
EFFICIENT ALGORITHMS AND ABSTRACT DATA TYPES FOR

LOCAL INCONSISTENCY ISOLATION IN FIREWALL ACLS

S. Pozo, A. J. Varela-Vaca, R. M. Gasca, R. Ceballos
Department of Computer Languages and Systems. Computer Engineering College

University of Seville. Avda. Reina Mercedes S/N, 41012 Seville, SPAIN

{sergiopozo, ajvarela, gasca, ceball}us.es

http://www.lsi.us.es/~quivir

Keywords: isolation, inconsistency, conflict, anomaly, firewall, acl, ruleset

Abstract: Writing and managing firewall ACLs are hard, tedious, time-consuming and error-prone tasks for a wide

range of reasons. During these tasks, inconsistent rules can be introduced. An inconsistent firewall ACL

implies in general a design fault, and indicates that the firewall is accepting traffic that should be denied or

vice versa. This can result in severe problems such as unwanted accesses to services, denial of service,

overflows, etc. However, the administrator is who ultimately decides if an inconsistent rule is a fault or not.

Although many algorithms to detect and manage inconsistencies in firewall ACLs have been proposed, they

have different drawbacks regarding different aspects of the consistency diagnosis problem, which can

prevent their use in a wide range of real-life situations. In this paper, we review these algorithms along with

their drawbacks, and propose a new divide and conquer based algorithm, which uses specialized abstract

data types. The proposed algorithm returns consistency results over the original ACL. Its computational

complexity is better than the current best algorithm for inconsistency isolation, as experimental results will

also show.

1 INTRODUCTION

A firewall is a network element that controls the
traversal of packets across different network
segments. It is a mechanism to enforce an Access
Control Policy, represented as an Access Control
List (ACL).
One of the most important and frequent faults

during firewall ACL design and management are
inconsistencies (Wool, 2004) (Pozo2, 2008). A
firewall ACL with inconsistent rules implies in
general design faults, and indicates that the firewall
is accepting traffic that should be denied or vice
versa. This can result in severe problems such as
unwanted accesses to services, denial of service,
overflows, etc. ACL consistency is of extreme
importance in several contexts, such as highly
sensitive applications (e.g. health care). Thus,
algorithms and tools to automatically isolate and
characterize inconsistencies must be provided in
order to give firewall administrator enough
information to correct them and reduce the number
of faults in firewall ACLs. In this paper we are only

interested in layer 3 firewall ACLs, and thus in the
five typical selectors (Taylor, 2005): protocol,
source and destination IPs, and source and
destination ports.
Many algorithms to isolate and characterize

inconsistencies in firewall ACLs have been
proposed, but it is the firewall administrator who
ultimately decides which rules have to be corrected.
However, these algorithms have many drawbacks
regarding different aspects of the consistency
diagnosis problem. One of the most important ones
is that they pre-process the firewall ACL using
different types of non-trivial decompositions in
order to use more efficient abstract data types and
techniques. However, these decomposition
techniques increase the number of rules in the ACL
and have worst-case exponential time and space
complexity. As a consequence, results of these
consistency management algorithms are given over
the modified ACL. Time and space complexity of
inconsistency isolation algorithms is very important,
since these algorithms are being used in a new range
of applications in resource-constrained devices in
ubiquitous networks, such as ad-hoc network node

real-time ACL updates, real-time IDS or IPS rule
updates, etc.
To the best of our knowledge, there are only two

algorithms that do not decompose the ACL: the
trivial one (which is worst case O(f

2
) time

complexity with the number of rules in the ACL, f);
an optimization over the trivial one (Pozo2, 2008),
which only improves the average and best cases by
an order of magnitude in best and average cases.
However, the best algorithm to date (which
decompose the ACL) represents an improvement
over 30 times (on average) over the trivial one
(Baboescu, 2003).
In this paper we propose a rule-order

independent inconsistency isolation algorithm. Our
approach is based on an analysis of which data type
each rule selector can store, on the design of
specialized abstract data types for each one, and on
divide and conquer algorithm. Worst-case
computational complexity of the algorithm proposed
in this paper is better in all cases than Baboescu one,
as is going to be shown in both theoretical
complexity analysis and experimental results with
real ACLs. Furthermore, ACL pre-process is not
needed by our algorithm and thus results are
returned over the original, unmodified ACL.
This paper is structured as follows. In section 2,

we review related works comparing them to our

proposal. In section 3 we briefly analyze the

internals of the consistency diagnosis problem in

firewall ACLs. In section 4 we explain the

methodology followed to solve the problem, and

propose abstract data types (ADTs) and algorithms,

with their theoretical complexity analysis. In section

5, we give experimental results with real ACLs,

comparing these results with other proposals. In

section 6 we give some concluding remarks.

2 RELATED WORKS

The closest works to ours are related with
consistency isolation in general network filters. In
the most recent work, (Baboescu, 2003) provides
algorithms to detect inconsistencies in router filters
that are worst-case 30 times (an order of magnitude)
faster than O(f

2
) ones for the general case of any

number of selectors per rule, where f is the number
of rules in the ACL. Although a theoretical
complexity analysis is not provided, it improves
other previous isolation algorithms for k filters
(Eppstein, 2001) (Hari, 2000). Baboescu proposal
implies ACL decomposition as a pre-process,
converting selector ranges to prefixes (Srinivasan,
1998). Nevertheless, the range to prefix conversion
technique could need to split a range in several

prefixes and thus the final number of rules could
increase over the original ACL. In (Gupta, 1999)
(Taylor, 2005), Taylor and Gupta outlined that this
kind of conversion could be inefficient, because
transport layer specifications vary widely (for
example it possible to specify open port ranges, such
as “all ports greater than 1023”). Taylor also
calculated that, in the worst case, a range covering
w-bit port numbers may require 2(w-1) prefixes, and
that a single ACL including only two port ranges
could require 2(w-1)

2
 entries (900 entries for 16-bit

port numbers, increasing the number of rules in the
ACL. Thus, inconsistency isolation results are given
over the modified ACL, which is bigger and
different that the original one. Baboescu also
calculated ACL size increase for its data set in his
paper.
Other researchers have analyzed the minimal

inconsistency diagnosis problem. This problem is
different to the inconsistency isolation one, since
isolation is the action of finding the rules that are
inconsistent with other ones, and is a polynomial
problem. However, inconsistency diagnosis also
implies the identification of the minimal number of
rules which are the cause of the isolated
inconsistencies (Pozo2, 2008), and the minimal
characterization of the diagnoses among an
established taxonomy (Hamed, 2006). The
consistency diagnosis problem consists in the
resolution of these three problems (isolation,
identification, characterization) plus a correction
stage (if necessary).
These researchers apply ACL decompositions in

some cases, and combinatorial algorithms in others,
in order to optimally solve the three problems at a
time. Decompositions are used in (Al-Shaer, 2004)
and in (García-Alfaro, 2008), which use ACL
decorrelation (Luis, 2002). As with range to prefix
conversion, ACL decorrelation increase the number
of rules in the ACL and have worst-case exponential
time and space complexity. As a consequence,
results of the consistency management algorithms
are given over the modified ACL.
Ordered Binary Decision Diagrams (OBDDs)

have been used in Fireman (Yuan, 2006). Fireman

authors’ do not decorrelate the ACL, and thus,

results are given over the original one. Note that the

complexity of OBDD algorithms depends on the

optimal ordering of its nodes, which is a NP-

Complete problem (Bollig, 1996). This results in

worst case exponential complexity, as with other

proposals for the consistency diagnosis problem.

3 CONSISTENCY IN FIREWALL

ACLS

Firewall rule-matching engines match packets in
a linear way, checking rules from the first one to the
last. The matching process stops once a rule has
been matched, or once there are no more rules in the
ACL (in this case, the firewall platform executes a
predefined default action). The values of selectors
(or filtering fields) between different rules can
overlap, and can even be rules that are completely
equal to others. An example of an ACL is presented
in Fig. 2. In this example, 4 3R R⊂ , because all
selectors of R4 are at least subsets of the same
selectors of R3. However, their actions are the
opposite. In this case R4 is never going to be
matched in this ACL, because all packets that R4
could match are also matched by a rule with higher
priority, R3. In this case, the firewall administrator
must be notified, since R3 may be a faulty rule (the
consequence, or the error, is that there is traffic that
is denied by R3 and it may be accepted). As another
example take rules R1 and R2, 1 2R R⊂ . In this
case traffic that is denied by R1 is also accepted by
R2. This kind of relation is used by administrators to
express exceptions (the most specific rule, R1) to a
general rule (R2), and is not usually considered to be
a fault, because there is no error in the ACL
execution.
Note that in these two examples, actions are

always different (in firewalls there only two possible
actions: to allow or to deny a packet). If actions were
equal, there is no potential erroneous behaviour in
the executed ACL, and thus there is no
inconsistency. However, in this case, the relation
between the rules is a redundancy, which is another
kind of problem that can reduce the performance and
increase the memory consumption of the rule-
matching engine. In this paper, we are only
interested in rules that be potential faults, or
inconsistent rules [4] (there could be cases where a

rule is inconsistent with many others). It must be
clarified that inconsistencies are order-independent
and mutual. We assume that ACLf do not have
redundancies (redundancies can be efficiently
detected and removed (Liu, 2008))

3.1. Problem Formalization

A layer 3 Firewall ACL is in general a list of
linearly ordered (total order) condition/action rules.
Each rule firewall rule is formed by an antecedent
and a (binary) consequent representing the action
that must be taken once a packet matches the rule.
Let PORTSRC and PORTDST be sets of natural

numbers and intervals of naturals between
[0..65535] representing a port number. Le IPSRC
and IPDST be two sets of valid IPv4 addresses in the
octet and CIDR format (o1.o2.o3.o4/CIDR). Let
PROTOCOL be a set of natural numbers in [0..255]
representing a protocol number. Let ID≥1 be a
natural number representing the rule priority in the
ACL (1 is the rule with more priority). These five
sets plus the ID represent the typical selectors of a
firewall rule [3]. Let ACTION={Allow, Deny} be the
binary set of possible actions for a rule consequent.
Let W=PROTOCOL×IPSRC×IPDST×PORTSRC×
PORTDST be the cartesian product of the five
previous sets or selectors, which represents a 5-
dimensional hypercube. W is the space where an
antecedent of a firewall rule can be defined. Layer 7
firewalls use different selectors (e.g. a selector to
express the content of a packet) and thus needs a
different problem analysis.

Definition 3.1. A layer 3 firewall ACL or rule

set, is defined as the cartesian product
ACLf=W×ACTION, where |ACLf|=f. A rule in ACLf
is defined as ,1

k f
R ACL k f∈ ≤ ≤ , k ID∈ where

Rk[PROTOCOL], Rk[IPSRC], Rk[IPDST],
Rk[PORTSRC], Rk[PORTDST] represent the
corresponding selectors of the rule.

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action

R1 tcp 192.168.1.5/32 any *.*.*.*/0 80 deny

R2 tcp 192.168.1.*/24 any *.*.*.*/0 80 allow

R3 tcp *.*.*.*/0 any 172.0.1.10/32 80 allow

R4 tcp 192.168.1.*/24 any 172.0.1.10/32 80 deny

R5 tcp 192.168.1.60/32 any *.*.*.*/0 21 deny

R6 tcp 192.168.1.*/24 any *.*.*.*/0 21 allow

R7 tcp 192.168.1.*/24 any 172.0.1.10/32 21 allow

R8 tcp *.*.*.*/0 any *.*.*.*/0 any deny

R9 udp 192.168.1.*/24 any 172.0.1.10/32 53 allow

R10 udp *.*.*.*/0 any 172.0.1.10/32 53 allow

R11 udp 192.168.2.*/24 any 172.0.2.*/24 any allow

R12 udp *.*.*.*/0 any *.*.*.*/0 any deny

Figure 1: Example of a Firewall ACL

Definition 3.2. ACLf can be trivially divided in
two disjoint sets, one composed of rules with Allow
action (ACLallow, where |ACLallow|=m), and the other
composed of rules with Deny action (ACLdeny, where
|ACLdeny|=n). Thus

allow deny f
ACL ACL ACL=∪ and

allow deny
ACL ACL ∅=∩

Definition 3.3. Let the antecedent of a rule of

k f
R ACL∈ defined as an element or subset of W,
()

k
a R W⊆ . Let the consequent of a rule

k f
R ACL∈ be defined as ()

k
c R Allow Deny= ∨ .

The union of the antecedents of all rules in ACLallow
is the set A,

1

()
m

i allow
A a R ACL= ∈∪ . The union of

the antecedents of all rules in ACLdeny is the set D,
()

n

j deny

j

D a R ACL= ∈∪

Definition 3.4. Inconsistency Detection.

() ()
i allow j deny

a R ACL a R ACL∈ ∈ ≠ ∅∩ iff Ri and Rj
are mutually inconsistent, I(Ri, Rj) |− ⊥. Since two
elements in ACLf representing an action and the
contrary over a subset of W are logically
inconsistent. In the same way ACLf is inconsistent
iff A D ≠ ∅∩ . Consistency is not affected by the
relative priority between rules. An inconsistency is
considered to be a fault if an administrator identifies
the behaviour of the executed ACL as being causing
undesirable effects (or having errors).

Definition 3.5. Inconsistency Isolation. It is to

find out all
i allow

R ACL∈ ,
j deny

R ACL∈ such that
I(Ri, Rj) |− ⊥.

The objective of the algorithm proposed in this

paper is to isolate (Definition 3.4) the elements in
ACLallow and ACLdeny which are mutually
inconsistent (Definition 3.5). The trivial algorithm
consist in checking all pairs of rules in ACLf that are
consistent with Definition 3.4, which is in O(f

2
), or

to check rules in the set A with rules in the set D

with (again with Definition 3.5), which is in O(n·m).
Our algorithm depart from ACLallow and

ACLdeny, with | | | |
deny allow

ACL ACL< (and thus
n<m) (if | | | |

deny allow
ACL ACL< , results and

explanations are analogous), and is based on divide
and conquer algorithm:

Each set Mi contains the ID selector of rules in

ACLallow that intersect with a given rule

i deny
R ACL∈ :

Thus, the result of the isolation process consists

of several Mi sets, where each one contains the IDs
of the inconsistent rules in ACLdeny for a given rule
Ri of ACLallow. A set Mi is empty iff Ri is consistent.
This result can be trivially decomposed to obtain all
pairs of inconsistent rules in ACLf.
This result can be used directly by the firewall

administrator, or as input to an inconsistency
identification process (Pozo2, 2008), resulting in a
diagnosis that can be characterized. There is a
complete taxonomy for firewall ACL inconsistencies
available in (Hamed, 2006). We are interested in all
kinds of inconsistencies, independently of their
characterization, since all of them are equally
important for the firewall administrator (who is the
responsible of deciding if they are considered faults
or not).

4 INCONSISTENCY ISOLATION

PROCESS

An extensive analysis of the market-leader

firewall languages was presented in (Pozo1, 2009).
In the analysis it was shown that IP addresses can be
expressed by all of them in octets with a CIDR value
(IP blocks), port numbers as naturals or intervals of
naturals, and protocols as a natural number. Thus,
each selector although being different by nature, can
be expressed as natural numbers and, in some cases,
as intervals of naturals.
One of the main ideas of our approach is to use a

specialized abstract data type (ADT) to store the set
of all selectors of the same type of the m rules in
ACLallow (i.e. one ADT to store protocols used in all
rules, two ADTs to store the source and destination

Figure 2: Result of the inconsistency isolation

process

1

,

, , ,

,

([])

denyi
i n

j

id i ij

ACLR

PROTOCOL IPSRC IPDST
j j

PORTSRC PORTDST

A R j Mσ

≤ ≤

∀ ∈

∀ ∈

∩ ≠ ∅ =∏

i i

, ,

, ,
,

j

i i

j

PROTOCOL IPSRC

IPDST PORTSRC PORTDST
M M j

= ∈

∩

IPs used in all rules, and another two ADTs to store
source and destination ports). With this division and
using divide and conquer, in order to know with
which rules in ACLallow the rule d deny

R ACL∈ is
inconsistent with, it is needed a search in each ADT
for each selector in Rd. Each of these five searches
returns all rules which have an intersecting selector.
However, not all of these rules are inconsistent with
Rd, a final combination step is needed. Attending to
the presented inconsistency definitions, Rd is
inconsistent with one or more rules in ACLallow only
if all of its selectors intersect with all the selectors of
one or more rules in ACLallow. Thus, the results of
the five searches must be intersected in order to get
this information. Since the process must be repeated
for the n rules in ACLdeny, this complexity must be
multiplied by n. The whole process is graphically
represented in Fig. 3.
In the following sections, a different data

structure is going to be proposed for each selector,
based on the analysis of the particular data set that
each one can store (Pozo1, 2009). The objective is to
find or design ADTs capable of doing searches in
worst case time complexity better or equal than
O(logm). Finally, a combination step for these
search results in worst case time complexity in O(r)
is also going to be proposed, where r=m/k, and
where k a very big constant (k≥128) which is going
to be theoretically calculated. So, the final time
complexity of the algorithm is in worst case
O(f

2
/4k). Note that in the worst case, n=m=f/2 (i.e.

ACLf has half rules with allow action, and the other
half with deny). As we have said at the beginning of
the section, we have assumed that m>n. However, if
n>m, the algorithm can adapt itself and use ACLdeny

rules (instead of ACLallow ones) to instantiate ADTs.
That is, the algorithm always dynamically takes the
bigger of the two ACLs for ADT instantiation.
Since the ADTs are only populated once,

insertion time for each ADT is amortized during
search operations. Also take into account that if the
ACL is going to be updated (new rules are inserted,
modified, or removed), ADT operations for updates
are necessary. However update operations have not
been considered, since updates are not the focus of
this paper, but a topic for future research. The
presented isolation process is thus considered static.

4.1 ADT for protocol number selector

Attending to the exhaustive analysis of real
firewall languages presented in an earlier work
(Pozo1, 2009) the protocol selector only admits 8-bit
natural numbers and the wildcard, ‘*’. Although
symbolic names are also possible, they can be
converted to naturals using IANA protocol number
list (RFC5237). An important fact is that no ranges
are allowed in the syntax of the selector, and thus
search is a trivial operation, since in order to find a
non-empty intersection with a protocol number (the
one of rule

d deny
R ACL∈) there are only two

possible coincidences in the ADT: ‘*’; or exactly the
same value. In the case that Rd protocol number is
‘*’, then Rd intersects with all rules of the ADT, that
is all rules in ACLallow, and no search is necessary.
To store the association <Protocol number, Rule

ID> we propose to use a hash table with protocol as
the key, and the rule IDs as value. Hash tables

Figure 3: Proposed inconsistency isolation process

(Cormen, 2001) have O(1) (constant) time
complexity for insertions, removals, updates, and
search operations if a perfect hash function is used.
A perfect and minimal hash function is possible,
since the key space is limited and known in advance
(from 0 to 65535, plus the ‘*’). Hash table
instantiation is thus worst case O(n) (the number of
rules in ACLallow).
However, hash tables cannot store duplicate

keys. This is an important problem, since in most
real-life firewall ACLs only a few protocol numbers
are used, although they could be thousand of rules in
the ACL. This issue can be solved grouping all
protocol selectors of the rules that share the same
value (the same key). In this case, the associated
value to the key is a set containing the rule IDs of all
rules that have the key value as the value of their
protocol selector. However, as removal of values
could be inefficient in this way (a hash lookup plus a
search in the list of rule IDs), instead of a list, it is
used a fixed-size bit set of size m (the size of
ACLallow). Each position of the bit set represents one
of the m rules in ACLallow. Positions are set to ‘1’ for
the rules in the hash table that share the same
protocol number. As a side effect, with only one
lookup operation in the hash table, all rule IDs that
share the same protocol number are returned, as the
bit set is the return result of search operations.
Fig. 4 presents the hash table associated to Fig. 1

example, and the result of all the possible search

operations using the same protocol selector values of

ACLdeny rules. In order to simplify the figure, only

the set positions of bit sets are represented (rule IDs

of the assigned rules have been directly used).

Furthermore, protocol names have been transformed

to IANA protocol numbers in the rightmost part of

the figure.

4.2 ADT for port number selectors

Again, attending to the syntax analysis of
market-leader firewall languages (Pozo1, 2009), the
port selectors admit 16-bit natural numbers, double-
ended closed natural intervals, and ‘*’. Symbolic
names are converted to naturals or intervals. Source
and destination port selectors are treated the same
way from ADT and complexity viewpoint, and thus
the discussion is applicable for both.
Although the only difference in syntax between

protocols and ports is in the length of the natural and
on the possibility of using intervals, the search
operation for the port number ADT is a completely
different problem.
As with the protocol selector, the result of the

search operation for port numbers is all rule IDs of
ACLallow which have an intersecting port number

with
d deny

R ACL∈ . In this case, a hash table is
useless, since searching a port or an interval in it will
only return equality result, but not intersections with
port intervals. For example, in a hash table with keys
{80, 79-81} and the port of Rd is 80, the search
operation would return only the rule IDs associated
to port 80 key, but note that port 80 also intersects
with the interval 79-81. In the same way, if the port
of Rd is the interval [81-82], then no value will be
returned, since the interval [81-82] is not stored in
the hash table. Searching the entire hash table would
return the needed result, but this operation has a
linear time complexity with the number of different
keys in the hash table.

There are two well-known 2D problems in

computational geometry that solve similar searches
(Chiang, 1991): first, given a set of data points (port
numbers) and a query rectangle (port interval), give
all the points that are inside the rectangle (this is the
orthogonal range search problem); second, given a
set of (possibly intersecting) data rectangles (port
intervals) and a query point (port number), give all
rectangles that intersect the query point (this is the
stabbing problem).
These two 2D problems can be reformulated into

1D space, where rectangles are intervals and points
are only represented by one coordinate. In 1D, these
problems are called 1D range search problem (de
Berg, 1997) and overlapping interval search
problem (Edelsbrunner, 1983) (EdelsBrunner2,
1983) respectively. Fortunately, specialized data
structures for 1D and 2D problems that give optimal
bounds (in time and space) solutions to these two
problems exist (Chiang, 1991). In the particular case
of 1D, the Interval Tree (Cormen, 2001)

Figure 4: Hash table (perfect and minimal hash

function) of protocol selector of Figure 1 example

(ACLallow rules) and search results for ACLdeny rules

(Edelsbrunner, 1983) (EdelsBrunner2, 1983), or
ITree, is the selected ADT because it has optimal
bound for the 1D problem (in time and space).
Fortunately, our port number or port interval

search problems can trivially be reformulated to
range search and overlapping interval search
problems respectively, as port numbers can be
represented as points in a 1D plane, and port
intervals can be presented as lines in the same 1D
plane.
Let X be a set of M points in a line, and S a set of

m segments with endpoints in X. The primary
structure for the ITree, T, can be a balanced binary
search tree (Chiang, 1991) or a red-black tree
(Cormen, 2001), whose internal nodes store the
points of X, sorted from left to right, and whose
leaves represent intervals between consecutive
points of X. Each segment s of S is allocated at the
least common ancestor of the nodes associated with
the endpoints of s. The set of segments allocated at a
node b, denoted by S(b), is represented by two lists
that store the left endpoints sorted from left to right,
and the right endpoints sorted from right to left.
Hence, the space complexity is in O(m+M). In our
problem, this is linear with the number of rules in
ACLallow. Furthermore, in our implementation
duplicate intervals or points are not allowed (as with
duplicate protocols), and are only stored once (again,
using a bits set for rule IDs). Thus, the space
complexity is reduced in a constant factor.
ITrees are static ADTs, where only a fixed set of

segments and points, known in advance, can be
stored. However, in order to support insertions and
deletions of segments and points, the endpoint lists
can be replaced with inorder-threaded balanced
search trees. Hence, the update time is in amortized
O(logm). Query time is in O(logm + L), where L is
the number of returned results (a constant factor).
Thus, instantiation is in worst case amortized
O(m*logm), one insertion for each rule in ACLallow.
Best case time complexity could be very small when
the number of port repetitions between different
rules is very high, since the resulting ITree would be
very small. ITrees is a well-know ADT, which has
been widely used in database searches. Due to space
constraints, no more information will be presented
here, but it is available in the given references,
including a time and space complexity analysis.
The result of the search operation over the ITree

with a port number or interval of the rule

d deny
R ACL∈ , is the union of all bit sets associated

to port values in the ITree which intersect the given

port of Rd, or a bit set with all bits set to ‘1’ if the

given port of Rd is ‘*’. Fig. 5 presents the ITree

associated to Fig. 1 example (destination port

selector of ACLallow only), and the result of all the

possible search operations using destination port

selector of Fig. 1 ACLdeny rules.

4.3 ADT for IP address selectors

Attending to the syntax analysis of firewall
languages (Pozo1, 2009), both IP address selectors
admit 32-bit host IP addresses in CIDR format, and
‘*’. Symbolic names are converted to octets. Source
and destination IP selectors are treated the same way
from ADT and complexity viewpoint, and thus the
discussion is applicable for both.
As with previous cases duplicates are not

allowed (bit sets are used again). Thus, the result of
the search operation must be a bit set with positions
set to ‘1’ for all rule IDs of ACLallow which have an
intersecting IP with the given in the rule

d deny
R ACL∈ . As an IP block is a compact way of
expressing IP address intervals, a hash table is again
useless for IPs. An IP address is composed by four
octets, each one being an 8-bit natural. A search
operation over an ADT must use the CIDR of the
IPs stored in it: Let IP1/CIDR1 and IP2/CIDR2 be two
IP addresses, if CIDRs is the shortest of the two
netmasks, then the intersection of IP1 and IP2 is not
empty if IP1&CIDRs=IP2&CIDRs.
Note that valid network IP addresses have CIDR

values between 1 and 30. Value 31 is useless, since
it only permits two hosts (.0 and .255, which are not
valid host IP addresses); CIDR 32 is reserved for
host IPs; and CIDR 0 is only used for the wildcard
IP (0.0.0.0/0).

ACLallow

R1 (dport=80)

R2 (dport=80)

R5 (dport=21)

R6 (dport=21)

R8 (dport=53)

R9 (dport=53)

R10 (dport=*)

ACLdeny

R0 (dport=80)

R3 (dport=80)

R4 (dport=21)

R7 (dport*)

R11 (dport=*)

SEARCH

RESULTS

Search(R0)={R10, R1, R2}

Search(R3)={R10, R1, R2}

Search(R4)={R10, R5, R6}

Search(R7)={R10, R5, R6,R8, R9, R1,R2}

Search(R11)={R10, R5, R6,R8, R9, R1,R2}

[0-65535]

{R10}

[21,21]

{R5, R6}

[80,80]

{R1, R2}

[53,53]

{R8, R9}

INTERVAL TREE

Figure 5: Interval tree of destination port selector of

Figure 1 example (ACLallow rules) and search results

for ACLdeny rules

We propose the design of a completely new and
specialized ADT to store IP addresses, capable of
doing searches that return multiple intersections (as
with previous selectors) in time better than O(m)
(where m is the size of ACLallow). As we are going to
show, space complexity of this ADT is better than
O(m). This new ADT is called IP Tree. The general
structure of an IP Tree as well as several example
IPs and its corresponding IP Tree are presented in
Figures 6 and 7 respectively.

The IP Tree is formed by four levels (root is not

considered to be a valid level). For each node, 255
children are possible at most (0-254). These children
values of each node (octets) are recursively stored in
a hash table (with a perfect and minimal hash
function). The association <Node octet, Children
nodes> is called an IP Tree node, where children
octets is another hash table of the same type (IP Tree
node, Fig. 6).
As in the other ADTs, no repetition of IPs are

allowed. Leaf nodes maintain the information
regarding the IDs of the rules that share a common
value for an IP address selector. In fact, leaf nodes
does not have a hash table for storing <Node octet,
Children octets> (since they do not have any
children), but a hash table with a perfect hash
function (there are only 30 possible CIDRs) to store
<CIDR, RuleID Bit set>. CIDRs represent the
CIDRs of the inserted rules that ended in that leaf,
and if there are many with same CIDR (i.e. a
repeated value), then bits are set to ‘1’ in the bit set.
Insertions are done traversing the tree from top

to bottom. First, the IP/CIDR address to be inserted
is decomposed in its four natural octets plus the
CIDR value: o1.o2.o3.o4/cidr. Then, the root node
hash table is asked in order to know if o1 is already
in the first level of the IP Tree. If it is, the next step
is to navigate to the second level through the found
octet (using the children hash table). If not, a new IP
Tree node with value o1 is inserted in the root node
children hash table. These same is done for o2, o3,
and o4. Once at the last level, if o4 has been found, a
check is launched for the CIDR data stored in the
leaf <CIDR, Rule ID Bit set> hash table using cidr
value of the IP. If cidr value is found, the bit
corresponding to the ID of the inserted IP is set to
‘1’. If not, a new CIDR value is created with its
corresponding bit set. Thus, the insertion of a new IP
consists, in the worst case, of three O(1) searches in
perfect hash tables, plus a O(1) search in a leaf
perfect hash table, resulting in O(1) worst case time
complexity.
The search operation follows the same scheme as

the insertion one. Note that in order to know if two
IP addresses intersect, the application of the shortest
netmask of the two IP addresses is necessary, as has

been pointed at the beginning of the subsection.
However the result we need is the intersection of one
IP with all IPs in the IP Tree, which contains all the
IPs of the m rules in ACLallow. Thus, the application
of all netmasks of the IPs in the IP Tree which are
smaller than or equal the CIDR of the given Rd IP
address is necessary (at most 30 netmasks). The
result of the application of these netmasks is a set of
(at most) 30 network IPs. Now, a search operation
for each of these IPs is launched. The search
operation follows the same algorithm used for
insertions, but taking the list of rule IDs associated
to the CIDR of the leaf which coincide with the
CIDR used for the search, if a search ends
successfully. The result of the search operation is the
union of all bit sets associated to IP addresses in the
IP Tree which intersect the given IP address of Rd
(e.g. the result of the –at most- 30 searches), or a bit
set with all bits set to ‘1’ if the given IP address of
Rd is ‘*’. Note that having 30 different netmaks in a
real firewall ACL is not very usual, because this
usually indicates that the firewall is controlling
traffic between 30 different networks, each one
attached to a different physical network interface.
Thus, worst case time complexity of a search

operation of a network address in a network tree is
in O(30*(4*1+1))=O(1). However, in the average
case, the multiplicative factor 30 of one search
operation can be reduced to 30-h. If a search
operation successfully ended in a leaf l, and l
contains k CIDR values not yet used for a search in
the IPTree list of CIDRs, then these values should
not be used, because if used for searches, they will
lead to the same leaf l, causing a duplicate search.
This reduction of CIDRs can be made each time a
new leaf is visited, thus the sum of these removed
CIDRs is h.
Finally, host search is slightly different. Suppose

that the search operation receives a host IP address

root

0 254...

0 254...

0 254...

Octet: 0

CIDR1={RuleIDs}

…

CIDR30={RuleIDs}

…

Octet: 254

CIDR1={RuleIDs}

…

CIDR30={RuleIDs}

IPTREE INTERMEDIATE NODE

Node octet

Hash Table <Node octet, Children nodes>

IPTREE LEAF NODE

Node octet

Hash Table <CIDR, BitSet>

IPTREE ROOT NODE

Hash Table <Node octet, Children nodes>

Figure 6: IPTree general structure

from Rd. In this case, all CIDRs of the IP tree must
be applied to the host IP, creating at most 30 IP
network address. If the IP tree only contains network
IP addresses, the procedure is the described above
with no modifications at all. However, if the IP Tree
also has host IP addresses, the new network address
created from the application of a CIDR to the host IP
address of Rd, could also intersect with another host
IP address of the IP tree. This is an important
problem, because the IP address of Rd cannot
intersect with more than one host IP address of the
tree (the one that is exactly equal to the IP of Rd),
although it can intersect with many network IP
addresses. This multiple host IP intersection problem
can be solved splitting the IP Tree in two disjoint IP
trees: one to store network ACLallow IP addresses and
wildcards, and another one to store ACLallow host IP
addresses. The network IP Tree is exactly the
described one (Figs. 6 and 7), but the host IP Tree is
a simplified version, where no CIDR information is
stored in leaves, and where all searches are exact
1..1. In addition, a slightly simplified version of
insert and search methods are necessary for the host
IP Tree. These simplifications are not described here
due to space constraints, but could easily be derived.

4.4 Combination of search results

Using the calculated worst case time
complexities of the search operations for the five
selectors and, by the sum of the rule, the combined
search time for five selectors is in worst case
O(1+2*1+2*logm)=O(logm). The first factor is the
time associated to the hash table search (used by
protocol number selector), the second is the two
searches in IP Trees (used by source and destination

IP address selectors), and the last one is the two
searches in interval trees (used by source and
destination port selectors).
The obtained results are five bit sets with

positions set to ‘1’ for intersecting rule IDs.
However, from the inconsistency definitions, all
selectors must overlap for a rule to be inconsistent
with other(s). Thus, the composition of this result is
somewhat trivial: the intersection of the five bit sets.
This intersection gives all between

d deny
R ACL∈ and

all rules in ACLallow. This result can directly be used
by the firewall administrator, since no
decomposition has been made to the firewall ACL.
Fig. 8 is an example for

0 deny
R ACL∈ , where the

five bit sets resulting from the five searches for R0
selectors and their intersection are shown. Some of
these results have been presented in previous
figures. In this case the combination step is
necessary because all searches have returned non-
empty bit sets. The returned bit set indicates that R0
is inconsistent with R1 and R2. Now is the firewall
administrator who decides if these two
inconsistencies are faults or not.
As its name indicates, a bit set is an ADT whose

main purpose is to store bit elements. The
intersection of the five bit sets is a linear time
operation with the size of the bit sets (or the number
of rules in the ADTs, m, reduced by a constant factor
derived from the duplicate removals). However, in
the worst case, no repetitions are considered. Note
that although the problem is linear, logical
operations over bit arrays are very efficient, as they
are instructions that can be executed in one machine
cycle over 128 bit registers (at least) using special
multi-register multimedia instructions. This yields a

Figure 7: IPTree example for network addresses

 R1 R2 R5 R6 R8 R9 R10

SrcIP 1 1 1 1 1 1 0

DstIP 1 1 1 1 1 1 1

SrcPort 1 1 1 1 1 1 1

DstPort 1 1 0 0 0 0 1

Protocol 1 1 1 1 0 0 0

Combination 1 1 0 0 0 0 0

Figure 8: Combination step example

severe problem reduction by a big constant, k≥128,
in time (with no space penalty).
Thus, worst case time complexity of the full

process (for the n rules in ACLdeny), including the
combination operation, is in worst case O(n*(logm +
m/k), n=m=f/2, m/k>logm�O(n*logm)+O(n*m/k)
�O(f/2*log(f/2))+O(f/2*(f/2)/k),(f/2)/k>log(f/2) �
O(f/2*(f/2)/k) �O((f

2
/2)/2k) �O(f

2
/4k), k≥128.

Derived from this analysis is the fact the
complexity is bounded principally by the number of
allow and deny rules (if they are equal, n=m=f/2,
worst case is achieved). However, as it is going to be
shown in the experimental results, worst case ACLs
are really unusual in the real word, where firewalls
usually control traffic between small network
segments with very specific services, and where
multiple firewall configurations are the norm. Thus,
best and average cases are achieved when there a lot
of selector repetitions in ACLallow (and thus ADTs
are very small), when n<<m, and when ACLf is
consistent (if a selector of a rule of ACLdeny is
consistent with the same selector of all the rules of
ACLallow, then that rule of ACLdeny is consistent by
definition, no more searches for the rest of selectors
are needed, and thus no combination of search
results is needed). This results in O(n*logm), where
m is very small due to duplicates�O(n), n<<m.
As has also been shown, the space needed in the

process is linear with the number of rules in ACLallow
plus some bit sets (the space needed to store the bit
sets is negligible).

As the experimental results will show, this
complexity represents (for the tested real ACLs
(average cases) an algorithm that is up to three
orders of magnitude faster than the trivial O(f

2
), and

one to two orders faster than (Baboescu, 2003),
which is the best known algorithm to date.
Unfortunately, a direct theoretical comparison with
Baboescu ASBV algorithm is not possible, since its
time complexity is provided in number of memory
accesses. The complexity reduction of our algorithm
in the worst case is mainly obtained from the big
multiplicative constant, k, and in the best case is
mainly obtained from the ADTs.

5. EXPERIMENTAL RESULTS

In absence of standard ACLs or synthetic ACL
generators, the algorithms have been tested with real
firewall ACLs (Table 1).
The conducted performance analysis represents a

wide spectrum of cases, with ACLs of sizes ranging
from 50 to 10600 rules, and percentages of allow
and deny rules ranging from 2% to 65%. Recall that
worst case for our proposal is achieved when half
rules are allow and the other half are deny, and
where all rules are inconsistent. Also note that real
ACLs have some important differences with
synthetically generated ones. The most important
one is the number of deny and allow rules: as real
firewall ACLs are usually designed with deny all
default policy, most rules are going to have allow
actions, and thus ACLallow will be bigger than
ACLdeny. The result is that the worst case would not
normally be achieved in real firewall ACLs.
Experiments were performed on a monothreaded

Java implementation with Sun JDK 1.6.0 64-Bit
Server VM, on an isolated HP Proliant 145G2
(AMD Opteron 275 2.2GHz, 2Gb RAM DDR400).
Execution times are in milliseconds.
As is shown in Table 1, execution of the

Table 1: Performance evaluation

ACL

Size

%Deny

Rules

No.

Inconsist

Trivial

Isolation

(ms)

Optimized Trivial

Isolation Algorithm

(ms)

Baboescu

Isolation

Algorithm (ms)

Proposed Isolation

Algorithm (ms)

ADT

build

(ms)

50 28,21 37 0.22 0.09 0.58 0.03 0.09

144 30,91 108 1.34 0.62 1.50 0.06 0.17

238 66,43 231 3.56 2.04 2.71 0.17 0.22

450 34,73 422 13.22 5.61 5.29 0.26 0.54

900 14,8 871 51.57 3.46 11.11 0.4 1.14

2500 6,97 3349 387.86 55.01 43.12 0.86 3.54

5000 1,98 4937 3160.09 64.33 106.99 1.06 9.02

10611 2,05 11866 12046.67 332.85 476.81 8.31 21.85

isolation process (for all rules in ACLdeny) is really
fast, even in large ACLs. If the difference between
the trivial algorithm and the optimized version
proposed in (Pozo2, 2008) is very big, the difference
between the trivial one and the proposed in this
paper is dramatic, with improvements of up to x3000
for the trivial, and up to x60 for the optimized trivial
(with the test ACLs).
In the case of Baboescu ASBV algorithm, results

show that his algorithm is 30 times faster than the
trivial one, which also coincide with the conclusions
presented in his paper. However, in practical terms,
the optimized trivial algorithm presented in (Pozo2,
2008) achieves an execution time that is even a bit
faster than Baboesu proposal. This is an indication
of the problem increase due to the range to prefix
pre-process in the Baboescu proposal.
Our proposal represents a 10 to 100 times faster

alternative than the current best known one. This
represents a dramatic improvement over other
proposals, specially taken into account that our
algorithm returns results the isolation over the
original, unmodified, ACL, and not over a pre-
processed one (as Baboescu proposal does).
Figure 9 presents a graphic comparison between

the optimized trivial (Pozo2, 2008), Baboescu
ASBV (Baboescu, 2003), and our new algorithms.
The last column in Table 1 presents ADT build

time for all ADTs, showing that they are very
reasonable and amortizable in a few worst-case
searches. Note that once ADTs are built, they need
no modification (unless the ACL changes).

The number of different values per selector and
per ACL is presented in Table 2. Note that if there
are a lot of values of selectors repeated in different
rules of the same ACL, then search times severely
improve. This is especially important for the two
port selectors, since the Interval Tree is the ADT
which has the worst time complexity of all ADTs.
As can be seen in Table 2, the number of repetitions
in the values of the selectors is unsurprisingly high
in real ACLs, even if they are very big. With
sufficiently small ADTs, experimental search times
are near constant (this fact can be seen in Table 1, in
the proposed algorithm column). The algorithms
scale very well. This confirms our assumptions over
real ACLs made at the end of the previous section.

6. CONCLUSIONS

During firewall ACL design and management
inconsistencies can be introduced. An inconsistent
firewall ACL implies in general a design error.
However, the firewall administrator is who
ultimately decides if an inconsistent rule is faulty.
In this paper, we have proposed a new

inconsistency isolation algorithm for firewalls with
five integer (or intervals of integer). Our approach
has been based on an analysis of which data type
each rule selector can to store, on the design of
specialized abstract data types for each one, and on
divide and conquer algorithm. A theoretical
algorithmic complexity as well as an experimental
performance analysis has been made in order to
validate our theoretical results.
Our proposal represents an algorithm that is 10

to 100 times faster then the current best known one.
Furthermore, results are returned over the original,
unmodified ACL in our case, rather than over a
decomposed ACL which is different than the
original one.
However, our approach has some limitations that

give us opportunities for improvement in future
works. A performance analysis of each part ADT of
the algorithm is necessary in order to know where
the bottleneck is now, in order improve even more
the algorithms. Checking the behaviour of the
proposed ADTs in dynamic environments could be
another interesting point, where another comparison
in complexity and memory requirements to
Baboescu algorithm would be a point.

Figure 9: Execution times

REFERENCES

Al-Shaer, E., Hamed, H. Modeling and Management of

Firewall Policies. IEEE eTransactions on Network and

Service Management (eTNSM) Vol.1, No.1, 2004.

Baboescu, F., Varguese, G. Fast and Scalable Conflict

Detection for Packet Classifiers. Computers &

Networks Vol.42, No.6, Elsevier 2003.

Bollig, B., Wegener, I. Improving the Variable Ordering

of OBDDs is NP-Complete. IEEE Transactions on

Computers, Vol.45 No.9, September 1996.

Cormen, T., Leiserson, C., Rivest, R., Stein, C.

Introduction to Algorithms, 2nd Ed. McGraw-Hill,

2001.

Chiang, Y., Tamassia, R. Dynamic Algorithms in

Computational Geometry. Technical Report CS-91-24.

Brown University, Providence, RI, USA, 1991.

de Berg, M., van Kreveld, M., Overmars, M.,

Schwarzkopf, O. Computational Geometry: Algorithms

and Applications. Springer-Verlag, Berling, 1997.

Edelsbrunner, H. A new approach to rectangle

intersections, Part II. International Journal on

Computational Mathematics. Vol.13, pp. 221-229,

1983.

Edelsbrunner2, H. A new approach to rectangle

intersections, Part I. International Journal on

Computational Mathematics. Vol.13, pp. 209-219,

1983.

Eppstein, D., Muthukrishnan, S. Internet Packet Filter

Management and Rectangle Geometry. Proceedings of

the Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), January 2001.

García-Alfaro, J., Boulahia-Cuppens, N., Cuppens, F.

Complete Analysis of Configuration Rules to

Guarantee Reliable Network Security Policies,

Springer-Verlag International Journal of Information

Security. Vol.7, No.2, 2008.

Gupta, P., McKcown, N. Packet classification on multiple

fields. Proceedings of the ACM SIGCOMM.

Cambridge, MA, USA. September 1999.

Hamed, H., Al-Shaer, E. Taxonomy of Conflicts in

Network Security Policies. IEEE Communications

Magazine Vol.44, No.3, 2006.

Hari, B., Suri, S., Parulkar, G. Detecting and Resolving

Packet Filter Conflicts. Proceedings of IEEE

INFOCOM, March 2000.

Liu, Alex X., Gouda, Mohamed G., "Complete

Redundancy Removal for Packet Classifiers in

TCAMs," IEEE Transactions on Parallel and

Distributed Systems, 24 Sept. 2008. IEEE computer

Society Digital Library. IEEE Computer Society.

Luis, S., Condell, M. Security policy protocol. IETF

Internet Draft IPSPSPP-01, 2002.

Pozo1, S., Ceballos, R., Gasca, R.M. Model Based

Development of Firewall Rule Sets: Diagnosing Model

Faults. Information and Software Technology Journal,

No. 51, Issue 5, pp. 894-915. Elsevier, 2009.

Pozo2, S., Ceballos, R., Gasca, R.M.. A Heuristic

Polynomial Algorithm for Local Inconsistecy

Diagnosis in Firewall Rule Sets. 3rd International

Conference on Security and Cryptography

(SECRYPT), in International Conference on e-

Business and Telecommunications (ICETE). Porto,

Portugal. INSTICC Press, 2008.

Srinivasan, V., Varguese, G, Suri, S., Waldvogel, M. Fast

and Scalable Layer Four Switching. Proceedings of the

ACM SIGCOMM conference on Applications,

Technologies, Architectures and Protocols for

Computer Communication, Vancouver, British

Columbia, Canada, ACM Press, 1998.

Taylor, David E. Survey and taxonomy of packet

classification techniques. ACM Computing Surveys,

Vol.37, No.3, 2005.

Wool, A. A quantitative study of firewall configuration

errors. IEEE Computer, Vol.37, No.6, 2004.

Yuan, L., Mai, J., Su, Z., Chen, H., Chuah,, C. Mohapatra,

P. FIREMAN: A Toolkit for FIREwall Modelling and

ANalysis. IEEE Symposium on Security and Privacy

(S&P’06). Oakland, CA, USA. May 2006.

ACKNOWLEDGEMENTS
This work has been partially funded by Spanish

Ministry of Science and Education project under
grant DPI2006-15476-C02-01, and by FEDER
(under ERDF Program).

Table 2: Number of different elements per selector and per ACL

ACLn Size

Protocol

Hash Table

size

Source Port

ITree size

Dst Port

ITree size

SrcIP Host IP

Tree size

SrcIP NW IP

Tree size

DstIP Host IP

Tree size

DstIP NW IP

Tree size

39 3 4 4 9 2 8 2

110 3 11 11 18 4 27 4

143 3 14 17 20 4 30 4

334 3 19 26 29 4 38 4

784 3 19 31 31 4 47 4

2337 3 47 49 76 5 70 5

4903 2 45 50 136 10 142 10

10398 3 86 87 177 25 217 25

