
A Reference Architecture for Automated
Negotiations of Service Agreements in Open and

Dynamic Environments�

Manuel Resinas, Pablo Fernández, and Rafael Corchuelo

ETS Ingenieria Informatica
Universidad de Sevilla, Spain
http://www.tdg-seville.info

Abstract. The provision of services is often regulated by means of
agreements that must be negotiated beforehand. Automating such ne-
gotiations is appealing insofar it overcomes one of the most often cited
shortcomings of human negotiation: slowness. In this article, we report on
a reference architecture that helps guide the development of automated
negotiation systems; we also delve into the requirements that must au-
tomated negotiation systems must address to deal with negotiations of
service agreements in open environments. Finally, we analyse how well-
suited current software frameworks to develop automated negotiation
systems are for negotiating service agreements in open environments.
This approach is novel in the sense that, to the best of our knowledge,
no previous article compares extensively automated negotiation frame-
works in the context of negotiating service agreements in open environ-
ments nor provides a reference architecture specifically designed for this
scenario.

1 Introduction

Agreements play a major role to regulate both functional and non-functional
properties, as well as guarantees regarding the provisioning of a service [1,2].
Many authors have focused on automating the negotiation of such agreements
as a means to improve the efficiency of the process and benefitting from the
many opportunities that electronic businesses bring [3,4].

Negotiating service agreements in an open environment poses a number of
specific problems: on the one hand, creating agreements regarding the provi-
sioning of a service involves negotiating on multiple terms, e.g., response time,
security features or availability, not only the price, as is the case in typical goods
negotiations; on the other hand, open environments require to deal with hetero-
geneous parties, to negotiate with partial information about them, and to cope

� This work has been partially supported by the European Commission (FEDER),
Spanish Government under CICYT project WebFactories (TIN2006-00472), and by
the Andalusian local Government under project Isabel (P07-TIC-2533).

with the dynamism inherent to service markets. Examples of open environments
include both inter- and intra-organisational systems, e.g., corporate grids.

In this paper, we focus on software frameworks that help develop bargaining
systems to negotiate service agreements in open environments.

Building on our analysis of the current literature, we conclude that no current
framework is complete regarding the specific problems mentioned above. The
goal of this article is to provide a reference architecture that gives a foundation
to build such a framework. In Section 2, we detail the specific problems that
raise automating the negotiation of service agreements in open environments; in
Section 3, we analyse current proposals on automated negotiation frameworks;
in Section 4, we outline a reference architecture for automated negotiation of
service agreements in open environments to guide the research efforts in this
area; in Section 5, we present the conclusions from our analysis.

2 Problems

Automated negotiation systems must cope with the following problems when
facing automated negotiations of service agreements in open environments:

1. Negotiations are multi-term. Negotiations of service agreements usually in-
volves many terms such as availability, response time, security or price.
Therefore, it would be desirable for an automated negotiation system to:

(1.1) Support negotiation protocols that allow the negotiation of multiple
terms, such as most bargaining protocols.

(1.2) Manage expressive agreement preferences: User preferences can be
expressed in several ways (usually constraints and rules). Multi-term
negotiations require preferences to capture relations between terms and,
hence, enable making trade-offs during negotiations.

2. Parties are heterogenous. In open environments, parties may implement a
great variety of negotiation protocols and present very diverse behaviours
during the negotiation. To adapt to this variability, it would be desirable for
an automated negotiation system to:

(2.1) Support multiple negotiation protocols: Since there is no standard ne-
gotiation protocol, different parties may implement different negotiation
protocols. Therefore, an automated negotiation system should support
several negotiation protocols to avoid losing business opportunities.

(2.2) Negotiate the negotiation protocol: Since the best negotiation protocol
depends on the concrete situation [5], it is convenient a pre-negotiation
phase, in which a negotiation protocol is agreed.

(2.3) Support multiple negotiation intelligence algorithms: The effectiveness
of a negotiation intelligence algorithm depends on the behaviour of the
other parties [5]. Therefore, the automated negotiation system should
support several negotiation intelligence algorithms to face the different
behaviours of the other parties during the negotiation.

3. Partial information about parties. The knowledge about a party is important
to strengthen our negotiation capabilities [6]. However, automated negotia-
tion systems usually have only partial information about them [4]. Therefore,
it would be desirable for an automated negotiation system to:

(3.1) Manage different types of knowledge about the other parties, namely:
knowledge about the service or product the other party wish to sell or
buy, about the other party itself (e.g. its reputation), and about the
negotiation behaviour of the party (e.g. its temporal constraints).

(3.2) Diverse query capabilities: Automated negotiation systems may query
information directly to the other party (e.g. as a template that should be
filled [2]) or they may query third parties to obtain information related
to another party (e.g. a reputation provider).

(3.3) Build analysis-based models of parties: Automated negotiation sys-
tems can analyse previous negotiations to build models and, later, use
them to make better decisions during the negotiation process [6].

4. Markets are dynamic. Service markets can be extremely dynamic because
services are not storable, which means that resources not used yesterday are
worthless today [7], and, hence, providers may lower the cost of their services
when their resources are idle. As a consequence, it would be convenient for
an automated negotiation system to:

(4.1) Support several negotiations with different parties at the same time,
so that the automated negotiation system can choose the party with
which the most profitable agreement can be made.

(4.2) Select negotiation intelligence algorithms dynamically: Simultaneous
negotiations with other parties can have an influence on the negotiation
intelligence algorithms employed in a particular negotiation (e.g. if a
profitable agreement has been found, the system can negotiate more
aggressively with the others).

(4.3) Support decommitment from previously established agreements: In
a dynamic market, new advantageous offers may appear at any time
during the negotiations. Hence, it is very convenient to be able to revoke
previous agreements, possibly after paying a compensation [8].

(4.4) Supervised creation of agreements: To avoid committing to agree-
ments that cannot be satisfied, the automated negotiation system should
be supervised by external elements such as a capacity estimator to de-
termine whether an agreement can be accepted or not.

(4.5) Build market models: The characteristics of the market may have an
influence on the negotiation process [3]. Therefore, it is convenient to
build market models to obtain information such as the market reserva-
tion price of a service [6].

Last, but not least, a good software framework must be designed with a clear
separation of concerns in mind. The separation of concerns indicates how in-
dependent is each part of an automated negotiation system from the others. A
clear separation of concerns eases the addition of new negotiation protocols or
intelligence algorithms without changing the other parts of the system.

3 Analysis of Current Frameworks

Negotiation frameworks focus on the reusability of the different parts of an au-
tomated negotiation system. (Note that we focus on software frameworks, not
on conceptual frameworks like [9,4].) There are two kinds of negotiation frame-
works: protocol-oriented frameworks [10,11,12,13], which deal with the nego-
tiation protocol and interoperability problems amongst automated negotiation
systems and intelligence-oriented frameworks [14,7,15,16,17], which focus on the
decision-making and world-modelling of automated negotiation systems.

Protocol-oriented frameworks

Kim et al. [11] This article describes a web services-enabled marketplace ar-
chitecture. It enables the automation of B2B negotiations by defining nego-
tiation protocols in BPEL4WS and developing a central marketplace that
runs a BPEL engine that executes the process. The authors also propose
a semi-automatic mechanism based on a pattern-based process models to
build BPEL negotiation processes.

Rinderle et al. [12] The authors propose a service-oriented architecture to
manage negotiation protocols. They define a marketplace, which contains
a set of statechart models specifying negotiation protocols. The negotiating
parties map the statechart models onto BPEL processes and use them to
carry out the negotiation.

Bartolini et al. [10] The authors present a taxonomy of rules to capture a
variety of negotiation mechanisms and a simple interaction protocol based on
FIPA specifications that is used together with the rules to define negotiation
protocols. The authors also define a set of roles that must be implemented
to carry out a negotiation process. In addition, the authors define an OWL-
based language to express negotiation proposals and agreements.

SilkRoad [13] It consists of a meta-model, the so-called roadmap, intended to
capture the characteristics of a negotiation process and an application frame-
work, the so-called skeleton, that provides several modular and configurable
negotiation service components.

Intelligence-oriented frameworks

Ashri et al. [15] In this article, two architectures for negotiating agents are
described. However, the architecture is described from an abstract point
of view and the authors do not provide any details on its components. In
addition, it lacks some advanced features to deal with dynamic markets.

PANDA [7] It is a framework that mixes utility functions and rules to carry
out the decision-making process. The decision-making component is com-
posed of rules, utility functions and an object pool, which deals with the
knowledge about the other parties and the market. However, the object pool
is not implemented, but only vaguely specified. Furthermore, it does not
support querying other parties to get information; it does not provide mech-
anisms to change negotiation intelligence algorithms at runtime; it does not

Table 1. Comparison of automated negotiation frameworks (I)

Proposal (0) (1.1) (1.2) (2.1) (2.2) (2.3)
Protocol-oriented frameworks

Kim et al. [11] + + +
Rinderle et al. [12] + + +
Bartolini et al. [10] + + +
Silkroad [13] + + +

Intelligence-oriented frameworks
Ashri et al. [15] ∼ + N/A + N/A
Ludwig et al. [16] ∼ + + + +
PANDA [7] ∼ + + + +
DynamiCS [14] + + N/A + +
Benyoucef et al. [17] + N/A N/A + +
(0) Clear separation of concerns (2.1) Multiple protocol support
(1.1) Multi-term negotiation protocols (2.2) Negotiability of protocols
(1.2) Expressive agreement preferences (2.3) Multiple negotiation intelligence algorithms

support decommitment from previous agreements; and it does not allow a
pre-negotiation phase.

Ludwig et al. [16] In this article, a framework for automated negotiation of
service-level agreements in service grids is presented. This framework builds
on WS-Agreement [2] and provides a protocol service provider and a decision
making service provider to deal with the negotiation process. However, this
proposal has important shortcomings in dynamic markets since it does not
deal with partial information about third parties properly.

DynamiCS [14] It is an actor-based framework, which makes a neat distinction
between negotiation protocol and decision making model and uses a plug-
in mechanism to support new protocols and strategies. Nevertheless, the
framework is not well suited to deal with partial information about third
parties and does not cope with dynamic markets.

Benyoucef et al. [17] Their approach is based on the separation of protocols,
expressed as UML statecharts, and strategies, expressed as if-then rules.
Later, these UML statecharts are transformed into BPEL processes that are
executed in a e-negotiation server, and the negotiation strategies are exe-
cuted by software agents in automated e-negotiation interfaces. In addition,
additional services can be composed to complement them. However, how
this composition takes place is vaguely defined. Furthermore, the authors do
not provide any details on the preferences they manage and whether they
support multi-term negotiation protocols or manage different types of knowl-
edge about parties. Another drawback is that it does not seem to be able
to build analysis-based models of parties and its capabilities to deal with
dynamic markets are limited.

Tables 1 and 2 depict how current negotiation frameworks deal with the prob-
lems automated negotiation systems must face in service negotiations in open
environments (cf. Section 2): a + sign means that the proposal successfully ad-

Table 2. Comparison of automated negotiation frameworks (II)

Proposal (3.1) (3.2) (3.3) (4.1) (4.2) (4.3) (4.4) (4.5)
Protocol-oriented frameworks

Kim et al. [11]
Rinderle et al. [12]
Bartolini et al. [10]
Silkroad [13]

Intelligence-oriented frameworks
Ashri et al. [15] + +
Ludwig et al. [16] ∼
PANDA [7] + ∼ + +
DynamiCS [14]
Benyoucef et al. [17] N/A + ∼ + +
(3.1) Different types of knowledge (4.2) Select dynamically intelligence algorithm
(3.2) Diverse query capabilities (4.3) Decommitment support
(3.3) Analysis-based models (4.4) Capacity factors in binding decisions
(4.1) Simultaneous negotiations (4.5) Market models

dresses the feature; a ∼ sign indicates that it addresses it partially; a blank indi-
cates that it does not support the feature; and N/A means the information is not
available. The conclusions we extract from this analysis is that protocol-oriented
frameworks need to be complemented with decision-making and world-modelling
capabilities by means of either ad-hoc mechanisms or an intelligence-oriented
framework. Regarding intelligence-oriented frameworks, although current solu-
tions successfully deal with multi-term agreements (1.1 and 1.2) and cope with
heterogeneous parties (2.1, 2.2 and 2.3) reasonably well, they lack dealing with
partial information about parties (3.1, 3.2 and 3.3) and dynamic markets (4.1,
4.2, 4.3, 4.4 and 4.5).

4 A Reference Architecture for Automated Negotiation
Frameworks

To overcome the problems of current negotiations frameworks described in the
previous section, we have developed the NegoFAST reference architecture. Its
goal is to define the data model, processes and interactions for which an auto-
mated negotiation framework should provide support. NegoFAST is divided into
a protocol-independent reference architecture, the so-called NegoFAST-Core,
and protocol-specific extensions. This allows to deal with a variety of different
protocols while keeping the other elements of the reference architecture reusable.
In this paper, we just focus on NegoFAST-Core, although a bargaining-specific
extension (NegoFAST-Bargaining) has also been developed (more details can be
found at http://www.tdg-seville.info/projects/NegoFAST).

To describe the NegoFAST-Core reference architecture (cf. Figure 1), we
decompose it into modules, roles, interactions and environment. Modules are

http://www.tdg-seville.info/projects/NegoFAST

Protocol
negotiator

Protocol
handler

Negotiation
coordinator

Response
generator

Commit
handler

Commit
advisor

System
coordinator

Informant

Inquirer

World modeller
External

information
provider

Other party
(Informant)

Request
protocol

negotiation

Request
negotiation

Request
information

Configure
handler

Convert protocol

Request
response

Request
commit

approval

Request
advise

Query
external

information

Other party
(Commit
handler)

Other party
(Protocol
handler)

Protocol
negotiation Negotiation

Decommit
agreement

Query
party

information

Query
party

information

Decision making

Coordination

Protocol Management

World modelling

Preferences
resource

World model
Negotiation

history

Agreements
resourceEnvironmental

resources

User
interact.

Notary

Agreement
creation

Agreement
creation

System
context data

Other party
(Inquirer)

Other party
(Protocol

negotiator)

User

Incoming
protocol

negotiation
Incoming

negotiation

Party
coordinator

Request
party

processing

Party context
data

Negotiation
context data

Fig. 1. The NegoFAST-Core reference architecture

depicted as big boxes and are composed of several roles (depicted as small light
grey boxes) with arrows connecting them, which represent their interactions.
The environment is divided into several resources, which are depicted as white
boxes. Finally, elements that are external to the architecture are depicted as
small dark grey boxes.

The aim of the protocol management module is to provide the elements that
are necessary to deal with the selection and the execution of concrete negotiation
protocols and to make the other roles of the architecture independent from them.
Protocol management is composed of two roles:

ProtocolNegotiator . Its goal is to select and configure, if necessary, in coop-
eration with the other negotiating parties, the protocol that will be used
during the negotiation process.

ProtocolHandler . It deals with the interaction with the other parties follow-
ing a negotiation protocol by transforming the syntax of the negotiation
protocol into negotiation messages that are understood by the other roles in
NegoFAST-Core.

The goal of the decision making module is to provide mechanisms to determine
the behaviour of the automated negotiation system during the negotiation. It is
composed of three different roles:

ResponseGenerator . Its goal is to determine which messages are sent to the
other parties during the negotiation.

CommitHandler . It is responsible for deciding whether and when the sys-
tem should commit to a proposal and also deciding the decommitment from
already established agreements if a more appealing agreement is found.

CommitAdvisor . It analyses the feasibility of accepting an agreement based
on domain-specific knowledge (e.g. the provider’s capacity to provision a
proposal) and gives a recommendation.

The goal of the world modelling module is to obtain and manage knowledge
about other parties and the market. It is composed of the following roles:

Inquirer . The Inquirer is the role in charge of obtaining more information
about the other parties by polling their Informants .

Informant . It is responsible for publishing all public information that can be
useful to other parties in order to evaluate the chances to make an agreement
with it.

WorldModeller . Its goal is to build up a model of the other parties together
with a model of the market. They are based on information supplied by
ExternalInformationProviders and previous negotiations.

NegoFAST-Core defines three coordination levels that are coordinated by the
three roles of which the coordination module is composed:

SystemCoordinator . It coordinates the interaction with the User and the ne-
gotiation requests from other parties. Furthermore, it stops the system when
a termination condition holds such as reaching a preestablished negotiation
deadline or achieving a desired number of agreements. It stores its status in
environmental resource SystemContextData.

PartyCoordinator . It coordinates the interactions with the other parties be-
fore the actual negotiation takes place. This includes getting the information
about the party that is necessary to start a negotiation with it by means of
the Inquirer and agreeing on a negotiation protocol with the other party
using the ProtocolNegotiator . Its status is stored in environmental resource
PartyContextData.

NegotiationCoordinator . It coordinates the execution of the negotiation pro-
tocol, handled by the ProtocolHandler with the decision-making roles of the
system. Furthermore, it should be capable of managing several negotiations
simultaneously. Its status is stored in environmental resource Negotiation-
ContextData.

Additionally, NegoFAST-Core defines the following environmental resources,
which are data stores that can be read, modified or both by the roles:

AgreementsResource. It stores all agreements with other parties within the
current system context to enable the comparison of agreements already
reached with current negotiations and to allow the decommitment of one
of them if necessary.

PreferencesResource. It allow the roles in NegoFAST to have access to the
user preferences and to evaluate and compare agreements and proposals.

SystemContextData . It stores information managed by the SystemCoordina-
tor , which includes: the moment when the system context started, the party
references that has been received and the result of their processing.

PartyContextData . It stores information managed by the PartyCoordinator ,
which includes the information gathered by the Inquirer ; the negotiation
protocol selected, and the result of the negotiation.

NegotiationContextData. It stores information managed by the Negotiation-
Coordinator , which includes the current state of the negotiation context and
the negotiation messages that have been exchanged with the other parties.

WorldModel . It stores the knowledge the automated negotiation system has
about the other parties, the market and the domain the negotiation is about.
For instance, knowledge about a the preferences and negotiation style of a
party and the market price for a given service.

NegotiationHistory . It stores past negotiations. It is mainly intended for
building models based on previous interactions. The NegotiationHistory can
be seen as a list of the environmental resources of all system contexts that
have been processed by the automated negotiation system.

5 Conclusions

Automated negotiation frameworks that help develop bargaining systems to ne-
gotiate service agreements in open and dynamic environments. However, current
frameworks are not complete with regard to a variety of problems that may arise
in such environments (cf. Sections 2 and 3). To overcome these issues, we have de-
veloped the NegoFAST-Core reference architecture. It provides a founding for the
development of negotiation frameworks suited to negotiate service agreements
in open environments. NegoFAST-Core can be complemented with protocol-
specific extensions such as NegoFAST-Bargaining, which is a bargaining-specific
extension we have already developed.

The advantages of having such reference architecture is that it defines the data
model, processes and interactions for which an automated negotiation framework
should provide support. Furthermore, it provides a common vocabulary to com-
pare different automated negotiation frameworks.

To validate our approach, we have materialised the reference architecture into
a software framework. Furthermore, we have used this software framework to
implement three different use cases, namely: a computing job submitter, a com-
puting job hosting service and a system to search for equilibrium strategies. The
implementations of the software framework and the use cases can be downloaded
from http://www.tdg-seville.info/projects/NegoFAST.

http://www.tdg-seville.info/projects/NegoFAST

 References

1. Molina-Jimenez, C., Pruyne, J., van Moorsel, A.: The Role of Agreements in IT
Management Software. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Archi-
tecting Dependable Systems III. LNCS, vol. 3549, pp. 36–58. Springer, Heidelberg
(2005)

2. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: WS-Agreement Specification (2007),
http://www.ogf.org/documents/GFD.107.pdf

3. Sim, K.M., Wang, S.Y.: Flexible negotiation agent with relaxed decision rules.
Systems, Man and Cybernetics, Part B, IEEE Trans. 34(3), 1602–1608 (2004)

4. Luo, X., Jennings, N.R., Shadbolt, N., Leung, H.F., Lee, J.H.: A fuzzy constraint
based model for bilateral, multi-issue negotiations in semi-competitive environ-
ments. Artif. Intell. 148(1-2), 53–102 (2003)

5. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M., Sierra,
C.: Automated Negotiation: Prospects, Methods and Challenges. Group Decision
and Negotiation 10, 199–215 (2001)

6. Zeng, D., Sycara, K.: Bayesian Learning in Negotiation. Int. J. Hum.-Comput.
Stud. 48(1), 125–141 (1998)

7. Gimpel, H., Ludwig, H., Dan, A., Kearney, B.: PANDA: Specifying Policies For
Automated Negotiations of Service Contracts. In: Orlowska, M.E., Weerawarana,
S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 287–302.
Springer, Heidelberg (2003)

8. Sandholm, T., Lesser, V.: Leveled commitment contracts and strategic breach.
Games and Economic Behavior 35(1), 212–270 (2001)

9. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation Decision Functions For Au-
tonomous Agents. Int. J. of Robotics and Autonomous Systems 24(3-4), 159–182
(1998)

10. Bartolini, C., Preist, C., Jennings, N.R.: A Software Framework For Automated
Negotiation. In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) SEL-
MAS 2004. LNCS, vol. 3390, pp. 213–235. Springer, Heidelberg (2005)

11. Kim, J.B., Segev, A.: A web services-enabled marketplace architecture for negoti-
ation process management. Decision Support Systems 40(1), 71–87 (2005)

12. Rinderle, S., Benyoucef, M.: Towards the automation of e-negotiation processes
based on web services - a modeling approach. In: Ngu, A.H.H., Kitsuregawa, M.,
Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp.
443–453. Springer, Heidelberg (2005)

13. Strbel, M.: Design of roles and protocols for electronic negotiations. Electronic
Commerce Research 1(3), 335–353 (2001)

14. Tu, M., Seebode, C., Griffel, F., Lamersdorf, W.: Dynamics: An actor-based frame-
work for negotiating mobile agents. Electronic Commerce Research 1(1 - 2), 101–
117 (2001)

15. Ashri, R., Rahwan, I., Luck, M.: Architectures for negotiating agents. In: Mař́ık,
V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691,
pp. 136–146. Springer, Heidelberg (2003)

16. Ludwig, A., Braun, P., Kowalczyk, R., Franczyk, B.: A framework for automated
negotiation of service level agreements in services grids. In: Bussler, C.J., Haller,
A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 89–101. Springer, Heidelberg (2006)

17. Benyoucef, M., Verrons, M.H.: Configurable e-negotiation systems for large scale
and transparent decision making. Group Decision and Negotiation 17(3), 211–224
(2008)

http://www.ogf.org/documents/GFD.107.pdf

	A Reference Architecture for Automated Negotiations of Service Agreements in Open and Dynamic Environments
	Introduction
	Problems
	Analysis of Current Frameworks
	A Reference Architecture for Automated Negotiation Frameworks
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

