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We study the invariance of the diffusion equation SP( x. t )/St = (6/&v )[ D( x)6P( x, t)/6x] under continuous groups of 
transformations. We show the conditions which D(x) must satisfy for the existence of similarity solutions. 

Recently considerable attention has been paid to 
the problem of diffusion in a medium whose diffu- 

sion coefficient varies in space. In one dimension x, it 
may be necessary to study the equation 

where P(x, t) represents the probability density for a 
diffusing particle to be at the point x at time f, and 
D(x) gives the value of the diffusion coefficient at 

each point x. 
There are many situations in physics where this 

problem must be studied. As an example we shall 
mention the diffusion of hot electrons in velocity 
space [ 1,2]. There are no general solutions for this 
kind of problem, and special difficulties arise when 
contour behaviours must be taken into account. 

In this paper we show that for a large class of dif- 
fusion coefficients, D(x), it is possible to obtain exact 
solutions for eq. (1). 

A possible way for obtaining exact solutions, called 
similarity solutions, for a given differential equation 
is by investigating its invariance under continuous 
groups of transformations [3,4]. Similarity’solutions 

for eq. (1) could be obtained only for certain forms 
of D(x). 

We think that it is important to establish the con- 
ditions which D(x) must satisfy in order to assure the 
existence of similarity solutions. Thus, if for a given 
problem one has a particular form ofD(x), it may be 

possible to check immediately if there exist similarity 
solutions. If that is the case, one may benefit from 
this solution method. 

Eq. (1) enters in the context of a more general 
equation, usually called the Fokker-Planck- 
Smoluchowski equation (FPS): 

afyx, t) a2 
~ = s M-4 P(x, t>l at 

-g P(x)fYx, r)l . 

This equation may be written in the form: 

H(x,P,P,,P,,,P,)-aP,,+od:+PP-P, =O, 

where 

(2) 

(3) 

ai=2a’-b, (3=a”-b’. (4) 

We introduce the group of transformations in the 

space (x, t, P) given infinitesimally by 

x*=x+C;(x,t,P)AE, (5) 

t*=t+T(X,r,P)&, (6) 

P*=P+Q(X,t,P)hE, (7) 

where E is a continuous parameter and ,$, 7,~ are called 
the infinitesimals of the group of transformations. 

If a(x) and b(x) are such that it is possible to find 
the infinitesimals for eq. (3) to be invariant under the 
group of transformations, then there exist similarity 
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solutions, which may be obtained by solving the char- 
acteristic equation 

6x/ ~(x, t. P) = 8t /r(x,  t ,P) = 8P/rl(x, t, P) . (8) 

It is not difficult to show that the infinitesimals 
which leave the FPS equation invariant have the 
following dependence: 

}= ~(x, t ) ,  r= r( t ) ,  

7? = f ( x ,  t )P(x,  t) + g(x,  t) , (9) 

wilere ~, r, f and g are functions which must satisfy 
the following determining equations: 

agxx + °~gx + ~g - gt = O, (10) 

afx x +O~fx + ~ '  + ~ r ' - - f t  = 0 ,  ( l l )  

a(2fx ~xx) + a '~  + a ( r '  - ~x) + ~t = O, (12) 

a'~ + a(r' - 2~x) = 0.  (13) 

Eq. (1) corresponds to eq. (2) for 

a = D ( x ) ,  a = D ' ( x ) ,  /3=0 .  (14) 

With these identifications, eqs. ( 1 0 ) - ( 1 3 )  become: 

D'gx + Dgxx - gt = O, (15) 

Dfxx +D'fx - / i  = 0 ,  (16) 

D(2fx - }xx) + D ' ( r ' -  ~x) + ~f)" + ~t = 0,  (17) 

D(r' - 2 }x) + ~D' = 0. (18) 

This system of  equations is more easily treated if 

we introduce the variable: 

/ ,  
= D ~  dz.  (19) 

x0 

In this variable, eq. (18) is a linear differential 
equation. Integrating it we obtain: 

= v C 6 ( c  + ' , -  ,i r x ) ,  (20) 

where C is an arbitrary constant. 
Here C represents the invariance o f  translation in 

x. We can take C = 0 because any condit ion relative 
to the solutions in determined values of  2 (and then 
of  x) avoids the invariance of  translation. 

If we substitute (20) into (17), and introducing 
the auxiliary function H = In D, we obtain after inte- 
grating: 

f ( x , O  = ~ r  x ~ - - ~ - '  (2 . . . .  ' ( H £ 2 )  +q(t) 1) 

where q(t)  is some function of  t. 
ha the  new coordinates (x ,  t) eq. 16) becomes 

+ ~ f ~  . 6 = ° .  f2~ 1 (22) 

Substituting (2 l)  into (22), we obtain 

1 - ,  "~ ~ r  x -  + [-~-r  q ' ( t ) ]  { r ' r ( 2 )  = O, (23) 

where 

r ( x )  ( H ~ ) 2 ~  1 = + - ~ H ~ ( H ~ 2 ) 7 ~ .  ( 2 4 )  

The existence of  similarity solutions requires that 
D(x), r(t) and q(t)  have to be related in the way in- 
dicated by eq. (23). 

We distinguish the following two cases in which 
that equation is satisfied: 

Case L 
H = In D arbitrary, r '  = 0 and q'  = 0. 

The infinitesimals are 

= O, (25) 

r = r 0 , ( 2 6 )  

r? = qo P. (27) 

This case yields a shnilarity solution of  the form 

P(2,  t) = P ( 2 )  exp(qot /ro) ,  (28) 

where P ( 2 )  satisfies the ordinary differential equation: 

1 P5,£ + ~HYcP2 - qo/ro = 0.  (29) 

Of course it is well stablished that eq. (1) admits 
solutions in the form of  separate variables. For this 
case our method does not give new results. 

Case II. 

,,, , , =  ~ + g t ¢ 1 7  , r =/xr , q - r" l , (30) 

and 

G~c + ~  1G~ G /aN2 + tq = 0 ,  (31) 

where/~, K 1 are arbitrary constants and G = (D£/D)2. 

ILA. If/~ = 0, the infinitesimals are (for the sub- 
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group g = 0): 

= ( r l t  + r2 )x  , (32) 

r = r l t2  + 2r2 t  + r O, (33) 

~ = p ( _~_ r lX  2 1 - a(rlt + r2 )  G + q ) ,  ( 3 4 )  

with 

1 2 1 ( 3 5 )  q = ~ l r l  t + a ( K l r 2 - 2 r l ) t + q 0 ,  

where r 1 , r2, r 0 and q0 are arbitrary constants.  

- '  -2v ) - '  q l - g r l ( K 1  , q 2 - g r 2 ( K l + 2 V / - ~ ) .  (39) 

Eq. (31) gives the condi t ion  that  the diffusion co- 
efficient D ( x )  must satisfy so that eq. ( t )  admits simi- 

larity solutions. These could be obta ined by  solving 
the characteristic equat ion (8) with the infinitesimals 

associated. We are now working in order to find the 
solut ions corresponding to some physical interesting 
cases which can not  be resolved by  other  more 
elementary methods.  

ll .B. Ifgt v ~ 0, the infinitesimals are ( f o r g  = 0) 

r = r 1 e x p ( v ~ t )  + r 2 e x p ( - x / ~ t )  + r 3 , (36) 

- -  1 
= ~X/~ [r 1 exp(x/-~t) - r 2 e x p ( - x / - ~ ) ]  2 ,  (37) 

, ~  1 " - 2  1 , rT=r~- -~r  x ~ r  G + q ( t ) ) ,  

with 

q = ql  exp(x/-~t) + q2 exp(-x/--/'tt) + q 3 ,  (38) 

where r l ,  r 2, r 3 and q3 are arbitrary constants,  and 
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