
Int. Journ. of Unconventional Computing, Vol. 17, pp. 159–171 ©2022 licensed under the Creative Commons
Reprints available directly from the publisher Attribution 3.0 License.
Photocopying permitted by license only Published by license under the OCP Science imprint,

a member of the Old City Publishing Group.

An Approach to Interfacing the Brain with
Quantum Computers: Practical Steps and

Caveats

E. R. MIRANDA1,∗, S. VENKATESH1, J. D. MARTIN-GUERRERO2,
C. HERNANI-MORALES2, L. LAMATA3 AND E. SOLANO4,5,6

1ICCMR, University of Plymouth, Plymouth, UK
2IDAL, Electronic Engineering Department, ETSE-UV, University of Valencia, Valencia, Spain

3Department of Atomic, Molecular and Nuclear Physics, University of Seville, Seville, Spain
4QuArtist, Physics Department, Shanghai University, Shanghai, China

5Ikerbasque, Bilbao, Spain
6Kipu Quantum, Munich, Germany

Received: December 25, 2021. Accepted: December 29, 2021.

We report on the first proof-of-concept system demonstrating how one
can control a qubit with mental activity. We developed a method to
encode neural correlates of mental activity as instructions for a quan-
tum computer. Brain signals are detected utilising electrodes placed on
the scalp of a person, who learns how to produce the required mental
activity to issue instructions to rotate and measure a qubit. Currently,
our proof-of-concept runs on a software simulation of a quantum com-
puter. At the time of writing, available quantum computing hardware
and brain activity sensing technology are not sufficiently developed for
real-time control of quantum states with the brain. But we are one step
closer to interfacing the brain with real quantum machines, as improve-
ments in hardware technology at both fronts become available in time
to come. The paper ends with a discussion on some of the challenging
problems that need to be addressed before we can interface the brain
with quantum hardware.
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1 INTRODUCTION

In a recent perspective paper [1], we proposed the concept of Quantum Brain
Networks (QBraiNs) as an emerging interdisciplinary endeavour, integrating
knowledge and methods from neurotechnology, artificial intelligence (AI),
and quantum computing (QC). The objective of QBraiNs is to establish direct
communications between the human brain and quantum computers. We fore-
see the development of highly connected networks of wetware and hardware
devices, processing classical and quantum computing systems, mediated by
Brain-Computer Interfaces (BCI) and AI. Such networks will involve uncon-
ventional computing systems and new modalities of human-machine interac-
tion.

This paper introduces a first attempt at controlling a qubit with mental
activity. We developed a proof-of-concept system, which demonstrates how
a person can rotate and measure a qubit using brain signals.

However, due to limitations imposed by currently available quantum com-
puting hardware and brain sensing technology, our proof-of-concept runs on
a software simulation of a quantum computer. Nevertheless, we are one step
closer to interfacing the brain with real quantum machines, as improvements
in hardware technology at both fronts become available in time to come.

We invented a method to encode neural correlates of mental activity as
instructions for a quantum processor. Brain data are read utilising electrodes
placed on the scalp of a person, who learns how to produce the required
mental activity to issue instructions to rotate and measure a qubit.

By way of previous related work, Kanas et al. [2] hinted at the possibility
of interfacing the brain with quantum computers. Other speculative propo-
sitions were put forward by Pesa and Zizzi [3] and Musha [4]. However
forward-thinking as these works may sound, none of them present a concrete
experiment or demonstration to support their cases. To the best of our knowl-
edge, the first ever practical demonstration of BCI using quantum computing
was reported by Miranda [5].

The goal of our research is to go a step beyond using quantum computing
to analyse brain signals for controlling devices, such as a robot, a vehicle, or a
musical instrument, as introduced in [5]. Rather, here we envisage the possi-
bility of forging deeper connections between brains and quantum computers.
The ultimate goal is to be able to affect the states of quantum computers with
the mind.

2 CODES OF BRAIN ACTIVITY

The Homo sapiens’ brain is one of the most complex systems known to
science. It has circa one hundred billion neurones forming a network of
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quadrillions of connections [6]. The amount of information that circulates
through this network is, although probably bounded, immense. Essentially,
neurones are electrical entities. They communicate with one another through
action potentials and chemical neurotransmitters. These action potentials are
often referred to as spikes.

There exists technology nowadays to record neural communication at
various levels: from the microscopic level of neurone-to-neurone commu-
nication, to higher levels of communication between networks of neurones.
Unfortunately, most of this technology is impractical for deployment outside
highly specialised research laboratories. At the same time, the engineering to
develop sensors made with bioelectronics and nanomaterials is progressing
fast to improve this scenario [7].

Even though sensing technology is becoming increasingly sophisticated,
the understanding of the meaning of sensed signals remains very problem-
atic. We may be able to detect neural signals fairly accurately nowadays, but
we would not necessarily know what they mean. For instance, it is not hard to
render sequences of spikes as sequences of binary numbers for a digital com-
puter to process. But we would have very little clues about what the neurones
are communicating to each other. Of course, AI can provide solutions here,
as is the case of the machine learning (ML) algorithms for neural decoding
introduced in [8].

A widely used method for reading electrical brain activity is to use elec-
trodes placed on the scalp of a person (Figure 1). This recording is called
the electroencephalogram, or EEG [9]. There is a plethora of different EEG
recording systems commercially available. They are of varying reliability;
the low-cost ones usually relay more spurious signals than actual EEG. It

FIGURE 1
Brain activity can be read using electrodes strategically placed on the human scalp.
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FIGURE 2
Widely used scheme for positioning electrodes for EEG recording.

is also possible to record electrical brain activity with electrodes surgically
implanted under the skull, on the surface of the cortex, or deep inside the
brain; e.g., electrocorticography (ECoG) [10]. Surgically implanted elec-
trodes provide substantially better signals to work with than scalp electrodes.
But brain implants are not routinely used in research with humans at present
for obvious health and safety reasons1.

2.1 The electroencephalogram
For this project, we adopted scalp EEG. We used an affordable off-the-shelf
mid-range device manufactured by g.tec, Graz, Austria2. It consists of a cap
furnished with electrodes and a transmitter that relays the EEG wirelessly to
a computer.

The standard scheme for positioning electrodes on the scalp is shown
in Figure 2. The terminology for referring to the positioning of the elec-
trodes uses letters to indicate a brain region and a number: Fp (pre-frontal), F
(frontal), C (central), T (temporal), P (parietal) and O (occipital). Odd num-
bers are for electrodes on the left side of the head and even numbers for those
on the right side; the letter “z” stands for the central region. For this project,

1Other technologies for brain scanning include functional Magnetic Resonance Imaging (fMRI), near-
infrared spectroscopy (NIRS), and magnetoencephalography (MEG). However, these are prohibitively
expensive, less portable, and (by the time of writing) offer inadequate time-resolution for BCI purposes.
2https://www.unicorn-bi.com/
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Frequency Bands Rhythms Mental States
f < 4 delta Sleep

4 ≤ f < 8 theta Drowsiness
8 ≤ f < 15 alpha Low arousal; unfocused; relaxed
15 ≤ f < 40 beta High arousal; focused; excited

TABLE 1
Typical EEG rhythms and associated mental states. Frequency bands are
expressed in Hertz (Hz).

we used eight electrodes (i.e., eight EEG channels) positioned at F8, F7, Cz,
Pz, C4, C3, T6 and T5, respectively.

Power spectrum analysis is a popular method to extract information from
EEG. This method breaks the EEG signal into different frequency bands and
reveals the distribution of power between them. Power spectrum analysis is
widely used in BCI research because it reveals patterns of brain activity that
can be recognised automatically and translated into commands for a system.
Research exploring the mental correlates of EEG usually considers spectral
components up to 40 Hz [11]. There are four recognised spectral frequency
bands, or EEG rhythms, each of them associated with specific mental states
(Table 1).

2.2 Encoding method
We developed a simple method to encode EEG as instructions to rotate a
qubit. The method takes into account two mental states: low arousal (a.k.a.
relaxed) and high arousal (a.k.a. excited). However, to control the qubit, we
need at least four different instructions. As the number of instructions is
greater than the number of mental states, we sequentially relayed instruc-
tions to the system through unique ‘brain codes’. These are Morse-like binary
codes.

As shown in Table 2, there is a unique brain code associated with each
instruction, where 0 and 1 correspond to relaxed and excited mental states,
respectively. The instructions are as follows:

� {0, 1}: This is the instruction to start the program, which initializes
the connection with the quantum system. None of the other instructions
would work without this initialization.

� {1, 1}: This instruction increases the angle of rotation, by a pre-defined
amount.

� {0, 0}: This instruction decreases the angle of rotation, by a pre-defined
amount.

� {1, 0}: This instruction has two functions. When it occurs for the first
time, it changes the axis of rotation on the Bloch sphere (Figure 3),
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Command Brain Code Description

Start program {0, 1}

A relaxed state followed by

an excited state. This

initializes the connection

with the quantum computer.

Increase angle {1, 1}
An excited state followed by

another excited state. This

increases the angle of rotation.

Decrease angle {0, 0}
A relaxed state followed by

another relaxed state. This

decreases the angle of rotation.

Change axis or

measure
{1, 0}

An excited state followed by

a relaxed state. On its first

occurrence, it shifts the axis

of rotation. On its second

occurrence, it measures the

qubit.

TABLE 2
Different instructions passed to the quantum computer through unique
brain codes.

from z (vertical axis) to y (horizontal axis), and vice-versa. Then, when
it occurs for the second time, the system measures the qubit.

3 MACHINE LEARNING

Section 2 already hinted that the task of establishing what brain signals mean
is a fiendish problem. And the fact that the EEG signal is very noisy makes
this even more complicated.

The EEG signal captured by surface electrodes is severely distorted by
cortical fluids, the meninges3, the skull, skin and hair. The signal is unreliable,
even to identify only two different classes of mental states. Hence, we use
machine learning to harness the capability of the system to identify them.

In order to teach the system to classify between two states of mind, we
need to compile a training set with labelled data produced by the user.

First of all, the system has to be calibrated for the specific user. And
this person needs to train themselves how to produce EEG corresponding
to relaxed and excited mental states, respectively [12]. For instance, closing
the eyes is one of the easiest and most pragmatic ways to induce the brain
to produce (‘relaxing’) alpha rhythms. Once the user has practised how to

3These are membranes that envelop the brain.
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achieve a relaxed state of mind, then this is effortlessly achievable with the
eyes open. People who are trained in meditation techniques (e.g., yoga) are
able to produce alpha rhythms with ease. Beta rhythms can be produced by
imagining, or remembering, a stressful situation. Mentally solving a puzzle
or a mathematical problem can induce the brain to produce (‘exciting’) beta
rhythms.

Once the user has rehearsed to switch between the two states of mind, then
samples of EEG signals corresponding to the respective states are recorded
to form a training data set for the classifier. Next, we perform short-time fast
Fourier transform (FFT) analysis on each sample to calculate their average
power in the alpha and beta frequency bands. These values are used as fea-
tures to teach the samples’ profiles to a machine learning algorithm.

For the machine learning, we adopted the k-Nearest Neighbors (kNN)
method. We implemented this using the scikit-learn Python library version
1.0.14. kNN is a supervised machine learning method widely used for clas-
sification and regression [13]. In the case of classification, it is based on
assigning a class (or label) to a given sample, to which most of its k neigh-
bours (in a given metric space) belong to.

The sample data set was split into two subsets, a training and a test set,
respectively. The former is used for the calculation of distances (Eq. 1). And
the latter is used to simulate how the system would work in a real environ-
ment.

di j = ||xi − xj|| (1)

In particular, kNN calculates the distance from each sample in the test set
to the samples of the training set. Then, distances are ordered from small-
est to largest, and the k closest samples are selected. The next step involves
querying the labels of the selected k samples. As we are dealing with a clas-
sification problem, a voting strategy is used to decide the class of the test
sample; i.e., the most voted label is used as the selected class.

The degrees of similarity between the samples are calculated using
Euclidean distance measurements. The algorithm calculates all possible pair-
wise Euclidean distances between them. Samples that are close to each other
are assigned the same label. Our assumption is that similar brain activities
have EEG profiles that are close to each other. Thus, kNN enables the sys-
tem to determine the label (or, ‘class’) of new incoming EEG data using a
distance criterion.

4https://scikit-learn.org/stable/
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FIGURE 3
A snapshot of rotating the qubit using the brain code {1, 1}.

4 PROOF-OF-CONCEPT SYSTEM

As explained in section 2.2, a user alters their mental states to generate brain
codes, or instructions, to rotate a qubit. There is a metronome to synchronize
the brain with the system. It emits an audible ‘click’ every second. The system
builds the brain codes within a window of time lasting for four clicks (i.e.,
four seconds). The flow diagram in Figure 4 illustrates how the system works.

Initially, the system emits four clicks, which prompts the user to be ready
to start a session. Subsequently, the brain activity detected during the follow-
ing four clicks will correspond to the first digit in the code. Similarly, the
second digit is established through the next four clicks. Then, a rest period
of four clicks is provided to enable the user to monitor the output; that is, to
see if the desired qubit rotation has been achieved. Then, the cycles recom-
mences, and so on. Figure 3 shows a snapshot of rotating the qubit with the
code {1, 1}. In this case, the system detected two consecutive excited mental
states in the EEG. This instructed the system to rotate the qubit to the right
by a given angle. As a convention, in the context of Figure 3, to ‘increase
the angle of rotation’ means to move the state vector to the right side of the
image. Conversely, to ‘decrease the angle of rotation’ means to move the state
vector to the left.

A video demonstration and programming code are available at the ICCMR
GitHub repository: https://github.com/iccmr-plymouth/Quantum-BCI.

5 CONCLUDING DISCUSSION

5.1 Towards BCI with quantum hardware
Our proof-of-concept demonstration currently runs on an IBM Quantum sim-
ulator5. In general, quantum simulators offer more controllability than real

5https://www.ibm.com/quantum-computing/services
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FIGURE 4
System flow diagram.

quantum computers and, for a small number of qubits, there would be no
much difference in performance. Currently, to use a real quantum computer,
a program needs to be sent to a machine through a cloud service for batch
processing. It is placed in a queue to be computed at a later time. Then, the
results are sent back to the client computer. It is not uncommon to having to
wait for dozens of minutes until a queued job is processed. This is problem-
atic because our system needs real time access to a qubit.

It is important to note, however, that even if current providers of quantum
computing hardware facilities would grant us direct access to their machines,
our system would need a specific range of parameters that are not generally
available by the time of writing.
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However, the fact that we used a simulator of a superconducting quantum
processor does not bind our work to superconducting technology. In fact,
our system would not work well on superconducting quantum devices as
we know them today. The caveat is that the operational timescales of EEG
and superconducting qubits are orders of magnitude apart, ranging from sec-
onds (in the EEG domain), to microseconds (in the qubits domain). In sim-
pler words, the machine would need to maintain qubits coherent for a pro-
hibitively long time until the brain produces a command. To rotate and mea-
sure a qubit directly with human brain activity, we would need a huge leap
in qubit coherence time that cannot be afforded with current superconducting
technology6. It might be possible to alleviate this problem with an operational
system that would facilitate countless classical-quantum iterations.

Fortunately, there are signs that quantum hardware platforms that would
be suitable for the types of systems that we are interested in developing are
already emerging in a number of academic research labs. For instance, qubits
built with spin pairs in diamond [14] and with trapped ions [15] seem to hold
coherence for over one minute, which would account for sequences of our
brain-generated rotation commands. At least theoretically, this specification
matches the conditions required for our proof-of-concept (Eq. 2), even before
the optimisations discussed in section 5.2 below,

trot < tstep << tcoh (2)

where trot is the time it takes to produce a finite rotation in the qubit, tstep is
the time of each step realized by our protocol, while tcoh is the total coherent
time of the qubit. Moreover, those qubits operate at room temperature [16],
which, on the long run, may enable the manufacturing of more accessible
workstations.

5.2 Looking Beyond EEG
Currently, the system takes four seconds to analyse and classify the EEG
signal to generate a digit for our brain code. Thus, it needs eight seconds to
compute a code. Obviously, this is a far cry from ideal. There definitely are
signal processing techniques [17,18] and other robust classification methods
to optimise this [19, 20].

6Coherence time is the length of time a qubit is able to hold quantum information. This requires phys-
ical qubits to remain highly isolated from the surrounding environment. When a qubit is disrupted by
external interference (e.g., background noise from vibrations, temperature changes or stray electromag-
netic fields) information about the state of that qubit is destroyed, in a process known as decoherence.
This can ruin the ability to exploit quantum mechanics for computation. Longer coherence times enable
more quantum operations to be utilised before this occurs.
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Moreover, EEG correlates of states of mind other than the EEG rhythms
listed in Table 1 have been harnessed for BCI; e.g., evoked potential [21] and
motor imagery [22]. Thus, there are additional alternatives to be explored.

For this project we used an affordable off-the-shelf mid-range EEG device,
using surface dry electrodes. There is EEG technology that offers much
higher fidelity than the fidelity offered by our equipment. And electrodes
surgically implanted under the skull capture considerably better EEG signals
than surface ones.

Furthermore, brain scanning technology that offers more precision than
EEG, but which until recently were deemed unsuitable for BCI, are important
avenues to be explored. These include Magnetic Resonance Imaging (MRI)
[23] and Magnetoencephalography MEG (MEG) [24]. For instance, emerg-
ing wearable scanners based on non-cryogenic OPM-MEG7 are promising
new devices [25]. OPM-MEG technology uses quantum sensors to measure
magnetic fields generated by electrical activity within the brain.

Nevertheless, in addition to improving brain scanning fidelity and reso-
lution, and the timing scale discrepancy mentioned above (section 5.1), we
need to further develop meaningful brain encoding schemes to communicate
with quantum states.

As a starting point, we proposed a Morse-like binary coding informed by
the way in which the brain functions at all levels. Excitatory and inhibitory
processes pervade the functioning of our brain, from the microscopic level
of neurones communicating with one another, to the macroscopic level of
interaction between larger networks of millions of neurones. The encoding
method introduced in 2.2 works at the abstract level of EEG rhythms: think
of a high arousal (‘exciting’) mental state as an excitatory neural process and
low arousal (‘relaxing’) as an inhibitory one.

A better understanding of the meaning of the spiking behaviour of neu-
rones, and networks thereof, plus the ways in which we might be able to
control them - voluntarily or involuntarily - are sine qua non for progressing
with our approach to interfacing the brain with quantum computers.
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