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Abstract: Writing and managing firewall ACLs are hard, tedious, time-consuming and error-prone tasks for a wide 

range of reasons. During these tasks, inconsistent rules can be introduced. An inconsistent firewall ACL 

implies in general a design fault, and indicates that the firewall is accepting traffic that should be denied or 

vice versa. This can result in severe problems such as unwanted accesses to services, denial of service, 

overflows, etc. However, the administrator is who ultimately decides if an inconsistent rule is a fault or not. 

Although many algorithms to detect and manage inconsistencies in firewall ACLs have been proposed, they 

have different drawbacks regarding different aspects of the consistency diagnosis problem, which can 

prevent their use in a wide range of real-life situations. In this paper, we review these algorithms along with 

their drawbacks, and propose a new divide and conquer based algorithm, which uses specialized abstract 

data types. The proposed algorithm returns consistency results over the original ACL. Its computational 

complexity is better than the current best algorithm for inconsistency isolation, as experimental results will 

also show. 

1 INTRODUCTION 

A firewall is a network element that controls the 
traversal of packets across different network 
segments. It is a mechanism to enforce an Access 
Control Policy, represented as an Access Control 
List (ACL). 
One of the most important and frequent faults 

during firewall ACL design and management are 
inconsistencies (Wool, 2004) (Pozo2, 2008). A 
firewall ACL with inconsistent rules implies in 
general design faults, and indicates that the firewall 
is accepting traffic that should be denied or vice 
versa. This can result in severe problems such as 
unwanted accesses to services, denial of service, 
overflows, etc. ACL consistency is of extreme 
importance in several contexts, such as highly 
sensitive applications (e.g. health care). Thus, 
algorithms and tools to automatically isolate and 
characterize inconsistencies must be provided in 
order to give firewall administrator enough 
information to correct them and reduce the number 
of faults in firewall ACLs. In this paper we are only 

interested in layer 3 firewall ACLs, and thus in the 
five typical selectors (Taylor, 2005): protocol, 
source and destination IPs, and source and 
destination ports. 
Many algorithms to isolate and characterize 

inconsistencies in firewall ACLs have been 
proposed, but it is the firewall administrator who 
ultimately decides which rules have to be corrected. 
However, these algorithms have many drawbacks 
regarding different aspects of the consistency 
diagnosis problem. One of the most important ones 
is that they pre-process the firewall ACL using 
different types of non-trivial decompositions in 
order to use more efficient abstract data types and 
techniques. However, these decomposition 
techniques increase the number of rules in the ACL 
and have worst-case exponential time and space 
complexity. As a consequence, results of these 
consistency management algorithms are given over 
the modified ACL. Time and space complexity of 
inconsistency isolation algorithms is very important, 
since these algorithms are being used in a new range 
of applications in resource-constrained devices in 
ubiquitous networks, such as ad-hoc network node 



 

real-time ACL updates, real-time IDS or IPS rule 
updates, etc. 
To the best of our knowledge, there are only two 

algorithms that do not decompose the ACL: the 
trivial one (which is worst case O(f

2
) time 

complexity with the number of rules in the ACL, f); 
an optimization over the trivial one (Pozo2, 2008), 
which only improves the average and best cases by 
an order of magnitude in best and average cases. 
However, the best algorithm to date (which 
decompose the ACL) represents an improvement 
over 30 times (on average) over the trivial one 
(Baboescu, 2003). 
In this paper we propose a rule-order 

independent inconsistency isolation algorithm. Our 
approach is based on an analysis of which data type 
each rule selector can store, on the design of 
specialized abstract data types for each one, and on 
divide and conquer algorithm. Worst-case 
computational complexity of the algorithm proposed 
in this paper is better in all cases than Baboescu one, 
as is going to be shown in both theoretical 
complexity analysis and experimental results with 
real ACLs. Furthermore, ACL pre-process is not 
needed by our algorithm and thus results are 
returned over the original, unmodified ACL. 
This paper is structured as follows. In section 2, 

we review related works comparing them to our 

proposal. In section 3 we briefly analyze the 

internals of the consistency diagnosis problem in 

firewall ACLs. In section 4 we explain the 

methodology followed to solve the problem, and 

propose abstract data types (ADTs) and algorithms, 

with their theoretical complexity analysis. In section 

5, we give experimental results with real ACLs, 

comparing these results with other proposals. In 

section 6 we give some concluding remarks. 

2 RELATED WORKS 

The closest works to ours are related with 
consistency isolation in general network filters. In 
the most recent work, (Baboescu, 2003) provides 
algorithms to detect inconsistencies in router filters 
that are worst-case 30 times (an order of magnitude) 
faster than O(f

2
) ones for the general case of any 

number of selectors per rule, where f is the number 
of rules in the ACL. Although a theoretical 
complexity analysis is not provided, it improves 
other previous isolation algorithms for k filters 
(Eppstein, 2001) (Hari, 2000). Baboescu proposal 
implies ACL decomposition as a pre-process, 
converting selector ranges to prefixes (Srinivasan, 
1998). Nevertheless, the range to prefix conversion 
technique could need to split a range in several 

prefixes and thus the final number of rules could 
increase over the original ACL. In (Gupta, 1999) 
(Taylor, 2005), Taylor and Gupta outlined that this 
kind of conversion could be inefficient, because 
transport layer specifications vary widely (for 
example it possible to specify open port ranges, such 
as “all ports greater than 1023”). Taylor also 
calculated that, in the worst case, a range covering 
w-bit port numbers may require 2(w-1) prefixes, and 
that a single ACL including only two port ranges 
could require 2(w-1)

2
 entries (900 entries for 16-bit 

port numbers, increasing the number of rules in the 
ACL.  Thus, inconsistency isolation results are given 
over the modified ACL, which is bigger and 
different that the original one. Baboescu also 
calculated ACL size increase for its data set in his 
paper. 
Other researchers have analyzed the minimal 

inconsistency diagnosis problem. This problem is 
different to the inconsistency isolation one, since 
isolation is the action of finding the rules that are 
inconsistent with other ones, and is a polynomial 
problem. However, inconsistency diagnosis also 
implies the identification of the minimal number of 
rules which are the cause of the isolated 
inconsistencies (Pozo2, 2008), and the minimal 
characterization of the diagnoses among an 
established taxonomy (Hamed, 2006). The 
consistency diagnosis problem consists in the 
resolution of these three problems (isolation, 
identification, characterization) plus a correction 
stage (if necessary). 
These researchers apply ACL decompositions in 

some cases, and combinatorial algorithms in others, 
in order to optimally solve the three problems at a 
time. Decompositions are used in (Al-Shaer, 2004) 
and in (García-Alfaro, 2008), which use ACL 
decorrelation (Luis, 2002). As with range to prefix 
conversion, ACL decorrelation increase the number 
of rules in the ACL and have worst-case exponential 
time and space complexity. As a consequence, 
results of the consistency management algorithms 
are given over the modified ACL.  
Ordered Binary Decision Diagrams (OBDDs) 

have been used in Fireman (Yuan, 2006). Fireman 

authors’ do not decorrelate the ACL, and thus, 

results are given over the original one. Note that the 

complexity of OBDD algorithms depends on the 

optimal ordering of its nodes, which is a NP-

Complete problem (Bollig, 1996). This results in 

worst case exponential complexity, as with other 

proposals for the consistency diagnosis problem. 



 

3 CONSISTENCY IN FIREWALL 

ACLS 

Firewall rule-matching engines match packets in 
a linear way, checking rules from the first one to the 
last. The matching process stops once a rule has 
been matched, or once there are no more rules in the 
ACL (in this case, the firewall platform executes a 
predefined default action). The values of selectors 
(or filtering fields) between different rules can 
overlap, and can even be rules that are completely 
equal to others. An example of an ACL is presented 
in Fig. 2. In this example, 4 3R R⊂ , because all 
selectors of R4 are at least subsets of the same 
selectors of R3. However, their actions are the 
opposite. In this case R4 is never going to be 
matched in this ACL, because all packets that R4 
could match are also matched by a rule with higher 
priority, R3. In this case, the firewall administrator 
must be notified, since R3 may be a faulty rule (the 
consequence, or the error, is that there is traffic that 
is denied by R3 and it may be accepted). As another 
example take rules R1 and R2, 1 2R R⊂ . In this 
case traffic that is denied by R1 is also accepted by 
R2. This kind of relation is used by administrators to 
express exceptions (the most specific rule, R1) to a 
general rule (R2), and is not usually considered to be 
a fault, because there is no error in the ACL 
execution. 
Note that in these two examples, actions are 

always different (in firewalls there only two possible 
actions: to allow or to deny a packet). If actions were 
equal, there is no potential erroneous behaviour in 
the executed ACL, and thus there is no 
inconsistency. However, in this case, the relation 
between the rules is a redundancy, which is another 
kind of problem that can reduce the performance and 
increase the memory consumption of the rule-
matching engine. In this paper, we are only 
interested in rules that be potential faults, or 
inconsistent rules [4] (there could be cases where a 

rule is inconsistent with many others). It must be 
clarified that inconsistencies are order-independent 
and mutual. We assume that ACLf do not have 
redundancies (redundancies can be efficiently 
detected and removed (Liu, 2008)) 

3.1. Problem Formalization 

A layer 3 Firewall ACL is in general a list of 
linearly ordered (total order) condition/action rules. 
Each rule firewall rule is formed by an antecedent 
and a (binary) consequent representing the action 
that must be taken once a packet matches the rule. 
Let PORTSRC and PORTDST be sets of natural 

numbers and intervals of naturals between 
[0..65535] representing a port number. Le IPSRC 
and IPDST be two sets of valid IPv4 addresses in the 
octet and CIDR format (o1.o2.o3.o4/CIDR). Let 
PROTOCOL be a set of natural numbers in [0..255] 
representing a protocol number. Let ID≥1 be a 
natural number representing the rule priority in the 
ACL (1 is the rule with more priority). These five 
sets plus the ID represent the typical selectors of a 
firewall rule [3]. Let ACTION={Allow, Deny} be the 
binary set of possible actions for a rule consequent. 
Let W=PROTOCOL×IPSRC×IPDST×PORTSRC× 
PORTDST be the cartesian product of the five 
previous sets or selectors, which represents a 5-
dimensional hypercube. W is the space where an 
antecedent of a firewall rule can be defined. Layer 7 
firewalls use different selectors (e.g. a selector to 
express the content of a packet) and thus needs a 
different problem analysis. 
 
Definition 3.1. A layer 3 firewall ACL or rule 

set, is defined as the cartesian product 
ACLf=W×ACTION, where |ACLf|=f. A rule in ACLf 
is defined as ,1

k f
R ACL k f∈ ≤ ≤ , k ID∈  where  

Rk[PROTOCOL],  Rk[IPSRC], Rk[IPDST], 
Rk[PORTSRC], Rk[PORTDST] represent the 
corresponding selectors of the rule. 

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action 

R1 tcp 192.168.1.5/32 any *.*.*.*/0 80 deny 

R2 tcp 192.168.1.*/24 any *.*.*.*/0 80 allow 

R3 tcp *.*.*.*/0 any 172.0.1.10/32 80 allow 

R4 tcp 192.168.1.*/24 any 172.0.1.10/32 80 deny 

R5 tcp 192.168.1.60/32 any *.*.*.*/0 21 deny 

R6 tcp 192.168.1.*/24 any *.*.*.*/0 21 allow 

R7 tcp 192.168.1.*/24 any 172.0.1.10/32 21 allow 

R8 tcp *.*.*.*/0 any *.*.*.*/0 any deny 

R9 udp 192.168.1.*/24 any 172.0.1.10/32 53 allow 

R10 udp *.*.*.*/0 any 172.0.1.10/32 53 allow 

R11 udp 192.168.2.*/24 any 172.0.2.*/24 any allow 

R12 udp *.*.*.*/0 any *.*.*.*/0 any deny 

 

Figure 1: Example of a Firewall ACL 



 

Definition 3.2. ACLf can be trivially divided in 
two disjoint sets, one composed of rules with Allow 
action (ACLallow, where |ACLallow|=m), and the other 
composed of rules with Deny action (ACLdeny, where 
|ACLdeny|=n). Thus

allow deny f
ACL ACL ACL=∪  and 

allow deny
ACL ACL ∅=∩  
 
Definition 3.3. Let the antecedent of a rule of 

k f
R ACL∈  defined as an element or subset of W, 
( )

k
a R W⊆ . Let the consequent of a rule 

k f
R ACL∈  be defined as ( )

k
c R Allow Deny= ∨ . 

The union of the antecedents of all rules in ACLallow 
is the set A, 

1

( )
m

i allow
A a R ACL= ∈∪ . The union of 

the antecedents of all rules in ACLdeny is the set D, 
( )

n

j deny

j

D a R ACL= ∈∪  
 
Definition 3.4. Inconsistency Detection. 

( ) ( )
i allow j deny

a R ACL a R ACL∈ ∈ ≠ ∅∩  iff Ri and Rj 
are mutually inconsistent, I(Ri, Rj) |− ⊥. Since two 
elements in ACLf representing an action and the 
contrary over a subset of W are logically 
inconsistent. In the same way ACLf is inconsistent 
iff A D ≠ ∅∩ . Consistency is not affected by the 
relative priority between rules. An inconsistency is 
considered to be a fault if an administrator identifies 
the behaviour of the executed ACL as being causing 
undesirable effects (or having errors). 
 
Definition 3.5. Inconsistency Isolation. It is to 

find out all 
i allow

R ACL∈ , 
j deny

R ACL∈  such that 
I(Ri, Rj) |− ⊥. 
 
The objective of the algorithm proposed in this 

paper is to isolate (Definition 3.4) the elements in 
ACLallow and ACLdeny which are mutually 
inconsistent (Definition 3.5). The trivial algorithm 
consist in checking all pairs of rules in ACLf that are 
consistent with Definition 3.4, which is in O(f

2
), or 

to check rules in the set A with rules in the set D 

with (again with Definition 3.5), which is in O(n·m).  
Our algorithm depart from ACLallow and 

ACLdeny, with | |   | |
deny allow

ACL ACL<  (and thus 
n<m) (if | |   | |

deny allow
ACL ACL< , results and 

explanations are analogous), and is based on divide 
and conquer algorithm: 

 
Each set Mi contains the ID selector of rules in 

ACLallow that intersect with a given rule 

i deny
R ACL∈ : 
 

 
Thus, the result of the isolation process consists 

of several Mi sets, where each one contains the IDs 
of the inconsistent rules in ACLdeny for a given rule 
Ri of ACLallow. A set Mi is empty iff Ri is consistent. 
This result can be trivially decomposed to obtain all 
pairs of inconsistent rules in ACLf.  
This result can be used directly by the firewall 

administrator, or as input to an inconsistency 
identification process (Pozo2, 2008), resulting in a 
diagnosis that can be characterized. There is a 
complete taxonomy for firewall ACL inconsistencies 
available in (Hamed, 2006). We are interested in all 
kinds of inconsistencies, independently of their 
characterization, since all of them are equally 
important for the firewall administrator (who is the 
responsible of deciding if they are considered faults 
or not). 

4 INCONSISTENCY ISOLATION 

PROCESS 

 
An extensive analysis of the market-leader 

firewall languages was presented in (Pozo1, 2009). 
In the analysis it was shown that IP addresses can be 
expressed by all of them in octets with a CIDR value 
(IP blocks), port numbers as naturals or intervals of 
naturals, and protocols as a natural number. Thus, 
each selector although being different by nature, can 
be expressed as natural numbers and, in some cases, 
as intervals of naturals. 
One of the main ideas of our approach is to use a 

specialized abstract data type (ADT) to store the set 
of all selectors of the same type of the m rules in 
ACLallow (i.e. one ADT to store protocols used in all 
rules, two ADTs to store the source and destination 

 
Figure 2: Result of the inconsistency isolation 

process 
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IPs used in all rules, and another two ADTs to store 
source and destination ports). With this division and 
using divide and conquer, in order to know with 
which rules in ACLallow the rule d deny

R ACL∈  is 
inconsistent with, it is needed a search in each ADT 
for each selector in Rd. Each of these five searches 
returns all rules which have an intersecting selector. 
However, not all of these rules are inconsistent with 
Rd, a final combination step is needed. Attending to 
the presented inconsistency definitions, Rd is 
inconsistent with one or more rules in ACLallow only 
if all of its selectors intersect with all the selectors of 
one or more rules in ACLallow. Thus, the results of 
the five searches must be intersected in order to get 
this information. Since the process must be repeated 
for the n rules in ACLdeny, this complexity must be 
multiplied by n. The whole process is graphically 
represented in Fig. 3. 
In the following sections, a different data 

structure is going to be proposed for each selector, 
based on the analysis of the particular data set that 
each one can store (Pozo1, 2009). The objective is to 
find or design ADTs capable of doing searches in 
worst case time complexity better or equal than 
O(logm). Finally, a combination step for these 
search results in worst case time complexity in O(r) 
is also going to be proposed, where r=m/k,  and 
where k a very big constant (k≥128) which is going 
to be theoretically calculated. So, the final time 
complexity of the algorithm is in worst case 
O(f

2
/4k). Note that in the worst case, n=m=f/2 (i.e. 

ACLf has half rules with allow action, and the other 
half with deny). As we have said at the beginning of 
the section, we have assumed that m>n. However, if 
n>m, the algorithm can adapt itself and use ACLdeny 

rules (instead of ACLallow ones) to instantiate ADTs. 
That is, the algorithm always dynamically takes the 
bigger of the two ACLs for ADT instantiation. 
Since the ADTs are only populated once, 

insertion time for each ADT is amortized during 
search operations. Also take into account that if the 
ACL is going to be updated (new rules are inserted, 
modified, or removed), ADT operations for updates 
are necessary. However update operations have not 
been considered, since updates are not the focus of 
this paper, but a topic for future research. The 
presented isolation process is thus considered static. 
 

4.1 ADT for protocol number selector 

Attending to the exhaustive analysis of real 
firewall languages presented in an earlier work 
(Pozo1, 2009) the protocol selector only admits 8-bit 
natural numbers and the wildcard, ‘*’. Although 
symbolic names are also possible, they can be 
converted to naturals using IANA protocol number 
list (RFC5237). An important fact is that no ranges 
are allowed in the syntax of the selector, and thus 
search is a trivial operation, since in order to find a 
non-empty intersection with a protocol number (the 
one of rule 

d deny
R ACL∈ ) there are only two 

possible coincidences in the ADT: ‘*’; or exactly the 
same value. In the case that Rd protocol number is 
‘*’, then Rd intersects with all rules of the ADT, that 
is all rules in ACLallow, and no search is necessary.  
To store the association <Protocol number, Rule 

ID> we propose to use a hash table with protocol as 
the key, and the rule IDs as value. Hash tables 

 
 

Figure 3:  Proposed inconsistency isolation process 

 



 

(Cormen, 2001) have O(1) (constant) time 
complexity for insertions, removals, updates, and 
search operations if a perfect hash function is used. 
A perfect and minimal hash function is possible, 
since the key space is limited and known in advance 
(from 0 to 65535, plus the ‘*’). Hash table 
instantiation is thus worst case O(n) (the number of 
rules in ACLallow). 
However, hash tables cannot store duplicate 

keys. This is an important problem, since in most 
real-life firewall ACLs only a few protocol numbers 
are used, although they could be thousand of rules in 
the ACL. This issue can be solved grouping all 
protocol selectors of the rules that share the same 
value (the same key). In this case, the associated 
value to the key is a set containing the rule IDs of all 
rules that have the key value as the value of their 
protocol selector. However, as removal of values 
could be inefficient in this way (a hash lookup plus a 
search in the list of rule IDs), instead of a list, it is 
used a fixed-size bit set of size m (the size of 
ACLallow). Each position of the bit set represents one 
of the m rules in ACLallow. Positions are set to ‘1’ for 
the rules in the hash table that share the same 
protocol number. As a side effect, with only one 
lookup operation in the hash table, all rule IDs that 
share the same protocol number are returned, as the 
bit set is the return result of search operations.  
Fig. 4 presents the hash table associated to Fig. 1 

example, and the result of all the possible search 

operations using the same protocol selector values of 

ACLdeny rules. In order to simplify the figure, only 

the set positions of bit sets are represented (rule IDs 

of the assigned rules have been directly used). 

Furthermore, protocol names have been transformed 

to IANA protocol numbers in the rightmost part of 

the figure. 

4.2 ADT for port number selectors 

Again, attending to the syntax analysis of 
market-leader firewall languages (Pozo1, 2009), the 
port selectors admit 16-bit natural numbers, double-
ended closed natural intervals, and ‘*’. Symbolic 
names are converted to naturals or intervals. Source 
and destination port selectors are treated the same 
way from ADT and complexity viewpoint, and thus 
the discussion is applicable for both. 
Although the only difference in syntax between 

protocols and ports is in the length of the natural and 
on the possibility of using intervals, the search 
operation for the port number ADT is a completely 
different problem.  
As with the protocol selector, the result of the 

search operation for port numbers is all rule IDs of 
ACLallow which have an intersecting port number 

with 
d deny

R ACL∈ . In this case, a hash table is 
useless, since searching a port or an interval in it will 
only return equality result, but not intersections with 
port intervals. For example, in a hash table with keys 
{80, 79-81} and the port of Rd is 80, the search 
operation would return only the rule IDs associated 
to port 80 key, but note that port 80 also intersects 
with the interval 79-81. In the same way, if the port 
of Rd is the interval [81-82], then no value will be 
returned, since the interval [81-82] is not stored in 
the hash table. Searching the entire hash table would 
return the needed result, but this operation has a 
linear time complexity with the number of different 
keys in the hash table. 
 
There are two well-known 2D problems in 

computational geometry that solve similar searches 
(Chiang, 1991): first, given a set of data points (port 
numbers) and a query rectangle (port interval), give 
all the points that are inside the rectangle (this is the 
orthogonal range search problem); second, given a 
set of (possibly intersecting) data rectangles (port 
intervals) and a query point (port number), give all 
rectangles that intersect the query point (this is the 
stabbing problem). 
These two 2D problems can be reformulated into 

1D space, where rectangles are intervals and points 
are only represented by one coordinate. In 1D, these 
problems are called 1D range search problem (de 
Berg, 1997) and overlapping interval search 
problem (Edelsbrunner, 1983) (EdelsBrunner2, 
1983) respectively. Fortunately, specialized data 
structures for 1D and 2D problems that give optimal 
bounds (in time and space) solutions to these two 
problems exist (Chiang, 1991). In the particular case 
of 1D, the Interval Tree (Cormen, 2001) 

 
 

Figure 4: Hash table (perfect and minimal hash 

function) of protocol selector of Figure 1 example 

(ACLallow rules) and search results for ACLdeny rules 
 



 

(Edelsbrunner, 1983) (EdelsBrunner2, 1983), or 
ITree, is the selected ADT because it has optimal 
bound for the 1D problem (in time and space).  
Fortunately, our port number or port interval 

search problems can trivially be reformulated to 
range search and overlapping interval search 
problems respectively, as port numbers can be 
represented as points in a 1D plane, and port 
intervals can be presented as lines in the same 1D 
plane.  
Let X be a set of M points in a line, and S a set of 

m segments with endpoints in X. The primary 
structure for the ITree, T,  can be a balanced binary 
search tree (Chiang, 1991) or a red-black tree 
(Cormen, 2001), whose internal nodes store the 
points of X, sorted from left to right, and whose 
leaves represent intervals between consecutive 
points of X. Each segment s of S is allocated at the 
least common ancestor of the nodes associated with 
the endpoints of s. The set of segments allocated at a 
node b, denoted by S(b), is represented by two lists 
that store the left endpoints sorted from left to right, 
and the right endpoints sorted from right to left. 
Hence, the space complexity is in O(m+M). In our 
problem, this is linear with the number of rules in 
ACLallow. Furthermore, in our implementation 
duplicate intervals or points are not allowed (as with 
duplicate protocols), and are only stored once (again, 
using a bits set for rule IDs). Thus, the space 
complexity is reduced in a constant factor. 
ITrees are static ADTs, where only a fixed set of 

segments and points, known in advance, can be 
stored. However, in order to support insertions and 
deletions of segments and points, the endpoint lists 
can be replaced with inorder-threaded balanced 
search trees. Hence, the update time is in amortized 
O(logm). Query time is in O(logm + L), where L is 
the number of returned results (a constant factor). 
Thus, instantiation is in worst case amortized 
O(m*logm), one insertion for each rule in ACLallow. 
Best case time complexity could be very small when 
the number of port repetitions between different 
rules is very high, since the resulting ITree would be 
very small. ITrees is a well-know ADT, which has 
been widely used in database searches. Due to space 
constraints, no more information will be presented 
here, but it is available in the given references, 
including a time and space complexity analysis.  
The result of the search operation over the ITree 

with a port number or interval of the rule 

d deny
R ACL∈ , is the union of all bit sets associated 

to port values in the ITree which intersect the given 

port of Rd, or a bit set with all bits set to ‘1’ if the 

given port of Rd is ‘*’.  Fig. 5 presents the ITree 

associated to Fig. 1 example (destination port 

selector of ACLallow only), and the result of all the 

possible search operations using destination port 

selector of Fig. 1 ACLdeny rules. 

4.3 ADT for IP address selectors 

Attending to the syntax analysis of firewall 
languages (Pozo1, 2009), both IP address selectors 
admit 32-bit host IP addresses in CIDR format, and 
‘*’. Symbolic names are converted to octets. Source 
and destination IP selectors are treated the same way 
from ADT and complexity viewpoint, and thus the 
discussion is applicable for both.  
As with previous cases duplicates are not 

allowed (bit sets are used again). Thus, the result of 
the search operation must be a bit set with positions 
set to ‘1’ for all rule IDs of ACLallow which have an 
intersecting IP with the given in the rule 

d deny
R ACL∈ . As an IP block is a compact way of 
expressing IP address intervals, a hash table is again 
useless for IPs. An IP address is composed by four 
octets, each one being an 8-bit natural. A search 
operation over an ADT must use the CIDR of the 
IPs stored in it: Let IP1/CIDR1 and IP2/CIDR2 be two 
IP addresses, if CIDRs is the shortest of the two 
netmasks, then the intersection of IP1 and IP2 is not 
empty if IP1&CIDRs=IP2&CIDRs. 
Note that valid network IP addresses have CIDR 

values between 1 and 30. Value 31 is useless, since 
it only permits two hosts (.0 and .255, which are not 
valid host IP addresses); CIDR 32 is reserved for 
host IPs; and CIDR 0 is only used for the wildcard 
IP (0.0.0.0/0). 

ACLallow

R1 (dport=80)

R2 (dport=80)

R5 (dport=21)

R6 (dport=21)

R8 (dport=53)

R9 (dport=53)

R10 (dport=*)

ACLdeny

R0 (dport=80)

R3 (dport=80)

R4 (dport=21)

R7 (dport*)

R11 (dport=*)

SEARCH

RESULTS

Search(R0)={R10, R1, R2}

Search(R3)={R10, R1, R2}

Search(R4)={R10, R5, R6}

Search(R7)={R10, R5, R6,R8, R9, R1,R2}

Search(R11)={R10, R5, R6,R8, R9, R1,R2}
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Figure 5: Interval tree of destination port selector of 

Figure 1 example (ACLallow rules) and search results 

for ACLdeny rules 
 



 

We propose the design of a completely new and 
specialized ADT to store IP addresses, capable of 
doing searches that return multiple intersections (as 
with previous selectors) in time better than O(m) 
(where m is the size of ACLallow). As we are going to 
show, space complexity of this ADT is better than 
O(m). This new ADT is called IP Tree. The general 
structure of an IP Tree as well as several example 
IPs and its corresponding IP Tree are presented in 
Figures 6 and 7 respectively. 
 
The IP Tree is formed by four levels (root is not 

considered to be a valid level). For each node, 255 
children are possible at most (0-254). These children 
values of each node (octets) are recursively stored in 
a hash table (with a perfect and minimal hash 
function). The association <Node octet, Children 
nodes> is called an IP Tree node, where children 
octets is another hash table of the same type (IP Tree 
node, Fig. 6). 
As in the other ADTs, no repetition of IPs are 

allowed. Leaf nodes maintain the information 
regarding the IDs of the rules that share a common 
value for an IP address selector. In fact, leaf nodes 
does not have a hash table for storing <Node octet, 
Children octets> (since they do not have any 
children), but a hash table with a perfect hash 
function (there are only 30 possible CIDRs) to store 
<CIDR, RuleID Bit set>. CIDRs represent the 
CIDRs of the inserted rules that ended in that leaf, 
and if there are many with same CIDR (i.e. a 
repeated value), then bits are set to ‘1’ in the bit set. 
Insertions are done traversing the tree from top 

to bottom. First, the IP/CIDR address to be inserted 
is decomposed in its four natural octets plus the 
CIDR value: o1.o2.o3.o4/cidr. Then, the root node 
hash table is asked in order to know if o1 is already 
in the first level of the IP Tree. If it is, the next step 
is to navigate to the second level through the found 
octet (using the children hash table). If not, a new IP 
Tree node with value o1 is inserted in the root node 
children hash table. These same is done for o2, o3, 
and o4. Once at the last level, if o4 has been found, a 
check is launched for the CIDR data stored in the 
leaf <CIDR, Rule ID Bit set> hash table using cidr 
value of the IP. If cidr value is found, the bit 
corresponding to the ID of the inserted IP is set to 
‘1’. If not, a new CIDR value is created with its 
corresponding bit set. Thus, the insertion of a new IP 
consists, in the worst case, of three O(1) searches in 
perfect hash tables, plus a O(1) search in a leaf 
perfect hash table, resulting in O(1) worst case time 
complexity.  
The search operation follows the same scheme as 

the insertion one. Note that in order to know if two 
IP addresses intersect, the application of the shortest 
netmask of the two IP addresses is necessary, as has 

been pointed at the beginning of the subsection. 
However the result we need is the intersection of one 
IP with all IPs in the IP Tree, which contains all the 
IPs of the m rules in ACLallow. Thus, the application 
of all netmasks of the IPs in the IP Tree which are 
smaller than or equal the CIDR of the given Rd IP 
address is necessary (at most 30 netmasks). The 
result of the application of these netmasks is a set of 
(at most) 30 network IPs. Now, a search operation 
for each of these IPs is launched. The search 
operation follows the same algorithm used for 
insertions, but taking the list of rule IDs associated 
to the CIDR of the leaf which coincide with the 
CIDR used for the search, if a search ends 
successfully. The result of the search operation is the 
union of all bit sets associated to IP addresses in the 
IP Tree which intersect the given IP address of Rd 
(e.g. the result of the –at most- 30 searches),  or a bit 
set with all bits set to ‘1’ if the given IP address of 
Rd is ‘*’. Note that having 30 different netmaks in a 
real firewall ACL is not very usual, because this 
usually indicates that the firewall is controlling 
traffic between 30 different networks, each one 
attached to a different physical network interface. 
Thus, worst case time complexity of a search 

operation of a network address in a network tree is 
in O(30*(4*1+1))=O(1). However, in the average 
case, the multiplicative factor 30 of one search 
operation can be reduced to 30-h. If a search 
operation successfully ended in a leaf l, and l 
contains k CIDR values not yet used for a search in 
the IPTree list of CIDRs, then these values should 
not be used, because if used for searches, they will 
lead to the same leaf l, causing a duplicate search. 
This reduction of CIDRs can be made each time a 
new leaf is visited, thus the sum of these removed 
CIDRs is h. 
Finally, host search is slightly different. Suppose 

that the search operation receives a host IP address 

root

0 254...

0 254...

0 254...

Octet: 0

CIDR1={RuleIDs}

…

CIDR30={RuleIDs}

…

Octet: 254

CIDR1={RuleIDs}
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Hash Table <Node octet, Children nodes>
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Node octet

Hash Table <CIDR, BitSet>

IPTREE ROOT NODE

Hash Table <Node octet, Children nodes>

 
 

Figure 6: IPTree general structure 
 



 

from Rd. In this case, all CIDRs of the IP tree must 
be applied to the host IP, creating at most 30 IP 
network address. If the IP tree only contains network 
IP addresses, the procedure is the described above 
with no modifications at all. However, if the IP Tree 
also has host IP addresses, the new network address 
created from the application of a CIDR to the host IP 
address of Rd, could also intersect with another host 
IP address of the IP tree. This is an important 
problem, because the IP address of Rd cannot 
intersect with more than one host IP address of the 
tree (the one that is exactly equal to the IP of Rd), 
although it can intersect with many network IP 
addresses. This multiple host IP intersection problem 
can be solved splitting the IP Tree in two disjoint IP 
trees: one to store network ACLallow IP addresses and 
wildcards, and another one to store ACLallow host IP 
addresses. The network IP Tree is exactly the 
described one (Figs. 6 and 7), but the host IP Tree is 
a simplified version, where no CIDR information is 
stored in leaves, and where all searches are exact 
1..1. In addition, a slightly simplified version of 
insert and search methods are necessary for the host 
IP Tree. These simplifications are not described here 
due to space constraints, but could easily be derived. 

4.4 Combination of search results 

Using the calculated worst case time 
complexities of the search operations for the five 
selectors and, by the sum of the rule, the combined 
search time for five selectors is in worst case 
O(1+2*1+2*logm)=O(logm). The first factor is the 
time associated to the hash table search (used by 
protocol number selector), the second is the two 
searches in IP Trees (used by source and destination 

IP address selectors), and the last one is the two 
searches in interval trees (used by source and 
destination port selectors). 
The obtained results are five bit sets with 

positions set to ‘1’ for intersecting rule IDs. 
However, from the inconsistency definitions, all 
selectors must overlap for a rule to be inconsistent 
with other(s). Thus, the composition of this result is 
somewhat trivial: the intersection of the five bit sets. 
This intersection gives all between 

d deny
R ACL∈  and 

all rules in ACLallow. This result can directly be used 
by the firewall administrator, since no 
decomposition has been made to the firewall ACL. 
Fig. 8 is an example for 

0 deny
R ACL∈ , where the 

five bit sets resulting from the five searches for R0 
selectors and their intersection are shown. Some of 
these results have been presented in previous 
figures. In this case the combination step is 
necessary because all searches have returned non-
empty bit sets. The returned bit set indicates that R0 
is inconsistent with R1 and R2. Now is the firewall 
administrator who decides if these two 
inconsistencies are faults or not.  
As its name indicates, a bit set is an ADT whose 

main purpose is to store bit elements. The 
intersection of the five bit sets is a linear time 
operation with the size of the bit sets (or the number 
of rules in the ADTs, m, reduced by a constant factor 
derived from the duplicate removals). However, in 
the worst case, no repetitions are considered. Note 
that although the problem is linear, logical 
operations over bit arrays are very efficient, as they 
are instructions that can be executed in one machine 
cycle over 128 bit registers (at least) using special 
multi-register multimedia instructions. This yields a 

 
 

Figure 7:  IPTree example for network addresses 

 



 

  R1 R2 R5 R6 R8 R9 R10 

SrcIP 1 1 1 1 1 1 0 

DstIP 1 1 1 1 1 1 1 

SrcPort 1 1 1 1 1 1 1 

DstPort 1 1 0 0 0 0 1 

Protocol 1 1 1 1 0 0 0 

        

Combination 1 1 0 0 0 0 0 

 
Figure 8:  Combination step example 

 
severe problem reduction by a big constant, k≥128, 
in time (with no space penalty).  
Thus, worst case time complexity of the full 

process (for the n rules in ACLdeny), including the 
combination operation, is in worst case O(n*(logm + 
m/k), n=m=f/2, m/k>logm�O(n*logm)+O(n*m/k) 
�O(f/2*log(f/2))+O(f/2*(f/2)/k),(f/2)/k>log(f/2) � 
O(f/2*(f/2)/k) �O((f

2
/2)/2k) �O(f

2
/4k), k≥128. 

Derived from this analysis is the fact the 
complexity is bounded principally by the number of 
allow and deny rules (if they are equal, n=m=f/2, 
worst case is achieved). However, as it is going to be 
shown in the experimental results, worst case ACLs 
are really unusual in the real word, where firewalls 
usually control traffic between small network 
segments with very specific services, and where 
multiple firewall configurations are the norm. Thus, 
best and average cases are achieved when there a lot 
of selector repetitions in ACLallow (and thus ADTs 
are very small), when n<<m, and when ACLf is 
consistent (if a selector of a rule of ACLdeny is 
consistent with the same selector of all the rules of 
ACLallow, then that rule of ACLdeny is consistent by 
definition, no more searches for the rest of selectors 
are needed, and thus no combination of search 
results is needed). This results in O(n*logm), where 
m is very small due to duplicates�O(n), n<<m. 
As has also been shown, the space needed in the 

process is linear with the number of rules in ACLallow 
plus some bit sets (the space needed to store the bit 
sets is negligible). 

As the experimental results will show, this 
complexity represents (for the tested real ACLs 
(average cases) an algorithm that is up to three 
orders of magnitude faster than the trivial O(f

2
), and 

one to two orders faster than (Baboescu, 2003), 
which is the best known algorithm to date. 
Unfortunately, a direct theoretical comparison with 
Baboescu ASBV algorithm is not possible, since its 
time complexity is provided in number of memory 
accesses. The complexity reduction of our algorithm 
in the worst case is mainly obtained from the big 
multiplicative constant, k, and in the best case is 
mainly obtained from the ADTs. 

5. EXPERIMENTAL RESULTS 

In absence of standard ACLs or synthetic ACL 
generators, the algorithms have been tested with real 
firewall ACLs (Table 1).  
The conducted performance analysis represents a 

wide spectrum of cases, with ACLs of sizes ranging 
from 50 to 10600 rules, and percentages of allow 
and deny rules ranging from 2% to 65%. Recall that 
worst case for our proposal is achieved when half 
rules are allow and the other half are deny, and 
where all rules are inconsistent. Also note that real 
ACLs have some important differences with 
synthetically generated ones. The most important 
one is the number of deny and allow rules: as real 
firewall ACLs are usually designed with deny all 
default policy, most rules are going to have allow 
actions, and thus ACLallow will be bigger than 
ACLdeny. The result is that the worst case would not 
normally be achieved in real firewall ACLs. 
Experiments were performed on a monothreaded 

Java implementation with Sun JDK 1.6.0 64-Bit 
Server VM, on an isolated HP Proliant 145G2 
(AMD Opteron 275 2.2GHz, 2Gb RAM DDR400). 
Execution times are in milliseconds. 
As is shown in Table 1, execution of the 

Table 1: Performance evaluation 

 

ACL 

Size 

%Deny 

Rules 

No. 

Inconsist 

Trivial 

Isolation 

(ms) 

Optimized Trivial  

Isolation Algorithm 

(ms) 

Baboescu 

Isolation 

Algorithm (ms) 

Proposed Isolation 

Algorithm (ms) 

ADT 

build 

(ms) 

50 28,21 37 0.22 0.09 0.58 0.03 0.09 

144 30,91 108 1.34 0.62 1.50 0.06 0.17 

238 66,43 231 3.56 2.04 2.71 0.17 0.22 

450 34,73 422 13.22 5.61 5.29 0.26 0.54 

900 14,8 871 51.57 3.46 11.11 0.4 1.14 

2500 6,97 3349 387.86 55.01 43.12 0.86 3.54 

5000 1,98 4937 3160.09 64.33 106.99 1.06 9.02 

10611 2,05 11866 12046.67 332.85 476.81 8.31 21.85 

 



 

isolation process (for all rules in ACLdeny) is really 
fast, even in large ACLs. If the difference between 
the trivial algorithm and the optimized version 
proposed in (Pozo2, 2008) is very big, the difference 
between the trivial one and the proposed in this 
paper is dramatic, with improvements of up to x3000 
for the trivial, and up to x60 for the optimized trivial 
(with the test ACLs). 
In the case of Baboescu ASBV algorithm, results 

show that his algorithm is 30 times faster than the 
trivial one, which also coincide with the conclusions 
presented in his paper. However, in practical terms, 
the optimized trivial algorithm presented in (Pozo2, 
2008) achieves an execution time that is even a bit 
faster than Baboesu proposal. This is an indication 
of the problem increase due to the range to prefix 
pre-process in the Baboescu proposal.  
Our proposal represents a 10 to 100 times faster 

alternative than the current best known one. This 
represents a dramatic improvement over other 
proposals, specially taken into account that our 
algorithm returns results the isolation over the 
original, unmodified, ACL, and not over a pre-
processed one (as Baboescu proposal does). 
Figure 9 presents a graphic comparison between 

the optimized trivial (Pozo2, 2008), Baboescu 
ASBV (Baboescu, 2003), and our new algorithms. 
The last column in Table 1 presents ADT build 

time for all ADTs, showing that they are very 
reasonable and amortizable in a few worst-case 
searches. Note that once ADTs are built, they need 
no modification (unless the ACL changes).  

The number of different values per selector and 
per ACL is presented in Table 2. Note that if there 
are a lot of values of selectors repeated in different 
rules of the same ACL, then search times severely 
improve. This is especially important for the two 
port selectors, since the Interval Tree is the ADT 
which has the worst time complexity of all ADTs. 
As can be seen in Table 2, the number of repetitions 
in the values of the selectors is unsurprisingly high 
in real ACLs, even if they are very big. With 
sufficiently small ADTs, experimental search times 
are near constant (this fact can be seen in Table 1, in 
the proposed algorithm column). The algorithms 
scale very well. This confirms our assumptions over 
real ACLs made at the end of the previous section. 

6. CONCLUSIONS 

During firewall ACL design and management 
inconsistencies can be introduced. An inconsistent 
firewall ACL implies in general a design error. 
However, the firewall administrator is who 
ultimately decides if an inconsistent rule is faulty. 
In this paper, we have proposed a new 

inconsistency isolation algorithm for firewalls with 
five integer (or intervals of integer). Our approach 
has been based on an analysis of which data type 
each rule selector can to store, on the design of 
specialized abstract data types for each one, and on 
divide and conquer algorithm. A theoretical 
algorithmic complexity as well as an experimental 
performance analysis has been made in order to 
validate our theoretical results.  
Our proposal represents an algorithm that is 10 

to 100 times faster then the current best known one. 
Furthermore, results are returned over the original, 
unmodified ACL in our case, rather than over a 
decomposed ACL which is different than the 
original one.  
However, our approach has some limitations that 

give us opportunities for improvement in future 
works. A performance analysis of each part ADT of 
the algorithm is necessary in order to know where 
the bottleneck is now, in order improve even more 
the algorithms. Checking the behaviour of the 
proposed ADTs in dynamic environments could be 
another interesting point, where another comparison 
in complexity and memory requirements to 
Baboescu algorithm would be a point. 

 
 

Figure 9: Execution times 
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Table 2: Number of different elements per selector and per ACL 

 

ACLn Size 

Protocol 

Hash Table 

size 

Source Port 

ITree size 

Dst Port 

ITree size 

 

SrcIP Host IP 

Tree size 

SrcIP NW IP 

Tree size 

DstIP Host IP 

Tree size 

DstIP NW IP 

Tree size 

39 3 4 4 9 2 8 2 

110 3 11 11 18 4 27 4 

143 3 14 17 20 4 30 4 

334 3 19 26 29 4 38 4 

784 3 19 31 31 4 47 4 

2337 3 47 49 76 5 70 5 

4903 2 45 50 136 10 142 10 

10398 3 86 87 177 25 217 25 

 


