
Integrating Deep-Web Information Sources∗

Iñaki Fernández de Viana, Inma Hernandez, Patricia Jiménez,
Carlos R. Rivero, and Hassan A. Sleiman

Abstract. Deep-web information sources are difficult to integrate into automated
business processes if they only provide a search form. A wrapping agent is a piece
of software that allows a developer to query such information sources without
worrying about the details of interacting with such forms. Our goal is to help soft-
ware engineers construct wrapping agents that interpret queries written in high-level
structured languages. We think that this shall definitely help reduce integration costs
because this shall relieve developers from the burden of transforming their queries
into low-level interactions in an ad-hoc manner. In this paper, we report on our
reference framework, delve into the related work, and highlight current research
challenges. This is intended to help guide future research efforts in this area.

Keywords: Information, web, integration.

1 Introduction

Our work focuses on deep-web information sources that provide advanced search
forms to build search constraints using a number of search fields, e.g., title, author,
or price [23]. Our goal is to provide the technology a developer requires to develop
agents that can integrate these sources into typical business applications. Such inte-
gration is usually addressed by means of wrappers, which are software agents that
provide an API that abstracts developers from the details required to simulate a hu-
man interacting with a search form.

Iñaki Fernández de Viana · Patricia Jiménez
University of Huelva
e-mail: {i.fviana,patricia.jimenez}@dti.uhu.es
Inma Hernandez · Carlos R. Rivero · Hassan A. Sleiman
University of Sevilla
e-mail: {inmahernandez,carlosrivero,hassansleiman}@us.es
∗ Supported by the European Commission (FEDER), the Spanish and the Andalusian

R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-4100, and TIN2008-
04718-E).

Note that typical wrapping agents do not relieve developers from the burden of
transforming their queries into a number of actions on the search form. Virtual in-
tegration techniques, a.k.a. metasearch, provide a means to increase the abstraction
level since they allow to create a unified search form that abstracts away from the
details of several related actual forms in a given domain, e.g., flights, hotels, or bib-
liography [6]. These techniques increase the abstraction level, since developers only
need to map their queries onto a unified search form, i.e., they are relieved from the
burden of simulating the interaction with actual search forms.

…

Love

Toni

Morrison

23.95 €

Author

Book

Act like a lady …

Null

15.59€

Author

Book

SELECT * FROM

BOOKS WHERE

TITLE LIKE ‘%LOVE’

AND PRICE < $30

FormFilling Navigation Information

extraction

Verification

Fig. 1 An overall image of our proposal

Our hypothesis is that the effort might be reduced further if wrapping agents
were able to understand higher-level queries written in languages such as SQL or
SPARQL. As a motivating example, consider the bookstore scenario in Figure 1,
in which a user searches for books that contain “love” in the title and cost less than
$30. Answering this query goes through the following: 1) form filling, i.e., the query
is analysed to find out how to fill in the search form appropriately; 2) navigation,
i.e., the search button is pressed and the resulting page is navigated until pages about
books are found; 3) information extraction (IE), i.e., once book pages are retrieved,
the information of interest is extracted and structured according to a given ontology;
4) verification, i.e., to check the retrieved information for errors.

In this paper, we report on a proposal that allows to build wrapping agents with
the above capabilities. Our goal is not to dive into details, but to provide an over-
all picture in which the emphasis is on making it explicit what the related work is
and what the research challenges are. We expect these analysis to guide future ef-
forts regarding building wrapping agents. In Sections 2–5, we delve into the details
concerning each of the previous phases; in Section 6, we present our conclusions.

2 Form Filling

In this phase, the wrapping agent takes a high-level structured query over a deep-
web information source as input and it has to translate the query into a number of
search forms filled in with the suitable values. The first problem to be addressed is
to use a semantic model of the search form, which is not machine-processable.

Existing approaches model a search form using several semantic levels [11]. One
level deals with the query capabilities of the search form, i.e., what type of queries
are issued to the information source through its search form. The query capabili-
ties of a search form are modelled by parameterised views over the source [26, 27].
Some approaches deal with the automatic extraction of the search form query ca-
pabilities. Shu et al. [31] extract them by issuing predefined queries that help de-
tect mandatory fields. Zhang et al. [36] extract hidden database attributes, operators
which are applied to these attributes, and their ranges. Attributes are used in con-
junctive queries because it is enough to capture a wide range of query capabilities.

When a query is posed over a deep-web information source, it has to be answered
using only the views offered by the source. This problem is addressed by techniques
for answering queries using views [10], which are based on selecting a number of
views to answer a query. Another issue is known as heterogeneities in the predicate
level [37], which happens when a query and the source may use different predicates
for the same attribute, e.g., the query has a predicate: ‘bookPrice < $15’; and the
source accepts: ‘bookPrice < $10’ or ‘bookPrice between $10 and $25’ (cf. Figure
1). In this case, it is needed to fill two search forms in, one with ‘bookPrice < $10’
and another with ‘bookPrice between $10 and $25’, but a filter is needed in the
second one to remove books whose price exceed $15. To solve this problem, Zhang
et al. [37] use a predicate mapping based on data types: depending on the data type
of the attribute, there are a number of handlers that solve the heterogeneity problem.

An important aspect in the process of answering queries using views is to analyse
the query feasibility, i.e., to study whether a query can be issued without executing
it using the search form query capabilities. This analysis avoids a trial and error
process in which the user writes a query and executes it until a suitable query is ob-
tained. Petropoulos et al. [27] present a user interface for building SQL queries over
a set of parameterised views that warns when a query is not feasible. Pan et al. [26]
report on a generic framework for representing query capabilities that analyses the
feasibility of SQL queries over deep-web information sources. An implementation
of this framework and a recap on its main drawbacks is presented in [30].

After applying the techniques for answering queries using views and obtaining
a number of ground views, each ground view can be seen as a search form that is
filled in. The next step consists of actually filling each search form in with the values
specified in each view. To perform this task, the next semantic level of existing
search form models deals with the relations between the search form fields and the
attributes [11], e.g., if the source contains an attribute ‘publicationDate’, this date
can correspond to three fields in the search form: the day, the month and the year;
these three fields are semantically related with the attribute ‘publicationDate’.

3 Navigator

As we saw in the introduction, (cf. Figure 1), the navigation agent is responsible for
reaching the pages relevant to the query, discarding or processing any other inter-
mediate or error pages that may appear in the navigation sequence. For example, a
no-results page when the information source does not have any information relevant
to the query, an error page when a web application server raises and exception, or a
disambiguation page in which the user is asked to clarify the query.

Traditional exhaustive crawlers [29] take a blind approach at navigation, follow-
ing every link in each page. This is useful for certain tasks, like indexing pages for
a search engine, but for virtual integration purposes it has an important drawback:
usually web pages contain a large number of links, some leading to relevant infor-
mation, but most having other purposes, like advertising or internal site navigation.

Virtual integration systems retrieve information online, hence system response
time should be reasonably fast. Traditional crawlers are not suitable for virtual inte-
gration tasks, since crawling every single site means retrieving, analysing and clas-
sifying thousands of pages, most of them useless for this task. This results in an
increment in cost and time that should be avoided.

As opposed to blind navigation, other approaches include some criteria to decide
which are the links that must be visited, therefore reducing the number of irrelevant
visited links. Relevancy criteria can be handcrafted by the user or automatically
decided by the navigator, with the support of some reasoning process, usually in the
form of a classifier [33]. The latter is the focus of our research, as we are interested
in following only relevant links and retrieving only relevant pages. This kind of
navigation is more efficient and is less costly than traditional crawlers.

Next, we briefly describe and analyse the existing proposals in the Navigation
area. All of them define a navigation sequence, but we can distinguish between su-
pervised (recorders) and non-supervised proposals (automated navigators), although
we must note that, to the best of our knowledge, there is not a completely non-
supervised proposal.

Recorders [1, 2] are the most supervised proposals. They present a simple user
interface to record a user’s navigation steps through an information source and store
them in a file, in order to replay them automatically in future. These proposals in-
teract directly with the web browser interface, so they do not deal with issues like
scripts, posting forms, required authentication, or sites that keep session informa-
tion. They depend completely on the user’s knowledge, who is responsible for defin-
ing the navigation sequences, providing the values to fill in the forms and redefining
the sequences whenever the target web site changes. Recording navigation steps
makes navigation inflexible, and error-prone. However, it produces more efficient
navigation patterns than traditional crawlers.

User-Defined Navigation [4, 9, 25] is less supervised than recorders, but still the
system learns the in a supervised way, i.e., the user demonstrates how to obtain the
relevant information, and the system is able to generalise this knowledge.

Automated navigators [3, 19, 21, 33] extract navigation sequences automati-
cally from information sources, instead of learning them from the user. In order to

accomplish this, the user has to provide some examples, but in this case the system
needs less information than in the former proposals, like one or two examples of the
relevant pages to be reached, or the set of keywords identifying them, inter alia.

Our focus is on following the least supervised paradigm. Therefore, our navigator
agent crawls every information source. In every step (web page), the agent classifies
it, and according to this class, a specifical set of actions is performed, in order to
reach another page (e.g., clicking on a link or submitting a form). Once the agent has
reached a relevant page, it is stored for latter processing. This is a lightly supervised
system because the user only provides a reduced number of examples to train the
classifier and to teach the navigator which links to follow and which ones to ignore.

4 Information Extractor

Results provided by the navigation module contain web pages in which data of in-
terest is formatted in HTML. This format is easily interpreted by humans but agents
face a difficulty in finding and extracting data of interest from this type of docu-
ments. The key is to use information extractors, which are algorithms that extract
data of interest from the Web simplifying and reducing costs of the extraction task.

Despite the variety of proposals about IE algorithms, e.g. [8, 13, 12, 16], none
of these solutions is universally applicable, and in an integration process, more than
one proposal might be used. Besides, effectiveness and efficiency results are rarely
comparable since they were obtained over different data sets.

Proposals are usually built using and providing different interfaces and technol-
ogy, hence side-by-side comparisons are a tedious task since all these proposals
should be implemented using same technology and tested over same data sets. Ex-
isting studies and surveys, such as [5, 14, 18], use taxonomies and attributes that
don’t provide any new information about extraction algorithms.

Our solution is an IE framework. IntegraWeb provides and uses a framework
where all existing information extractors and perhaps the majority of new IE pro-
posals can work side-by-side and whose results can be compared for each case of
use. Here is a brief description of some of the framework components:

• Preprocessor: A large number of IE algorithms preprocess input documents be-
fore deploying them for learning or even for extraction. Cleaning the DOM tree,
part of speech tagging or even separating DOM trees and removing unnecessary
trees using [22] are typical preprocessing techniques.

• TrainingSet: Algorithms that learn rules for extraction need a training set that
contains a set of samples marked by a user which are then used to infer extraction
rules. Also, a configurable tokeniser should be used to tokenise the input samples.

• Learner: Algorithms that infer extraction rules use a learner. The learner can use
a set of preprocessors, and some other utilities such as string or tree alignment
classes. Besides, predefined algorithms are provided where user can define his al-
gorithm’s policy by implementing some template methods. For example, Branch
and Bound algorithm is predefined and user should only define its main methods.

• WorkingSet: It contains an information extractor, input documents and generates
a ResultSet. The information extractor is executed over input documents to ex-
tract the data of interest and structure it by means of attributes, slots and records.

We believe that an IE framework is the best solution for IntegraWeb since more
than one information extractor could be needed depending on the web sites we are
integrating. Our framework provides necessary components for developing existing
and new IE algorithms. Developing an information extractor using our framework
reduces costs since many reusable components can be used and there is no need to
start from blank every time a new IE algorithm is developed.

Apart from the framework, we are working on a new algorithm to induce in-
formation extractors that is based on FOIL [28], which is a technique to induce
first-order rules. FOIL is a climbing algorithm that starts from an empty rule that
includes just a clause with a predicate that characterises a piece of information to be
extracted and uses a heuristic that is based on a modified version of the information
gain criterion to guide the search of clauses that can be used to complete the rule.
A typical rule looks as follows: title(X) :- bold(X), link(X), next(X, A), author(A);
intuitively, it means that a title in the web page is a piece of text annotated into the
html document as bold and hyperlink; and that it is followed by another piece of text
that has been previously identified as an author, whose rule also should be defined.

Unfortunately, the search space FOIL explores grow exponentially on the num-
ber of predicates available to characterise a piece of information. This motivated us
to work on a number of optimisations and heuristics that may help to reduce this
space. For instance, to define the semantics of predicates to detect inconsistencies
amongst predicates in a rule or to reduce the number of new predicates that are
going to be created and evaluated. Further, we use heuristics to define the order of
in which predicates are explored by prioritising those that determine the left and
right part of the target information (like next and previous) proposed in the extrac-
tors of Kushmerick [16] or using feature selection techniques to identify the most
useful predicates depending on the studied domain. Therefore we translate the rules
obtained on regular expressions that are easily undertandable by a machine.

5 Verifier

When information extractors are composed of extraction rules that rely on HTML
land marks, they can only extract information from the same information source
where the training was performed. Therefore, if the source rendering changes then
the returned data could be incorrect. Unless the information generated by wrapping
agents is verified in an automatic way, these data can go unnoticed for the applica-
tions using them.

On our analysis of the current literature, we have built a general verification
framework composed by the following: Reaper, Assembler and Verification model
Builder. The Reaper and the Assembler collaborate to generate a collection of valid
result sets. This collection is used to infer a verification model that characterises the
features of the correct data. Furthermore, we deal with the possibility of introducing

perturbations to generate incorrect result sets: models that are built only on correct
data leads to a overgeneralisation problem [34].

Regarding the Verification model Builder, a verification model is a characterisa-
tion of a training set that builds on the analysis of a number of features. Features are
quantifiable characteristics and their values can be used as a form of evidence to de-
cide if a result is valid or not. Features can be classified along two orthogonal axes:
whether they are numeric or categorical, and whether they are applicable to slots or
result sets. Numeric features transform slots or result sets into real numbers. The
literature [35] reports on many numeric features, so we have grouped into several
categories that range from counting the number of slots of a given class to counting
attributes of a given class that match a given starting or ending pattern. Categor-
ical features [24, 7] range from patterns that describe the structure of a record to
constraints on the values of some attributes.

When models are constructed, a function has to be inferred from the training set,
which should be constructed such that for a given feature vector x, an estimate of its
quality is obtained, i.e., if this vector is similar to the rest of the training set.

In [20] the training set is characterised by a vector in which every feature is
associated with its average value in the training set. In [15, 17] features are modelled
as if they were random variables whose Gaussian distributions can be inferred from
the training set; thus, to profile the value of a feature on an unverified result set, one
can compute the probability that the corresponding random variable takes this value.
The technique presented in [24] models every feature as if it was a random variable
with a Gaussian distribution, but the profiles are calculated as the probability that a
feature might have another value with a higher probability.

There are chances that alarms report false positives. Our approach in this cases is
to use sanity checks, e.g., they use the Web as an information source to check if the
data that has triggered the alarm is correct but infrequent.

6 Conclusion and Future Work

In this paper, we present a reference framework to build wrapping agents, which are
pieces of software that query deep-web information sources. We focus on helping
software engineers to construct wrapping agents that accept high-level structured
queries. Our reference framework is composed of four phases and we highlight cur-
rent research challenges in each phase.

In the form filling phase, the research challenges are:

1. Semantic models of the search forms are a cornerstone for the form filling task. In
the bibliography, there are some proposals that devise complex semantic models
of search forms but they fail on representing search forms using web technolo-
gies such as Javascript or AJAX. These technologies make search forms more
interactive, i.e., a field can be hidden depending on the value of other field.

2. In the bibliography, a search form is seen as a number of parameterised views
over the source, and a query over a deep-web information source is answered by
applying the techniques of answering queries using views. These techniques are

mainly based on the relational or XML model but they have to be adapted to the
Semantic Web model, where the concept of view is not so well-known.

Regarding the navigation phase, the main challenges are:

1. Response pages have to be classified into the different roles that they play. There
are many proposals dealing with the web page classification problems, hence the
problem comes down to choosing between one of them.

2. Links leading to relevant pages have to be identified before clicking on them, to
avoid visiting useless pages.

3. The navigator should interact with the user as little as possible. Therefore, learn-
ing is unsupervised, or at least, very little supervised.

4. Instead of building an ad-hoc navigation model for every site, our focus is on
developing a general model that can adapt to most sites just by tuning some
parameters, and preferably change-resilient.

Besides mentioned challenges, here are some research challenges concerning IE:

1. The construction of an universal framework where earlier and new proposals can
be integrated.

2. A survey that classifies information extractors to compare effectiveness and that
uses comparable results over the same data set to compare efficiency.

3. Optimisation and improvement of existing IE algorithms.
4. An universally applicable effective and efficient information extractor.

Last, but not least, the verifying phase presents the following research challenges:

1. The verification modelling techniques described assume that the data sets re-
turned by the reaping plan are homogeneous. To work with truly homogeneous
data sets we propose to analyse the training set data and to obtain a series of new
data sets, which will be homogeneous. It is interesting to study also the candidate
features set before creating the verification model to reduce its size.

2. For the verifier training to be adequate, it is advisable that the training set has
both valid and invalid examples. This is a problem as the training set has only
valid examples.

3. We cannot assume all features follow a normal distribution and hence we must
find techniques that allow modelling without any assumptions of its distribution.

4. The wrapper verification problem is closely related to the novelty recognition
problem [32] if it is rephrased in terms of feature vectors and their similarities.

References

1. Anupam, V., et al.: Automating web navigation with the webvcr. Computer Net-
works 33(1-6) (2000)

2. Baumgartner, R., et al.: Deep web navigation in web data extraction. In:
CIMCA/IAWTIC (2005)

3. Blanco, L., et al.: Efficiently locating collections of web pages to wrap. In: WEBIST
(2005)

4. Blythe, J., et al.: Information integration for the masses. J. UCS 14(11) (2008)
5. Chang, C.-H., et al.: A survey of web information extraction systems. IEEE Trans.

Knowl. Data Eng. 18(10) (2006)
6. Chang, K.C.-C., et al.: Toward large scale integration: Building a metaquerier over

databases on the web. In: CIDR (2005)
7. Chidlovskii, B., et al.: Documentum eci self-repairing wrappers: performance analysis.

In: SIGMOD Conference (2006)
8. Crescenzi, V., et al.: Roadrunner: Towards automatic data extraction from large web sites

(2001)
9. Davulcu, H., et al.: A layered architecture for querying dynamic web content. In: SIG-

MOD Conference (1999)
10. Halevy, A.Y., et al.: Answering queries using views: A survey. VLDB J. 10(4) (2001)
11. He, H., et al.: Towards deeper understanding of the search interfaces of the deep web.

World Wide Web (2007)
12. Hogue, A., Karger, D.R.: Thresher: automating the unwrapping of semantic content from

the world wide web. In: WWW (2005)
13. Hsu, C.-N., Dung, M.-T.: Generating finite-state transducers for semi-structured data

extraction from the web. Inf. Syst. 23(8) (1998)
14. Jung, K., et al.: Text information extraction in images and video: a survey. Pattern Recog-

nition 37(5) (2004)
15. Kushmerick, N., et al.: Regression testing for wrapper maintenance. In: AAAI/IAAI

(1999)
16. Kushmerick, N., et al.: Wrapper induction: Efficiency and expressiveness. Artif. In-

tell. 118(1-2) (2000)
17. Kushmerick, N., et al.: Wrapper verification. World Wide Web 3(2) (2000)
18. Laender, A.H.F., et al.: A brief survey of web data extraction tools. SIGMOD

Record 31(2) (2002)
19. Lage, J.P., et al.: Automatic generation of agents for collecting hidden web pages for data

extraction. Data Knowl. Eng. 49(2) (2004)
20. Lerman, K., et al.: Wrapper maintenance: A machine learning approach. Journal of Ar-

tificial Intelligence Research 18 (2003)
21. Liddle, S.W., et al.: Extracting data behind web forms. In: Spaccapietra, S., March, S.T.,

Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503. Springer, Heidelberg (2002)
22. Liu, B., et al.: Mining web pages for data records. IEEE Intelligent Systems 19(6) (2004)
23. Madhavan, J., et al.: Harnessing the deep web: Present and future. In: CIDR (2009)
24. McCann, R., et al.: Mapping maintenance for data integration systems. In: VLDB (2005)
25. Montoto, P., et al.: A workflow language for web automation. J. UCS 14(11) (2008)
26. Pan, A., et al.: A model for advanced query capability description in mediator systems.

In: ICEIS (2002)
27. Petropoulos, M., et al.: Exporting and interactively querying web service-accessed

sources: The clide system. ACM Trans. Database Syst. 32(4) (2007)
28. Quinlan, J.R., et al.: Learning first-order definitions of functions. J. Artif. Intell. Res.

(JAIR) 5 (1996)
29. Raghavan, S., Garcia-Molina, H.: Crawling the hidden web. In: VLDB (2001)
30. Rivero, C., et al.: From queries to search forms: an implementation. IJCAT 33(4) (2008)
31. Shu, L., et al.: Querying capability modeling and construction of deep web sources. In:

Benatallah, B., Casati, F., Georgakopoulos, D., Bartolini, C., Sadiq, W., Godart, C. (eds.)
WISE 2007. LNCS, vol. 4831, pp. 13–25. Springer, Heidelberg (2007)

32. Tax, D.M.J., et al.: One-class classification, concept learning in the absence of counter
example. PhD thesis, Delft University of Technology (2001)

33. Vidal, M.L.A., et al.: Structure-based crawling in the hidden web. J. UCS 14(11) (2008)
34. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques

with Java Implementations (1999)
35. Wong, T.-L., Lam, W.: Adapting web information extraction knowledge via mining site-

invariant and site-dependent features. ACM Trans. Internet Techn. 7(1) (2007)
36. Zhang, Z., et al.: Understanding web query interfaces: Best-effort parsing with hidden

syntax. In: SIGMOD Conference (2004)
37. Zhang, Z., et al.: Light-weight domain-based form assistant: Querying web databases on

the fly. In: VLDB (2005)

	Integrating Deep-Web Information Sources
	Introduction
	Form Filling
	Navigator
	Information Extractor
	Verifier
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

