constraints. We review such techniques in Section 3, where
we highlight three mainstream approaches: (i) exact techniques;
(ii) robust approximations; and (iii) sample-based approximations.
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In this paper, we present what we consider an important step
forward in the sample-based approach. More precisely, our de-
velopments stem from the observation that, while in the general
situation one is interested in finding an optimal solution to a
chance-constrained problem, there exists a significant class of
practical applications in which, instead, what it is really needed is
being able to construct good approximation of the chance-
constrained set . This is the case, for instance, of stochastic model
predictive control (SMPC), where this approximation is neces-
sary for post-processing in real time, see for instance (Lorenzen,
Dabbene, Tempo, & Allgöwer, 2017b; Mammarella et al., 2018).

Motivated by these considerations, we propose a simple and
efficient strategy to obtain a probabilistically guaranteed inner
approximation of a chance-constrained set, with given confi-
dence.

In particular, we describe a two-step procedure that involves:
(i) the preliminary approximation of the chance-constrained set
by means of a so-called Simple Approximating Set (SAS); (ii)
a sample-used scaling procedure that allows to properly scale
the SAS so to guarantee the desired probabilistic properties. The
proper selection of a low-complexity SAS allows the designer to
easily tune the complexity of the approximating set, significantly
reducing the sample complexity. We propose several candidate
SAS shapes, grouped in two classes: (i) sampled-polytopes; and
(ii) norm-based SAS.

The approach we propose distinguishes itself from the previ-
ous literature on CC in the following main points.

(1) It is specifically tailored towards the specific problem of
approximating the chance-constrained set, as opposed to
solving a specific instance of a chance-constrained prob-
lem.

(2) It is very general: it applies to a very general class of uncer-
tainty configurations. A large part of the methods available
in the literature are limited to cases where the constraints
depend in a ‘‘nice’’ way on the uncertainty. This is the case
for instance of the solution proposed in Margellos, Goulart,
and Lygeros (2014) and Nemirovski and Shapiro (2006).
The reader is referred to Section 3 for an overview.

(3) It is highly tunable: by selecting the complexity of the
approximating set, the designer has a very efficient way
to control the trade-off between computational complexity
and potential goodness of the approximation.

The probabilistic scaling approach was presented in the con-
ference papers (Alamo, Mirasierra, Dabbene, & Lorenzen, 2019;
Mammarella, Alamo, Dabbene, & Lorenzen, 2020) and it is based
on recent results on order statistics (Alamo, Manzano, & Camacho,
2018). The present work extends Alamo et al. (2019), Mam-
marella et al. (2020) in several directions. First, we perform here a
thorough mathematical analysis of probabilistic scaling. Second,
we provide probabilistic guarantees for a more general class of
norm-based SAS. Third, we consider here joint chance constraints.
his choice is motivated by the fact that enforcing joint chance
onstraints, which have to be satisfied simultaneously, adheres
etter to some applications, despite the inherent complexity. Fi-
ally, we present here a second application, besides SMPC, related
o probabilistic set-membership identification.

The paper is structured as follows. Section 2 provides a general
reamble of the problem formulation and of chance-constrained
ptimization, including two motivating examples. An extensive
verview on methods for approximating chance-constrained sets
s reported in Section 3 whereas the probabilistic scaling ap-
roach has been detailed in Section 4. Section 5 and Section 6 are
edicated to the definition of selected candidate SAS, i.e. sampled-
olytope and norm-based SAS, respectively. Last, in Section 7,
e validate the proposed approach with a numerical example
pplying our method to a probabilistic set membership estima-
ion problem. Main conclusions and future research directions are
ddressed in Section 8.
2

Notation

Given an integer N , [N] denotes the integers from 1 to N . Given
x ∈ R, ⌊x⌋ denotes the greatest integer no larger than x. Given
he ℓp-norm ∥ · ∥p, we denote with Bs

p the ℓp-norm ball of radius
ne in Rs, i.e. Bs

p
.
= { z ∈ Rs

: ∥z∥p ≤ 1 }. The Chebyshev
center of a given set X, with respect to norm ∥ · ∥p, is denoted as
Chebp(X), and it is defined as the center of the largest ℓp-norm
ball inscribed in X. Given an ℓp-norm ∥ · ∥p, its dual norm ∥ · ∥p∗

is defined as ∥c∥p∗
.
= supz∈Bs

p
c⊤z, ∀c ∈ Rs. In particular, the

ouples (p, p∗): (2, 2), (1,∞), (∞, 1) give rise to dual norms (Boyd
Vandenberghe, 2004, A.1.6).
Given two sets S1 and S2, the notation S1 ⊕S2 (S1 ⊖S2) stands

or the Minkowski sum (difference) between the two sets. Given
ntegers k,N , and parameter ε ∈ [0, 1], the Binomial cumulative
distribution function is denoted as

B(k;N, ε) .=
k∑

i=0

(
N
i

)
εi(1 − ε)N−i.

The following definition is borrowed from the field of order
statistics (Alamo et al., 2018; Mirasierra, Mammarella, Dabbene,
& Alamo, 2022).

Definition 1 (Generalized Min). Given a collection of N scalars
Γ = {γi}

N
i=1 ∈ RN , and an integer r ∈ [N], we say that γ−

r ∈ Γ is
the r-smallest value of Γ if there is no more than r −1 elements
of Γ strictly smaller than γ−

r .

Hence, γ−

1 denotes the smallest value in Γ , γ−

2 the second
smallest one, and so on until γ−

N , which is equal to the largest
one. We also use the alternative notation

min(r)(Γ ) .= γ−

r .

2. Problem formulation

Consider a robustness problem, in which the controller pa-
rameters and auxiliary variables are parametrized by means of
a decision variable vector θ ∈ Rnθ , which is usually referred to as
design parameter.

Furthermore, the uncertainty vector w ∈ Rnw represents one
of the admissible uncertainty realizations of a random vector
with given probability distribution PrW and (possibly unbounded)
support W.

This paper deals with the special case where the design speci-
fications can be decoded as a set of nℓ uncertain linear inequalities

F (w)θ ≤ g(w), (1)

where

F (w) =

⎡⎢⎣f ⊤

1 (w)
...

f ⊤
nℓ (w)

⎤⎥⎦ ∈ Rnℓ×nθ , g(w) =

⎡⎢⎣ g1(w)
...

gnℓ (w)

⎤⎥⎦ ∈ Rnℓ ,

are measurable functions of the uncertainty vector w ∈ Rnw .
In Section 8 we discuss possible extensions of this approach to

more general settings, in which the constraints may be nonlinear
and even nonconvex. Also note that the proposed setup captures
the special case of chance constraints with random right-hand
side. These correspond to the choice F (w) = F and g(w) = w.
Similarly, the case of chance constraints with random technology
matrix is captured by our general case.

We also note that hard linear constraints on θ may be directly
incorporated by introducing deterministic inequalities of the form
f ⊤

ℓ θ ≤ gℓ, where fℓ and gℓ do not depend on the uncertainty w.
The inequality in (1) is to be interpreted component-wise,

i.e. f ⊤(w)θ ≤ g (w), ∀ℓ ∈ [n ]. Due to the random nature of
ℓ ℓ ℓ
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R

he uncertainty vector w, each realization of w corresponds to
different set of linear inequalities. Consequently, each value of
gives raise to a corresponding set

(w) .= { θ ∈ Rnθ : F (w)θ ≤ g(w) }. (2)

In every application, one usually accepts a risk of violating the
constraints. This often translates into a two-step strategy: (i) a set
W̃ is obtained such that w ∈ W̃ is satisfied with a pre-specified
high probability; (ii) a robust design problem in which inequality
(1) is forced to be satisfied for every w ∈ W̃ is solved. This is for
instance the approach proposed in Hewing, Carron, Wabersich,
and Zeilinger (2018) and Margellos et al. (2014). This approach
suffers from several drawbacks: (i) there is no guarantee that the
ensuing robust problem is easily solvable. Indeed, this may be in
general very hard, and to obtain computable solutions the authors
of Margellos et al. (2014) need to make additional assumptions on
the dependence of F , g on the uncertainty w. (ii) The approach
in Margellos et al. (2014) does not provide a safe region (i.e. a
probabilistic approximation of the chance-constrained set), but
just a point satisfying the probabilistic constraint. If one uses
this approach, then the result may be conservative due to the
two-step procedure.

In this paper, we observe that a less conservative solution can
be found by choosing the set W to encompass all possible values
and characterizing the region of the design space in which the
fraction of elements of W, that violate the constraints, is below a
specified level. This concept is rigorously formalized by means of
the notion of probability of violation (see Tempo et al., 2012).

Definition 2 (Probability of Violation). Consider a probability
measure PrW over W and let θ ∈ Rnθ be given. The probability
of violation of θ relative to inequality (1) is defined as

Viol(θ ) .= PrW { F (w)θ ̸≤ g(w) }.

Given a constraint on the probability of violation, i.e. Viol(θ ) ≤ ε,
we denote as (joint) chance-constrained set of probability ε
(shortly, ε-CCS) the region of the design space for which this
probabilistic constraint is satisfied. This is formally stated in the
next definition.

Definition 3 (ε-CCS). Given ε ∈ (0, 1), we define the chance-
onstrained set of probability ε as follows

ε
.
= { θ ∈ Rnθ : Viol(θ ) ≤ ε }. (3)

Note that the ε-CCS represents the region of the design space Rnθ

for which this probabilistic constraint is satisfied and it is equiv-
alently defined as

Xε
.
=

{
θ ∈ Rnθ : PrW {F (w)θ ≤ g(w)} ≥ 1 − ε

}
. (4)

Remark 1 (Joint vs. Individual CC). The chance-constraint θ ∈ Xε ,
ith Xε defined in (4), describes a joint chance constraint. That is,

t requires that the joint probability of satisfying the inequality
onstraint F (w)θ ≤ g(w) is guaranteed to be no smaller than the
robabilistic level 1−ε. We remark that this constraint is notably
arder to impose than individual CC, i.e. constraints of the form

∈ Xℓεℓ
.
=

{
θ ∈ Rnθ : PrW

{
fℓ(w)⊤θ ≤ gℓ(w)

}
≥ 1 − εℓ

}
,

ℓ ∈ [nℓ],

ith εℓ ∈ (0, 1). A discussion on the differences and implica-
ions of joint and individual chance constraints may be found
n several papers, see for instance (Geng & Xie, 2019; Miller &
agner, 1965) and references therein. Note that a well-known

conservative) approximation to the joint chance-constrained set
s the use of multiple individual CC.
3

Fig. 1. The ε-CCS set for ε = 0.15 (smaller set), ε = 0.30 (intermediate set),
and ε = 0.45 (larger set). We observe that all sets are nonconvex, but the
onconvexity is more evident for larger values of ε, corresponding to larger

levels of accepted violation, while the set Xε appears ‘‘almost convex’’ for small
values of ε. This kind of behavior is in accordance with a recent result that
proves convexity of the ε-CCS for small enough values of ε, and it is usually
eferred to as eventual convexity (van Ackooij, 2015; van Ackooij & Malick, 2019).

While there exist simple examples for which a closed-form
valuation of Xε is possible, see e.g. Alamo et al. (2019, Figure 1),
e remark that this is not the case in general. Indeed, as pointed
ut in Geng and Xie (2019), typically the computation of the ε-
CS is extremely difficult, since the evaluation of the probability
iol(θ ) amounts to the solution of a multivariate integral, which
s NP-Hard (Khachiyan, 1989).

Moreover, the set ε-CCS is often nonconvex, except for very
pecial cases. For example, Shapiro, Dentcheva, and Ruszczyński
2014, Lemma 4.60) show that the solution set of separable
hance constraints can be written as the union of cones, which
s nonconvex in general.

xample 1 (Example of Nonconvex ε-CCS). To illustrate these
nherent difficulties, we consider the following three-dimensional
xample (nθ = 3) with w = {w1, w2}, where the first uncertainty
1 ∈ R3 is a three-dimensional normal-distributed random
ector with zero mean and covariance matrix

=

[ 4.5 2.26 1.4
2.26 3.58 1.94
1.4 1.94 2.19

]
,

and the second uncertainty w2 ∈ R3 is a three-dimensional
random vector whose elements are uniformly distributed in the
interval [0, 1]. The set of viable design parameters is given by
nℓ = 4 uncertain linear inequalities of the form

F (w)θ ≤
[

1 1 1 1
]⊤
, (5)

F (w) =
[
w1 w2 (2w1 − w2) w2

1

]⊤
,

here the square power w2
1 is to be interpreted element-wise.

In this case, to obtain a graphical representation of the set Xε ,
e resorted to gridding the design set, and, for each point θ in
he grid, to approximate the probability through a Monte Carlo
ethod. This procedure is clearly unaffordable for higher dimen-
ions. In Fig. 1 we report the plot of the obtained ε-CCS set for
ifferent values of ε. We observe that the set is indeed nonconvex.

.1. Chance-constrained optimization

Finding an optimal θ ∈ Xε for a given cost function J : Rnθ →

, leads to the chance-constrained optimization (CCO) problem

min J(θ ), (6)

θ∈Xε
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here the cost-function J(θ ) is usually assumed to be a convex,
ften even quadratic or linear, function.
We remark that the solution of the CCO problem (6) is in

eneral NP-hard, for the same reasons reported before. We also
ote that several stochastic optimization problems arising in dif-
erent application contexts can be formulated as a CCO. Typical
xamples are for instance the reservoir system design problem
roposed in Prékopa, Rapcsák, and Zsuffa (1978), where the prob-
em is to minimize the total building and penalty costs while
atisfying demands for all sites and all periods with a given
robability, or the cash matching problem (Dentcheva, Lai, &
uszczyński, 2004), where one aims at maximizing the portfo-
io value at the end of the planning horizon while covering all
cheduled payments with a prescribed probability. CCO prob-
ems also frequently arise in short-term planning problems in
ower systems. These optimal power flow (OPF) problems are
outinely solved as part of the real-time operation of the power
rid. The aim is determining minimum-cost production levels of
ontrollable generators subject to reliably delivering electricity to
ustomers across a large geographical area, see e.g. Chamanbaz
t al. (2020) and references therein.
Recently, approaches based on a probabilistic approximation

f chance-constrained sets have emerged in the context of
tochastic MPC, see Lorenzen, Dabbene, Tempo, and Allgöwer
2017a), Lorenzen et al. (2017b) and Mammarella et al. (2018).
hese approaches exploit the sample-based results we summa-
ize in Section 3.3 to construct offline a probabilistically guaran-
eed approximation of the set of all couples of control input/initial
tates that guarantee fulfillment of the desired input/state con-
traints. The possibility of constructing the approximation offline
onstitutes a winning feature with respect to similar approaches
ased on samples, since it moves all the cumbersome computa-
ion to the control design phase. In the online implementation,
he only operation to be performed is to ‘‘evaluate’’ this set in cor-
espondence to the current initial state. In this way, the original
tochastic optimization program is reduced to an efficiently solv-
ble quadratic program. This represents an undiscussed advan-
age, which has been demonstrated for instance in Mammarella
t al. (2018). We stress that the key element of this procedure is
xactly the construction of a ‘‘good’’ approximation of the ε-CCS.
In the next subsection, we report an additional motivating

example, which further highlights the importance of the problem
at hand.

2.2. Motivating example: probabilistic set-membership estimation

Consider the problem of finding θ̄ ∈ Rnθ such that

|y − θ̄ Tϕ(x)| ≤ ρ, ∀(x, y) ∈ W ⊆ Rnx × R,

where ϕ : Rnx → Rnθ is a (possibly non-linear) regressor function,
and ρ > 0 is a given hyperparameter accounting for modeling
errors. The (deterministic) set membership estimation problem,
see Bravo, Alamo, and Camacho (2006), Puig (2010) and Vicino
and Zappa (1996), consists of computing the set of parameters θ
that satisfy the constraint |y − θ Tϕ(x)| ≤ ρ for all possible values
of (x, y) ∈ W. In the literature, this set is usually referred to as
the feasible parameter set, that is

FPS
.
= { θ ∈ Rnθ : |y − θ Tϕ(x)| ≤ ρ, ∀(x, y) ∈ W }.

We notice that FPS could be empty if ρ is chosen too small. If, for
given w = (x, y), we define the set

X(w) = { θ ∈ Rnθ : |y − θ Tϕ(x)| ≤ ρ },

then the feasible parameter set FPS can be rewritten as

FPS = { θ ∈ Rnθ : θ ∈ X(w), ∀w ∈ W }.
4

The deterministic set membership problem suffers from the fol-
lowing limitations in real applications: (i) due to the possible
non-linearity of ϕ(·), checking if a given θ ∈ Rnθ satisfies the
constraint θ ∈ X(w), for every w ∈ W, is often a difficult
problem; (ii) in many situations the robust constraint can not be
checked because only samples of W are available and therefore,
only outer bounds of FPS can be computed; and (iii) there are
problem instances where, because of outliers and possible non-
finite support of W, there is no point in Rnθ guaranteeing the
fulfillment of every possible constraint, and thus, the set FPS is
empty (even for large values of ρ).

To deal with this issue, one can resort to a probabilistic re-
laxation of the FPS. If a probability distribution is defined on W,
the probabilistic set membership estimation problem is that of
characterizing the set of parameters θ that satisfy

PrW{|y − θ Tϕ(x)| ≤ ρ} ≥ 1 − ε,

for a given probability parameter ε ∈ (0, 1). Hence, we can
define FPSε as the set of parameters that satisfy the previous
probabilistic constraint, that is,

FPSε = { θ ∈ Rnθ : PrW{θ ∈ X(w)} ≥ 1 − ε }.

It is immediate to notice that this problem fits in the formulation
proposed in this section: It suffices to define

F (w) =

[
ϕT (x)

−ϕT (x)

]
, g(w) =

[
ρ + y
ρ − y

]
.

2.3. Chance-constrained set approximations

Motivated by the discussion above, we are ready to formulate
the main problem studied in this paper.

Problem 1 (ε-CCS Approximation). Given the set of linear inequal-
ities (1), and a violation parameter ε, find an inner approximation
of the set Xε . The approximation should be: (i) simple enough; (ii)
accurate enough, (iii) easily computable.

A solution to this problem is provided in the paper. In particu-
lar, regarding (i), we present a solution in which the approximat-
ing set is represented by few linear inequalities. Regarding (ii) and
(iii), we propose a highly tunable and computationally efficient
procedure for its construction (see Algorithm 1).

Before presenting our approach, in the next section we provide
a brief literature overview of different methods presented in the
literature to construct approximations of the ε-CCS set.

3. Overview on different approaches to ε-CCS approximations

The construction of computational efficient approximations
to ε-CCS is a long-standing problem. In particular, the reader
is referred to the recent reviews (Geng & Xie, 2019; Lejeune &
Prékopa, 2018), which provide rather complete discussions on the
topic, and cover the most recent results. The authors of Geng and
Xie (2019) distinguish three different approaches, which we very
briefly revisit here.

3.1. Exact techniques

In some very special cases, the ε-CCS is convex and hence
the CCO problem is efficiently computable. This is the case, for
instance, of individual chance constraints with w being Gaus-
sian (Kataoka, 1963). Other important examples of convexity
of the set Xε involve log-concave distribution (Prékopa, 1971,
1995). General sufficient conditions on the convexity of chance
constraints may be found in van Ackooij (2015), Calafiore and

Ghaoui (2006), Henrion and Strugarek (2008) and Lagoa (1999).
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owever, all these cases are very specific and hardly extend to
he joint chance constraints considered in this work.

All these previously cited references deal with continuous dis-
ributions. A different line of research concentrates instead on dis-
rete distributions, which arise frequently in applications, either
irectly, or as empirical approximations of the underlying distri-
ution (see, for example, Beraldi & Ruszczyński, 2002; Prékopa,
995). For this particular case, exact results based on the concept
f p-efficiency points (Dentcheva, Prékopa, & Ruszczynski, 2000)
r dual methods (Prékopa, 1990) have been proposed.

.2. Deterministic approximations

A second class of approaches consist in finding deterministic
onditions that allow to construct a set X, which is a guar-
nteed inner convex approximation of the probabilistic set Xε .
he classical solution consists in the applications of Chebyshev-
ike inequalities, see e.g. Hewing and Zeilinger (2018) and Yan,
oulart, and Cannon (2018). More recent techniques, which are
roved particularly promising, involve robust optimization (Ben-
al & Nemirovski, 1998), as the convex Bernstein-based approx-
mations introduced in Nemirovski (2012) and Nemirovski and
hapiro (2006). A particular interesting convex relaxation in-
olves the so-called Conditional Value at Risk (CVaR), see Chen,
im, Sun, and Teo (2010) and references therein. Finally, we point
ut some recent techniques based on Genz’ code for Gaussian
robabilities of rectangles (Bremer, Henrion, & Möller, 2015),
r on polynomial moments relaxations (Jasour, Aybat, & Lagoa,
015; Lasserre, 2017).
Specific solutions have been proposed for the case of discrete

istributions, see the recent survey (Ahmed & Xie, 2018). In
articular, we point out the recent works proposing a Boolean
eformulation of the feasible set of individual and joint chance
onstraints (see Lejeune, 2012; Lejeune & Margot, 2016).
Nonetheless, it should be remarked that these techniques usu-

lly suffer from conservatism and computational complexity is-
ues, especially in the case of joint chance constraints.

.3. Sample-based techniques

In recent years, a novel approach to approximate chance con-
traints, based on random sampling of the uncertain parame-
ers, has gained popularity, see e.g. Alamo, Tempo, and Camacho
2009), Calafiore et al. (2011), Luedtke and Ahmed (2008), Tempo
t al. (2012) and references therein. Sampling-based techniques
re characterized by the use of a finite number N of iid samples
f the uncertainty

{
w(1), w(2), . . . , w(N)

}
drawn according to a

probability distribution PrW. With each sample w(i), i ∈ [N], we
can associate the following sampled set

X(w(i)) = { θ ∈ Rnθ : F (w(i))θ ≤ g(w(i)) }, (7)

sometimes referred to as scenario, since it represents an observed
instance of the uncertain constraint.

Then, the scenario approach considers the CCO problem (6)
and approximates its solution through the following scenario
problem

θ∗

sc = argmin J(θ ) (8)

subject to θ ∈ X(w(i)), i ∈ [N].

We note that, if the function J(θ ) is convex, problem (8) becomes
a linearly constrained convex program, for which very efficient
solution approaches exist. Under some technical assumptions
(feasibility of the problem and non-degeneracy), a fundamental
result (Calafiore, 2010; Calafiore & Campi, 2006; Campi & Garatti,
2008, 2011) provides a probabilistic certification of the constraint
5

satisfaction for the solution to the scenario problem. In particular,
it is shown that

PrWN
{
Viol(θ∗

sc) > ε
}

≤ B(nθ − 1;N, ε), (9)

where the probability in (9) is measured with respect to the
samples {w(1), w(2), . . . , w(N)}.

A few observations are at hand regarding the scenario ap-
proach and its relationship with Problem 1. First, if we define the
sampled constraints set as

XN
.
=

N⋂
i=1

X(w(i)), (10)

we see that the scenario approach consists in approximating the
constraint θ ∈ Xε in (6) with its sampled version θ ∈ XN . On the
other hand, it should be remarked that the scenario approach can-
not be used to derive any guarantee on the relationship existing
between XN and Xε .

Indeed, the nice probabilistic property in (9) holds only for
the optimum of the scenario program θ∗

sc . This is a fundamental
point, since the scenario results build on the so-called support
constraints, which are defined for the optimum point θ∗

sc only.
On the contrary, in our case we are interested in establishing

a direct relation (in probabilistic terms) between the set XN and
the ε-CCS Xε . This is indeed possible, but one needs to resort to
results based on Statistical Learning Theory (Vapnik, 1998) and
in Alamo et al. (2009, Theorem 8), summarized in the following
lemma.

Lemma 1 (Statistical Learning Theory Bound). Given probabilistic
levels δ ∈ (0, 1) and ε ∈ (0, 0.14), if the number of samples N is
chosen so that N ≥ NLT , with

NLT
.
=

4.1
ε

(
ln

21.64
δ

+ 4.39nθ log2
(8enℓ
ε

))
, (11)

hen PrWN {XN ⊆ Xε} ≥ 1 − δ.

The lemma, whose proof is reported in Appendix A.1, is a
direct consequence of the statistical learning theory results on
the so-called (α, k)-Boolean functions, given in Alamo et al. (2009,
Corollary 4), where more general results are reported for cases in
which ε is not constrained in (0, 0.14).

Remark 2 (Sample-based SMPC). The learning theory-based ap-
proach discussed in this section has been applied in Lorenzen
et al. (2017b) to derive offline a probabilistic inner approximation
of the chance-constrained set defining the couples of input/state
guaranteeing the desired input/state chance. In particular, the
bound (11) is a direct extension to the case of joint CC of the
result proved in Lorenzen et al. (2017b) for individual CC. To
this regard, we note that the results in the previous section
allow to develop a novel SMPC scheme which considers multiple
constraints at the same time. These developments are omitted
here for brevity, and are reported in an extended version avail-
able at Mammarella, Mirasierra, Lorenzen, Alamo, and Dabbene
(2021). This work highlights the limits of Lorenzen et al. (2017b):
even for a moderately sized MPC problem with nx = 5 states,
nu = 2 inputs, prediction horizon of T = 10, simple interval
constraints on states and inputs, and for a reasonable choice of
probabilistic parameters ε = 0.05, δ = 10−6, we get more than
.6 million linear inequalities.

Remark 2 motivates the approach presented in the next sec-
ion, which builds upon the results presented in Alamo et al.
2019). We show how the probabilistic scaling approach directly
eads to approximations of user-chosen complexity, which can be
irectly used in applications instead of creating the need for a
ost-processing step to reduce the complexity of the sampled set.



M. Mammarella, V. Mirasierra, M. Lorenzen et al. Automatica 137 (2022) 110108

4

r
m
a
c

p

s

S

i

c

o
t
p
i
p
g
s

4

S
(
b
a
o

P

T
r

D
g
w

γ

w

p

. The probabilistic scaling approach

We propose a novel sample-based approach, alternative to the
andomized procedures proposed so far. This scheme allows to
aintain the nice probabilistic features of these techniques, while
t the same time providing the designer with a way of tuning the
omplexity of the approximation.
The main idea behind this approach consists of a two-step

rocedure: (i) first a simple initial approximation θc ⊕ S of the
shape of the probabilistic set Xε is obtained, and (ii) a scalable
imple approximating set (Scalable SAS) of the form

(γ ) .= θc ⊕ γ S (12)

s considered.
These sets are described by a center point θc and a low-

omplexity shape set S. The center θc and the shape S constitute
the design parameters of the proposed approach. By appropriately
selecting the shape S, the designer can control the complexity of
the approximating set. The nonnegative scalar γ controls instead
the scale of the set S(γ ): the larger γ , the larger will be the set.

Note that we do not ask this initial set to have any guarantee
f probabilistic nature. What we ask is that this set is being able
o ‘‘capture" somehow the shape of the set Xε . Recipes on a
ossible procedure for constructing this initial set are provided
n Section 5. The center θc and the set S constitute the starting
oint of a scaling procedure, which allows to derive a probabilistic
uaranteed approximation of the ε-CCS, as detailed in the next
ubsection.

.1. Probabilistic scaling

In this section, we address the problem of how to scale the set
(γ ) around its center θc to guarantee, with confidence level δ ∈

0, 1), the inclusion of the scaled set into Xε . Within this sample-
ased procedure we assume that Nγ iid samples {w(1), . . . , w(Nγ )}

re obtained from PrW and, based on these, we show how to
btain a scalar γ̄ > 0 such that

rWNγ {S(γ̄ ) ⊆ Xε} ≥ 1 − δ.

o this end, we first define the scaling factor associated to a given
ealization of the uncertainty.

efinition 4 (Scaling Factor). Given a Scalable SAS S(γ ), with
iven center θc ∈ Rnθ and shape S, and a realization w ∈ W,
e define the scaling factor of S(γ ) relative to w as

(w) .=

{
0 if θc ̸∈ X(w)

max
S(γ )⊆X(w)

γ otherwise, (13)

ith X(w) = { θ ∈ Rnθ : F (w)θ ≤ g(w) }.

That is, γ (w) represents the maximal scaling that can be ap-
lied to S(γ ) = θc ⊕γ S around the center θc so that S(γ ) ⊆ X(w).

The following theorem, whose proof is reported in Appendix A.2,
states how to obtain, by means of sampling, a scaling factor γ̄
that guarantees, with high probability, that S(γ̄ ) ⊆ Xε .

Theorem 1 (Probabilistic Scaling). Given a candidate Scalable SAS
S(γ ), with θc ∈ Rnθ and shape S, suppose that accuracy parameter
ε ∈ (0, 1), confidence level δ ∈ (0, 1), integer parameter r ≥ 1 and
Nγ ≥ r are chosen such that

B(r − 1;Nγ , ε) ≤ δ. (14)

Draw Nγ iid samples {w(1), w(2), . . . , w(Nγ )} from distribution PrW,
compute the corresponding scaling factors

γ
.
= γ (w(i)), i ∈ [N ]
i γ

6

according to Definition 4, and let Γ .
= {γi}

Nγ
i=1. Define

γ̄ = γ−

r = min(r)(Γ ),

i.e. γ̄ is the rth smallest value of Γ (see Notation). Under these
assumptions:

(i) If γ̄ > 0 then, with probability no smaller than 1 − δ,

S(γ̄ ) = θc ⊕ γ̄ S ⊆ Xε.

(ii) If θc ̸∈ Xε then γ̄ = 0 with probability no smaller than 1− δ.

We now state a Lemma, whose proof is reported in Ap-
pendix A.3, which is a generalization of a previous result pre-
sented in Mirasierra et al. (2022). The lemma provides a way
to relate the choice of r and Nγ by introducing the value βϵNγ .
This latter represents the desired fraction of the expected number
of violations, which can be interpreted as a trade-off parameter
between the number of samples and the tightness of the solution.

Lemma 2. Let r = ⌈βεNγ ⌉, where β ∈ (0, 1), and define

κ
.
=

(√
β +

√
2 − β

√
2(1 − β)

)2

.

Then, inequality (14) is satisfied for

Nγ ≥
κ

ε
ln

1
δ
. (15)

In particular, the choice β = 0.5 leads to r =

⌈
εNγ
2

⌉
and Nγ ≥

7.47
ε

ln 1
δ
.

The above result leads to the following simple algorithm, in
which we summarize the main steps for constructing the scaled
set, and we provide an explicit way of determining parameter r .

Algorithm 1 Probabilistic SAS Scaling
1: Given a candidate Scalable SAS S(γ ), and probability levels ε

and δ, choose

Nγ ≥
7.47
ε

ln
1
δ

and r =

⌈
εNγ
2

⌉
. (16)

2: Draw Nγ samples of the uncertainty w(1), . . . , w(Nγ ).
3: for i = 1 to Nγ do
4: Compute, according to Definition 4, the Nγ scaling factors

γi
.
= γ (w(i)), i ∈ [Nγ ]. (17)

5: end for
6: Return γ̄ = γ−

r = min(r)(Γ ), the rth smallest value of Γ =

{γi}
Nγ
i=1.

A few comments are in order regarding the algorithm above.
In step 4, for each uncertainty sample w(i) one has to solve an
optimization problem, which amounts to finding the largest value
of γ such that S(γ ) is contained in the set X(w(i)) defined in (7).
If the SAS is chosen appropriately, we can show that this problem
is convex and computationally very efficient: this is discussed
in Section 5. Then, in step 6, one has to re-order the sequence
Γ = {γ1, γ2, . . . , γNγ } so that the first element is the smallest
one, the second element is the second smallest one, and so on
and so forth, and then return the rth element of the reordered
sequence.

The properties of the output of Algorithm 1 can be derived by
a direct application of Theorem 1 and Lemma 2. In particular, if
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he output γ̄ is larger than zero, then S(γ ) ⊆ Xε with probability
no smaller than 1 − δ.

In the next sections, we provide a ‘‘library’’ of possible can-
didate SAS shapes. We remind that these sets need to
comply with two main requirements: (i) being a simple and
low-complexity representation; and (ii) being able to capture
the original shape of the ε-CCS. Moreover, in the light of the
discussion after Algorithm 1, we also ask these sets to be convex.

5. Candidate SAS: Sampled-polytope

First, we note that the most straightforward way to design
a candidate SAS is again to recur to a sample-based procedure:
we draw a fixed number NS of ‘‘design’’ uncertainty samples1
{w̃(1), . . . , w̃(NS )}, and construct an initial sampled approximation
by introducing the sampled-polytope

XNS =

NS⋂
j=1

X(w̃(j)). (18)

Note that the sampled polytope XNS , by construction, is given
y the intersection of nℓNS half-spaces. Hence, we observe that
his approach provides very precise control on the final complex-
ty of the approximation, through the choice of the number of
amples NS . However, it is also clear that a choice for which NS ≪

NLT implies that the probabilistic properties of XNS before scaling
will probably not meet the required specifications (see Lemma 1).
However, we emphasize again that this initial geometry does not
have nor require any probabilistic guarantees, which are instead
provided by the probabilistic scaling discussed in Section 4.1. It
should be also remarked that this is only one possible heuristic.
For instance, along this line one could as well draw many samples
and then apply a clustering algorithm to boil it down to a desired
number of samples.

We remark that, in order to apply the scaling procedure, we
need to define a center around which to apply the scaling pro-
cedure. To this end, we could compute the so-called Chebyshev
center, which for a given norm ∥·∥p, is defined as the center of the
largest ball inscribed in XNS , i.e. θc = Chebp(XNS ). Once the center
θc has been determined, the scaling procedure can be applied to
the sampled-polytope SAS defined as

SNS (γ )
.
= θc ⊕ γ {XNS ⊖ θc}. (19)

e note that computing the Chebyshev center of a given polytope
s an easy convex optimization problem, for which efficient algo-
ithms exist, see e.g. Boyd and Vandenberghe (2004). A possible
lternative would be the analytic center of XNS , whose computa-
ion is even easier (see Boyd & Vandenberghe, 2004, for further
etails). Note that the choice of θc only affects the goodness of
he shape, but we can never know a priori if the analytic center
s a better choice than any random center in the candidate SAS.

xample 2 (Sample-based Approximations). To illustrate how
he proposed scaling procedure works in practice in the case of
ampled-polytope SAS, we revisit Example 1. To this end, a pre-
ixed number NS of uncertainty samples were drawn, and the set
f inequalities

(w̃(j))θ ≤ g(w̃(j)), j ∈ [NS],

ith F (w), g(w) defined in (5), were constructed, leading to the
set XNS . Then, its Chebyshev center with respect to norm ∥·∥2 was

1 These samples are denoted with a tilde to distinguish them from the
amples used in the probabilistic scaling procedure.
7

computed, and Algorithm 1 was applied to the sampled-polytope
SAS SNS (γ ) defined in (19), with ε = 0.05, δ = 10−6, leading to
Nγ = 2065.

We note that, in this case, the solution of the optimization
problem in (13) may be obtained by bisection on γ . Indeed, for
given γ , checking if SNS (γ ) ⊆ X(w(i)) amounts to solving some
simple linear programs.

Two different situations were considered: a case where the
number of inequalities is rather small NS = 100, and a case
where the complexity of the SAS is higher, i.e. NS = 1000. The
outcome procedure is illustrated in Fig. 2. We can observe that,
for a small NS – Fig. 2(a) – the initial approximation is rather large
(although it is contained in Xε , we remark that we do not have
any guarantee that this will happen). In this case, the probabilistic
scaling returns γ = 0.8954 which is less than one. This means
that, in order to obtain a set fulfilling the desired probabilistic
guarantees, we need to shrink it around its center. In the second
case, for a larger number of sampled inequalities – Fig. 2(b) – the
initial set (the red one) is much smaller, and the scaling procedure
inflates the set by returning a value of γ greater than one, i.e. γ =

1.2389. Note that choosing a larger number of samples for the
computation of the initial set does not imply that the final set
will be a better approximation of the ε-CCS.

Finally, we compare this approach to the scenario-like ones
discussed in Section 3.3. To this end, we also draw the approx-
imation obtained by directly applying the Statistical Learning
Theory bound (11). Note that in this case, since nθ = 3 and
nℓ = 4, we need to take NLT = 13,011 samples, corresponding
to 52,044 linear inequalities. The resulting set is represented in
Fig. 2(c). We point out that using this approximation (i) the set is
much more complex, since the number of involved inequalities
is much larger; (ii) the set is much smaller, hence providing a
much more conservative approximation of the ε-CCS. Hence, the
ensuing chance-constrained optimization problem will be com-
putationally harder, and lead to a solution with a larger cost or
even to an infeasible problem, in cases where the approximating
set is too small.

6. Candidate SAS: Norm-based SAS

In this section, we propose a procedure in which the shape of
the scalable SAS is selected a-priori. This corresponds to situations
where the designer wants to have full control over the final shape
in terms of structure and complexity. The main idea is to define
so-called norm-based SAS of the form

Sℓp (γ )
.
= θc ⊕ γHBs

p, (20)

where Bs
p is an ℓp-ball in Rs, H ∈ Rnθ×s, with s ≥ nθ , is a design

matrix (not necessarily square), and γ is the scaling parameter.
Note that when the matrix H is square (i.e. s = nθ ) and positive
definite these sets belong to the class of ℓp-norm based sets
originally introduced in Dabbene, Lagoa, and Shcherbakov (2010).
In particular, in case of ℓ2 norm, the sets are ellipsoids. This
particular choice is the one studied in Mammarella et al. (2020).
Here, we extend this approach to a much more general family
of sets, which encompasses for instance zonotopes, obtained by
letting p = ∞ and s ≥ nθ . Zonotopes have been widely studied
in geometry, and have found several applications in systems and
control, in particular for problems of state estimation and robust
Model Predictive Control, see e.g. Le, Stoica, Alamo, Camacho, and
Dumur (2013). Zonotopes proved to be very flexible and yield
very efficient implementations.
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the references to color in this figure legend, the reader is referred to the web version of this article.)
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6.1. Scaling factor computation for norm-based SAS

We recall that the scaling factor γ (w) is defined as 0 if θc ̸∈

X(w) and as the largest value γ for which Sℓp (γ ) ⊆ X(w)
otherwise. The following theorem, whose proof is reported in Ap-
pendix A.4, provides a direct and simple way to compute in closed
form the scaling factor for a given candidate norm-based SAS.

Theorem 2 (Scaling Factor for Norm-based SAS). Given a norm-
based SAS S(γ ) = θc ⊕ γHBs

p and a realization w ∈ W, define
ℓ(w) .= gℓ(w) − f Tℓ (w)θc and ρℓ(w) .= ∥HT fℓ(w)∥p∗ , with ∥ · ∥p∗

eing the dual norm of ∥ · ∥p.
The scaling factor γ (w) can be computed as

(w) = min
ℓ∈[nℓ]

γℓ(w),

ith γℓ(w), ℓ ∈ [nℓ], given by

ℓ(w) =

⎧⎪⎨⎪⎩
0 if τℓ(w) < 0,
∞ if τℓ(w) ≥ 0 and ρℓ(w) = 0
τℓ(w)
ρℓ(w)

if τℓ(w) ≥ 0 and ρℓ(w) > 0
.

Note that γ (w) is equal to zero if and only if θc is not included
in the interior of X(w).

6.2. Construction of a candidate norm-based set

Similarly to Section 5, we first draw a fixed number NS of
‘‘design’’ uncertainty samples {w̃(1), . . . , w̃(NS )}, and construct an
initial sampled approximation (sampled-polytope SAS) XNS by
means of (18). Again, we consider the Chebyshev center of XNS ,
or its analytical center as a possible center θc for our approach.

Analogously to what was proposed in Mammarella et al.
(2020), given XNS , s ≥ nθ and p ∈ {1, 2,∞}, the objective is to
compute the largest set θc ⊕HBs

p included in XNS . To this end, we
assume that we have a function Volp(H) that provides a measure
of the size of HBs

p. That is, larger values of Volp(H) are obtained
for increasing sizes of HBs

p.

Remark 3 (On the Volume Function). The function Volp(H) may
be seen as a generalization of the classical concept of Lebesgue
volume of the set XNS . Indeed, when H is a square positive
definite matrix, some possibilities are Volp(H) = log det(H) –
which is directly proportional to the classical volume definition,

or Volp(H) = trH – which for p = 2 becomes the well known sum

8

of ellipsoid semiaxes (see Boyd & Vandenberghe, 2004, Chapter
8 and Dabbene, Henrion, Lagoa, & Shcherbakov, 2015). These
measures can be easily generalized to non square matrices. It
suffices to compute the singular value decomposition. If H =

UΣV T , we could use the measures Volp(H) = trΣ or Volp(H) =

log det(Σ).
For non square matrices H , specific results for particular values

of p are known. For example, we remind that if p = ∞ and
H ∈ Rnθ×s, s ≥ nθ , then θc ⊕ HBs

∞
is a zonotope. Then, if

we denote as generator each of the columns of H , the volume
of a zonotope can be computed by means of a sum of terms
(one for each different way of selecting nθ generators out of the
s generators of H); see Alamo, Bravo, and Camacho (2005) and
Gover and Krikorian (2010). Another possible measure of the size
of a zonotope θc ⊕HBs

∞
is the Frobenius norm of H (Alamo et al.,

2005).

Given an initial design set XNS , we elect as our candidate Scal-
able SAS the largest ‘‘volume’’ norm-based SAS contained in XNS .
ormally, this rewrites as the following optimization problem

max
θc ,H

Volp(H)

ubject to θc ⊕ HBs
p ⊆ XNS .

(21)

As it has been shown (see Appendix A.4), problem (21) is equiv-
alent to

min
θc ,H

−Volp(H)

s.t. f Tℓ (w̃
(j))θc + ∥HT fℓ(w̃(j))∥p∗ − gℓ(w̃(j)) ≤ 0,

ℓ ∈ [nℓ], j ∈ [NS], (22)

where we have replaced the maximization of Volp(H) with the
minimization of -Volp(H).

We notice that the constraints are convex on the decision
variables; also, the functional to minimize is convex under partic-
ular assumptions. For example when H is assumed to be square
and positive definite and Volp(H) = log det(H). For non square
matrices, the constraints remain convex, but the convexity of
the functional to be minimized is often lost. In this case, local
optimization algorithms should be employed to obtain a possibly
sub-optimal solution.

Example 3 (Norm-based SAS). We revisit again Example 1 to
show the use of norm-based SAS. We note that, in this case,

the designer can control the approximation outcome by acting
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Fig. 3. Scaling procedure applied to (a) Sℓ1 -SAS with NS = 100, (b) Sℓ1 -SAS with NS = 1000, (c) Sℓ∞ -SAS with NS = 100, and (d) Sℓ∞ -SAS with NS = 1000. The
nitial set is depicted in red, the final one in green. The sampled design polytope SNS is represented in black. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
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pon the number of design samples NS used for constructing
he set SNS . In Fig. 3 we report two different norm-based SAS,
espectively with p = 1 and p = ∞, and for each of them
e consider two different values of NS , respectively NS = 100
nd NS = 1000. Similarly to what observed in Example 2, we
ee that for larger NS , the ensuing initial set becomes smaller.
onsequently, we have a shrinkage process for small NS and an
nflating one for large NS . However, we observe that in this case,
he final number of inequalities is independent of NS (8 for Sℓ1
nd 6 for Sℓ∞ ).

.2.1. Relaxed computation
It is worth remarking that the minimization problem of the

revious subsection might be infeasible. In order to guarantee the
easibility of the problem, a soft-constrained optimization prob-
em is proposed. With a relaxed formulation, θc is not guaranteed
o satisfy all the sampled constraints. However θc ∈ SNS is not
ecessary to obtain an ε-CCS.
Given ξ > 0, the relaxed version of optimization problem (22)

s

min
θc ,H,η1,...,ηNS

− Volp(H) + ξ

NS∑
j=1

max{ηj, 0} (23)

.t. f Tℓ (w̃
(j))θc + ∥HT fℓ(w̃(j))∥p∗ − gℓ(w̃(j)) ≤ ηj,

ℓ ∈ [nℓ], j ∈ [NS].

he parameter ξ serves to provide an appropriate trade off be-
ween satisfaction of the sampled constraints and the size of the
btained region. A possibility to choose ξ would be to choose it in
uch a way that the fraction of violations nviol/NS (where nviol is
he number of elements ηj larger than zero) is smaller than ε/2.

. Numerical example: Probabilistic set membership estima-
ion

We now present a numerical example in which the results
f the paper are applied to the probabilistic set membership
stimation problem, introduced in Section 2.2. We consider the
niversal approximation functions given by Gaussian radial basis
unction networks (RBFN) (Buhmann, 2000).

Given the nodes [x1, x2, . . . , xM ] and the variance parameter
, the corresponding Gaussian radial basis function network is
efined as

BFN(x, θ ) = θ Tϕ(x),

here θ =
[
θ1 . . . θM

]T represents the weights and

(x) =

[
exp

(
−∥x−x1∥

2
)

. . . exp
(

−∥x−xM∥
2
) ]T
c c

9

Fig. 4. Representation of the extreme values θ+ and θ− and the central value
θc of the FPSδε .

is the regressor function. Given δ ∈ (0, 1) and ε ∈ (0, 1), the
objective is to obtain, with probability no smaller than 1 − δ, an
inner approximation of the probabilistic feasible parameter set
FPSε , which is the set of parameters θ ∈ RM that satisfies

PrW{|y − θ Tϕ(x)| ≤ ρ} ≥ 1 − ε, (24)

where ρ = 5, x is a random scalar with uniform distribution in
[−5, 5], and

y = sin(3x) + σ ,

where σ is a random scalar with a normal distribution with mean
5 and variance 1.

We use the procedure detailed in Sections 4–6 to obtain a SAS
of FPSε . We have taken a grid of M = 20 points in the interval
[−5, 5] to serve as nodes for the RBFN, and a variance parameter
of c = 0.15. We have taken NS = 350 random samples w = (x, y)
to compute the initial geometry, which has been chosen to be an
ℓ∞ norm-based SAS of dimension 20 with a relaxation parameter
of ξ = 1 (see (23)). The chosen initial geometry is θc ⊕ HB20

∞
,

where H is constrained to be a diagonal matrix.
When the initial geometry is obtained, we scale it around its

center by means of probabilistic scaling with Algorithm 1. The
number of samples required for the scaling phase to achieve ε =

0.05 and δ = 10−6 is Nγ = 2065 and the resulting scaling factor is
γ = 0.3803. The scaled geometry θc⊕γHB20

∞
is, with a probability

no smaller than 1− δ, an inner approximation of FPSε which we
will refer to as FPSδε . Since it is a transformation of an ℓ∞ norm
all with a diagonal matrix H , we can write it as

PSδε = {θ : θ−
≤ θ ≤ θ+

},

here the extreme values θ−, θ+
∈ R20 are represented in Fig. 4,

long with the central value θ ∈ R20.
c
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Fig. 5. Real values of y vs central estimation (blue) and interval prediction
bounds (red). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Once the FPSδε has been computed, we can use its center θc
to make the point estimation y ≈ θ Tc ϕ(x). We can also obtain
probabilistic upper and lower bounds of y by means of Eq. (24).
That is, every point in FPSδε satisfies, with confidence 1 − δ:

PrW{y ≤ θ Tϕ(x) + ρ} ≥ 1 − ε,

PrW{y ≥ θ Tϕ(x) − ρ} ≥ 1 − ε.
(25)

We notice that the tightest probabilistic bounds are obtained with
θ+ for the lower bound and θ− for the upper one. That is, we
finally obtain that, with confidence 1 − δ:

PrW{y ≤ θ−T
ϕ(x) + ρ} ≥ 1 − ε,

PrW{y ≥ θ+T
ϕ(x) − ρ} ≥ 1 − ε.

(26)

Fig. 5 shows the results of both the point estimation and the
probabilistic interval estimation.

8. Concluding remarks

In this paper, we proposed a general approach to construct
probabilistically guaranteed inner approximations of the chance-
constrained set Xε . The approach is very general and flexible. In
this section, we report a few final remarks on some important
aspects of the presented methodology.

8.1. On scalability of the proposed approach

We point out that our framework provides different schemes,
with different computational requirements. In particular, regard-
ing the norm-based sets discussed in Section 6, Theorem 2 pro-
vides a closed-form expression for the scaling computations.
Hence, the approach scales extremely well when the initial candi-
date set θc ⊕HBs

p is given. In the case the initial set is for instance
a generic polytope (as for the sampled-polytopes discussed in
Section 5), the scaling computation is indeed more involved, since
there is not a close-form expression in general. In this case, the
solution of the optimization problem in (17) may be obtained by
bisection on γ . Note that, in this case, for given γ , checking if
SNS (γ ) ⊆ X(w(i)) amounts to solving a linear program.

Otherwise, when the set θc ⊕ HBs
p is not available, its com-

putation will clearly constitute the most demanding step of our
scheme. In this case, as detailed in Section 6, θc and H can be
obtained by means of a convex optimization problem when H
is a square matrix. Depending on the choice on H , the number
of decision variables increases linearly with the dimension of θc
(e.g. H is a diagonal matrix), or quadratically (if H is a full matrix).
Again, we stress that the richer is the family of initial candidate
10
sets (e.g. when the initial set is a zonotope), the more demanding
will be its computation.

In any case, we are not claiming that the approach we propose
is to be preferred to other approaches in every situation. For
instance, if the uncertainty enters in a ‘‘nice’’ way, better solutions
surely exist. And of course, there will be situations where the
solutions discussed in Section 3 may be preferable. On the other
hand, a nice and distinctive feature of our approach is that it
can be seen as complementary to these approaches: for instance,
imagine one has constructed a safe tractable approximation based
on the procedure proposed in Nemirovski (2012), i.e. an approxi-
mation given by a convex set (Nemirovski, 2012, Proposition 1) of
the form H(θ ) ≤ 0. Then, nothing forbids the designer to use this
set as initial SAS to which applying our scaling procedure, thus
further improving its approximation properties.

Moreover, it should be remarked that the tunability of our
method, while allowing high flexibility, entails by definition the
problem of parameter selection. In our case, the main degree
of freedom is the choice of the initial scalable set. In this case,
the trade-off is evident: the more complex the set, the better
may be the obtained approximation, at the expense of a possibly
larger computational effort. Besides this clear implication, a more
detailed analysis, both theoretical and experimental, is needed to
understand the effect of specific choices of the initial set (as those
introduced in Sections 5 and 6). This is an important point that
however goes beyond the scope of the present paper, and is the
subject of ongoing research.

8.2. Extensions to nonlinear setups

We remark that the proposed scaling approach is not limited
to sets defined by linear inequalities, but may be extended to
more general sets using very similar arguments. Indeed, we may
consider a generic binary performance function ψ : Rnθ × W →

{0, 1} defined as2

ψ(θ,w) =

{
0 if θ meets design specifications for w
1 otherwise. (27)

In this case, the violation probability may be written as Viol(θ ) .=
PrW {ψ(θ,w) = 1 }, and we can still define the set Xε as in (3).
hen, given an initial SAS candidate, Algorithm 1 still provides
valid approximation. However, it should be remarked that,

ven if we choose a ‘‘nice’’ SAS as those previously introduced,
he nonconvexity of ψ will most probably render step 4 of the
lgorithm intractable. To further elaborate on this point, let us
ocus on the case when the design specification may be expressed
s a (nonlinear) inequality of the form

(θ,w) ≤ 0.

hen, the computation of each scaling factor γi of step 4 consists,
rovided that θc ∈ X(w(i)), in solving the following nonconvex
ptimization problem

i
.
= argmax γ

s.t. θc ⊕ γ S ⊆ X(w(i)) =

{
θ ∈ Rnθ | ζ (θ,w(i)) ≤ 0

}
.

e note that this is generally a hard problem. However, there are
ases when this problem is still solvable. In particular, we remark
hat whenever ζ (θ,w) is a convex function of θ for fixed w and
he set S is also convex, the above optimization problem may be
ormulated as a convex program.

2 Clearly, this formulation encompasses the setup discussed, obtained by

imply setting ψ(θ,w) =

{
0 if F (w)θ ≤ g(w)

1 otherwise.
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.3. Future directions

In the previous subsection, we discussed how the method
ight be extended to nonlinear setups. These extensions always
onsider continuous variables. One may wonder if the approach
ay also be extended to the important class of problems involv-

ng integer values, such as the mixed-integer programs studied
n Beraldi and Ruszczyński (2002). This is a problem currently
nder investigation, however we remark that the extension in
his case is far from being trivial, and while we understand that
he presented approach is generalizable in theory, we have not
et found any computationally efficient implementation for it.
We also remark that the paper opens the way to the design

f other families of Scalable SAS. For instance, we are currently
orking on using the family of sets defined in the form of poly-
omial superlevel sets (PSS) proposed in Dabbene, Henrion, and
agoa (2017).

ppendix

.1. Proof of Lemma 1

To prove the lemma, we first recall the following definition
rom Alamo et al. (2009).

efinition 5 ((α, k)-Boolean Function). The function h : Rnθ ×

→ R is an (α, k)-Boolean function if for fixed w it can be writ-
en as an expression consisting of Boolean operators involving k
olynomials p1(θ ), p2(θ ), . . . , pk(θ ), in the components θi, i ∈ [nθ ]
nd the degree with respect to θi of all these polynomials is no
arger than α.

Let us now define the binary functions

ℓ(θ,w) .=
{

0 if fℓ(w)θ ≤ gℓ(w)
1 otherwise , ℓ ∈ [nℓ].

ntroducing the function h(θ,w) .
= maxℓ=1,...,nℓ hℓ(θ,w), we

ee that the violation probability can be alternatively written as
iol(θ ) .= PrW { h(θ,w) = 1 }. We notice that h(θ,w) is an (1, nℓ)-
oolean function, since it can be expressed as a function of nℓ
oolean functions, each of them involving a polynomial of degree
. The proof now follows from Theorem 8 in Alamo et al. (2009)
hat states that if h : Rnθ × W → R is an (α, k)-Boolean function
nd ε ∈ (0, 0.14) then, with probability greater than 1 − δ, we
ave PrW { h(θ,w) = 1 } ≤ ε if N is chosen such that

≥
4.1
ε

(
ln

21.64
δ

+ 4.39nθ log2
(8eαk

ε

))
. ■

.2. Proof of Theorem 1

To prove the theorem, we first prove the following property.

roperty 1. Given ε ∈ (0, 1), δ ∈ (0, 1), and r ≥ 1, let
≥ r be such that B(r − 1;N, ε) ≤ δ. Draw N iid samples

{w(1), w(2), . . . , w(N)
} from a distribution PrW. For i ∈ [N], let

i
.
= γ (w(i)), with γ (·) as in Definition 4, and suppose that γ̄ =

in(r)
{γi}

N
i=1 > 0. Then, with probability no smaller than 1 − δ, it

olds that PrW{θc ⊕ γ̄ S ̸⊆ X(w)} ≤ ε.

roof. It has been proven in Calafiore (2010) and Campi and
aratti (2011) that if one discards no more than s constraints on a
onvex problem with N random constraints, then the probability
f violating the constraints with the solution obtained from the
11
andom convex problem is no larger than ε ∈ (0, 1), with
probability no smaller than 1 − δ, where

δ =

(
s + d − 1

s

) s+d−1∑
i=0

(
N
i

)
εi(1 − ε)N−i,

and d is the number of decision variables. We apply this result to
the following optimization problem

max
γ
γ subject to θc ⊕ γ S ⊆ X(w(i)), i ∈ [N]. (A.1)

From Definition 4, we could rewrite this optimization problem
as

max
γ
γ subject to γ ≤ γ (w(i)), i ∈ [N].

We first notice that the problem under consideration is convex
and has a unique scalar decision variable γ . That is, d = 1.
Also, the non-degeneracy and uniqueness assumption required in
the application of the results of Calafiore (2010) and Campi and
Garatti (2011) are satisfied. We notice that γ̄ = min(r)

{γi}
N
i=1, is

he optimal solution to the optimization problem when s = r −1
onstraints are discarded. Thus, we have that with probability no
maller than 1 − δ, where

=

(
r − 1
r − 1

) r−1∑
i=0

(
N
i

)
εi(1 − ε)N−i

= B(r − 1;N, ε),

he choice γ̄ = min(r)
{γi}i=1N satisfies PrW{γ̄ > γ (w)} ≤ ε.

We conclude from this, and Definition 4, that with probability
o smaller than 1 − δ, PrW{θc ⊕ γ̄ S ̸⊆ X(w)} ≤ ε. ■

roof of Theorem 1. We consider first the case γ̄ > 0. From
roperty 1, we have that γ̄ > 0 satisfies, with probability no
maller than 1 − δ, that PrW{S(γ̄ ) ̸⊆ X(w)} ≤ ε. Equivalently,
rW{S(γ̄ ) ⊆ X(w)} ≥ 1−ε. This can be rewritten as PrW{F (w)θ ≤

(w), ∀θ ∈ S(γ )} ≥ 1 − ε, and it implies that the probability
of violation in θc ⊕ γ̄ S is no larger than ε, with probability no
smaller than 1 − δ. This proves the first claim.

Suppose now that θc ̸∈ Xε . This is equivalent to Viol(θc) =

ε̄c > ε. Suppose that the sample constraints θc ∈ X(w(i)), i ∈ [Nγ ]
re violated vc times. This would imply, because of the definition
f scaling factor, that there are at least vc scaling factors γ (w(i))
qual to zero. From this and Viol(θc) = ε̄c > ε, we obtain

rWNγ {γ̄ > 0} = PrWNγ {min(r)
{γi}

Nγ
i=1 > 0}

≤ PrWNγ {vc < r}
= B(r − 1;Nγ , εc) ≤ B(r − 1;Nγ , ε) ≤ δ.

rom here we conclude that θc ̸∈ Xε implies

rWNγ {γ̄ = 0} = 1 − PrWNγ {γ̄ > 0} ≥ 1 − δ. ■

.3. Proof of Lemma 2

From Alamo, Tempo, Luque, and Ramirez (2015, Corollary 1)
e have that (14) is satisfied for

γ ≥
1
ε

(
r − 1 + ln

1
δ

+

√
2(r − 1) ln

1
δ

)
. (A.2)

Since r − 1 = ⌈βεNγ ⌉ − 1 ≤ βεNγ , we obtain the sufficient
condition

Nγ ≥
1
ε

(
βεNγ + ln

1
δ

+

√
2βεNγ ln

1
δ

)

= βNγ +
1
ln

1
+

√
2βNγ

1
ln

1
.

ε δ ε δ
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etting a .
=
√
Nγ and b .

=

√
1
ε
ln 1

δ
, the previous expression can

e rewritten as (1 − β)a2 − (
√
2βb)a − b2 ≥ 0. The largest root

of this second order equation is(√
β +

√
2 − β

√
2(1 − β)

)
b.

hus, (A.2) is satisfied if

Nf ≥

(√
β +

√
2 − β

√
2(1 − β)

)√
1
ε
ln

1
δ
.

his proves the claim. ■

.4. Proof of Theorem 2

Note that, by definition, the condition θc ⊕ γHBs
p ⊆ X(w) is

quivalent to

ax
z∈Bs

p
f Tℓ (w)(θc + γHz) − gℓ(w) ≤ 0, ℓ ∈ [nℓ].

quivalently, from the dual norm definition, we have
T
ℓ (w)θc + γ ∥HT fℓ(w)∥p∗ − gℓ(w) ≤ 0, ℓ ∈ [nℓ].

enote by γℓ the scaling factor γℓ corresponding to the ℓth
constraint

f Tℓ (w)θc + γℓ∥HT fℓ(w)∥p∗ − gℓ(w) ≤ 0.

With the notation introduced in the theorem, this constraint
rewrites as γℓρℓ(w) ≤ τℓ(w). The result follows noting that the
corresponding scaling factor γℓ(w) can be computed as

γℓ(w) = max
γℓρℓ(w)≥τℓ(w)

γℓ,

and that the value for γ (w) is obtained from the most restrictive
one. ■
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