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A B S T R A C T

Business process simulation is a versatile technique for quantitative analysis of business
processes. A well-known limitation of process simulation is that the accuracy of the simulation
results is limited by the faithfulness of the process model and simulation parameters given as
input to the simulator. To tackle this limitation, various authors have proposed to discover
simulation models from process execution logs, so that the resulting simulation models more
closely match reality. However, existing techniques in this field make certain assumptions
about resource behavior that do not typically hold in practice, including: (i) that each resource
performs one task at a time; and (ii) that resources are continuously available (24/7). In reality,
resources may engage in multitasking behavior and they work only during certain periods
of the day or the week. This article proposes an approach to discover process simulation
models from execution logs in the presence of multitasking and availability constraints. To
account for multitasking, we adjust the processing times of tasks in such a way that executing
the multitasked tasks sequentially with the adjusted times is equivalent to executing them
concurrently with the original times. Meanwhile, to account for availability constraints, we
use an algorithm for discovering calendar expressions from collections of time-points to infer
resource timetables from an execution log. We then adjust the parameters of this algorithm
to maximize the similarity between the simulated log and the original one. We evaluate the
approach using real-life and synthetic datasets. The results show that the approach improves
the accuracy of simulation models discovered from execution logs both in the presence of
multitasking and availability constraints.

1. Introduction

Business process simulation (BPS) is a widely used technique for analyzing quantitative properties of business processes. The
asic idea of BPS is to execute a large number of instances of a process, based on a process model enhanced with simulation
arameters, with the goal of collecting performance measures such as waiting times of tasks, processing times, execution cost, and
ycle time [1,2]. BPS tools (simulators) allow analysts to identify performance bottlenecks [3] and to estimate how a given change
o a process may affect its performance [4].

The accuracy of a business process simulation, and hence the usefulness of the conclusions drawn from it, is to a large extent
ependent on how faithfully the process model and simulation parameters capture the observed reality. Traditionally, process models
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are manually designed by analysts for the purpose of communication and documentation. As such, these models do not capture all
the intricacies of how the process is actually performed. In particular, manually designed process models tend to focus on frequent
pathways, leaving aside exceptions. Yet, in many cases, exceptions occur in a non-negligible percentage of instances of a process.
Moreover, simulation parameters for BPS are traditionally estimated based on expert intuition, sampling, and manual curve fitting,
which do not always lead to an accurate reflection of reality [3].

To tackle these limitations, several authors have advocated the idea of automatically discovering simulation models from business
rocess execution logs (also known as event logs) [5–7]. Simulation models discovered in this way are generally more faithful since
hey capture not only common pathways, but also exceptional behavior. Moreover, automated approaches to simulation model
iscovery typically explore a larger space of options when tuning the simulation parameters compared to what an analyst is able to
xplore manually.

Additionally, the automated discovery of BPS models from event logs opens up the possibility of capturing resource behavior
t a finer granularity than manual BPS modeling approaches. However, existing techniques in this field make highly restrictive
ssumptions about resource behavior, which do not typically hold in practice [8], notably:

1. They assume that each resource performs one task at a time. In other words, they exclude the possibility of multitasking. In
this setting, multitasking refers to the situation where a resource executes multiple task instances simultaneously, meaning
that the resource divides its attention across multiple active task instances [9].

2. They assume that resources are continuously available (24 hours a day, 7 days a week). In other words, they do not take into
account resource availability constraints stemming from work schedules and natural circadian cycles.

This article proposes an approach to discover BPS models from execution logs that takes into account multitasking and resource
availability constraints. To account for multitasking, we adjust the processing times of tasks in such a way that executing the
multitasked tasks sequentially with the adjusted times is equivalent to executing them concurrently with the original times. Once
the event log is adjusted to account for multitasking, we discover a BPS model using an existing BPS model discovery technique,
namely SIMOD [10].

Meanwhile, to account for availability constraints, we apply an algorithm for discovering calendar expressions from collections
of time-points to infer resource timetables from an execution log. We then use the discovered calendar expressions to construct
a resource availability timetable and we inject these timetables into BPS models discovered by SIMOD. Finally, we adjust the
parameters used to discover calendar expressions so as to maximize the similarity between the log generated by the simulation
(the simulated log) and the original log.

This article is an extension of a previous conference paper [11]. The conference paper focused on the problem of accounting for
multitasking behavior. In this paper, we extend this approach in order to discover resource availability timetables (i.e. to address
the second limitation outlined above).

The rest of this article is structured as follows. Section 2 motivates our research. Section 3 introduces basic concepts and related
work. Section 4 describes the proposed approach to identify the multitasking behavior, while Section 5 explains the approach for
handling resource availability constraints. Section 6 reports the proposal’s evaluation from the two points of view: multitasking and
resource availability effects. Section 7 describes the threats to validity identified. Finally, Section 8 draws conclusions and outlines
directions for future work.

2. Motivation

This section discusses the notions of multitasking and availability constraints, as well as the implications of not taking into
account these notions during the discovery of a BPS model from an event log.

2.1. Multitasking behavior

The execution of a business process is often tracked by events stored in so-called event logs. Each event in the event log represents
a change of status in the life-cycle of an instance of a task (herein called a work item). Each event conveys information about the
resource that executed a work item, as well as data used and/or produced by the work item.

Assuming that an event log captures the start time and the end time of each work item, it is possible to estimate the duration
of each work item. We can assert that the resource is active (available to work) when the work item is started and when the work
item is completed. However, we cannot assert with full certainty that the work item is available during other time points in between
the start and the end timestamp. For example, a resource might start a work item at 17:00 on a Friday and finish it at 10:00 on
Monday. We can ascertain that the resource was at work on Friday at 17:00 and on Monday at 10:00, but we cannot ascertain
that the resource is available for example on Saturday or Sunday. Accordingly, in the general case we assume that it is possible to
discover the duration of a work item for complete ‘‘granules’’ of time adjusted to the timestamps associated to the start and end of
each work item, but not any time points in-between them.

Sometimes, the work items associated with a given resource in an event log may show that the resource started a task instance
before completing a previous one. Hence, during some periods, the resource simultaneously performs multiple task instances, a
situation known as multitasking. Multitasking arises, for example, when a resource postpones the completion of a task due to missing
information. While this information becomes available, the resource may start another task instance to avoid idle times.
2
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Fig. 1. Example of multitasking for the resource 𝑅1.

Fig. 1 represents a subset of four tasks carried out by resource 𝑅1, where each continuous line represents the duration of each
task. These four tasks result in seven execution intervals. In intervals A(0–10), C(75–95) and G(140–150) only one task is executed,
T1, T1 and T3, respectively. Other segments reflect multitask execution: in B(10–75), D(95–110) and F (130–140) two tasks are
executed (T1, T2), (T1, T3) and (T3, T4), respectively; and in interval E(110–130) multitasking is performed between three tasks
(T1, T3, T4). These tasks may belong to one or more traces. A trace contains the ordered sequence of work items observed for a
given process instance [2]. An event log is composed of one or more traces.

Given this event log segment’s data, a traditional simulator would calculate a total execution time of 280 min because it would
take each duration individually, one task after the other. However, in Fig. 1, it is possible to see that all tasks are executed between
the 0 and the 150 minute. That means that the resource 𝑅1 divided its time and attention into more than one task during certain
intervals. Therefore, it would not be correct to consider as total task execution time the time between the start and end record of
the task, but the time should be distributed among all the tasks that overlap in a given period.

Usually, there is no detailed record of each resource’s specific time on the execution of each task in multitasking scenarios.
Therefore, we consider it necessary to propose a mechanism to adjust processing times to reflect the time spent by each resource
more accurately.

2.2. Resource availability constraints

Existing approaches to discover BPS models from event logs assume that the resources involved in the business process do not
have any availability constraints. In other words, they assume that resources are available to perform tasks continuously, 24 h a
day, 7 days a week. In practice, resources are only available during certain time periods, usually determined by weekly or daily
cycles, and possibly also seasonal (annual) cycles. For example, in a typical organization, employees only carry out activities Monday
through Friday, from 8:00 to 17:00. Outside this timetable, one would not expect a worker to be available to perform tasks.

Similarly, in some organizational settings, new instances of a process are only be created during certain time-slots. For example,
consider a wholesaler that distributes products to retailers. Typically, the purchasing managers of the retailers only approve new
purchase orders during working hours. Hence, new cases of the wholesaler’s order-to-cash process are only created during business
hours and not during weekends or at night-time. In other words, the creation of new cases in this process is constrained to a certain
timetable.1

A BPS model that does not take availability constraints into account is likely to produce simulations that are not temporally
aligned with reality. For example, let us consider a loan application handling process in which loan applications are accepted online
24/7, except Sundays between midnight and 3 am due to weekly server maintenance. Let us further assume that the loan application
handlers and credit officers responsible of performing the tasks in the process are only available Monday to Friday 9:00–17:00. In
such a process, loan applications that arrive during the weekend need to wait until Monday to be processed. This means that those
applications will have a longer total cycle time (case duration). Also, this means that the loan handlers and credit officers are likely
to have a higher workload on Mondays, which will cause that applications received on Monday will also have slower cycle times
compared to those who arrive later in the week, once the weekend backlog has been handled. The BPS model will not be able to
take these factors into account, leading to an inaccurate distribution of cycle times.

Existing business process simulators are capable of taking into account availability constraints via so-called timetables. For
example, an example of a timetable is: Mondays–Thursdays 8:00–12:00 and 13:00–17:00, and Fridays 8:00–12:00 and 13:00–16:30.
Such timetables can be attached to resource pools. For example, one can specify that loan handlers work according to the above
timetable. A timetable can also be used to temporally constrain the creation of new cases of the process. For example, one can
specify that new cases are only created on Mondays–Fridays, 7:00–18:00. In this article, we proposed to enhance automatically
discovered BPS models with timetables (both resource timetables and case timetables) discovered from an event log, and we study
the impact of adding such timetables on the accuracy of the resulting BPS models.

3. Related work

Existing business process simulation techniques make various simplifying assumptions that restrict their ability to accurately
capture reality. In particular, existing business process simulators have several deficiencies in the way they capture the behavior

1 Note that this is not a hard constraint. Purchase orders may be submitted by a retailer outside business hours. However, this happens rarely. For practical
urposes, we can consider that cases are only created during business hours.
3
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of resources as highlighted in [12]. This latter work notes that existing techniques adopt a resource allocation model based on a
First-In-First-Out allocation approach. This approach works as follows. When a task T is ready to be executed within an instance of
the process, a work item is created. Each task T is associated with a resource pool, which consists of a set of resources. If a resource
is available within the resource pool associated with T, the resource is assigned to one such resource. Otherwise the work item is
added to a first-in-first-out queue until a resource becomes available. Once the work item is assigned to a resource, the work item
immediately starts. The simulator determines the work item’s duration and the work item is blocked until its duration has elapsed.
When the duration has elapsed, the work item is marked as completed, and the resource that had been assigned to it becomes
available to be assigned to another work item [2].

The above approach does not take into account that resources may be assigned to tasks in a range of different ways, and not
just according to this first-in-first-out allocation approach. A wide of different approaches for assignment of resources to tasks is
provided by Russel et al. [13] have identified a range of other ways in which resources are assigned to tasks in practical scenarios.
Existing simulators do not take into account this range of possible workflow resource patterns [1,8].

Afifi et al. [14,15] propose an extension of BPSim, a Business Process Simulation Standard [16], to take into account the workflow
resource patterns of Russel et al. [13]. The authors do not provide a concrete implementation of their proposed BPSim extension
(they leave it as future work). With respect to this previous work, the present study differs in that it focuses specifically on handling
multitasking and availability constraints, which are resource behaviors not captured by the resource patterns defined in [13].

Ling et al. [17] describe a simulation tool that considers differences between resources based on their experience and on
personnel movements such as recruitment, transfer, and resignation. However, this proposal does not consider neither multitasking
nor availability constraints.

Ouyang et al. [9] point out that real business processes are resource-intensive, where multitasking situations are typical. Their
study focuses on proposing an approach to model and to schedule the use of shared material resources, such as surgical material
shared by multiple doctors during a surgical operation that involves multitasking. Unlike our proposal, the authors do not analyze
real execution data nor do they deal with the question of how to capture multitasking in a business process simulation.

Rusinaite et al. [3] propose to classify resources (human or not) into shareable resources (a resource that can be used by multiple
activities simultaneously) and non-shareable resources in the context of process simulation. A resource is defined by means of
attributes of capacity (reusable or consumable) and shareability (shareable and non-shareable). Multitasking can be seen as a situation
where the same resource (a worker) is ‘‘shared’’ by multiple work items. As such, there is a similarity between our work and that of
Rusinaite et al. [3]. However, this latter work does not deal with the question of how to discover that human resources are shared
by multiple work items (and to what extent) by analyzing an event log.

In [18] a method is described for discovering so-called resource availability calendars from event logs. The method consists of
two phases. In the first phase, the method derives, for each of the resources referenced in the log, a summary of the periods of
time when a given resource is actively working on a work item and the periods of time when said resource is idle. To this end, the
method uses various heuristics. For instance, it combines the processing intervals of two consecutive activities, even when there is
a (short) pause between these activities. At the end, for each resource and each calendar day (e.g. for the day 10 November 2020),
the method derives a so-called working day specification, i.e., a summary of the periods during which the resource is either working
or idle during that calendar day. In a second phase, the method generates a resource availability calendar for a given period (e.g., one
or two weeks) by randomly sampling from the working day specifications generated in the first phase.2

Martin et al. [18] suggest that the resource availability calendars generated by their approach can be used in the context of
business process simulation. However, they do not evaluate if and to what extent their approach would enhance the accuracy of a
BPS model. One of the limitations of their method is that it discovers calendars for each individual resource. However, many existing
business process simulators require that the calendars are defined at the level of resource pools. In contract, in this article we propose
an alternative method that discovers calendars at any level (a calendar for an individual resource or for an entire resource pool). A
second limitation of the method in [18] is that it does not rely on a measure of support or confidence. In other words, the method
does not allow one to tune the accuracy of the resulting calendars (relative to the observed data). In contrast, in this paper we
use a calendar discovery technique that relies on confidence and support measures, making it possible to tune the accuracy of the
discovered calendars. Finally, [18] does not consider the discovery of calendars associated with the creation of cases, whereas the
approach we propose in this paper can discover both resource availability calendars as well as case creation calendars.

4. Handling multitasking

As explained in Section 2, a resource can start a work item before finishing one or more work item he/she started before, but
simulators are not capable of taking this behavior into account. To cope with this lack, we propose to pre-process event logs to adjust
the processing times, which is to proportionally divide the interval of execution time where different tasks intersect by the number
of tasks involved. In this way, multitasking can be approached without modifying the structure and operations of the simulators.
Fig. 2 shows how the duration of multitasked intervals (Fig. 1) are distributed proportionally among the number of tasks in each
interval. For example, in interval B, the total time (65 min) is divided proportionally between tasks T1 and T2 (32.5 min for each);
or in segment C, three tasks are executed, so the 20 min of its duration are divided between tasks T1, T3, and T4. In this way, the
new task execution times are more similar to the real dedication of the resource.

2 [18] also proposes an alternative approach in which the resources are first partitioned into clusters, and the centroids of these clusters are used as the
amples (as an alternative to random sampling).
4
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Fig. 2. Example of time adjustments derived from multitasking.

The objective of pre-processing event log is, on the one hand, to identify the resources that perform multitasking, determine in
which periods the multitasking execution is performed, and to make an adjustment of the work item duration times according to the
multitasking periods. On the other hand, to determine how the multitasking execution intervals influence the general performance
of the business process. We assume that resources are involved in only one business process at a time.

The following definitions describe step-by-step how the event log is pre-processed. To do this, we begin by formally defining the
concepts of event, trace, event log and work item.

Definition 1 (Events, Attribute). Let  be the set of all possible events that occur during a process execution. Let us assume an event 𝑒
can be described by means of a set of attributes 𝑎𝑡𝑡, where 𝑎𝑡𝑡 = {𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑟, 𝑠𝑡, 𝑒𝑡}, 𝑖𝑑 is the identifier of the event; 𝑡𝑦𝑝𝑒 represents the
event type, the activity name; 𝑟 represents the resource that performs the event; 𝑠𝑡 indicates the event start timestamp; 𝑒𝑡 indicates
the event end timestamp. In such a way that, for example, 𝑎𝑡𝑡𝑟(𝑒) = 𝑒𝑟 = 𝑟1, where 𝑟1 is a particular resource performing 𝑒.

Definition 2 (Trace). Let  be the set of all possible traces defined as a sequence of events, such that, 𝜎 ∈  , 𝜎 = ⟨𝑒1, 𝑒2,… , 𝑒𝑛⟩

Definition 3 (Event Log). An event log can be defined as a set of traces,  ⊆  , where  = {𝜎1, 𝜎2,… , 𝜎𝑛}

Definition 4 (Work Item). Let 𝑤𝑖 be a work item representing the execution of a task in a business process simulation. A trace can
be represented as a sequence of work items, such that 𝜎 ∈  , 𝜎 = ⟨𝑤𝑖1, 𝑤𝑖2,… , 𝑤𝑖𝑛⟩.

As with events, a work item has the set of attributes 𝑎𝑡𝑡. For example, 𝑎𝑡𝑡𝑟(𝑤𝑖) = 𝑤𝑖𝑟 = 𝑟1, where 𝑟1 is the resource that has the
𝑤𝑖 assigned to it.

Multitasking can be generated by work items generated in a single trace or by work items belonging to different traces. In this
proposal, the broadest case is considered, so every trace in which each resource participates is considered. In order to identify the
task (and work items) in which a resource perform multitasking, the log  is divided into as many Segment per Resource as there are
resources in the log. Each segment consists of all the work items of each resource in , which will be ordered according to the start
timestamp of each work item (𝑤𝑖𝑠𝑡). Fig. 1 represents one Segment per Resource (𝑠𝑟1) with four work items for resource 𝑅1.

Definition 5 (Segment per Resource). Given an event log ,  represents the set of all possible resources that execute at least one
work item in any trace in a log . Such that, ∀𝑟 ∈ ,∃𝑤𝑖 ⊆  ⊆  ∣ 𝑤𝑖𝑟 = 𝑟

Then, let  be the set of all possible ordered subsets of work items conforming the traces of a log, in such a way that
 = {𝑠𝑟1, 𝑠𝑟2,… , 𝑠𝑟𝑛}, where ∀𝑠𝑟𝑖 ∈  , 𝑠𝑟𝑖 = ⟨𝑤𝑖𝑗 ,… , 𝑤𝑖𝑚⟩ ∣ (𝑤𝑖𝑗𝑟 = 𝑤𝑖𝑗+1𝑟 = ⋯ = 𝑤𝑖𝑚𝑟

) ∧ (𝑤𝑖𝑗𝑠𝑡 ≤ 𝑤𝑖𝑗+1𝑠𝑡 ≤ ⋯ ≤ 𝑤𝑖𝑚𝑠𝑡
), where

1 ≤ 𝑗 ≤ 𝑛.

Having divided  into different (𝑠𝑟𝑖), the Sweep Line algorithm [19] is applied to each 𝑠𝑟𝑖 to identify intersection points between
work items determined by their start and end timestamps. For each pair of intersection points between the different work items,
auxiliary work items (𝑤𝑖𝑎𝑢𝑥) are created.

To identify the set of 𝑤𝑖𝑎𝑢𝑥, first, for each segment per resource 𝑠𝑟𝑖 an ordered list of time (𝑜𝑟𝑑𝑡𝑖𝑚𝑒𝑠) is created, where 𝑜𝑟𝑑𝑡𝑖𝑚𝑒𝑠 =
{ 𝑝𝑜𝑖𝑛𝑡1, 𝑝𝑜𝑖𝑛𝑡2,… , 𝑝𝑜𝑖𝑛𝑡𝑛 }. Each element of the list, called 𝑝𝑜𝑖𝑛𝑡𝑠, is a tuple 𝑝𝑜𝑖𝑛𝑡𝑖 = (𝑡𝑠𝑡𝑎𝑚𝑝𝑖, 𝑤𝑖𝑖𝑑𝑖, 𝑠𝑦𝑚𝑏𝑜𝑙𝑖), where 𝑡𝑠𝑡𝑎𝑚𝑖 could be
a start timestamp or an end timestamp of any of the work items in 𝑠𝑟𝑖; 𝑤𝑖𝑖𝑖𝑑 is the identifier of the work item with start or end
timestamp equals to 𝑡𝑠𝑡𝑎𝑚𝑝𝑖; 𝑠𝑦𝑚𝑏𝑜𝑙𝑖 could be ‘+’ if 𝑡𝑠𝑡𝑎𝑚𝑝𝑖 corresponds to a start timestamp, or ‘-’ if it is an end timestamp; and 𝑤𝑖𝑖
is the complete work item used to obtain the other values of the tuple.

Definition 6 (Ordered List of Times). ∀𝑠𝑟𝑖 ⊆ ,∃𝑡𝑖𝑚𝑒𝑠𝑖, 𝑜𝑟𝑑𝑡𝑖𝑚𝑒𝑠𝑖 ∣ {(𝑤𝑖𝑗𝑠𝑡 , 𝑤𝑖𝑗𝑖𝑑 , ‘+’), (𝑤𝑖𝑗𝑒𝑡 , 𝑤𝑖𝑗𝑖𝑑 , ‘−’),… , (𝑤𝑖𝑛𝑠𝑡 , 𝑤𝑖𝑛𝑖𝑑 , ‘+’), (𝑤𝑖𝑛𝑒𝑡 , 𝑤𝑖𝑛𝑖𝑑 , ‘−
’)} ∧ 𝑜𝑟𝑑𝑡𝑖𝑚𝑒𝑠𝑖 = {(𝑡𝑠𝑡𝑎𝑚𝑝𝑘, 𝑤𝑖𝑖𝑑𝑘, 𝑠𝑦𝑚𝑏𝑜𝑙𝑘), (𝑡𝑠𝑡𝑎𝑚𝑝𝑘+1, 𝑤𝑖𝑖𝑑𝑘+1, 𝑠𝑦𝑚𝑏𝑜𝑙𝑘+1),… , (𝑡𝑠𝑡𝑎𝑚𝑝𝑙 , 𝑤𝑖𝑖𝑑𝑙 , 𝑠𝑦𝑚𝑏𝑜𝑙𝑙)} ∧ 𝑡𝑠𝑡𝑎𝑚𝑝𝑘 ≤ 𝑡𝑠𝑡𝑎𝑚𝑝𝑘+1 ≤ ⋯ ≤
𝑡𝑠𝑡𝑎𝑚𝑝𝑙 ∧ |𝑡𝑖𝑚𝑒𝑠𝑖| = |𝑜𝑟𝑑𝑡𝑖𝑚𝑒𝑠𝑖|, where ((𝑡𝑠𝑡𝑎𝑚𝑝𝑥 = 𝑤𝑖𝑥𝑠𝑡 ∨ 𝑡𝑠𝑡𝑎𝑚𝑝𝑥 = 𝑤𝑖𝑥𝑒𝑡 );𝑤𝑖𝑖𝑑𝑥 = 𝑤𝑖𝑥𝑖𝑑 ; 𝑠𝑦𝑚𝑏𝑜𝑙𝑥 ⊂ {‘ + ’, ‘ − ’}.’

Once the 𝑜𝑟𝑑𝑡𝑖𝑚𝑒𝑠𝑖 has been created, concrete intervals of time 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖 are specified, identifying also the work items 𝑤𝑖𝑛 that
are being executed for each interval, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖 = {(𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑡1, 𝑒𝑛𝑑_𝑖𝑛𝑡1, 𝑙𝑖𝑠𝑡_𝑤𝑖𝑖𝑑𝑠1),… , (𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑡𝑘, 𝑒𝑛𝑑_𝑖𝑛𝑡𝑘, 𝑙𝑖𝑠𝑡𝑤𝑖𝑖𝑑𝑠𝑘)}, where 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑡
and 𝑒𝑛𝑑_𝑖𝑛𝑡 represent the start and end timestamp of the intersected work items collected in 𝑙𝑖𝑠𝑡_𝑤𝑖𝑖𝑑𝑠. For each element in 𝑙𝑖𝑠𝑡_𝑤𝑖𝑖𝑑𝑠
an auxiliary work item 𝑤𝑖𝑎𝑢𝑥 is created, in such a way that 𝑤𝑖𝑎𝑢𝑥 = (𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑡, 𝑒𝑛𝑑_𝑖𝑛𝑡, 𝑖𝑑, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛), where 𝑤𝑖 = {𝑤𝑖𝑎𝑢𝑥1,… , 𝑤𝑖𝑎𝑢𝑥𝑛}
and 𝑤𝑖 − 𝑤𝑖 =

∑𝑛 𝑤𝑖𝑎𝑢𝑥 . The 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 of each 𝑤𝑖𝑎𝑢𝑥 is determined by the number of 𝑤𝑖𝑎𝑢𝑥 generated from a given
𝑒𝑡 𝑠𝑡 𝑛=1 𝑛𝑑

5
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Algorithm 1: Creating 𝑤𝑖𝑎𝑢𝑥 elements in a 𝑙𝑤𝑖𝑎𝑢𝑥
Input: Ordered list of times 𝑜𝑟𝑑𝑡𝑖𝑚𝑒𝑠𝑖
Output: List of auxiliary work items 𝑙𝑤𝑖𝑎𝑢𝑥

1 temp_ids = []; intervals = []; lwiaux = []; id = 1
2 for i in range(0,len(ordtimes)-1) do
3 if (exists(ordtimes[i+1])) then
4 if ordtimes[i][‘symbol’] == ‘+’) then
5 temp_ids.append(ordtimes[i][‘wiid’])

6 else
7 temp_ids.remove(ordtimes[i][‘wiid’])

8 intervals.append(ordtimes[i][‘tstamp’], ordtimes[i+1][‘tstamp’], temp_ids)

9 for interval in intervals do
0 for wiid in interval[‘list_wiid’] do
1 lwiaux.append(id, interval[‘start_int’], interval[‘end_int’], interval[list_wiid][‘wiid’])
2 id += 1

Table 1
Intermediate values obtained from Definition 6 and Algorithm 1.

ordtimes = {(0, A, ‘+’), (10, B, ‘+’), (75, B, ‘-’), (95, C, ‘+’), (110, D, ‘+’), (130, A, ‘-’), (140, D, ‘-’), (150, C, ‘-’)}
intervals = {(0, 10, ‘A’), (10, 75, ‘A,B’), (75, 95, ‘A’), (95, 110, ‘A,C’), (110, 130, ‘A,C,D’), (130, 140, ‘C,D’), (140,

150, ‘C’)}
lwuiaux = {(0, 10, ‘A’, 10), (10, 75, ‘A’, 32.5), (10, 75, ‘B’, 32.5), (75, 95, ‘A’, 20), (95, 110, ‘A’, 7.5), (95, 110, ‘C’,

7.5), (110, 130, ‘A’, 6.67), (110, 130, ‘C’, 6.67), (110, 130, ‘D’, 6.67), (130, 140, ‘C’, 5), (130, 140, ‘D’,
5), (140, 150, ‘C’, 10)}

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = (𝑒𝑛𝑑_𝑖𝑛𝑡 − 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑡)∕ 𝑙𝑒𝑛(𝑙𝑖𝑠𝑡𝑤𝑖𝑖𝑑𝑠). For example, from 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (10, 75, ‘𝑤𝑖1, 𝑤𝑖2’) two 𝑤𝑖𝑎𝑢𝑥 are generated
𝑤𝑖𝑎𝑢𝑥1 = (10, 75, ‘𝑤𝑖1’, 32.5), 𝑤𝑖𝑎𝑢𝑥2 = (10, 75, }𝑤𝑖2’, 32.5), 𝑤𝑖𝑎𝑢𝑥2 = (10, 75, ‘𝑤𝑖2’, 32.5). The list 𝑙𝑤𝑖𝑎𝑢𝑥 contains all 𝑤𝑖𝑎𝑢𝑥 generated.

Based on the above definitions, Algorithm 1 describes how the adjustment of task execution times is performed, taking into
account the number of tasks that are simultaneously executed by a resource, by means of the creation of the 𝑙𝑤𝑖𝑎𝑢𝑥 list. Applying
Definition 6 and the Algorithm 1 to the scenario depicted in Figs. 1 and 2, the set of values presented in Table 1 are obtained.

Given an event log , 𝑙𝑒𝑛() indicates the number of work items in . And according to the above definitions, it is possible to
state that 𝑙𝑤𝑖𝑎𝑢𝑥 = ′, where ′ is defined as:

Definition 7 (Auxiliary Event Log (′)). Given a , ∀ = ⟨𝑤𝑖1, 𝑤𝑖2,… , 𝑤𝑖𝑛⟩,∃′ ∣  ≡ ′ ∧ ′ = ⟨𝑤𝑖𝑎𝑢𝑥1, 𝑤𝑖𝑎𝑢𝑥2,… , 𝑤𝑖𝑎𝑢𝑥𝑚⟩, where
𝑤𝑖𝑖 =< 𝑤𝑖𝑎𝑢𝑥𝑗 ,… , 𝑤𝑖𝑎𝑢𝑥𝑘 >, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘, 𝑚 ≥ 𝑙𝑒𝑛().

From ′ it is possible to generate a ‘‘coalesced log" ′′ that contains a set of coalesced work items 𝑤𝑖𝑐𝑜𝑎𝑙. Each 𝑤𝑖𝑐𝑜𝑎𝑙 is the
result of the sum of the pre-processed times (𝑤𝑖𝑎𝑢𝑥) of each original 𝑤𝑖 in .

Definition 8 (Coalesced Log (′′)). ∀ = ⟨𝑤𝑖1,… , 𝑤𝑖𝑛⟩,′ =< 𝑤𝑖𝑎𝑢𝑥1, ..., 𝑤𝑖𝑎𝑢𝑥𝑚 > ∃′′ = ⟨𝑤𝑖𝑐𝑜𝑎𝑙1,… , 𝑤𝑖𝑐𝑜𝑎𝑙𝑛⟩ ∣ 𝑤𝑖𝑐𝑜𝑎𝑙𝑖𝑖𝑑 = 𝑤𝑖𝑖𝑖𝑑 ∧
𝑤𝑖𝑐𝑜𝑎𝑙𝑖𝑡𝑦𝑝𝑒 = 𝑤𝑖𝑖𝑡𝑦𝑝𝑒 ∧𝑤𝑖𝑐𝑜𝑎𝑙𝑖𝑟 = 𝑤𝑖𝑖𝑟 ∧𝑤𝑖𝑐𝑜𝑎𝑙𝑖𝑠𝑡 = 𝑤𝑖𝑖𝑠𝑡 ∧𝑤𝑖𝑐𝑜𝑎𝑙𝑖𝑒𝑡 = (𝑤𝑖𝑐𝑜𝑎𝑙𝑖𝑠𝑡 +𝑠𝑢𝑚𝑚

𝑡=1𝑤𝑖𝑎𝑢𝑥𝑡𝑑 )∧ 𝑙𝑒𝑛() = 𝑙𝑒𝑛(′′)∧ [𝑠𝑢𝑚𝑛
𝑡=1(𝑤𝑖𝑡𝑒𝑡 −𝑤𝑖𝑡𝑠𝑡 ) =

𝑠𝑢𝑚𝑛
𝑡=1(𝑤𝑖𝑐𝑜𝑎𝑙𝑡𝑒𝑡 −𝑤𝑖𝑐𝑜𝑎𝑙𝑡𝑠𝑡 )].

From the above definitions we can deduce that: ∀∃′,′′ ∣  ≡ ′ ≡ ′′ ∧ 𝑙𝑒𝑛() ≤ 𝑙𝑒𝑛(′) ∧ 𝑙𝑒𝑛(′) ≥ 𝑙𝑒𝑛(′′) ∧ 𝑙𝑒𝑛() = 𝑙𝑒𝑛(′′).
In addition, if 𝑙𝑒𝑛() == 𝑙𝑒𝑛(′) there is no multitasking, because the execution times do not intersect for any work item of any

esource in the event log  and ∀𝑤𝑖𝑖 ∈  ∣ 𝑤𝑖𝑖 = {𝑤𝑖𝑎𝑢𝑥𝑖}.
In other words, the coalesced event log has the same total workload per resource (hence same resource utilization) as the original

og, while not containing any multitasking. Accordingly, the coalesced log can be used to discover a simulation model that can
e executed using existing business process simulators (without multitasking support), while ensuring that the resulting resource
tilization is the same as that of the original event log.

. Handling resource availability constraints

In order to discover resource availability timetables, we use as a starting point the approach for discovering calendar expressions
rom collections of time points proposed by Yingjiu et al. [20]. They explain that event repeat over time according to a temporal
attern, such regularity could be capture by a time granularity or multiple granularities. For example, an organization performs
aintenance operations for its services every 15th day of the month; in this case, month and day are time granularities.

Definition 9 (Time Granularity). A granularity expression or time granularity is a countable set of time granules that do not overlap,
where each granule is a subset of a time domain. Granularity expression takes the form of (𝑔𝑛, 𝑔𝑛 − 1, 𝑔𝑛 − 2,… , 𝑔2, 𝑔1) where each
field is a granule subset of a time domain.
6
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Table 2
Set of calendar expressions — example.

1 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 3, ℎ𝑜𝑢𝑟 ∶ 3⟩
2 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 3⟩
3 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩
4 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 6, ℎ𝑜𝑢𝑟 ∶ 6⟩
5 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 2, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 1, ℎ𝑜𝑢𝑟 ∶ 6⟩
6 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 2, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 1, ℎ𝑜𝑢𝑟 ∶ 14⟩
7 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 2, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 2, ℎ𝑜𝑢𝑟 ∶ 3⟩
8 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 3, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 3, ℎ𝑜𝑢𝑟 ∶ 7⟩
9 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 3, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩
10 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 3, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 5, ℎ𝑜𝑢𝑟 ∶ 13⟩
11 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 4, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 2, ℎ𝑜𝑢𝑟 ∶ 2⟩
12 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 4, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 3, ℎ𝑜𝑢𝑟 ∶ 3⟩
13 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 5, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 5, ℎ𝑜𝑢𝑟 ∶ 13⟩
14 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 6, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 1, ℎ𝑜𝑢𝑟 ∶ 13⟩
15 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 6, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 6, ℎ𝑜𝑢𝑟 ∶ 2⟩
16 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 6, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 6, ℎ𝑜𝑢𝑟 ∶ 3⟩

Table 3
Calendar expressions supporting SP: ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶
3, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩.

1 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 3, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩
2 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 3, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩

Each granule of a valid granularity expression in 𝑔𝑛 has to be a union of some granules in 𝑔𝑛 − 1. That is, a granule 𝑔2 has to
cover 𝑔1. For example, the expression (𝑑𝑎𝑦, ℎ𝑜𝑢𝑟) is accepted since a day consists of a set of identified hours. Other valid examples
are: (𝑦𝑒𝑎𝑟, 𝑚𝑜𝑛𝑡ℎ, 𝑑𝑎𝑦_𝑜𝑓 _𝑚𝑜𝑛𝑡ℎ), (𝑦𝑒𝑎𝑟,𝑤𝑒𝑒𝑘, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘), (𝑑𝑎𝑦, ℎ𝑜𝑢𝑟, 𝑞𝑢𝑎𝑟𝑡𝑒𝑟_𝑜𝑓 _ℎ𝑜𝑢𝑟), etc. However, (𝑤𝑒𝑒𝑘, ℎ𝑜𝑢𝑟𝑠) is not acceptable
since a week does not contain a set of unique hours.

A calendar schema is a schema which has fields 𝑓𝑖 and corresponding domains 𝐷𝑖, where (1 ≤ 𝑖 ≤ 𝑛), 𝑅 = (𝑓𝑛 ∶ 𝐷𝑛, 𝑓𝑛−1 ∶
𝑛 − 1,… , 𝑓𝑖 ∶ 𝐷1). Each field represents a time granularity and each domain can be an integer or a wild card symbol (*). The
omain 𝐷𝑖 may be omitted in a calendar schema. A time point (also called a time granule or a granule for short) is an instance of
calendar schema, (e.g. week 24, day 3, hour 5 is a time point). A calendar expression is a set of time granules, represented in the

same way as a single time granule, but using the wildcard symbol ‘*’ to indicate that for a given granularity, the calendar expression
matches all possible values of that granularity (relative to the parent granularity). For example, ⟨𝑑𝑎𝑦 ∶∗, ℎ𝑜𝑢𝑟 ∶ 10⟩ is a calendar
expression, which can be interpreted as ‘‘everyday at 10 hours’’. This notion of calendar expression is captured by the following
definition.

Definition 10 (Calendar Expression). Let 𝐷𝑖 be the set of possible granules of a granularity 𝑖 (1 ≤ 𝑖 ≤ 𝑛). Moreover, let �̂�𝑖 = 𝐷𝑖 ∪ {∗}
be the domain consisting of all time granules of granularity 𝑖, augmented with the wildcard symbol. A calendar expression is a tuple
⟨𝑑1,… , 𝑑𝑛⟩, s.t. 𝑑𝑖 ∈ �̂�𝑖.

Definition 11 (Simple Calendar-based Pattern). A simple calendar-based pattern (SP) is a pair ⟨𝑒, 𝛤 ⟩, where 𝑒 is a calendar expression
and 𝛤=(𝛾𝑛, 𝛾𝑛−1,… , 𝛾1) is a constraint, and each 𝛾𝑖 is a set of granules.

For example, ⟨2021, ∗, 1⟩ is as SP that follows the granularity ⟨𝑦𝑒𝑎𝑟, 𝑚𝑜𝑛𝑡ℎ, 𝑑𝑎𝑦⟩. Intuitively, it means the first day of ‘every’ month
of year 2021. Based on a set of calendar expressions provided as input, the approach proposed in [20] aims to find all simple
calendar-based patterns that follow a given granularity expression and satisfy a required predefined constraints. The constraints
referred to are threshold values recognized as support and confidence rates as stated in [20].

Yingjiu et al. [20] employ techniques similar to association rule mining (a priori algorithm) in order to generate calendar
expressions from a set of granules. Like other association rule mining methods, the interestingness of a calendar expression is
measured with respect to a user-specified minimum support and confidence levels. Given an observed collection of time granules
TS, the support of a calendar expression is the percentage of granules in TS that fall inside the set of granules defined by a calendar
expression. Note that the support is 100% if all granules in TS are covered by the calendar expression. On the other hand, confidence is
the percentage of time granules of the calendar expression that can be found in TS. Confidence is 100% when every granule matched
by the calendar expression is observed in TS.

Table 2 has a set of calendar expressions following the granularity expression ⟨𝑦𝑒𝑎𝑟,𝑤𝑒𝑒𝑘, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘, ℎ𝑜𝑢𝑟⟩. For example, the
SP ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 3, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩ is supported by the calendar expressions in Table 3. The support rate for the
respected pattern is therefore 2∕16 = 0.125. For an SP with a wild card ‘*’ such as ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶∗, ℎ𝑜𝑢𝑟 ∶∗⟩,
the supporting expression are demonstrated in Table 4. Support value for the respected pattern equals 4∕16 = 0.25

Over a time period, the confidence of a simple calendar-based pattern is the percentage of basic time units (a simple calendar-
based pattern that does not contain any wild cards), among all the basic time unit points given by the simple calendar-based pattern,
that contain the given events.
7
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Table 4
Calendar expressions supporting SP: ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶
1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶∗, ℎ𝑜𝑢𝑟 ∶∗⟩.

1 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 3, ℎ𝑜𝑢𝑟 ∶ 3⟩
2 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 3⟩
3 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩
4 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 6, ℎ𝑜𝑢𝑟 ∶ 6⟩

Table 5
Basic time units unfolded by SP: ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶∗
, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩ for the period between week
1 and 6.

1 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩
2 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 2, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩
3 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 3, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩
4 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 4, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩
5 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 5, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩
6 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 6, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩

Table 6
Calendar expressions contain basic time units by SP:
⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶∗, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩.

1 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 1, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩
2 ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶ 3, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩

For example, given the SP: ⟨𝑦𝑒𝑎𝑟 ∶ 2012, 𝑤𝑒𝑒𝑘 ∶∗, 𝑑𝑎𝑦_𝑜𝑓 _𝑤𝑒𝑒𝑘 ∶ 4, ℎ𝑜𝑢𝑟 ∶ 7⟩ and the dataset of calendar expressions in Table 2, it
is observed that the period of time the events fall into is between the first week and the sixth week. Therefore, the basic time units
yielded by the SP for the respected period are the ones displayed in Table 5. Additionally, Table 6 indicating the basic time units
existing in the given set of calendar expressions. As a result, the confidence of the respected pattern is 6∕2 = 3.

To use the technique from [20], we need to map the event log to a set of granules (TS) capturing the points in time where a
given resource pool is ‘‘active". Here, we have the choice between using only the start timestamp of each work item (herein denoted
𝑎𝑡𝑡𝑠𝑡(𝑒)), only the end timestamp (𝑎𝑡𝑡𝑠𝑡(𝑒)) or both timestamps. In the rest of this article, we use both timestamps because both the
start and the end of a work item are time points during which a resource is known to have been actively working.

We choose to discover calendar expressions at the level of quarter-hours (15-minutes duration per granule) in order to capture
timetables such as Monday and Tuesday 10:15–12:00 and 14:45–15:45. Accordingly, we preprocess the event log so that all start
and end timestamps are rounded to the nearest quarter-hour, for example 2020-10-05T10:09:54 is rounded to 2020-10-05T10:00,
whereas 2020-10-05T10:19:54 is rounded to 2020-10-05T10:15.

Note that the use of quarter-hour as the lowest granularity is arbitrary. We could apply the same technique to discover calendar
expressions with lower granularity (e.g. at the level of minutes as in ‘‘every Monday 14:31–15:58 and 16:03–17:44’’), but arguably
this would lead to less readable timetables (and the execution times would be higher due to a higher set of possible time granules).
Similarly, in the empirical evaluation reported later in this article, we focus on discovering weekly calendars (i.e. the coarsest
granularity we consider is the week), but the approach can discover calendar expressions involving coarser granularities (e.g. month).

Given the set of time granules corresponding to the start and end timestamps of work items in a log, we build a variant of the
data structure calendar structure (CS) defined in [20] and exemplified in Fig. 3. This data structure captures, for each resource pool
(role) represented in the event log, all possible calendar expressions over a given set of granularities, in this example the three
granularities DayOfWeek, HourOfDay, and QuarterOfHour.

Yingjiu et al. [20] describe four algorithms to derive a calendar structure (CS) capturing the set of calendar expressions that meet
a given (user-defined) support and confidence level for a given set of time points. Algorithm 2 describes a variant of the Enumeration
Algorithm with Intra-level Pruning (EAP) presented in [20], which is the algorithm that performs best in their experiments. We adapted
this algorithm to include information about the resource pools (roles) recorded in the event log. The resource pool associated to an
event is denoted as 𝑎𝑡𝑡𝑟(𝑒).

The algorithm is decomposed into two functions, namely 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (the main function) and 𝑎𝑑𝑑𝑇 𝑜𝐶𝑆 (a recursive function that
adds information incrementally to build the data structure CS). To illustrate the algorithm, let us assume we use the granules
[DayOfWeek, Hour, QuarterHour] and that we want to discover a calendar expression from an event log that contains a trace
𝜎1 = ⟨𝑒1, 𝑒2,…⟩. Moreover, let us assume that the resource associated with 𝑒1 is 𝑟1 (i.e. 𝑎𝑡𝑡𝑟(𝑒1) = 𝑟1, and that the start and end
timestamps associated with 𝑒1 are Monday 2020-10-05T10:00:00 and Monday 2020-10-05T10:22:40, respectively. The algorithm
starts by creating an empty CS data structure in line 2, and then it iterates over the set of events in the log. Fig. 4(a) corresponds
to the creation of CS root node. In lines 4–5, the algorithm determines the resource associated with the event and tries to access
the corresponding child node in CS. Since CS is initially empty, a new CSNode is created and added to the root of the tree-like CS
data structure (see Fig. 4(b)). Then, in line 9, the algorithm starts an iteration over the set of start and end timestamps associated
with 𝑒1 and it expands the tree by calling 𝑎𝑑𝑑𝑇 𝑜𝐶𝑆 in line 10. Note that 𝑎𝑑𝑑𝑇 𝑜𝐶𝑆 is called with the reference to the node pointed
with the resource 𝑟 as the parent node, with the start timestamp and granule DayOfWeek. From that, one can see that line 23
1
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Fig. 3. Data structure calendar structure.
Source: (based on [20]).

Algorithm 2: Discovery of calendar expressions (adapted from the EAP algorithm in [20])
1 Function discover(: EventLog, sup: double, conf: double, gs: [Granule]) is

// Construct the CS data structure
2 CS = new CSNode()
3 for event 𝑒 in event log  do
4 role = 𝑎𝑡𝑡𝑟(𝑒)
5 child = CS[role]
6 if child != null then
7 child = new CSNode()
8 CS[role] = child

9 child.count += 1
0 for timestamp in {𝑎𝑡𝑡𝑠𝑡(𝑒), 𝑎𝑡𝑡𝑒𝑡(𝑒)} do
1 addToCS(child, timestamp, gs[0], gs)

// Initialize the sets of calendar expressions 𝑃1 and 𝑃2
2 𝐶𝐸𝑑𝑖𝑠𝑐 = ∅ // Calendar expressions having failed to satisfy support requirement
3 𝐶𝐸𝑘𝑒𝑝𝑡 = ∅ // Calendar expressions satisfying support and confidence requirements
4 for calendar expression 𝑐𝑒 generated from role/timestamps represented in CS do
5 if exists 𝑐𝑒′ in 𝐶𝐸𝑑𝑖𝑠𝑐 s.t. 𝑐𝑒′ covers 𝑐𝑒 then
6 discard 𝑐𝑒

7 else
8 if support(𝑐𝑒) ≥ sup and confidence(𝑐𝑒) ≥ conf then
9 𝐶𝐸𝑘𝑒𝑝𝑡 = 𝐶𝐸𝑘𝑒𝑝𝑡 ∪ {𝑐𝑒}

0 else if support(𝑐𝑒) < sup then
1 𝐶𝐸𝑑𝑖𝑠𝑐 = 𝐶𝐸𝑑𝑖𝑠𝑐 ∪ {𝑐𝑒}

2 return 𝐶𝐸𝑘𝑒𝑝𝑡

3 Function addToCS(parent: CSNode, t: Timestamp, g: Granule, gs: [Granule]) is
4 granuleValue = getGranuleValue(t, g)
5 child = parent[granuleValue]
6 if child is null then
7 child = new CSNode()
8 parent[granuleValue] = child

9 child.count += 1
0 next = nextGranule(gs, g)
1 if next != null then
2 addToCS(child, t, next, gs);

will set 𝑔𝑟𝑎𝑛𝑢𝑙𝑒𝑉 𝑎𝑙𝑢𝑒 to Monday. Since CS is virtually empty, the algorithm will add a new CSNode for Monday in lines 24–27

(see Fig. 4(c)). A counter is kept for every node in CS to enable the computation of the support and confidence values. In line 29,

we determine what is the next (finer) granule to analyze which, in this case would be Hour and which leads to a recursive call to

𝑎𝑑𝑑𝑇 𝑜𝐶𝑆. Fig. 4(d) shows CS after inserting the two timestamps associated with 𝑒1. Note that we have kept track on the number

of timestamps that can be associated with each calendar expression represented in CS.
9
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Fig. 4. Example of a CS structure from an empty root node (a) until the insertion of two timestamps (d).

The second part of the algorithm, lines 12 to 22, enumerates the list of candidate calendar expressions and keeps only those
hat fulfill the support and confidence requirements. Conceptually, for each resource/timestamp pair, e.g. 𝑟1 and Monday 2020-

10-05T10:00:00, the algorithm should check the following calendar expressions: ⟨𝑟1, ∗, ∗, ∗⟩, ⟨𝑟1,Mon, ∗, ∗⟩, ⟨𝑟1, ∗, 10, ∗⟩, ⟨𝑟1, ∗, ∗, 0⟩,
⟨𝑟1,Mon, 10, ∗⟩, ⟨𝑟1,Mon, ∗, 0⟩, and ⟨𝑟1,Mon, 10, 0⟩. Hence, the number of patterns to verify might be very large. However, it can be
noted that pattern ⟨𝑟1,Mon, 10, ∗⟩ ‘‘covers’’ pattern ⟨𝑟1,Mon, 10, 0⟩. Moreover, if ⟨𝑟1,Mon, 10, ∗⟩ does not meet the support and/or
confidence requirements, we can avoid checking ⟨𝑟1,Mon, 10, 0⟩. Based on this observation, Algorithm 2 reduces the number of
andidate calendar expressions to be checked (cf. lines 15 and 16). The for-loop that enumerates the candidate calendar expressions
s implemented via a depth-first-search traversal of CS.

The above algorithm discovers calendar expressions capturing the availability of resources (i.e. a resource availability timetable).
e use the same approach to discover a case creation timetable from an event log. Concretely, we first extract the first event

ssociated of each case/trace and we retain the start timestamp of this work item. We then discover a set of calendar expressions
rom the collection of all such ‘‘start timestamps’’.3

. Evaluation

In this section, we describe the experiments carried out to evaluate the proposal presented for the discovery of business process
imulation models, taking into account the effects of multitasking and the availability of resources. The evaluation is based on
iscovering different business process simulation models taking into account the behavior of the resources, and then calculating a
et of measures of goodness that will allow the comparison of the discovered models. The discovery of the business process models
as done by means of the SIMOD tool [10]. This tool uses the hyper-parameter optimization technique ‘‘to search in the space of
ossible configurations in order to maximize the similarity between the behavior of the simulation model and the behavior observed
n the log". Process models are discovered using the Split Miner algorithm [22], which considers different levels of sensibility and
epends on two parameters: the parallelism threshold, epsilon(𝜖) that determines the quantity of concurrent relations between work
tems to be captured; and the percentile for frequency threshold, eta (𝜂), that acts as a filter over the incoming and outgoing edges
f each node and retains only the most frequent percentiles. Both parameters are defined in a range between 0 and 1. The resulting
imulation models can be executed using simulators such as Scylla [23] and BIMP [24]. As in [6], we use BIMP because it allows
wider set of distribution probabilities to be used, thus widening the space for configuration options.

.1. Datasets

To evaluate our proposal, we need event logs with the following Data Requirements (DRs):

DR1 The log should contain records of executions of task instances (work items) with their start and end timestamps. This
requirement is necessary in order to calculate the processing time of each work item, which is a pre-requisite for discovering
a simulation model.

DR2 The log should have resource identifiers. This requirement is also a pre-requisite for discovering resource pools, which are a
required component of a business process simulation model.

3 Martin et al. [21] observed that the case creation time may occur earlier than the start timestamp of the first work item. They proposed a method to
stimate the case creation time under some assumptions. We acknowledge that this method could be used to pre-process the log in order to obtain more accurate
stimates of case creation times.
10
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We undertook a search of event logs fulfilling such characteristics. To this end, we scanned the 4TU data centrum collection of
eal-life event logs.4 We also considered the event logs previously used to evaluate the Simod method for automated discovery of
vent logs. Out of this pool of event logs, we found that the following ones fulfill the requirements DR1 and DR2:

• ACR: This is a real event log that represents an academic credentials recognition (ACR) process in a university during the first
semester of 2016. This log has 954 traces, 18 tasks, 6870 events, and involves 561 resources. After analyzing a set of event
logs, we identified that this is the only event log reflecting multitasking.

• Purchasing Example: This is a synthetic event logs generated from a purchase-to-pay process model not available to the
authors.5 This event log has 608 traces, 21 tasks, 9119 events, and involves 27 resources. Although this event log does not
contain multitasking, it was used as a starting point (𝑃𝐸_0𝑃 _𝑙𝑜𝑔) to create a set of logs in which, given a numerical value
𝑥 = {5, 10, 15, 20, 25}, a log with 𝑥 percentage of multitasking was generated. The detail of how these logs were generated will
be described in Section 6.3.

• MP: This is a real event log that belongs to a manufacturing production process, exported from an Enterprise Resource Planning
system [25]. The tasks in this process refer to steps (or ‘‘stations’;) in the manufacturing process. This event log has 225 traces,
26 tasks, 4953 events, and involves 48 resources. This event log does not contain multitasking.

• BPI Challenge 2012W: This is a subset of a real event log belonging to a Dutch financial institution’s loan application process.6
The W subset is composed of the events performed by human resources (i.e., only activities that have a duration). This event
log has 8616 traces, 6 tasks, 59302 events, and involves 58 resources. This event log does not contain multitasking.

• BPI Challenge 2017 W (filtered): This event log is an updated version of the BPIC2012 log.7 We carried out the W-subset
extraction by following the recommendations reported by the winning teams participating in the BPIC 2017 challenge.8 Due
to the large size of this log and the required time to process it with the SIMOD tool, we decided to reduce its size. The reduced
version of the log includes the events that occurred between (06-25-2016 and 10-07-2016) and has 8941 traces, 7 tasks, 63764
events, and involves 113 resources. This event log does not contain multitasking.

In order to evaluate the approach for handling multitasking, we needed event logs that additionally fulfill the following requirement:

DR3 The event log should contain work items with overlapping execution periods, performed by the same resource.

Among the event logs listed above, we found that the Production Manufacturing, the BPI Challenge 2012w and BPI Challenge
2017w do not contain any multitasking (except for a negligible number of instances of multitasking in he BPI Challenge 2017w).
The only log fulfilling DR3 was the ACR log, which contains a moderate amount of multitasking. In order to test the performance
of our proposal on event logs with different levels of multitasking (from low to high), we took the Purchasing Example log listed
above, and we synthetically altered it in order to generate event logs with different levels of multitasking.

6.2. Measures of goodness

To evaluate the goodness of an automatically discovered simulation model, we perform a simulation of this model to produce
a simulated event log with the same number of traces as the original event log. We then compare the simulated log to the original
log in order to determine their similarity, both in terms of the sequences of activities they contain, and their associated timestamps
and case durations (cycle times). Following the approach taken to evaluate the Simod method, we use the following measures of
similarity/distance between the simulated log and the original log:

• Mean Absolute Error (MAE): This metric assesses the distance in seconds between the cycle times of two logs’ traces. We
calculated the MAE by first measuring the cycle times absolute error between all the traces on both event logs, then pairing
them using the Hungarian algorithm, and finally computing the mean distance of the pairs. It is important to highlight that
this measure is relative acting at the trace level; therefore, it must be complemented by employing other measures that provide
a clearer idea of the event logs’ global and event-level temporal dynamics.

• Log Mean Absolute Error (LMAE): This metric evaluates the distance between two event logs’ global times with the same
number of traces. LMAE provides a global perspective of the times in the event logs that can be affected by factors such
as the rate of instances generation and restrictions over the resources’ availability. We calculated this measure as the absolute
error between the timeframes of the two event logs. Each log timeframe corresponds to the time elapsed between the first event
start timestamp and the last event complete timestamp expressed in seconds. We compared the ground-truth log against the
simulated logs generated in each experiment repetition and calculated the mean of the distances guaranteeing the convergence
of the results.

• Earth Mover’s Distance (EMD): We used the EMD to evaluate the temporal dynamics of the logs at the event level. This metric
is calculated by comparing the normalized histograms of the events in different time windows in the ground-truth log vs.
the same histogram computed from the simulated logs. We chose the time windows according to the most frequent circadian

4 https://data.4tu.nl/
5 The log is provided as part of the Fluxicon Disco tool – https://fluxicon.com/
6 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
7 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
8 https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
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cycles of resources. In particular, we grouped the timestamps by weekday/hour and by calendar day. The EMD between two
histograms is the minimum number of mass units needed to transform one histogram into another. The EMD is zero if the
observed times in the two logs are identical, and it tends to one the more they differ.

• Timed String Distance (TSD): This metric is a modification of the distance measure called Damerau–Levenshtein (DL) that
assesses the distance between two strings and has been extensively used to assess the similarity between two process traces.
In addition to the sequences distance, TSD includes a penalty related to the time difference in processing and waiting times,
providing a single measure of the traces’ accuracy [6].

• DL-Mean Absolute Error (DL-MAE): The DL-MAE is a complementary measure to assesses the similarity between two traces,
assigning 50% of importance to the distance between the event sequences w.r.t DL and 50% importance to the temporal
distance to the cycle time of traces normalized w.r.t MAE.

6.3. Evaluation of multitasking approach

The pre-processing of an event log for the identification of multitasking work items, the overlapping time periods, the adjustment
of the execution times for these work items and the calculation of multitasking indexes is done by means of a Python script called
Sweeper. This script receives as input a base event log () and generates as output a coalesced event log (cf. Definition 8).

As a first step to conduct the multitasking evaluation, we performed a preliminary analysis of all of our available logs to
identify those that reflected multitasking as a result of their original event logs. Of those logs, only the ACR log reflected overlap
between some of the event logs. For this reason, and in order to be able to perform further analysis regarding the characteristics of
multitasking, we decided that the evaluation would be two-pronged. The first, based on a real event log in which multitasking is
originally present (ACR log), and the second, in which work item overlap is introduced into the log. For this second phase we start
rom the Purchasing Example log. The event logs9 and scripts10 are available online. The experiments were carried out on a computer

using Windows 10 Enterprise (64-bit), a processor Inter Core i5-6200U, CPU 2.3 GHz, and 16.0 GB RAM.

6.3.1. Multitasking evaluation using a real-life event log
This section aims to identify the accuracy gains of the proposal using a real-life event log. The hypothesis in this scenario is that

adjusting execution times derived from multitasking leads to more accurate simulation results, reduces the total execution time of
tasks and processes; avoids an over-estimation of resource utilization by a simulator that executes work items without multitasking;
and maintains the correct alignment of the model generated according to the original model derived from the log.

Experimental setup. Based on the ACR log, the first step of the evaluation was to generate a new event log, namely the ACR adjusted
log, which contains the adjusted times for the ACR log (i.e. the coalesced version of the ACR log as per Definition 8). Then, we
discovered a BPS model from the original log and from the coalesced log using SIMOD. In the hyper-parameter phase of SIMOD,
50 BPS models were generated using different parameter configurations. Parameters 𝜖 and 𝜂 were varied from 0.0 to 1.0. Each
discovered BPS model was simulated 5 times. Finally, we used the Apromore process mining tool11 to compare the processing times
of the logs and BIMP12 to analyze the resource utilization values.

Results. Executing SIMOD using the ACR log gave very similar results were obtained to those presented in [6], using half number
of simulations. In that proposal, the similarity measure TSD is equal to 0.9167, while in our experiment, TSD is equal to 0.906 with
𝜖=0.615 and 𝜂=0.559. Executing SIMOD on the ACR adjusted log led to a similarity measure of 0.929 with 𝜖=0.484 and 𝜂=0.591.
When comparing the average cycle times of the BPS models generated by the original and the coalesced logs, we noticed a gain in
accuracy of approximately 14% for the BPS model discovered from the ACR adjusted log relative to the BPS model discovered from
the ACR log.

The above relatively small accuracy gain (particularly with respect to the TSD measure) should be cast in light of the
characteristics of the ACR log. Table 7 shows the characteristics of the original and the adjusted (coalesced) ACR log. Out of the 18
tasks in the event log, 17 have at least one overlapping pair of instances (work items). From the 6870 events, 1267 are overlapping
with at least one other work item. Out of the 561 resources involved in the log, 76 executed at least one pair of overlapping work
items. Finally, after grouping all work items according to the resource that executed them, 1116776 pairs of work items were
identified (total number of pairs of work items performed by the same resource). Among them, 1036 overlap in some period of
their execution time. This last observation highlights that the log used for this analysis has a low volume of multitasked work items,
which in turn explains the relatively low accuracy gain (in term of TSD).

We now look at the results from the perspective of the Multitasking Log Index (MTLI). For the ACR log, 𝑀𝑇𝐿𝐼 = 1.05%. If MTLI is
low, one would expect the rate of improvement in the analysis to be low as well, but as the level of multitasking in the log increases,
the measure should improve proportionally. This indicates that when analyzing all possible pairs of work items, only the 1.05% of
the time of those work items were overlapped, which represents low level of multitasking. For the same log, the Multitasking Work
Item Index is 𝑀𝑇𝑊 𝐼𝐼 = 58.54%, which indicates that, for those work items where multitasking has been identified, the pairs of
work items that overlap with each other do so for 58.54% of their total duration. Both indexes are described in detail in next section.

9 https://github.com/AdaptiveBProcess/Simod/tree/master/inputs/multitasking_logs
10 https://github.com/AdaptiveBProcess/Simod/tree/master/support_modules/multitasking
11 http://apromore.org
12 http://bimp.cs.ut.ee/
12
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Table 7
Differences between original log and adjusted (coalesced) ACR log.

Tasks Events Resources Pairs

Original log characteristics 18 6870 561 1116776
Coalesced log characteristics 17 1267 76 1039

Fig. 5. Comparison of average duration between ACR log and ACR adjusted log.

Using Apromore, we analyzed the ACR log and the ACR adjusted log and compared them in terms of their temporal characteristics.
ig. 5 shows the average duration of tasks. Blue bars represent the average time duration of the tasks of the ACR log while the red
ars represent the average time duration of tasks in the ACR adjusted log. Both RD and HGR reflect a difference of 0.6 h (h), followed

by HGR with 0.43 h; EC and CC with 0.35h; CS, VBPC and RC with 0.15 h; VS 0.07; VSPH 0.04; VF with 0.02 h; RSH does not show
improvement; and the last 6 task do not reflect improvement either, but can be considered activities of instant duration. Finally,
we calculated the resource utilization of the three resource pools using BIMP. We noticed only slight differences in the resource
utilization.

In general, the above results show that with the pre-processing of log it is possible to maintain and/or improve similarity between
traces involved in each log. Besides, we figured that the level of improvement in the results depends on the log’s multitasking level:
the number of overlapping work item pairs and the percentage of overlap between each overlapping pair of work items. As we
have only been able to identify and use one real-life log with multitasking characteristics to show dependence between the amount
of multitasking and the result improvements, in the following subsection, a synthetic log was modified to generate a log set with
different multitasking levels.

6.3.2. Multitasking evaluation using a set of synthetic event logs
While the experiment with a real-life log reported above shows that the proposed approach can enhance the accuracy of

automatically discovered simulation model, it does not allow us to assess the potential benefits of the proposed approach for different
types of event logs. Accordingly, we complement the above experiment with a second experiment aimed at assessing the accuracy
enhancements produced by our proposal on event logs with varying levels of multitasking. Our hypothesis is that the accuracy
enhancement will be higher for event logs with higher levels of multitasking.

Experimental setup. To validate the above hypothesis, we tested our approach on a collection of synthetic event logs with varying
levels of multitasking. To this end, we took as starting point the Purchasing Example log discussed in Section 6.1. This log, herein
referred to as PE_0P_log, does not contain any multitasking. To produce logs with varying level of multitasking, we perturbed this
vent log by altering the end times or start times of work items in the log assigned to the same resource in such a way as to create
ome overlap between them. This perturbation is implemented by a script (namely percentage) which, given a percentage of shifting

(between 0.0 and 1.0), generates a new event log, including work items that overlap for that percentage of their processing times.
The script proceeds as follows.

• The base event log is divided by grouping the work items that are executed by a particular resource (see Definition 5, herein
called a resource segment).

• The work items of each resource segment were ordered according to their start timestamps.
• For each segment per resource, the first work item was taken as the pivot, and the next adjacent work item was searched among

the remaining work items. Two work items (𝑒1, 𝑒2) are adjacent if the end timestamp of 𝑒1 has the same value as the start
timestamp of 𝑒2. In Fig. 6.a, the first pair of work items shown are adjacent.

• When a pair of adjacent work items were identified, the timestamps were shifted depending on the percentage assigned. In

Fig. 6.b, 20% of shifting is applied, while in Fig. 6.c, the shifting is 40%.

13
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Fig. 6. Overlapping of work items according to a percentage of shifting.

• The two work items of a pair of adjacent work items are excluded from the following search. The next work item in the segment
per resource is taken as a pivot, and the search is repeated. If no adjacent work item is found, it is not modified, and the search
is repeated with a new pivot.

• The search of adjacent work items was repeated for all segment per resources.

We can see that by varying the percentage of shifting, we obtain event logs with varying levels of multitasking.
We recall that the hypothesis we intend to test is that the proposed approach leads to higher increases in accuracy for event logs

ith higher levels of multitasking. To test this hypothesis, we need a way of measuring the level of multitasking in an event log.
ntuitively, the level of multitasking in a log is determined by the amount of overlap between the execution times of pairs of work
tems assigned to the same resource, relative to the total number of pairs of work items that can be formed between the work items
f each resource (𝑠𝑟𝑖). Accordingly, to determine the level of multitasking in a log , we propose a measure called Multitasking Log
ndex (MTLI). This index can take a value between 0 and 1, where 0 indicates that no overlap was identified and 1 would reflect
total overlap between pairs of work items, that is, if all work items were executed in parallel, with the same start and end point,

or a resource. From this we derive the intuitive properties of minima and maxima, where the higher the value, the more overlap
etween pairs of work items was identified in the log.

Concretely, to calculate the MTLI of a log , we based on the idea that a log is divided by grouping all the work items of a given
esource (𝑟), generating 𝑠𝑟𝑖 ∈  (See Definition 5). The multitasking of a log is derived from the overlap between the execution
imes of two work items executed by the same resource. Therefore, for each 𝑠𝑟𝑖, let 𝑊 𝐼𝑠𝑟 be the set of all possible work items in 𝑠𝑟𝑖
nd 𝑆𝑅𝑊 𝐼𝑟 be the set of all possible pairs of work items in 𝑠𝑟𝑖.

𝑆𝑅𝑊 𝐼𝑟 = {(𝑤𝑖1, 𝑤𝑖2) ∈ 𝑊 𝐼𝑠𝑟 ×𝑊 𝐼𝑠𝑟 ∣ 𝑤𝑖1 ≠ 𝑤𝑖2 ∧𝑤𝑖1.𝑟 = 𝑤𝑖2.𝑟}

For each pair of work items (𝑤𝑖1, 𝑤𝑖2)𝑖 ∈ 𝑆𝑅𝑊 𝐼𝑟, 1 < 𝑖 <∣ 𝑆𝑅𝑊 𝐼𝑟 ∣, we measure the size of their intersection. We note that the
ntersection of two intervals can be calculated as the difference between the minimum of their end timestamps and the maximum
f their start timestamps (or zero if this latter difference is negative, which implies that the two intervals do not intersect). To
ormalize this intersection, we divide it by the maximum of the durations of the two work items.

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑤𝑖1, 𝑤𝑖2)𝑖 =
𝑚𝑎𝑥((𝑚𝑖𝑛(𝑤𝑖1.𝑒𝑡, 𝑤𝑖2.𝑒𝑡) − 𝑚𝑎𝑥(𝑤𝑖1.𝑠𝑡, 𝑤𝑖2.𝑠𝑡)), 0)

𝑚𝑎𝑥((𝑤𝑖1.𝑒𝑡 −𝑤𝑖1.𝑠𝑡), (𝑤𝑖2.𝑒𝑡 −𝑤𝑖2.𝑠𝑡))
Given the above, it becomes possible to calculate a Multitasking Resource Index (𝑀𝑇𝑅𝐼𝑟), which is an index of multitasking per

resource 𝑠𝑟𝑖 in an event log. For each 𝑠𝑟𝑖, all overlap values are summed; and that sum is multiplied by the value of 1 divided
number of pair of work items in 𝑆𝑅𝑊 𝐼𝑟.

𝑀𝑇𝑅𝐼𝑟 =
1

∣ 𝑆𝑅𝑊 𝐼𝑟 ∣

∣𝑆𝑅𝑊 𝐼𝑟 ∣
∑

(𝑤𝑖1 ,𝑤𝑖2)𝑖∈𝑆𝑅𝑊 𝐼𝑟

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑤𝑖1, 𝑤𝑖2)𝑖

Finally, MTLI is calculated as the average of all 𝑀𝑇𝑅𝐼𝑟 in the log.

𝑀𝑇𝐿𝐼 =

∣ ∣
∑

𝑗=1
𝑀𝑇𝑅𝐼𝑗

∣  ∣
, = {𝑠𝑟1,… , 𝑠𝑟𝑛}

The MTLI index may be biased in situations where the number of non-overlapping pairs of work items in the log is very large.
n this case, the denominator of the MTLI index will be very large. To mitigate this potential bias, we additionally define a second
ultitasking index, namely the Multitasking Work Items Index (MTWII). This latter index is calculated in a very similar way

as MTLI, but it only considers overlapping pairs of work items, and it is therefore not affected when there is a large amount of
non-overlapping work items. In other words, the MTLI index captures the global level of overlap in the log, while MTWII captures
the extent of overlap among those work items that do overlap.

To define the MTWII index, we consider the set of all possible overlapping pairs of work items for a resource is defined as follows.

𝑅𝑊 𝐼𝑜𝑟 = {(𝑤𝑖1, 𝑤𝑖2) ∈ 𝑊 𝐼𝑠𝑟 ×𝑊 𝐼𝑠𝑟 ∣ 𝑤𝑖1 ≠ 𝑤𝑖2 ∧𝑤𝑖1.𝑟 = 𝑤𝑖2.𝑟

∧ (𝑚𝑖𝑛(𝑤𝑖1.𝑒𝑡, 𝑤𝑖2.𝑒𝑡) − 𝑚𝑎𝑥(𝑤𝑖1.𝑠𝑡, 𝑤𝑖2.𝑠𝑡)) > 0}

The function 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑤𝑖1, 𝑤𝑖2) is calculated the same way. Now, the value of 𝑀𝑇𝑅𝐼𝑟 is calculated only for those pairs of
verlapping work items (𝑀𝑇𝑅𝐼𝑜𝑟 ).

𝑀𝑇𝑅𝐼𝑜𝑟 =
1

∣ 𝑅𝑊 𝐼𝑜 ∣

∣𝑅𝑊 𝐼𝑜𝑟 ∣
∑

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑤𝑖1, 𝑤𝑖2)𝑖

𝑟 (𝑤𝑖1 ,𝑤𝑖2)𝑖∈𝑅𝑊 𝐼𝑜𝑟
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Table 8
Comparison between the synthetic logs created using a percentage of shifting.

Shifting (%) MTWII (%) MTLI Overlapping pairs DL_MAE MAE (segs)

0 0 0 0 0.8883 1073208
5 5.596 1.468e−05 876 0.8889 1145181
10 10.381 2.754e−05 950 0.8893 1098788
15 14.694 3.953e−05 1006 0.8895 1091332
20 18.860 5.087e−05 1041 0.8841 1049593
25 22.266 6.147e−05 1073 0.8866 1117721

Finally, 𝑀𝑇𝑊 𝐼𝐼 is calculated as the average of all 𝑀𝑇𝑅𝐼𝑜𝑟 , where 𝑆𝑜 represents the set of all resources that have at least on
air of work items with multitasking. 𝑜 = {𝑠𝑟𝑜1 ,… , 𝑠𝑟𝑜𝑗 }, where 1 < 𝑖 < 𝑗; 𝑠𝑟𝑜𝑖 = {𝑤𝑖1,… , 𝑤𝑖𝑘} ∣ ∃(𝑤𝑖𝑛, 𝑤𝑖𝑚) ∈ 𝑀𝑇𝑅𝐼𝑜𝑟 , where

1 < 𝑛,𝑚 < 𝑗;𝑤𝑖𝑛 ≠ 𝑤𝑖𝑚.

𝑀𝑇𝑊 𝐼𝐼 =

∣𝑜 ∣
∑

𝑟=1
𝑀𝑇𝑅𝐼𝑜𝑟

∣ 𝑜 ∣

Note that the two indexes defined above (MTLI and 𝑀𝑇𝑊 𝐼𝐼) are used for the sole purpose of characterizing the volume of
multitasking in a log. In other words, we do not use these indexes as measures of goodness of the proposed approach (i.e. as
dependent variables), but rather we use them as independent variables. The measures of goodness used for evaluation purposes are
those discussed in Section 6.2.

Having generated a number of event logs with varying levels of multitasking, we discovered a BPS model from each log using
SIMOD. To take advantage of SIMOD’s hyperparameter optimization capabilities, 100 BPS models were generated using different
parameter configurations. Parameters 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 and 𝑒𝑡𝑎 varied from 0.0 to 1.0. Each simulation model was executed 5 times, for that,
500 simulations were evaluated for each log in the set as part of the hyperparameter optimization phase of SIMOD. We used the
BIMP simulator to simulate the resulting BPS models and to extract statistics from the resulting simulations, such as the resource
utilization percentages.

Results. Based on the PE_0P_log, 5 more logs were built using Percentage script. The percentages of shifting used were 5%, 10%,
15%, 20% and 25%. With regard to resources, in PE_0P_log participate 27 resources, and 11 of them reflect multitasking. From the
9119 events in PE_0P_log, 2625561 pairs of work items were identified. From these, 789 are adjacent work items to be used for
time-shifting of the logs, excluding in this set all instantaneous events.

Table 8 shows the percentage of shifting applied to the adjacent work items in each generated log; the multitasking indexes
(MTWII and MTLI) for each log in the set; the number of pairs of work items in which overlapping was identified (multitasking);
and the value of two similarity measures obtained using SIMOD.

The percentage reflected in the column MTWII should be the same as Shifting, because the number of adjacent work items on
which the shifts were made was the same for all the logs. However, certain MTWII values are slightly higher since the shifting of
some work items may generate overlapping between work items that initially were not adjacent. This is also reflected in the column
Overlapping Pairs, where the number of pairs of work items overlapped is greater than 789 and increases as the shifting increases.
Above a certain amount of shifting, the value of MTWII is less than the percentage of shifting. This is because a shift can cause one
work item to be embedded within another (Fig. 6.c), and if the shifting increases, the work item is still embedded and does not
provide more multitasking to the log. As could be deduced by identifying the number of work items in the log, the MTLI is quite low.
However, like MTWII, it increases when the percentages of shifting increase. Similarly, since the amount of multitasking in the log
is low, the difference between DL_MAE values varies and improves slightly for those cases where the percentage of shifting is quite
similar to MTWII (0, 5, 10, 15) and worsen slightly for those cases where the shifting and index vary more. Finally, when calculating
the MAE we see that although there is a significant difference between a log with and without multitasking, as the multitasking is
increased, and the adjustment in the logs, the MAE is gradually reduced, which means that the discovered BPS models are more
accurate. BPS models were simulated using BIMP. 5 resource pools were discovered, two of them with a high percentage of resource
utilization (RU). The RU in BPS models derived from multitasking is reduced, especially for those resource pools where the RU is
higher.

6.4. Evaluation of resource availability effects

This section aims to determine if the proposed calendar discovery technique improves the global representation of times in
business process simulation. The hypothesis behind this experiment is that restricting the availability of resources and the generation
of instances according to the schedules observed in the event log helps improve the simulation models’ precision. The evaluation
was two folded and performed using all the logs described in Section 6.1. The experiments were carried out on a computer using
Windows 10 Enterprise (64-bit), a processor Intel Core i5-8250U, CPU 1.6 GHz, and 16.0 GB RAM.
15
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Table 9
Accuracy evaluation results.
Event log Scenario TSD LMAE MAE EMD (weekday) EMD (hour)

ACR
Baseline 0.8142 3258874 338802 0.4001 0.6062
GI 0.8204 6209179 369895 0.3714 0.2871
LI 0.8163 2602998 296616 0.2572 0.1956

PurchasingExample
Baseline 0.7811 9156301 4993402 0.5953 0.8678
GI 0.8073 8674894 5250932 0.4572 0.8725
LI 0.7662 4391892 4269479 0.4714 0.8875

MP
Baseline 0.2249 951211 209036 0.6286 0.7829
GI 0.2538 8004078 208856 0.4000 0.7957
LI 0.1844 156314 223114 0.2334 0.6642

BPI2012W
Baseline 0.4637 2339552 481631 0.3667 0.4335
GI 0.5873 1978978 494508 0.3143 0.2400
LI 0.4485 2015657 492679 0.2857 0.2000

BPI2017W
Baseline 0.5707 1271119 750593 0.2572 0.4370
GI 0.6155 1874672 867037 0.5953 0.3854
LI 0.5615 870689 591604 0.2857 0.3566

Experimental setup. Given the large number of possible hyper-parameter configurations that can affect an automatically discovered
imulation model’s accuracy, we decided to split the hyper-parameter optimization into two phases. The first phase does not make
se of resource availability calendars, while the second phase focuses on finding the best possible calendar to fit the log.

In the first phase, we used the SIMOD optimizer to discover a base scenario that uses a 7/24 calendar. In this phase, SIMOD
iscovered the optimal values of the discovery parameters required to obtain the simulation model with the best precision using
SD as a loss function. In this phase, we carried out 30 hyper-parameter optimization iterations. We executed five simulation runs
or each event log and each hyper-parameter configuration, to ensure that the results were not affected by stochastic variations
nherent to simulations.

Once the base simulation scenario was fixed, in the second phase we computed two alternative simulation scenarios: one using
Global Improvement (GI) approach and another using a Local Improvement (LI) approach. The GI approach used the SIMOD

ptimizer to discover all the discovery parameters, including the support and confidence parameters required for the calendar
iscovery. This scenario required more iterations by the optimizer (i.e., 50 per log) since the search space is larger than the
ase scenario. Again, we used the TSD metric as a loss function and performed five simulation runs again for each event log and
onfiguration.

On the other hand, the LI approach uses the same values of the discovery hyper-parameters as the base scenario discovered in
he first phase. It then uses SIMOD’s hyper-parameter optimizer to optimize the support and confidence parameters of the calendar
iscovery algorithm. This approach uses as the EMD as a loss-function with a weekday/hour time window instead of the TSD. The
ationale for using EMD in this context is that EMD captures the TSD metric relies on relative timestamps (w.r.t. the creation of
ach case) whereas EMD uses absolute times. Given that the discovery of calendars relies on absolute timestamps, we hypothesize
hat this approach gives more accurate approach than the GI approach where TSD is used as the loss function. In other words, while
he TSD is suitable for optimizing the hyper-parameters that determine the distribution of task durations (processing times), we
ypothesize that the EMD metric is more suitable as a loss function when optimizing the discovery of the resource availability and
ase creation calendars. As for GI, we carried out 30 hyper-parameter optimization iterations for each event log, and five simulation
uns for each event log and each configuration.

Once we found the best simulation model for each approach on the training fold, we evaluated their accuracy on the testing fold
sing the TSD, MAE, LMAE, and EMD measures defined in Section 6.1. To smooth out stochastic variations, we report the mean of
ach of these measures across five simulation runs.

esults. Fig. 7 and Table 9 present the results of the three scenarios per each event log. As can be seen, overall GI and LI’s
mprovement scenarios outperform the baseline in most cases. Regarding the accuracy in terms of TSD (see Fig. 7 TSD), the GI
pproach obtained the best results in all the event logs, demonstrating that automatic calendar discovery, in conjunction with other
rocess mining techniques, improves the accuracy of the resulting simulation models at the trace level.

As hypothesized above, the LI approach shows a significant improvement relative the base and the GI approach. The MAE and
MAE distances show that the absolute error between the ground-truth and the simulated logs significantly decreases in the LI
pproach. Specifically, this improvement is evidenced in three of the five logs, in which the distance in the logs timeframes w.r.t.,
MAE, and the cycle times of traces w.r.t. MAE is clear. In the other two event logs, i.e., MP and BPI2012 W, the improvement is not
lways clear; however, it can be explainable according to the logs nature. In the MP log case, the LI approach dramatically decreases
he LMAE distance and remains close to MAE distance. This result indicates that the calendar discovery technique improves the
epresentation of instances generation in the simulation. It also indicates that resource contention (the access conflicts to resources
hared by different instances of the process) is not a determining factor since limiting the resources’ availability does not affect
he instances cycle times. On the other hand, in log BPI2012 W, the local improvement scenario obtained LMAE and MAE results
onsistent with the other two scenarios, although slightly higher, but there is no clear trend. This behavior may be due to this
16
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Fig. 7. Accuracy results. MAE and LMAE in seconds.

process does not present substantial restrictions on the availability of resources or the generation of instances, and other unknown
factors affect its performance.

Moreover, the metrics for representing times at the event level, i.e., EMD by day of the week and hour, show the same
improvement trend in the LI approach. This trend is especially significant for log ACR and log MP. These results are because these
logs present circadian behaviors that are adequately captured by the calendar discovery technique.

7. Threats to validity

The reported evaluation has a number of threats to validity. First, a potential threat to internal validity, which may affect the
conclusions drawn from the evaluation of execution times, is the fact that we conducted experiments using a single computing
environment. The results might differ on other computing environments. To mitigate this threat to validity, we executed each
experiment five times and examined the variations in execution times. We did not observe major variations between executions.
Furthermore, to ensure the reproducibility of the results, we have relied on publicly available logs and we have publicly released
the implementations of the proposed techniques.

With respect to construct validity, we acknowledge that none of the measures of goodness used in the evaluation provides a full
picture of the temporal dynamics of the process. To the best of our knowledge, there is no universal measure to assess the goodness
of an automatically discovered simulation model. Each measure of goodness has limitations and biases that must be considered in
their interpretation. In the case of the MAE measures (MAE and LMAE), one of the limitations is that these measures are not scaled,
which prevents the identification of how big or small the reported error is. Another limitation of these measures is that they are not
particularly sensitive to outliers, so some differences between the compared entities tend to be minimized. Third, these measures
focus on comparing the cycle times of cases and the timeframes of the logs, and as such, they do not consider the durations of
individual tasks and their order. Accordingly, we used other complementary measures, specifically the DL_MAE, which takes into
account the duration of each work item and the order in which tasks occur in a trace, and the EMD, which measures the differences
between the distributions of task durations. These latter measures, in turn, have their own limitations. Regarding the DL_MAE,
the distance between sequences of task labels is evaluated using the well-known Damerau–Levenshtein (DL) editing measure. A
limitation of this measure, when applied to business processes, is that it does not consider parallel relations between activities. In
the case of the EMD, a possible limitation is its interpretability since the comparison made between the entities is independent of
the units since it is carried out at the level of normalized histograms, which can make its interpretation challenging. That is why
we must analyze the results reported in this paper holistically, considering all the reported metrics.
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One of the hypothesis we sought to validate is that the proposed approach for handling multitasking produces higher gains for
vent logs with higher volumes of multitasking. To validate this hypothesis, we defined two indexes to measure the volume of
ultitasking in an event log, namely MTLI and MTWII. The key idea of both of these indexes is to divide the temporal intersection

between two multitasked work items by the maximum of their durations, and then to aggregate these intersections across all
overlapping work items in the log. Other approaches to measure multitasking are conceivable such as simply counting the number
of multitasked pairs of work items. However, any potential bias in these indexes would not invalidate the general conclusion that
a higher amount of overlapping between work items leads to a higher gain in accuracy (although the magnitude of overlap could
be measured differently).

Related to the above, there is a potential threat to construct validity stemming from the approach used to generate event logs
with multitasking from a log without multitasking (cf. Section 6.3.2). Specifically, we generated overlaps between pairs of adjacent
work items by shifting their timestamps according to a percentage value given as a parameter. In this respect, we note that a higher
percentage does not always lead to more overlap, since beyond a certain value, one of the work items will be shifted so much that
it will move away from the reference work item, and thus the overlap between work items will be reduced instead of increased.
We verified that this threat to validity did not materialize by measuring the volume of multitasking in each perturbed log using the
two multitasking indexes mentioned above. As we increased the percentage value, the multitasking index kept increasing.

Finally, a potential threat to external validity is the use of a limited number of logs: 2 logs for the evaluation of the approach for
handling multitasking, and 5 logs for the evaluation of the resource availability discovery approach. This situation stems from the
limited availability of publicly available real-life logs that have start and end timestamps as well as resource identifiers. To mitigate
this threat to validity we supplemented the real-life event logs with synthetic event logs constructed by perturbing a base log.

8. Conclusion

This article outlined an approach to discover business process simulation models from event logs in a way that takes into account
multitasking and resource availability constraints.

To handle multitasking, the article put forward an approach to pre-process an event log in order to discover multitasking behavior
and to adjust the processing times of tasks in such a way that the resulting log does not contain multitasking behavior, yet the
resource utilization in the resulting log is equivalent to that in the original log. In this way, the BPS model discovered from the
pre-processed log takes into account the multitasking behavior and can be simulated using traditional process simulators (e.g., BIMP).

To handle availability constraints, we adapted an algorithm for discovering calendar expressions from collections of time
points [20]. For each resource pool, we extract the timestamps of the work items performed by this pool, and we use them to
discover an availability calendar for the pool. Similarly, we extract the timestamps of the first work item of each trace, and we
use them to discover a case creation calendar. The algorithm in [20] relies on user-defined support and confidence thresholds
for discovering calendars. We propose to treat these two thresholds as hyper-parameters and to optimize them using the same
optimization technique that is used to optimize other parameters used to discover the business process simulation model.

The empirical evaluation showed that the proposed approach improves the accuracy of the discovered simulation models both
in the presence of multitasking and in the presence of availability constraints. Regarding multitasking, we identified that the higher
the percentage of overlap between multitasked work items in a log, the more the approach improves the accuracy of the generated
simulation models. When it comes to availability constraints, the empirical results showed, as expected, that BPS models that
incorporate resource availability calendars have higher accuracy that those that do not. Furthermore, we found that it is best to first
optimize the parameters used to discover the base simulation model, and then to optimize separately the confidence and support
thresholds used by the calendar discovery algorithm. Furthermore, the latter two parameters are best optimized using a loss function
that relies on absolute timestamps.

This article demonstrated the importance of taking into account different types of resource behaviors during the discovery of
simulation models from even logs. The article focused on only two such behaviors (multitasking and availability constraints). In
future work, we plan to further extend the approach to take into account other common types of resource behaviors, such as batching,
task prioritization (giving higher priorities to some tasks than others), fatigue effects (resources being slower after working for several
hours in a row), and differentiated resource performance (different resources having different performance levels for the same task).
We also plan to investigate the question of how to take into account the fact that a give resource (or a resource pool) may be shared
not only by multiple concurrent cases of the same process, but also by concurrent cases across multiple processes. In other words,
we plan to lift the assumption that resources are fully dedicated to one single process.
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