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Abstract Clustering analysis is one of the most used
Machine Learning techniques to discover groups among data
objects. Some clusteringmethods require the number of clus-
ters into which the data is going to be partitioned. There exist
several cluster validity indices that help us to approximate
the optimal number of clusters of the dataset. However, such
indices are not suitable to deal with Big Data due to its size
limitation and runtime costs. This paper presents two cluster-
ing validity indices that handle large amount of data in low
computational time. Our indices are based on redefinitions
of traditional indices by simplifying the intra-cluster distance
calculation. Two types of tests have been carried out over 28
synthetic datasets to analyze the performance of the proposed
indices. First, we test the indices with small and medium size
datasets to verify that our indices have a similar effectiveness
to the traditional ones. Subsequently, tests on datasets of up
to 11 million records and 20 features have been executed to
check their efficiency. The results show that both indices can
handle Big Data in a very low computational time with an
effectiveness similar to the traditional indices using Apache
Spark framework.
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1 Introduction

In the last few years, available data has been increased con-
siderably.Medicine, electricity, business or biology are some
areas where data has been quickly generated [4,7,13,29,31,
40]. This information needs to be processed in order to dis-
cover knowledge, but traditional techniques are limited by
the size of the data. This fact supposes a challenge to the
research community because traditional machine learning
methods cannot deal with large volume of data. Therefore,
such learning techniques need to be redesigned to be able to
handle Big Data.

Among the traditional techniques to discover knowledge,
clustering can be useful to analyze large datasets with the
aim at finding groups with similar behavior. Clustering is
formally defined in [15] as the process of grouping a set of
data objects into multiple groups or clusters so that objects
within a cluster have high similarity, but are very dissimilar to
objects in other clusters. Dissimilarities and similarities are
assessed based on the attribute values describing the objects
and often involve distance measures. Each clusteringmethod
generates different solutions on the same dataset. Clustering
analysis is also applied to detect unknown associationswithin
the data.

In particular, clustering techniques based on partitioning
methods find the most suitable partition of the objects of the
dataset into a given number of groups optimizing a chosen
partitioning criterion.Nevertheless, suchmethods require the
optimal number of clusters that the dataset is going to beparti-
tioned. For this task, there exist cluster validity indices (CVI)
that help to calculate it. The application and usability of these
indices has been proven in several works in the literature
[1–3,25]. However, the traditional indices are not suitable to
deal with large datasets due to the high computational time
costs and their inability to be parallelized. Traditional CVIs

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-017-0135-3&domain=pdf
http://orcid.org/0000-0002-3397-4704


2.1 Clustering methods

Cluster analysis can be used as a mechanism to achieve a
custom vision of the distribution of the data, to observe the
features of each cluster and to target on a particular subset
of data for other analysis. It is also used as a preprocessing
step for further algorithms, such as classification or features
selection,whichwould dealwith the detected clusters and the
selected features. In some cases, clustering analysis is also
called automatic classification since clustering is a collection
of similar data objects on each cluster, so data objects within
the same cluster can be managed as an implicit class. Clus-
tering can be found in the literature as data segmentation in
some applications because large datasets are partitioned into
groups by their similarity. Another use of clustering is the
outlier detection, that could be defined as that data object
that is far away from any cluster and it may be more inter-
esting to not to include it in any of them. Some applications
of clustering for outlier detection can be found in [26].

Clustering analysis is considered a branch of statistics, and
it has been widely studied as distance-based cluster analy-
sis. Clustering analysis implementations based on K -means
or K -medoids have been developed into many statistical
analysis software packages and systems [18]. In Machine
Learning, clustering is a method of unsupervised learning,
so the data object has no class label information. Cluster-
ing learns by observation instead of learning by examples.
Some of the active research topics are focused on the scala-
bility of clustering methods [6], the effectiveness of types of
data [32], high-dimensional clustering techniques [18], and
methods for clustering mixing numerical and nominal data
in large datasets.

There exist many clustering algorithms in the literature,
so it is difficult to set a categorization. In many cases, an
algorithm can be classified into several categories due to its
features. However, most of the clustering techniques could
be classified into the following categories [12]:

Partitioning methods Given a set of n objects, a partitioning
method constructs k groups of data, where each partition
represents a cluster and k ≤ n. It splits the data objects into
k clusters such each cluster must contains at least one data
object. Most of these methods are distance-based, so given
k, which is the number of groups to build, a partition method
sets an initial solution. Then, it iterates and try to improve
the solution by moving objects between the groups. Despite
each clustering method takes its own criterion, a satisfying
partitioning is where data objects in the same cluster are
close and objects in different clusters are far away. Clustering
methods usually work properly with spherical-shaped cluster
when this operation is used [18].

Hierarchical methods This kind of methods create a hier-
archical decomposition of the given set of data objects. It

use pairwise distances, so such CVIs will have quadratic 
complexity. The use of this kind of CVIs on large data could 
take much longer to compute the evaluation measure than 
running the clustering algorithm.

Nowadays, some frameworks are able to deal with Big 
Data. One of the first frameworks that allowed processing 
large datasets was Apache Hadoop [9]. Hadoop allows to 
work across clusters of computers using simple programming 
models based on Google’s MapReduce paradigm [9,14]. 
Additionally, one of the most used Big Data projects is the 
open-source cluster computing framework named Apache 
Spark [34]. Spark appeared as alternative to solve memory 
limitation that MapReduce suffered. MapReduce reads and 
writes from hard drive, as a result, it slows down the process-
ing speed. Spark reduces the number of read/write cycles 
to disk and stores intermediate data in faster logical RAM 
memory. It uses an structured data, named RDD, especially 
designed for parallel computing that caches results in mem-
ory for processing large amounts of data [38]. Apache Spark 
contains an scalable Machine Learning library (MLlib) with 
a set of algorithms to handle classification, regression, deci-
sion tree, recommendation systems and clustering techniques 
[35].

The purpose of this paper is to show the limitations of 
traditional clustering indices and to present novel validity 
indices that can tackle Big Data, henceforth named BD-CVI. 
In particular, the proposed indices are implemented using 
Apache Spark framework. A data generator application is 
also presented to ensure the composition of data and to test 
the performance of the proposed indices. K -means method 
was selected for testing the performance of these CVIs and 
BD-CVIs.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an outline of the background about clustering 
including a description of traditional indices and the state-of-
the-art of Big Data clustering. Section 3 defines the BD-CVI 
proposed in this paper. Section 4 shows the experimental 
analysis and the obtained results. Section 5 reports the con-
clusions drawn by this paper. Lastly, “Appendix A” details 
the dataset generator application that was implemented to be 
used in the experimentation.

2 Related work

In this section, clustering analysis is formally defined and a 
general classification of the main clustering methods is also 
presented (Sect. 2.1). In addition, main CVIs are described 
and classified by categories (Sect. 2.2). Furthermore, we pro-
vide a brief overview of previous works related to clustering 
analysis in Big Data (Sect. 2.3).



successively groups the objects close to one another until all
the data objects are merged into one. This kind of clustering
methods leads to smaller computation costs by not having to
worry about a combinatorial number of different choices due
to once a step is done it can never be undone.

Density-basedmethods Thismethods iteratively build a clus-
ter as long as the density, defined as the number of objects
in a cluster, exceeds some threshold. This kind of methods is
used to detect outliers and discovers random-shape clusters.

Grid-based methods This kind of methods compute the
object space into a finite number of cells that form a grid
structure. They are independent of size of the dataset and
dependent on the number of cells in each dimension in the
quantized space.

2.2 Cluster validity indices

As stated in the introduction, this paper is focused on par-
titioning clustering methods because they need the number
of clusters into which the dataset is going to be partitioned.
Knowing a priori a proper approximation to the number of
cluster could be very useful for any clustering algorithm,
especially hierarchical ones. For this task, several CVIs have
been proposed in the literature. A summary of the most rep-
resentative CVIs of each category are presented as follows
[10,33]:

• Indices measuring compactness of clusters These indices
measure both the distance between the points that belong
to the same cluster and the compactness of them:

*Maximum Cluster Diameter (Δ) [16] is the high-
est diameter among all the clusters in the dataset. It
is calculated by the maximum distance between two
points that belong to the same cluster.
*Average Within-Cluster Distance (W ) [33] mea-
sures the average distance of the points that belong
to the same cluster.

• Indices measuring separation between clusters This cat-
egory evaluates the separation of the clouds of points and
grades it when there is a gap between them:

*Average Between-Cluster Distance (β) [33] is the
average distance of the points that are in different
clusters.

• Indices measuring relationships between compactness
and separation This category measures the ratio between
the compactness of the clusters and the existing separa-
tion between them:

*Silhouette [30] is ameasure that sets howcompacted
are the points that belong to the same cluster against
the separation between the clusters.

*Dunn [11] measures the relation between the min-
imum inter-cluster distance and the maximum intra-
cluster distance.

*Davies and Bouldin [8] is a measure that uses data
object quantities and features inherent to the dataset
to set the compactness and separation of the clusters.

*Calinski and Harabasz [5] is based on getting a
relation between the inter-cluster distance and the
intra-cluster distance.

2.3 Clustering in Big Data

Clustering analysis in Big Data has been the main focus of a
lot of researchers in the last years. Some of the most relevant
papers in this field are analyzed below.

TwoC-means algorithms based on the canonical polyadic
decomposition and the tensor-train network for clustering
Big Data are proposed in [39]. They stated that the algo-
rithms are suitable for Big Data clustering in Internet of
Things systems with low-end devices since they can achieve
a high compression rate for heterogeneous samples to save
the memory space significantly.

Mohammed et al. [27] proposed a new cluster algorithm
named FireflyClust, that it can deal with text documents
in a hierarchical line. FireflyClust can handle Big Data,
overcoming other methods such as Bisect K -means, hybrid
Bisect K -means and Practical General Stochastic Clustering
Method. In this case, the algorithm does not need the number
of cluster as input parameter.

An effective K -means algorithm design was proposed in
[37]. The algorithm is based on MapReduce programming
model that acquires a fast detection speed with a high scale-
up. However, nomethod was applied to identify the optimum
number of clusters, so the algorithm was tested using differ-
ent k number of clusters.

Jerome and ätönen [20] proposed a hierarchical clustering
technique for classifying anomalies into clusters and pro-
viding information regarding the behavior of the anomaly
cluster by analyzing its centroid in Big Data. Overall, it is
easier to detect anomalies thanfinding out reasons for anoma-
lous behavior. This technique was also used to determine the
severity of the anomaly by using a failure significancemetric.

A novel cluster center fast determination clustering algo-
rithm for Big Data was proposed in [21]. The algorithm is
based on the density and distance distribution of the data
objects to determine the cluster center quickly by construct-
ing the normal distribution function.

Kim et al. [22] suggested an optimized combinatorial
clustering algorithm for noisy performance with random
sampling for Big Data. The algorithm outperforms conven-
tional approaches through various numerical and qualitative



thresholds such as mean and standard deviation of accuracy
and computation speed.

Tong et al. [36] proposed Scalable Clustering Using
Boundary Information, a highly flexible and scalable cluster-
ing scheme. To achieve this, such algorithm firstly identifies
the border points of the dataset, and then it groups bound-
ary points into suitable clusters and includes the rest points
to their nearest border point. The obtained reports confirm
similar results than the standard DBSCAN method, but such
method is able to handle Big Data.

A novelmethod for assessing the robustness of clusters for
partitioning algorithms is introduced in [23]. However, such
method is not applied to Big Data, and moreover, the exper-
iments have been carried out with supervised data where
classes have been used as clusters.

3 Big Data indices

As stated in Introduction, the main purpose of this paper
is to provide efficient and suitable CVIs able to deal with
Big Data. The proposed BD-CVIs are approximations of
traditional indices because those indices require high com-
putational cost and they are unable to be parallelized. Firstly,
traditional CVIs are described in Sect. 3.1. Secondly, the def-
inition of BD-CVIs is in Sect. 3.2.

3.1 Traditional CVIs

From the traditional indices, we have selected those that had
the best performance in the experiments (Sect. 4.3.3), and
thus Silhouette and Dunn are detailed below:

Let Ω be the space of the objects with a given distance d.
Then, {Ak}k=1...N is a set of clusters so that

⋃
k Ak = Ω ,

and Ai ∩ A j = ∅ ∀i �= j .
Ck is the centroid of Ak , and C0 the centroid of Ω .
Let xi ∈ Ak , the distance from xi to the own cluster Ak is

defined:

ak(xi ) = 1

|Ak | − 1

∑

x j∈Ak
j �=i

d(xi , x j ) (1)

where ak(xi ) represents the dissimilarity of xi to all other
points within the same cluster k and

bk(xi ) = min
j=i ...N

{a j (xi ), j �= k} (2)

– Silhouette is defined in [30] as (Eq. 4):

sk(xi ) = bk(xi ) − ak(xi )

max{ak(xi ), bk(xi )} (3)

Silhouette = 1

|Ω|
∑

xi∈Ω

sk(xi ) (4)

Silhouette index ranges [−1, 1], where good values are
near 1 and −1 closer values are bad clustering solutions.

– Dunn index is defined in [11] and its purpose is to identify
compact and well-separated clusters. For a given number
of clusters N , the following equation defines the Dunn
index:

Dunn =
min

k=1...N
{d(Ck,C j ), k �= j}

max
k=1...N

{max d(xi , x j ), i �= j, xi , x j ∈ Ak}
(5)

In a compact and well-separated clusters dataset, the dis-
tances between the clusters are wide and the distances
between the points of the same cluster are small. Hence,
a high value of the Dunn index means a compact and
well-separated clusters solution.

3.2 BD-CVIs

In this subsection, BD-Silhouette and BD-Dunn are going to
be formally introduced:

– BD-Silhouette is defined by two approaches to intra-
cluster and inter-cluster mean distances.
inter-cluster (Eq. 6) is the average of distances between
each cluster centroid and global centroid C0:

inter -cluster = 1

N

N∑

k=1

d(Ck,C0) (6)

where C0 is the center of the centroids of the clusters.
intra-cluster (Eq. 8) distance is defined as the average of
the distances between each point to the centroid of the
cluster to which it belongs (Eq. 7).

rk = 1

|Ak |
∑

xi∈Ak

d(xi ,Ck) (7)

intra-cluster = 1

|N |
N∑

xi∈Ak

rk (8)

Traditional Silhouette index takes intra-cluster distance
instead, that is defined by the average distance between

bk (xi ) is the smallest average dissimilarity of xi ∈ Ak to the 
points in other clusters.



the points that belong to the same cluster (Eq. 1).
The intra-luster distance is the main difference in BD-
Silhouette.
Equation 9 represents BD-Silhouette that has been
defined as the ratio between the difference of the inter-
cluster and the intra-cluster, and the maximum of them.

BD-Silhouette = inter -cluster − intra-cluster

max{inter -cluster, intra-cluster}
(9)

BD-Silhouette returns a value in (− 1, 1), depending on
the consistence of the cluster and the separation between
them. The higher the cluster number is, the lower intra-
cluster is because the points of the dataset tend to be
more compact. BD-Silhouette takes the value − 1 if a
single cluster is defined for all the examples and tends to 1
when the number of clusters is increased. BD-Silhouette
would be 1 in the extreme case of each data object being
a cluster. Therefore, an optimal value for the number of
clusters would be the first maximum of BD-Silhouette,
which maximizes the coherence of the cluster with the
lowest k possible.

– BD-Dunn simplifies the original Dunn index to facilitate
its computation in Big Data, since it does not have to
calculate in the denominator the distance between each
pair of points of the dataset. On the contrary, original
Dunn seeks the minimum distance between the centroids
and the maximum distance between all the points that
belong to the same cluster. Thus, BD-Dunn (Eq. 5) is
the ratio between the minimum of the distances from the
centroids to the global center and the maximum of the
distances from each point in the set to its centroid.

BD−Dunn =
min

k=1...N
{d(Ck,C0)}

max
k=1...N

max
xi∈Ak

{d(xi ,Ck)} (10)

BD-Dunn takes the value 0 if we define a single cluster
for all the examples. However, BD-Dunn tends to infinity
when the number of clusters increases. In the extreme
case of each example belong to a different cluster, its
value cannot be calculated because the denominator is
zero.

Figure 1 illustrates a distribution of a dataset with 2 fea-
tures and 3 clusters in different colors. The clusters are
represented by circles, and the points are the red dots. Each
cluster i has its centroid denoted by Ci , and the global
centroid asC0 is also represented. Blue cluster has also high-
lighted some points in the cluster. In the figure, inter-cluster
distance is represented by the red cluster as d(C1,C0) that

Fig. 1 Representation of 3 clusters with inter-cluster and intra-cluster
distance and the global centroid (C0)

measures the distance between the centroid of the red cluster
and the global centroid. The intra-cluster distance is repre-
sented in the blue cluster as the distance between the point
X1 and its centroid C2.

As it happens with traditional CVIs, BD-CVIs return a
value on each clustering solution. To get the optimumnumber
of clusters of a large dataset, BD-CVI could be calculated on
each clustering execution. The optimal number of clusters is
chosen following a different criterion on each BD-CVI. BD-
Silhouette and BD-Dunn are growing indices. BD-Silhouette
reaches 1 when k = N , and BD-Dunn tends to infinity. Thus,
in both BD-CVIs, the first maximum is a satisfactory solu-
tion because it maximizes the clustering coherence with the
lowest number of clusters possible.

Figure 2 illustrates the graphical representation of the
results of BD-Silhouette and BD-Dunn for a dataset with
5 clusters and 500,000 instances each. BD-Silhouette value
increases with the number of clusters. Such index marks a
possible optimal number of clusters when there is a change
of trend in the values. In Fig. 2, BD-Silhouette is increased
by the number of clusters until k = 5. This change of trend
indicates that k = 5 may be an optimal number of clustering.
BD-Dunn reveals the optimal number of clusters with the
first maximum value of its plot. Figure 2 shows a first maxi-
mum value on k = 5, where the line of BD-Dunn increases
with the number of clusters and decreases in k = 6. This
inflection point indicates that k = 5 could be the optimal
number of clusters.

4 Experimental study

The experimental setup and the results are detailed in this
section. A comparative framework is also presented to test



Table 1 Generated datasets with number of clusters, total number of
instances and the size in MB

Dataset Clusters Instances Size (MB)

5–1k 5 5000 1.00

5–2k 5 10,000 2.00

5–5k 5 25,000 5.00

5–10k 5 50,000 10.00

5–100k 5 500,000 100.00

5–500k 5 2,500,000 501.00

5–1M 5 5,000,000 1003.52

7–1k 7 7000 1.40

7–2k 7 14,000 2.80

7–5k 7 35,000 7.00

7–10k 7 70,000 14.00

7–100k 7 700,000 140.00

7–500k 7 3,500,000 703.00

7–1M 7 7,000,000 1402.88

9–1k 9 9000 1.81

9–2k 9 18,000 3.62

9–5k 9 45,000 9.03

9–10k 9 90,000 18.00

9–100k 9 900,000 181.00

9–500k 9 4,500,000 903.00

9–1M 9 9,000,000 1802.24

11–1k 11 11,000 2.21

11–2k 11 22,000 4.41

11–5k 11 55,000 11.05

11–10k 11 110,000 22.10

11–100k 11 1,100,000 221.00

11–500k 11 5,500,000 1095.68

11–1M 11 11,000,000 2211.84

ters and number of instances were applied. Table 1 shows
the main features of the generated datasets in the experi-
ments. There are 4 different groups of datasets with 5, 7, 9
and 11 clusters. Each group of datasets contains 7 datasets,
with 1000, 2000, 5000, 10,000, 100,000, 500,000 and 1 mil-
lion instances per cluster. Thus, a dataset with 5 clusters
and 1000 instances per cluster has a total of 5000 instances.
The datasets are easily identified following the next pattern:
C − N {k, M} where C is the optimal number of clusters
of the dataset, N is the number of instances of each cluster
multiplied by a thousand if it is followed by a k, or by a
million if it is followed by a M . For example, 5–10k dataset
has 5 clusters and each one contains 10,000 instances, so it
contains a total of 50,000 instances. All the datasets were
created with 20 features, the standard deviation was 0.05,
and the mean was 0.25 and 0.75 to ensure the separation of
the clusters.

Fig. 2 BD-Silhouette and BD-Dunn results for a dataset with 5 clusters 
and 500,000 instances each

both CVIs and to test which CVIs and BD-CVIs have the 
best performance (Sects. 4.3.3, 4.4.3).

4.1 Experimental setup

4.1.1 Software and hardware

In this paper, we compared the results of traditional CVIs 
and the proposed BD-CVIs with the datasets described in 
Sect. 4.1.2. A clustering algorithm is required to test the per-
formance of the proposed BD-CVIs. As stated in Sect. 2, 
K -means is a partitioning method that previously needs the 
number of clusters into which the dataset is going to be 
partitioned, so that this algorithm has been selected in the 
experimental study. In addition, it is the paradigmatic clus-
tering algorithm [19] and it is one of the available algorithms 
in Spark MLlib [35]. In the case of traditional CVIs, we have 
used the K -means package available in the Weka Software 
developed in Java [17].

Two different execution environments were used in our 
experiments. On the first hand, traditional CVIs have been 
tested in the EC2 instances from Amazon Web Services 
(AWS) that count with Intel Xeon E5-2666 v3 (Haswell) 
processors, 3.75 GB RAM memory and enough hard disk 
to manage datasets originally stored in AWS S3. On the 
other hand, BD-CVIs were executed in AWS Elastic Map 
Reduce. 5 instances of m3.xlarge that each one counts 
with Intel Xeon E5-2670 v2 (Ivy Bridge) processors with 
4 vCPU, 15 GB RAM memory and 2 SSD of 40 GB were 
used.

4.1.2 Generated datasets

A total of 28 datasets have been used which are gener-
ated using the dataset generator application described in 
“Appendix A”. In order to test the limits of the CVIs and the 
novel BD-CVIs, several combinations of number of clus-



Table 2 Distance of traditional
CVIs to the optimal solution by
dataset

Silhouette Dunn David–Bouldin Calinski–Harabasz Δ W β

5–1k 0 0 0 0 0 0 0

5–2k 0 0 0 0 0 0 0

5–5k 0 0 0 0 0 0 0

5–10k 0 0 0 0 0 0 0

7–1k 1 0 1 1 1 1 1

7–2k 0 0 0 0 0 0 0

7–5k 1 1 1 1 2 2 2

7–10k 2 0 2 2 3 2 3

9–1k 2 1 1 2 2 2 2

9–2k 1 2 1 1 1 2 1

9–5k 0 1 0 1 0 0 0

9–10k 0 2 0 2 2 3 3

11–1k 1 0 2 2 0 3 3

11–2k 0 0 0 0 0 0 0

11–5k 0 2 0 0 4 0 0

11–10k 2 2 2 2 2 2 3

Total 10 11 10 14 17 16 17

The hits results are highlighted in bold

4.2 Results

This section is divided in two subsections. Section 4.3 con-
tains the results for the traditional CVIs and Sect. 4.4 shows
the results for BD-CVIs. Each subsection includes the effec-
tiveness results and the computational cost. Section 4.3
includes a statistical analysis to compare the effectiveness
among CVIs. Section 4.4 provides a statistical analysis to
compare the execution time among BD-CVIs.

After executing the CVIs, the effectiveness and execution
time of each index are measured. The effectiveness of the
indices is calculated by the absolute value of the difference
to the optimal solution. Thus, an indexwith 0 value is consid-
ered that it correctly predicts the optimal number of clusters,
whereas an index with 2 means that predicts two number
above or below the optimal solution. The goodness of fit of
the indices is given by the sum of the absolute values of the
differences between the real value and the estimated. There-
fore, the lower the value, the better the index. The statistical
analysis was carried out using the open-source platform Stat-
Service [28].

4.3 Results of traditional CVIs

4.3.1 Effectiveness

Table 2 shows the distance to the optimal number of clusters
given by the CVIs on each dataset. The datasets were chosen
until execution timewas under 86,400 s (1 day). The correctly
predicted clusters are highlighted in bold, and the last row of

the table is the total of distances of each CVI. The lower the
value is, the better the CVI is.

Silhouette, Dunn and David–Bouldin obtained the best
results since they had the lowest total of distances. The worst
results (highest distances) were obtained byMaximumClus-
ter Diameter (Δ), Average Within-Cluster Distance (W ) and
Average Between-Cluster Distance (β).

Figure 3a, b shows graphically the number of cluster by
Silhouette, Dunn, Davies–Bouldin and Calinski–Harabasz.
Δ, W and β were not included in these figures because their
results were not so positive. The optimal results are repre-
sented by big red dots, so each CVI whose point is on it
means that correctly predicted the optimal number of clus-
ters. Datasets with 5 and 7 clusters are included in Fig. 3a
and datasets with 9 and 11 clusters are in Fig. 3b.

CVIs obtained very good results in Fig. 3a. Almost all the
represented CVIs correctly predicted the optimal solution.
Dunn correctly predicted all the datasets except 7–5k. How-
ever, Dunn was the only one CVI that set the optimal number
of clusters in two datasets in Fig. 3b. 11–10k, 9–1k and 9–2k
number of clusters were not estimated by any of the CVI in
this figure.

The results of the CVIs do not directly depend on the num-
ber of instances of the dataset. The results may be influenced
by the number of clusters of the dataset. The lesser number
of clusters have the dataset, the greater is the ratio of cor-
rect predictions. The optimal number of clusters for datasets
with 5 clusters were correctly predicted by all the indices.
The optimal number of clusters for datasets with 7 clusters
was the most difficult to predict.



(a) (b)

Fig. 3 Results of traditional CVI Silhouette, Dunn, Davies–Bouldin, Calinski–Harabasz for different datasets. Optimal solution by a red dot. a
Results for datasets with 5 and 7 clusters. b Results for datasets with 9 and 11 clusters (color figure online)

Table 3 Average of elapsed time of CVIs in seconds

Silhouette Dunn David–Bouldin Calinski–Harabasz Δ W β

5–1k 9.34 9.33 0.01 2.00 1.99 1.99 7.31

5–2k 40.54 40.55 0.01 8.48 8.55 8.59 31.99

5–5k 224.46 224.49 0.02 47.20 47.43 47.65 176.91

5–10k 1586.37 1584.48 0.48 346.66 340.48 341.01 1238.27

7–1k 18.51 18.51 0.01 3.87 3.92 3.92 14.50

7–2k 73.48 73.62 0.01 15.73 15.41 15.44 58.14

7–5k 906.27 905.93 0.03 450.55 431.62 453.36 368.85

7–10k 34,771.06 34,540.32 0.43 91,003.92 86,179.63 99,349.86 3707.81

9–1k 20.96 21.12 0.01 2.45 2.35 2.51 18.24

9–2k 281.41 278.27 0.02 137.06 136.44 138.55 137.44

9–5k 4823.15 4686.26 0.08 14,269.38 10,143.56 9776.66 1330.02

9–10k − − 0.49 − − − 16,552.37

11–1k 35.35 34.26 0.01 4.09 3.79 3.55 29.34

11–2k 497.75 495.99 0.02 246.05 248.54 246.80 246.21

11–5k 8945.03 9178.18 0.14 23,155.30 20,852.84 21,976.94 2653.13

11–10k − − 1.13 − − − 36,766.93

was obtained by Davies–Bouldin with very high difference
respect to the other CVIs. Davies–Bouldin lasts 1.13 s for
the largest dataset (11–10k), while there were some indices
whose execution time was higher than 86,400 s (1 day). Such
cases are marked as “–”. There is a significant increase in
the runtime of traditional CVIs for datasets with more than

4.3.2 Execution time

Table 3 shows the execution time in seconds of each tra-
ditional CVI. Figure 4 is added for better understanding 
of Table 3. Time is generally increased with the num-
ber of instances of the dataset. The lowest execution time



Fig. 4 Representation of traditional CVIs time by the number of
instances by dataset

Table 4 Sorted ranking of
traditional CVIs for Friedman
test

CVI Ranking

David–Bouldin 3.406

Silhouette 3.531

Dunn 3.656

Calinski–Harabasz 3.969

Δ 4.250

W 4.500

β 4.688

50,000 instances. It can be noted that runtime is four times
higher in those datasets even though the growth in the number
of instances is less than 50%.

4.3.3 Statistical analysis

After the results generation of the traditional CVIs, a statis-
tical analysis was applied to check if significant differences
exist among the effectiveness of the multiple CVIs. The non-
parametric Friedman test is shown in Table 4. The highest
result for a ranking would be 1, and the worst would be 7. As
the ranking shows, Davies–Bouldin was in the first position
with 3.406, followed by Silhouette and Dunn with 3.531 and
3.656, respectively.

The statistic for Friedman was 5.0625, distributed accord-
ing to a Chi-square distribution with 6◦ of freedom. The p
value for Friedman was 0.5358 and higher than 0.05. There-
fore, the null hypothesis was accepted that they all behaved
in a similar way with a level of significance of α = 0.05.

Given the results of Table 3, it makes no sense to perform
a statistical test to show that Davies–Bouldin was the fastest
CVI.

4.4 Results of BD-CVIs

4.4.1 Effectiveness

BD-CVIs were applied to all datasets fromTable 1, including
those datasets used in Sect. 4.3. Davies–Bouldin was also
included in these experiments for its great results in terms of
efficiency in the previous experiments.

(a) (b)

Fig. 5 Results of BD-Silhouette, BD-Dunn and Davies–Bouldin for different datasets. Optimal solution by a red dot. a Results for datasets with
5 and 7 clusters. b Results for datasets with 9 and 11 clusters (color figure online)



Table 5 Distance of BD-CVIs to the optimal solution by dataset

BD-Silhouette BD-Dunn Davies–Bouldin

5–1k 0 0 0

5–2k 0 0 0

5–5k 0 0 0

5–10k 0 0 0

5–100k 2 2 3

5–500k 0 0 0

5–1M 0 0 0

7–1k 0 0 0

7–2k 0 0 0

7–5k 0 0 0

7–10k 0 0 0

7–100k 1 1 1

7–500k 1 2 2

7–1M 0 0 1

9–1k 0 0 0

9–2k 0 0 0

9–5k 0 0 0

9–10k 1 3 1

9–100k 2 0 4

9–500k 0 0 2

9–1M 1 1 3

11–1k 0 0 1

11–2k 0 0 0

11–5k 0 0 0

11–10k 1 1 2

11–100k 1 0 2

11–500k 0 0 1

11–1M 1 0 0

Total 11 10 23

Table 6 Average of elapsed time of BD-CVIs in seconds

BD-Silhouette BD-Dunn Davies–Bouldin

5–1k 0.10 0.06 0.64

5–2k 0.11 0.05 0.52

5–5k 0.09 0.05 0.63

5–10k 0.13 0.10 0.80

5–100k 0.22 0.29 0.75

5–500k 0.48 0.68 1.26

5–1M 0.95 1.67 2.66

7–1k 0.11 0.05 0.64

7–2k 0.09 0.06 0.61

7–5k 0.11 0.08 0.70

7–10k 0.12 0.10 0.74

7–100k 0.25 0.33 0.66

7–500k 0.61 0.94 1.61

7–1M 7.15 4.99 6.56

9–1k 0.10 0.06 0.80

9–2k 0.11 0.06 0.77

9–5k 0.10 0.08 0.71

9–10k 0.10 0.08 0.83

9–100k 0.66 0.85 1.97

9–500k 1.72 3.22 3.97

9–1M 16.83 9.98 11.42

11–1k 0.09 0.06 0.80

11–2k 0.12 0.09 0.90

11–5k 0.12 0.10 0.98

11–10k 0.15 0.20 0.99

11–100k 0.28 0.41 1.10

11–500k 1.47 2.79 3.69

11–1M 25.06 15.23 17.61

4.4.2 Execution time

Table 6 illustrates the total time in seconds after applyingBD-
CVIs on eachdataset. Figure 6was added to better understand
the behavior of Table 6. In datasets where traditional CVIs
took more than a day, BD-CVIs took less than 25 s. It is
noteworthy that BD-CVIs perform similarly to traditional
CVIs. In fact, there is a change in trend of datasets with more
than 6 millions instances, as happened in traditional CVIs
when the number of instances was 50,000. In the case of BD-
CVIs, the runtime had a 400% increase when the number of
instances was higher than 6 millions even though the number
of instances only has an increment of 100%.

4.4.3 Statistical analysis

Two statistical tests were applied to check the significance in
the differences of BD-CVI results, in terms of effectiveness
and execution time.

The best results are highlighted in bold

Figure 5a, b shows graphically the results of each BD-CVI 
by dataset. Red dots highlight the optimal results of each 
dataset. There were some datasets whose optimal solution 
was not given by any BD-CVI. However, BD-Silhouette and 
BD-Dunn correctly predicted most of the datasets; mean-
while, Davies–Bouldin was too far to the optimal like in 
datasets 7–500k or 9–1M .

Table 5 shows the distances to the optimal solution of 
each BD-CVI by dataset. This table shows that the opti-
mal number for datasets with 5 clusters was correctly set by 
the three indices. Davies–Bouldin did not guess any dataset 
that BD-Silhouette or BD-Dunn could not. In fact, if BD-
Silhouette and BD-Dunn set correctly the optimal number, 
BD-Davies–Bouldin did it too. There were two cases where 
BD-Silhouette was the only one BD-CVI that sets the optimal 
number of clusters correctly.



Fig. 6 Representation of BD-CVIs time by the number of instances
by dataset

Table 7 Sorted ranking of
effectiveness BD-CVI for
Aligned Friedman test

BD-CVI Ranking

BD-Silhouette 35.17

BD-Dunn 36.51

Davies–Bouldin 55.80

Table 8 Post hoc analysis using Holm’s procedure and BD-Silhouette
as the control algorithm

BD-CVI p z Holm

Davies–Bouldin 0.002 3.164 0.025

BD-Dunn 0.837 0.205 0.050

The effectiveness statistical analysis using Aligned Fried-
man test is shown in Table 7. Aligned Friedman was used
because the test is applied to a dataset with less than 5 fea-
tures. As the ranking shows, BD-Silhouette was in the first
position with 35.17, followed by BD-Dunn with 36.51 and
Davies–Bouldin with 55.80 in the last position.

The statistic for Aligned Friedmanwas 20.45 according to
a Chi-square distribution with 2◦ of freedom. The p value for
Aligned Friedman was 0.0 and lower than 0.05. Therefore,
the null hypothesis was rejected that they all behaved in a
similar way with a level of significance of α = 0.05.

Post hoc testing was applied because the null hypothesis
that was rejected. Table 8 shows the p values, z value and
Holm’s α, using BD-Silhouette as the control CVI since it
obtained the best ranking. Holm’s procedure rejects those
hypotheses that have a p value ≤ 0.05.

In execution time statistical analysis, Aligned Friedman
test is shown in Table 9. As the ranking shows, BD-Dunnwas
in the first position with 30.12, followed by BD-Silhouette
with 33.44 and Davies–Bouldin with 63.92 in the last posi-
tion.

The statistic for Friedman was 20.214, distributed accord-
ing to a Chi-square distribution with 2◦ of freedom. The p

Table 9 Sorted ranking of
execution time BD-CVI for
Aligned Friedman test

BD-CVI Ranking

BD-Dunn 30.12

BD-Silhouette 33.44

Davies–Bouldin 63.92

Table 10 Post hoc analysis using Holm’s procedure and BD-Dunn as
the control algorithm

BD-CVI p z Holm

Davies–Bouldin 0.000 5.1852 0.025

BD-Silhouette 0.6104 0.5095 0.050

value for Friedman was 0.0 and lower than 0.05. Therefore,
the null hypothesis was rejected (that they all behaved in a
similar way) with a level of significance of α = 0.05.

Table 10 shows the p values, z value and Holm’s α, using
Dunn as the control CVI since it obtained the best rank-
ing. Holm’s procedure rejects those hypotheses that have a
p value ≤ 0.0083.

4.5 Discussion

Experimental results show that BD-CVIs may be used to
provide the optimal number of clusters of large datasets. In
this paper, BD-Silhouette and BD-Dunn have achieved better
results in lower time than the rest of the indices.

Results show that finding the optimal number of clusters
is not a trivial task. There were some datasets that were
not correctly solved. The results in this study indicate that
Silhouette, Dunn and Davies–Bouldin were the CVIs with
the highest success rate. This fact is particularly significant
because it helps to construct new CVIs that are suitable to
work with Big Data.

This study also found that BD-CVIs had even more dif-
ficult to provide the optimal number of cluster of a dataset.
The results of this study indicate that there were complex
datasets where no BD-CVI correctly predicted the optimal
number of clusters. All these support the notion that getting
the optimal number of clusters is not a minor task. How-
ever, the results of this study show that BD-Silhouette and
BD-Dunn are good choices to predict the optimal number of
clusters as the results were promising.

In terms of time, traditional indices last so much time
compared with BD-CVI. The results of this study indicate
that the biggest dataset usedwith traditional indices last more
than a day; however, BD-CVIs in the same dataset lasted
less than 1 minute. These observations provide evidence that
suggests that the use of traditional indices is very limited due
to the size of the datasets.



5 Conclusions

In this paper, two novel CVIs implemented in Spark have
been proposed to be applied in datasets considered as Big
Data. The proposed indices are based on Silhouette andDunn
indices, but modified and optimized to deal with Big Data.

The experimental study indicates that our BigData indices
are very competitive. We have tested its effectiveness and
time executionwith datasets of different sizes (different num-
ber of clusters and different number of instances). The main
achievements obtained are the following:

– Two clustering indices based on traditional Silhouette
and Dunn indices.

– BD-Silhouette and BD-Dunn has allowed us to estimate
the optimal number of clusters of datasets that may be
considered Big Data.

– Computational timeof these indices is drastically reduced
compared with traditional indices.

– The size of the dataset does not directly influence to the
effectiveness of the BD-CVIs.

– The software of this contribution can be found as
a spark-package at http://spark-packages.org/package/
josemarialuna/clusterIndices.

– The source code of these indices can be found at https://
github.com/josemarialuna/ClusterIndices.

Fig. 7 Generated dataset with 4 clusters and 2 features generated with
a mean of 0.25 and 0.75 and a standard deviation of 0.05

Fig. 8 Generated dataset with 5 clusters and 3 features with a mean of
0.25 and 0.75 and a standard deviation of 0.05

items: the total number of clusters of the dataset, the num-
ber of instances per cluster, the number of features of the
instances and the standard deviation. As we mention before,
feature values of data in clusters follow a normal distribu-
tion, and for this purpose, data is randomly generated with
the given standard deviation and the mean, that by default
is 0.25 or 0.75. With this random generation of points, we
ensure that clusters are well separated and it will make easier
to be identified by the CVIs.

Figures 7 and 8 illustrate two basics example datasets that
were generated by the application. Those figures show the
distribution of the points in 2D and 3D. These datasets, and
those generated for the experiments, were created with an
average of 0.25 and 0.75, and a standard deviation of 0.05.
Figure 7 corresponds to a dataset with 2 features and 4 clus-
ters using 1000 instances per cluster. As it can be seen, in
this figure there are 4 clear groups of points that correspond
with the clusters. There are also some points that are not
close to a big cloud of points and this is due to data points
are randomly generated following a normal distribution a its
standard deviation is 0.05.

A similar situation is found in Fig. 8. This figure is a
3D representation of a dataset with 3 features where 5 clus-
ters can be easily identified. Each cluster counts with 100
instances and, as it happened in Fig. 7, there are also some
points that are separated from the central cloud of points.

As a future work, we intend to include some approaches 
to other CVIs that also obtained suitable results in their 
traditional version. Further research is needed to study the 
outcomes because some of the BD-CVI results were not 
enough clear. It would also be useful to explore the results of 
our BD-CVIs with no round-shape clusters datasets. Addi-
tionally, it would be also interesting to research the results 
of BD-CVIs taking into consideration using the inter-cluster 
distances between the centroids instead of using the global 
centroid.
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Appendix A: Datasets generation

In this work, we needed suitable datasets to cluster the 
data and to know in advance how many clusters have them. 
We have developed an application that generates especially 
designed datasets with predefined number of clusters. To 
make sure that the clusters are well formed and separated, 
the points of the datasets follow a normal distribution with 
different mean values and a low standard deviation. Datasets 
are generated introducing as input parameters the following

http://spark-packages.org/package/josemarialuna/clusterIndices
http://spark-packages.org/package/josemarialuna/clusterIndices
https://github.com/josemarialuna/ClusterIndices
https://github.com/josemarialuna/ClusterIndices


Fig. 9 Flowchart of dataset generator algorithm

Figure 9 shows graphically step by step how the applica-
tion generates a dataset. The figure shows the input of the
algorithm represented by a white box at the top, the appli-
cation with the steps represented by a darker box, and the
output file at the bottom of the figure. In our example the
application receives the next input parameters: 3 clusters, 2
features, 100 instances per cluster, and a standard deviation
of 0.05.

1. Step 1 the application receives the input parameters and
an array named randomArray, whose size is the number
of clusters. randomArray is randomly generated with
the numbers in the interval [0, numbero f clusters)with-
out repetition. In the figure is shown that randomArray
has size 3, and the random included numbers are (0, 2, 1).

2. Step 2 the values of randomArray are parsed to binary,
and they are saved into an array named binArray. In
our example, randomArray was (0, 2, 1), so binArray
becomes (00, 10, 01).

3. Step 3 meanRDD is an RDD object that takes its values
from binArray. The values of the array are individually
taken, and if it is 0, it sets 0.25; or if it is 1, it sets 0.75. In
our example, “00” becomes (0.25, 0.25), “10” becomes
(0.75, 0.25), and “01” becomes (0.25, 0.75).

4. Step 4 on this step, the values of each data object in the
dataset are generated and saved into an RDD object. It
generates instances value random numbers following
a normal distribution with the standard deviation given
as input parameter (standardDev), and the mean is set
by the value of meanRDD. Each value of meanRDD
will be the data objects of each cluster. In our example,

the application will generate 100 data objects with and a
standard deviation of 0.05, and amean of 0.25 for the first
feature, and a 0.25 for the second feature ((0.245, 0.251),
(0.260, 0.244), (0.252, 0.256)…). The data objects of the
second clusters take (0.75, 0.25) as the values for the
mean and generate the following data objects: ((0.752,
0.250), (0.763, 0.219), (0.754, 0.243)…). And the third
cluster has the following data objects: ((0.254, 0.751),
(0.241, 0.761), (0.254, 0.769)…).

5. Once dataset RDD is built, the application saves the
data into an output file.

The source code of this application can be found at [24].
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