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Abstract

In this article, we first prove some sufficient conditions guaranteeing the existence of invariant sample 
measures for random dynamical systems via the approach of global random attractors. Then we consider the 
two-dimensional incompressible Navier-Stokes equations with additive white noise as an example to show 
how to check the sufficient conditions for concrete stochastic partial differential equations. Our results 
generalize the Liouville type theorem to the random case and reveal that the invariance of the sample 
measures is a particular situation of the random Liouville type theorem.
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1. Introduction

Invariant measures are one of the fundamental objective in the theory of turbulence. This is due 
to the fact that the measurements of some aspects, say the velocity, kinetic energy and turbulent 
boundary layer of the turbulent flows are indeed measurements of time-averaged quantities (see 
e.g. [13,20]). The invariant measures for deterministic evolution equations have been extensively 
studied, one can refer to [4,10,13,14,16,18,23,26] for well-posed systems and to [3,15,21,24,25]
for ill-posed ones. Especially, Łukaszewicz, Real and Robinson [17] used the notion of General-
ized Banach limit to construct the invariant measures for general continuous dynamical system on 
metric spaces. Later, Chekroun and Glatt-Holtz [10] improved the results of [17] to construct in-
variant measures for dissipative autonomous dynamical systems, and Łukaszewicz and Robinson 
[18] extended the result of [10] to construct invariant measures for dissipative non-autonomous 
dynamical systems. Recently, Zhao, Li and Caraballo [22] established some sufficient conditions 
ensuring the existence of trajectory statistical solutions for general evolution equations, includ-
ing those systems which possess global weak solutions but without a known result of global 
uniqueness, say, the three-dimensional (3D) incompressible Navier-Stokes equations.

The original motivation of the current article is to investigate the invariant sample measures 
for dissipative random dynamical systems. Here we will adopt the definition and theory of ran-
dom dynamical system from [11,27]. In this article, we let (X, d) be a separable and complete 
metric space and use B(•) to denote the Borel σ -algebra over the space •. Also let (�, F , P ) be 
a complete probability space and {θt : � �−→ �, t ∈ R} be a family of measure preserving trans-
formations on (�, F , P ). If the mapping (t, ω) �→ θtω is B(R ×F , F) measurable and {θt }t∈R
satisfies the group property, then we call (�, F , P , {θt}t∈R) a measurable dynamical system and 
{θt }t∈R the metric dynamical system over the complete probability space (�, F , P ).

Definition 1.1. ([11,27]) A family of mappings ψ(t, τ ; ω) : X �−→ X, −∞ < τ < t < +∞, pa-
rameterized by ω ∈ �, is called a random dynamical system over the measurable dynamical 
system (�, F , P , {θt }t∈R) with state space X, if it satisfies for P almost surely (P a.s. for short)
ω ∈ �,

(a) ψ(t, τ ; ω)ψ(τ, s; ω)u = ψ(t, s; ω)u for all s � τ � t and u ∈ X;
(b) ψ(t, τ ; ω)· is continuous on X for all τ � t ;
(c) for all t ∈ R, u ∈ X the mapping (s, ω) �→ ψ(t, s; ω)u is measurable from ((−∞, t] ×

�, B((−∞, t] ×F) to (X, B(X));
(d) for all s < t and u ∈ X, the mapping ω �→ ψ(t, s; ω)u is measurable from (�, F) to 

(X, B(X)).

For a given random dynamical system {ψ(t, τ ; ω)}t�τ,ω∈� over the measurable dynamical 
system (�, F , P , {θt }t∈R) with state space X, we set

φ(t − τ, θτω) = ψ(t, τ ;ω) and 	(t) : (ω,u) �−→ (θtω,φ(t,ω)u).

If φ(t, ω) satisfies the so-called cocycle property (see e.g. [1]), then {	(t)}t∈R meets the semi-
group property 	(t + τ) = 	(t)	(τ) (see [9]). {	(t)}t∈R is called the skew product on the 
extended phase space � × X. The random invariant measures, which plays the essential role in 
the theory of random dynamical systems, are intimately related to random attractors. If {	(t)}t∈R
possesses a global random attractor A ⊂ � × X, then A supports all the invariant measures μ of 
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{	(t)}t∈R on the product space � × X, and μ is invariant under the action of the skew product 
{	(t)}t∈R, that is, 	(t)μ = μ for all t ∈ R. This result is indeed the same as the deterministic 
situation. At a glimpse, it seems that one recovers the approach (see e.g. [10,18,22]) of construct-
ing the invariant measure for the deterministic dynamical system. In fact, it is not the case. There 
produces an additional difficulty, because in the space � × X one can only utilize measurability 
on � without any topological tools available.

Notice that the invariant measure μ lift the probability measure P , which is defined on the 
sample space �, into the extended phase space � × X, and the projection of μ onto � equals 
P . It may be more convenient to work on the phase space X, rather than on the extended phase 
space � × X. The invariant property of μ on � × X corresponds to the use of random measures 
ω �−→ μω on X called sample measures (cf. [9]). In fact, we can establish that there exists a 
one-to-one correspondence between any μω on X and any μ on � ×X. Particularly, μ(A) = 1 if 
and only if μω(A(ω)) = 1, in other words, each sample A(ω) of A supports the sample measure 
μω.

Definition 1.2. Let {ψ(t, τ ; ω)}t�τ,ω∈� be a random dynamical system over the measurable dy-
namical system (�, F , P , {θt }t∈R) with state space X. A family of Borel probability measures 
{μθtω}t∈R on X is called the invariant sample measures for {ψ(t, τ ; ω)}t�τ,ω∈�, if for P a.s. 
ω ∈ � and for all E ∈ B(X),

μθtω(E) = μθτ ω(ψ−1(t, τ ;ω)E), t, τ ∈R, t � τ.

The main results of the current article are to present a general approach to construct the in-
variant sample measures for random dynamical systems, with application to stochastic partial 
differential equations (PDEs for short). Firstly, we establish some sufficient conditions guar-
anteeing the existence of invariant sample measures for random dynamical systems via global 
random attractors. Then we investigate the two-dimensional incompressible stochastic Naiver-
Stokes equations, showing how to check the sufficient conditions for concrete stochastic PDEs. 
We prove the existence of invariant sample measures for the two-dimensional incompressible 
Navier-Stokes equations with additive white noise. Our results generalize the Liouville type the-
orem to the random case and reveal that the invariance of the sample measures is a particular 
situation of the random Liouville type theorem.

We want to point out that there exists an essential difference between the invariant sample 
measures and the invariant measures for stochastic PDEs. The invariant measures for stochastic 
PDEs have been extensively studied, see e.g. [6,19] and the references therein. To investigate the 
invariant measures for stochastic PDEs on its phase space X , loosely speaking, one generally 
considers the associated Markov transition semigroup {P(t)}t�0 defined on the set Bb(X ) of 
bounded Borel functions. Then the invariant measures for this stochastic PDEs refer to a prob-
ability measure ρ on X such that P ∗

t ρ = ρ, t � 0, where {P ∗
t }t�0 is the dual semigroup of 

{Pt }t�0. Here, our investigations rely heavily on the theory of infinite dimensional systems and 
functional analysis. We construct the invariant sample measures via the global random attractor 
of the random dynamical systems generated by the stochastic PDEs. Our proofs rely on the novel 
use of a general but elementary functional analysis, valid in any metric space, which concerns the 
growth of continuous functions in the neighborhood of random compact sets. We want to remark 
that our idea is inspired by that of [10,18,22], and our abstract result can also be applied to other 
dissipative stochastic PDEs including those on unbounded domains (see e.g. [2]).
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The rest of the article is organized as follows. Section 2 is devoted to the proof of the suf-
ficient conditions guaranteeing the existence of invariant sample measures for general random 
dynamical systems via the approach of global random attractors. In Section 3, we first recall 
some known results concerning the 2D stochastic Navier-Stokes equations, including the well-
posedness and the existence of the global random attractor. Then we establish that the generated 
random dynamical system is continuous with respect to the initial time. Finally, we apply the 
abstract result obtained in Section 2 to the 2D stochastic Navier-Stokes equations. We prove the 
existence of the invariant sample measures and establish that the 2D stochastic Navier-Stokes 
equations satisfy the random Liouville type theorem. Moreover, we reveal that the invariance of 
the sample measures is exactly a particular situation of the random Liouville type theorem.

2. Sufficient condition guaranteeing the existence of invariant sample measures

In this section, we first recall some definitions relative to the random dynamical system. Then 
we prove the sufficient condition guaranteeing the existence of invariant sample measures for 
random dynamical system via the approach of random attractor.

We have introduced the separable and complete metric space (X, d) and its Borel σ -algebra 
B(X) over X, the measurable dynamical system (�, F , P , {θt}t∈R) with the complete proba-
bility space (�, F , P ) and the metric dynamical system {θt}t∈R on (�, F , P ). Besides these, 
we denote by distX(A , B) = sup

a∈A
inf

b∈B
d(a, b) the Hausdorff semidistance between A ⊂ X and 

B ⊂ X. Particularly, distX(a, B) = inf
b∈B

d(a, b) and distX(a, b) = d(a, b). Also, we will use 

some other definitions relative to the random dynamical system. A random set can be regarded 
as a family of sets parameterized by the random parameter ω and satisfies some measurability 
property. Precisely, a random set B can be identified by the family of its ω-fibers B(ω), defined 
by

B(ω) = {u ∈ X : (x,ω) ∈ B}, ω ∈ �.

As a random set B ⊂ X × � possesses closed fibers, it is said to be a closed random set if and 
only if for every u ∈ X the mapping ω ∈ � �−→ distX(u, B(ω)) is measurable (cf. [7,8]). When 
the fibers of B are compact, B is called to be a random compact set.

Definition 2.1. Let {ψ(t, τ ; ω)}t�τ,ω∈� be a random dynamical system over the measurable dy-
namical system (�, F , P , {θt }t∈R) with the state space (X, d). A random subset {A(ω)}ω∈� of X
is called a global random attractor for {ψ(t, τ ; ω)}t�τ,ω∈� on (X, d), if the following conditions 
hold

(1) (Random compactness) For P a.s. ω ∈ �, A(ω) is compact in X;
(2) (Invariance) For P a.s. ω ∈ �, {A(ω)}ω∈� is invariant in the sense that

ψ(t, τ ;ω)A(θτω) = A(θtω), ∀τ � t;

(3) (Attracting property) For P a.s. ω ∈ �, for every t ∈ R and B ⊂ X bounded, there holds

lim distX(ψ(t, τ ;ω)B,A(θtω)) = 0.

τ→−∞
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We now begin to prove two auxiliary lemmas which will play the key role when we con-
struct the invariant sample measures. In the sequel, we use C(•) to denote the set of continuous 
functions defined on the space •.

Lemma 2.1. Let (�, F , P ) be a complete probability space and {K(ω)}ω∈� be a random com-
pact subset of the separable and complete metric space (X, d). Then for every g ∈ C(X), for P
a.s. ω ∈ � there corresponds an εω > 0 such that

sup
v∈O(K(ω);εω)

|g(v)| < +∞,

where O(K(ω); εω) = {v ∈ X : distX(v, K(ω)) < εω}.

Proof. Let {K(ω)}ω∈� be a random compact subset of the separable and complete metric space 
(X, d). Without loss of generality, we consider a fixed g ∈ C(X) and a fixed ω ∈ �. Then for 
every u ∈ K(ω) one can pick δ(u, ω) such that for every

v ∈ O(u; δ(u,ω)) = {v ∈ X : d(v,u) < δ(u,ω)}

there holds |g(u) −g(v)| < 1. Choosing numbers δ(u, ω) in this way, we obtain an open covering

ω = {
O(u; δ(u,ω)/3) : u ∈ K(ω)

}

for K(ω). Note that K(ω) is compact in X. We can extract from the open covering ω a finite 
one

(m)
ω = {

O(u1; δ(u1,ω)/3),O(u2; δ(u2,ω)/3), · · · ,O(um; δ(um,ω)/3)
}
.

Choose

εω = min
{
δ(u1,ω)/3, δ(u2,ω)/3, · · · , δ(um,ω)/3

}
, c = 1 + max

1�j�m
|g(uj )|.

Now for any given v ∈ O(K(ω); εω), we can pick u ∈ K(ω) so that d(v, u) < 2εω. Also we can 
choose uj meeting d(u, uj ) < δ(uj , ω)/3 because (m)

ω covers K(ω). Therefore, we have

d(v,uj ) � d(v,u) + d(u,uj ) < 2εω + δ(uj ,ω)/3 � δ(uj ,ω)

and

|g(v)| � 1 + |g(uj )| � 1 + max
1�j�m

|g(uj )| = c.

This ends the proof. �
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Lemma 2.2. Let (�, F , P ) be a complete probability space and {K(ω)}ω∈� a random compact 
subset of the separable and complete metric space (X, d), and let g, h ∈ C(X) satisfying for P
a.s. ω ∈ � g(ξ) = h(ξ) for every ξ ∈ K(ω). Then for every ε > 0 there corresponds for P a.s. 
ω ∈ � a γ (ε, ω) > 0 such that

sup
v∈O(K(ω);γ (ε,ω))

|g(v) − h(v)| < ε.

Proof. Let (�, F , P ) be a complete probability space and {K(ω)}ω∈� a random compact subset 
of the separable and complete metric space (X, d). Consider given g, h ∈ C(X). Fix ε > 0 and 
ω ∈ �. For every ξ ∈ K(ω) we can pick γ (ξ, ε, ω) yielding

|g(ξ) − g(v)| + |h(ξ) − h(v)| < ε whenever v ∈ O(ξ ;γ (ξ, ε,ω)).

Obviously, {O(ξ ; γ (ξ, ε, ω)) : ξ ∈ K(ω)} is an open covering of K(ω). Due to the compactness 
of K(ω) in X, one can cover K(ω) with finite collection

{
O(ξ1;γ (ξ1, ε,ω)/3),O(ξ2;γ (ξ2, ε,ω)/3), · · · ,O(ξk;γ (ξk, ε,ω)/3)

}
.

Put γ (ε, ω) = min
1�j�k

γ (ξj ,ε,ω)

3 and we have

O(K(ω);γ (ε,ω)) ⊂ O
(( k⋃

j=1

O(ξj ; γ (ξj , ε,ω)

3

);γ (ε,ω)
)

⊂
k⋃

j=1

O(ξj ;γ (ξj , ε,ω)).

Now for any v ∈ O(K(ω); γ (ε, ω)), we may pick j such that v ∈ O(ξj ; γ (ξj , ε, ω)). Note that 
g(ξj ) = h(ξj ). Hence

|g(v) − h(v)| � |g(v) − g(ξj )| + |h(ξj ) − h(v)| < ε.

The proof is complete. �
To state and prove the main result of this section, we need to recall the definition of generalized 

Banach limit.

Definition 2.2. ([13,18]) A generalized Banach limit is any linear functional, denoted by 
LIMt→+∞, defined on the space of all bounded real-valued functions on [0, +∞) and satisfying

(1) LIMt→+∞ζ(t) � 0 for nonnegative functions ζ(·) on [0, +∞);
(2) LIMt→+∞ζ(t) = lim

t→+∞ ζ(t) if the usual limit lim
t→+∞ ζ(t) exists.

Let B+ be the collection of all bounded real-valued functions on [0, +∞). For any generalized 
Banach limit LIMt→+∞, the following useful property

|LIMt→+∞ζ(t)| � lim sup
t→+∞

|ζ(t)|, ∀ ζ(·) ∈ B+, (2.1)
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is presented in [13, (1.38)] and in [10, (2.3)].
Notice that we will consider the asymptotic behavior τ → −∞ of ψ(t, τ ; ω)•. Therefore, we 

require generalized limits as τ → −∞. For a given real-valued function ζ defined on (−∞, 0]
and a given Banach limit LIMT →+∞, we define

LIMt→−∞ζ(t) = LIMt→+∞ζ(−t).

In the sequel, for a given Borel probability measure μ on X and a function � ∈ C(X), we use ∫
X

�(u)dμ(u) to denote the Bochner integral.

The main result of this section reads as follows.

Theorem 2.1. Let (X, d) be a complete metric space and {ψ(t, τ ; ω)}t�τ,ω∈� be a random 
dynamical system over the measurable dynamical system (�, F , P , {θt}t∈R) with state space 
(X, d). Suppose that

(i) {ψ(t, τ ; ω)}t�τ,ω∈� possesses a global random attractor {A(ω)}ω∈� on X;
(ii) for each given t ∈R, u ∈ X and for P a.s. ω ∈ �, the X-valued mapping τ �−→ ψ(t, τ ; ω)u

is continuous and bounded on (−∞, t].

Then for a given continuous mapping v(·) :R �→ X and a generalized Banach limit LIMt→+∞, 
there exists for P a.s. ω ∈ � a family of Borel probability measures {μθtω}t∈R on X such that 
the support of μθtω is contained in A(θtω) and

∫
X

�(u)dμθtω(u) =
∫

A(θtω)

�(u)dμθtω(u)

=LIMτ→−∞
1

t − τ

t∫
τ

�(ψ(t, s;ω)v(s))ds (2.2)

=LIMτ→−∞
1

t − τ

t∫
τ

∫
X

�(ψ(t, s;ω)u)dμθsω(u)ds (2.3)

for any nonnegative, real-valued continuous functional � on X. Moreover, for P a.s. ω ∈ �, μθtω

is invariant under the action of the random dynamical system {ψ(t, τ ; ω)}t�τ,ω∈� in the sense 
that

∫
A(θtω)

�(u)dμθtω(u) =
∫

A(θτ ω)

�(ψ(t, τ ;ω)u)dμθτ ω(u), ∀t � τ. (2.4)

Proof. Let LIMt→+∞ be a given generalized Banach limit, v(·) :R �→ X a continuous map and 
�(·) a nonnegative, real-valued continuous functional � on X.

We first prove that for each given t ∈ R and for P a.s. ω ∈ �, the function s �−→
�(ψ(t, s; ω)v(s)) is bounded on (−∞, t]. Indeed, we claim that there exists some negative t0
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sufficiently large such that, for P a.s. ω ∈ �, the function s �−→ �(ψ(t, s; ω)v(s)) is bounded on 
(−∞, t0]. Assume that this is not the case. Then, there is a sequence {sn}∞n=1 with sn → −∞ as 
n → ∞ such that

|�(ψ(t, sn;ω)v(sn))| → +∞, n → ∞. (2.5)

Now by condition (i), the random dynamical system {ψ(t, τ ; ω)}t�τ,ω∈� possesses a global ran-
dom attractor {A(ω)}ω∈� on X. From the attracting property of the global random attractor, we 
see that, for P a.s. ω ∈ � and every ε > 0, there exists a time s(ε, ω, t) such that

ψ(t, τ ;ω)v(τ) ∈O(A(θtω); ε), ∀τ � s(ε,ω, t). (2.6)

By Lemma 2.1, we can choose εω > 0 such that

Cω = sup
O(A(θtω);εω)

|�(u)| < +∞. (2.7)

Then (2.6) and (2.7) contradict with (2.5). At the same time, from condition (ii) we see that, for 
P a.s. ω ∈ �, the X-valued mapping s �−→ �(ψ(t, s; ω)v(s)) is continuous on (−∞, t]. Thus it 
is bounded on each compact interval [t0, t].

Secondly, for each given t ∈ R and for P a.s. ω ∈ �, we define

Lω,v(�) = LIMs→−∞
1

t − s

t∫
s

�(ψ(t, η;ω)v(η))dη (2.8)

for nonnegative function � ∈ C(X). Then, by the above analysis and the property of the general-
ized Banach limit, we see that the function

s �−→ 1

t − s

t∫
s

�(ψ(t, η;ω)v(η))dη

is bounded on (−∞, t] for P a.s. ω ∈ �. Hence Lω,v(�) defined by (2.8) is well defined as a 
positive linear functional on C(X) for P a.s. ω ∈ �.

Thirdly, we prove that, for P a.s. ω ∈ �, Lω,v(�) depends only on the values of � on A(θtω). 
Factually, take nonnegative �1 and �2 in C(X) with �1(·) = �2(·) on A(θtω) for P a.s. ω ∈ �. 
Then for any ε > 0, by Lemma 2.2 we can find for P a.s. ω ∈ � a γ (ε, ω) > 0 such that

|�1(u) − �2(u)| < ε/2, whenever u ∈ O(A(θtω);γ (ε,ω)). (2.9)

By the attracting property of the global random attractor, we can pick s0 such that

distX(ψ(t, s;ω)v(s),A(θtω)) � γ (ε,ω) for all s � s0.

Then, for every s � s0 there corresponds a vs ∈ A(θtω) such that
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d(ψ(t, s;ω)v(s), vs) � γ (ε,ω).

Thus, by Lemma 2.2 we have for s � s0 that

|�1(ψ(t, s;ω)v(s)) − �2(ψ(t, s;ω)v(s))|
�|�1(ψ(t, s;ω)v(s)) − �1(vs)| + |�1(vs) − �2(vs)| + |�2(ψ(t, s;ω)v(s)) − �2(vs)| < ε.

By condition (ii) and noticing that v(·) :R �→ X is a continuous map, we find that

sup
η∈[s0,t]

{|�1(ψ(t, η;ω)v(η))| + |�2(ψ(t, η;ω)v(η))|}

is bounded by a constant independent of s. Therefore, by the property of the generalized Banach 
limit, we have

|Lω,v(�1 − �2)| =
∣∣∣LIMs→−∞

1

t − s

t∫
s

(
�1(ψ(t, η;ω)v(η)) − �2(ψ(t, η;ω)v(η))

)
dη

∣∣∣

=
∣∣∣LIMs→−∞

1

t − s

s0∫
s

(
�1(ψ(t, η;ω)v(η)) − �2(ψ(t, η;ω)v(η))

)
dη

∣∣∣

+
∣∣∣LIMs→−∞

1

t − s

t∫
s0

(
�1(ψ(t, η;ω)v(η)) − �2(ψ(t, η;ω)v(η))

)
dη

∣∣∣

� lim sup
s→−∞

s0 − s

t − s
ε

+ lim sup
s→−∞

(t − s0)

t − s
sup

η∈[s0,t]
{|�1(ψ(t, η;ω)v(η))| + |�2(ψ(t, η;ω)v(η))|}

=ε.

By the arbitrariness of ε, we obtain Lω,v(�1 − �2) = 0.
Fourthly, for P a.s. ω ∈ �, we define Gω,v(�) = Lω,v(�(�) for � ∈ C(A(θtω)), where �(�) is 

the extension of � from C(A(θtω)) to C(X) given by the Tietze theorem (see [13, Theorem A.7]). 
Then Gω,v(·) is a positive linear functional on C(A(θtω)). Notice that A(θtω) is compact in X. 
A(θtω) is obviously a locally compact topological space. By the Kakutani-Riesz Representation 
Theorem (see [13, Theorem A.1]), we obtain that there exists a unique positive, finite, Borel 
measure μθtω on A(θtω) such that

Gω,v(�) =
∫

A(θωt)

�(u)dμθtω(u). (2.10)

We extend μθtω by zero to Borel measure on X, which is still denoted by μθtω:

μθtω(E) = μθtω(E ∩A(θtω)), E ∈ B(X).
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Therefore 
∫
X

�(u)dμθtω(u) =
∫

A(θtω)

�(u)dμθtω(u) and (2.2) is proved.

Finally, we prove (2.3) and (2.4). Fix t and τ with t � τ . Consider some nonnegative � ∈
C(X). By (2.2) we have for P a.s. ω ∈ �,

∫
A(θtω)

�(u)dμθtω(u)

=LIMγ→−∞
1

t − γ

t∫
γ

�(ψ(t, η;ω)v(η))dη

=LIMγ→−∞
1

t − γ

τ∫
γ

�(ψ(t, η;ω)v(η))dη + LIMγ→−∞
1

t − γ

t∫
τ

�(ψ(t, η;ω)v(η))dη.

Since [τ, t] is compact in R and by condition (ii) the mapping η �−→ |�(ψ(t, η; ω)v(η))| is 
continuous, we obtain by using the property of the generalized Banach limit that

LIMγ→−∞
1

t − γ

t∫
τ

�(ψ(t, η;ω)v(η))dη = 0.

Note that ψ(t, η; ω)· is continuous on X and � ∈ C(X). Hence � ◦ (ψ(t, η; ω)· ∈ C(X). By (2.2)
and direct calculations, we arrive at

∫
A(θtω)

�(u)dμθtω(u)

=LIMγ→−∞
1

t − γ

τ∫
γ

�(ψ(t, η;ω)v(η))dη

=LIMγ→−∞
1

τ − γ

τ∫
γ

�(ψ(t, η;ω)v(η))dη

=LIMγ→−∞
1

τ − γ

τ∫
γ

�(ψ(t, τ ;ω)ψ(τ, η;ω)v(η))dη

=LIMγ→−∞
1

τ − γ

τ∫
γ

[� ◦ (ψ(t, τ ;ω)](ψ(τ,η;ω)v(η)
)
dη

=
∫
X

[� ◦ (ψ(t, τ ;ω)]udμθτ ω(u) =
∫
X

�(ψ(t, τ ;ω)u)dμθτ ω(u),
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and (2.4) is proved. Now by (2.2) and (2.4), we have

LIMτ→−∞
1

t − τ

t∫
τ

∫
X

�(ψ(t, s;ω)u)dμθsω(u)ds

=LIMτ→−∞
1

t − τ

t∫
τ

∫
A(θtω)

�(u)dμθtω(u)ds

=
∫

A(θtω)

�(u)dμθtω(u).

(2.3) is proved and this completes the proof of Theorem 2.1. �
3. Invariant sample measures and random Liouville type theorem for the 
two-dimensional Navier-Stokes equations with additive white noise

In this section, we will apply the abstract theory obtained in Section 2 to the two-dimensional 
Navier-Stokes equations with additive white noise. We will show that the random dynamical 
system {ψ(t, τ ; ω)}t�τ,ω∈� generated by the two-dimensional Navier-Stokes equations with ad-
ditive white noise possesses a global random attractor {A(ω)}ω∈� on the phase space H . Then 
we prove that for given t and u0 ∈ H , for P a.a. ω ∈ � the H -valued mapping τ �→ ψ(t, τ ; ω)u0
is continuous and bounded on (−∞, t], and thus we obtain the existence of the invariant sample 
measures {μθtω}t∈R for {ψ(t, τ ; ω)}t�τ,ω∈� on H . Further, we establish that the invariant sam-
ple measures {μθtω}t∈R satisfies the so-called random Liouville type theorem, and reveal that the 
invariance of the sample measures is a particular situation of the random Liouville type theorem.

We consider the following 2D Navier-Stokes equations with additive noise [11]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

du + (−ν�u + (u · ∇)u + ∇p)dt = f dt +
m∑

j=1
ϕj dwj , x ∈ D,

∇ · u = 0, x ∈D,

u|∂D = 0,

u|t=s = us,

(3.1)

where the unknowns are the velocity u = (u1, u2) and the pressure p, us is the initial value, f
is the time-independent external force, ν > 0 is the viscosity, D ⊂ R2 is a bounded domain with 
suitable smooth boundary ∂D, the functions ϕj , j = 1, 2, · · · , m, for some positive integer m, 
are time independent which will be specified below. The random functions wj , j = 1, 2, · · · , m, 
are independent two-sided real valued Wiener processes on the probability space (�, F , P ), here 
� = {ω ∈ C(R, Rm) : ω(0) = 0}, with P being a product measure of two Wiener measures on 
the negative and the positive time part of �. Then we have

(w1(t,ω),w2(t,ω), · · · ,wm(t,ω)) = ω(t), t ∈ R.

The metric dynamical system {θt}t∈R on (�, F , P ) is defined as
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θtω(s) = ω(s + t) − ω(t), t, s ∈ R.

The stochastic Navier-Stokes equations (3.1) have been extensively studied, one can refer to 
[5,6,11] and the references therein. Here we just take the stochastic problem (3.1) as an example 
to show how to employ our abstract to the concrete stochastic PDEs.

Let us introduce the mathematical setting of our problem. In the following, we will use the 
following notations.
Lq(D)-the usual 2D Lebesgue space with norm ‖ · ‖Lq(D); particularly, ‖ · ‖L2(D) = ‖ · ‖;
Wm,q(D) and Wm,q

0 (D)-the usual 2D Sobolev space with norm ‖ · ‖m,q ;
V = {

g = (g1, g2) ∈ (C∞
0 (D))2|∇ · g = 0

}
;

H = the closure of V in L2 with inner product (·, ·) and norm as in L2, ‖ · ‖H = ‖ · ‖;
V = the closure of V in W 1,2 with norm ‖ · ‖V = ‖ · ‖1,2 and dual space V ∗;
〈·, ·〉-the dual pairing between V ∗ and V .

We consider the operator A : V �→ V ′ which is defined as

〈Au,v〉 = (∇u,∇v), u, v ∈ V.

Denoting the domain D(A) = W 2,2(D) ∩ V , then Au = −P�u, ∀u ∈ D(A), is the Stokes op-
erator, where P is the Leray-Helmholtz projection from L2(D) onto H . At the same time, we 
define a trilinear form

b(u, v,w) =
2∑

i,j=1

∫
�

ui

∂vj

∂xi

wj dx, u, v,w ∈ W 1
0 (D).

Since V ⊆ W 1
0 (D) is a closed subspace, b(u, v, w) is continuous on V ×V ×V , and it is classical 

that

b(u, v,w) = −b(u,w,v), b(u, v, v) = 0, ∀u,v,w ∈ V.

For any u, v ∈ V , 〈B(u, v), w〉 = b(u, v, w), ∀ w ∈ V , defines a continuous function B(u, v) on 
V × V .

We assume that ϕj ∈ W 2,2(D) ∩W
1,2
0 (D), and set 	j = Pϕj , j = 1, 2, · · · , m. Then problem 

(3.1) can be written as the stochastic differential equations in H :

du + (νAu + B(u))dt = f dt +
m∑

j=1

	j dwj , (3.2)

u|t=s = us. (3.3)

It is usual to translate the unknown in the investigation of problem (3.2)-(3.3). Here we recall 
the procedures in [11]. Let

z =
m∑

	jzj
j=1
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be the Ornstein-Uhlenbeck process with

zj =
t∫

−∞
e−α(t−s)dwj(s),

where α > 0 is a parameter which will be chosen sufficiently large in the proof of the existence of 
the global random attractor (see [11]). We all know that for j = 1, 2, · · · , m, zj is the stationary 
solution of the one-dimensional Itô equation

dzj = −αzj dt + dwj , (3.4)

and that z is a stationary process and its trajectories are continuous for P a.s. ω ∈ �. Set

v = u − z,

then problem (3.2)-(3.3) can be written as the form of the following problem with random pa-
rameter z

dv

dt
+ νAv + B(v + z) = f + αz − νAz, (3.5)

v(t,ω)|t=s = vs(ω). (3.6)

For the definition of solutions to problem (3.2)-(3.3) and problem (3.5)-(3.6), we can refer to 
[11,12]. To obtain the existence and uniqueness of solutions to problem (3.2)-(3.3), we assume
(H) For j = 1, 2, · · · , m, 	j ∈ D(A) and that there exists a positive constant c such that

|b(u,	j ,u)| � c‖u‖2, ∀u ∈ H. (3.7)

The following results have been proved in [11].

Proposition 3.1. Let assumption (H) be satisfied and f ∈ H be given.

(1) For each ω ∈ �, s ∈ R and vs(ω) ∈ H , problem (3.5)-(3.6) possesses a unique correspond-
ing solution v(·, s; ω, vs) defined on [s, +∞).

(2) Let v(t, s; ω, vs) be the solution of problem (3.5)-(3.6) with vs = us − z(s, ω) at the initial 
time s. Then u(t, s; ω, us) = v(t, s; ω, vs) + z(t, ω) is the solution of problem (3.2)-(3.3)
corresponding to the initial value us . Define the family of operators {ψ(t, s; ω)}t�s,ω∈�

from H to H via

ψ(t, s;ω)us = u(t, s;ω,us) = v(t, s;ω,vs) + z(t,ω).

Then {ψ(t, s; ω)}t�s,ω∈� generates a random dynamical system over the measurable dy-
namical system (�, F , P , {θt }t∈R) with the state space H , satisfying Definition 1.1 and for 
P a.s. ω ∈ �,

ψ(t, s;ω)u = ψ(t − s,0; θsω)u, for all s < t and u ∈ H.
486



C. Zhao, J. Wang and T. Caraballo Journal of Differential Equations 317 (2022) 474–494
(3) The random dynamical system {ψ(t, s; ω)}t�s,ω∈� possesses a global random attractor 
{A(ω)}ω∈� in H satisfying Definition 2.1.

We next investigate the continuity of the random dynamical system {ψ(t, s; ω)}t�s,ω∈� with 
respect to the initial time s. For simplicity, we will employ the notation a � b to mean that a � cb

for a universal constant c > 0 that only depends on the parameters coming from the problem.

Lemma 3.1. For given u∗ ∈ H , t ∈ R, and P a.s. ω ∈ �, the H -valued mapping s �→
ψ(t, s; ω)u∗ is right continuous on (−∞, t].

Proof. Notice that ψ(t, s; ω)u∗ = v(t, s; ω, u∗ − z(s, ω)) + z(t, ω), and for P a.s. ω ∈ �, 
‖z(t, ω)‖ is continuous with respect to t ∈ R. Hence we just need prove that

v(t, ·;ω,v∗) = v(t, ·;ω,u∗ − z(·,ω))

is right continuous on (−∞, t]. Without loss of generality, we fix v∗ ∈ H , ω ∈ � and s∗ ∈ R. 
Then we just need to prove that for any ε > 0 there exists a positive constant δ = δ(ε, s∗, ω, v∗)
such that for P a.a. ω ∈ �,

‖v(τ, s;ω,v∗) − v∗‖ < ε, whenever s ∈ (s∗, s∗ + δ), τ ∈ (s, s∗ + δ), (3.8)

where v(τ, s; ω, v∗) is the solution of problem (3.5)-(3.6) with the initial value v∗ at initial time s.
In fact, we observe that

‖v(τ, s;ω,v∗) − v∗‖2 =‖v(τ, s;ω,v∗)‖2 − ‖v∗‖2 − 2(v(τ, s;ω,v∗) − v∗, v∗)

=
τ∫

s

d

dη
‖v(η, s;ω,v∗)‖2dη − 2(v(τ, s;ω,v∗) − v∗, v∗).

(3.9)

By the definition of zj and z, we know (see [1, Proposition 4.3.3]) that the random variable 
‖zj (t, ω)‖ is tempered and satisfies

m∑
j=1

‖zj (t,ω)‖2 � e
α|t |

2 r(ω), (3.10)

where r(·) : � �→ R+ is a tempered function. From (3.7) we see that there exists a constant M	

such that

max
1�j�m

‖	j‖2
W 2,2(D)

� M	.

Thus, by the Gagliardo-Nirenberg inequality we have

‖z(t,ω)‖2
V �

m∑
j=1

‖zj (t,ω)‖2‖	j‖2
W 2,2(D)

� M	e
α|t |

2 r(ω). (3.11)
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Note that [11, (3.9)] has proved that

d

dt
‖v(t, s;ω,v∗)‖2 �g(t,ω) − (

1 −
m∑

j=1

‖zj (t,ω)‖)‖v(t, s;ω,v∗)‖2 (3.12)

and

‖v(η, s;ω,v∗)‖2 �‖v∗‖2 exp(−
η∫

s

(1 −
m∑

j=1

‖zj (θ,ω)‖)dθ)

+
η∫

s

g(θ,ω) exp(−
η∫

θ

(1 −
m∑

j=1

‖zj (ξ,ω)‖)dξ)dθ,

(3.13)

where

g(t,ω) = (

m∑
j=1

‖zj (t,ω)‖)‖z(t,ω)‖2 + ‖z(t,ω)‖2 + ‖z(t,ω)‖2
V + ‖f ‖2.

Hence,

τ∫
s

d

dη
‖v(η, s;ω,v∗)‖2dη �

τ∫
s

g(η,ω)dη −
τ∫

s

(
1 −

m∑
j=1

‖zj (η,ω)‖)‖v(η, s;ω,v∗)‖2dη.

(3.14)

Now the trajectories of ‖z(η, ω)‖2 and ‖z(η, ω)‖2
V are continuous for P a.s. ω ∈ �, f ∈ H and

v(·, s;ω,v∗) ∈ C([s,+∞);H) ∩ L2
loc([s,+∞;V ). (3.15)

Also, (3.13) implies that

sup
s∈[s∗−1,s∗+1]

‖v(η, s;ω,v∗)‖2 � sup
s∈[s∗−1,s∗+1]

{
‖v∗‖2 exp(−

η∫
s

(1 −
m∑

j=1

‖zj (θ,ω)‖)dθ)

+
η∫

s

g(θ,ω) exp(−
η∫

θ

(1 −
m∑

j=1

‖zj (ξ,ω)‖)dξ)dθ

}
,

(3.16)

the right-hand side of which is independent of s. From these facts, we see from (3.14) that for 
any ε > 0 there exists a positive constant δ1 = δ1(ε, s∗, v∗, ω) such that

τ∫
s

d

dη
‖v(η, s;ω,v∗)‖2dη � ε2/2, whenever s ∈ (s∗, s∗ + δ1), τ ∈ (s, s∗ + δ1). (3.17)
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We next estimate the term (v(τ, s; ω, v∗) − v∗, v∗) in (3.9). From (3.15) and (3.16), we see that 
there exists a positive M(ω, s∗, v∗) independent of s such that

max
s∗−1�η�s∗+1

‖v(η, s;ω,v∗)‖ �M(ω, s∗, v∗), ∀s ∈ [s∗ − 1, η].

Then by the density of V in H , we find that for above ε there exists an element ṽ ∈ V such that 
‖ṽ − v∗‖ � ε2

8(M(ω,s∗,v∗)+‖v∗‖) . Thus we have for s ∈ (s∗, s∗ + δ1) and τ ∈ (s, s∗ + δ1) that

|(v(τ, s;ω,v∗) − v∗, v∗)| �|(v(τ, s;ω,v∗) − v∗, ṽ)| + |(v(τ, s;ω,v∗) − v∗, ṽ − v∗)|

�|〈v(τ, s;ω,v∗) − v∗, ṽ〉| + ε2

8
.

(3.18)

We shall estimate the term |〈v(τ, s; ω, v∗) − v∗, ṽ〉| in (3.18). Observe that

|〈v(τ, s;ω,v∗) − v∗, v∗〉| =
∣∣∣∣〈

τ∫
s

d

dη
v(η, s;ω,v∗)dη, ṽ〉

∣∣∣∣

�‖ṽ‖V

( τ∫
s

‖ d

dη
v(η, s;ω,v∗)‖2

V ∗dη

)1/2

(τ − s)1/2.

(3.19)

By (3.5) and the embedding V ↪→ V ∗, we have

‖dv(η, s;ω,v∗)
dη

‖2
V ∗

�‖Av(η, s;ω,v∗)‖2
V ∗ +‖B(v(η, s;ω,v∗) + z(η,ω))‖2

V ∗ +‖f ‖2+‖z(η,ω)‖2+‖Az(η,ω)‖2
V ∗ .

(3.20)

Now using the property of the operators A, B and the embedding V ↪→ H ↪→ V ∗, we obtain

⎧⎨
⎩

‖Av(η, s;ω,v∗)‖2
V ∗ = ‖v(η, s;ω,v∗)‖2

V , ‖z(η,ω)‖2
V ∗ � e

α
2 |η|r(ω),

‖Az(η, s;ω,v∗)‖2
V ∗ = ‖z(η,ω)‖2 � e

α
2 |η|r(ω),

‖B(v(η, s;ω,v∗) + z(η,ω))‖2
V ∗ � ‖v(η, s;ω,v∗)‖2

V + e
α
2 |η|r(ω).

(3.21)

Inserting (3.20) and (3.21) into (3.19) gives

|〈v(τ, s;ω,v∗) − v∗, v∗〉|

�‖ṽ‖V

( τ∫
s

(‖v(η, s,ω, v∗)‖2
V + e

α
2 |η|r(ω) + ‖f ‖2)dη

)1/2

(τ − s)1/2.
(3.22)

It then follows form (3.15), (3.16) and (3.22) that for above ε > 0 there exists a positive constant 
δ2 = δ2(ε, s∗, v∗, ω) such that for P a.s. ω ∈ �,
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|〈v(τ, s;ω,v∗) − v∗, ṽ〉| � ε2

8
, whenever s ∈ (s∗, s∗ + δ2), τ ∈ (s, s∗ + δ2). (3.23)

Picking δ = min{δ1, δ2}, we obtain (3.8) from (3.9), (3.17), (3.18) and (3.23). This ends the proof 
of Lemma 3.1. �

Similarly to Lemma 3.1, we can also prove that for given u∗ ∈ H , t ∈R, and for P a.s. ω ∈ �, 
the H -valued mapping s �→ ψ(t, s; ω)u∗ is left continuous on (−∞, t]. Therefore, we conclude 
that for given u∗ ∈ H , t ∈ R, and for P a.s. ω ∈ �, the H -valued mapping s �→ ψ(t, s; ω)u∗ is 
continuous on (−∞, t]. From this continuity and the attracting property of the global random 
attractor, we see that H -valued mapping s �→ ψ(t, s; ω)u∗ is bounded on (−∞, t]. Now, thanks 
to the abstract theory of Theorem 2.1, we can claim that the 2D incompressible Navier-Stokes 
equations with additive white noise possesses a family of invariant sample measures on the phase 
space H . This result reads as follows.

Theorem 3.1. Suppose that condition (H) is satisfied and f ∈ H . Let {ψ(t, τ ; ω)}t�τ,ω∈� be the 
random dynamical system generated by problem (3.1)-(3.3) over the metric dynamical system 
(�, F , P , {θt }t∈R) with the state space H . Let {A(ω)}ω∈� be the global random attractor guar-
anteed by Proposition 3.1(3). Then for a given generalized Banach limit LIMt→+∞ and given 
continuous function v(·) : R �→ H , there exists for P a.s. ω ∈ � a family of Borel probability 
measures {μθtω}t∈R on H such that the support of μθtω is contained in A(θtω) and

∫
H

�(u)dμθtω(u) =
∫

A(θtω)

�(u)dμθtω(u)

=LIMτ→−∞
1

t − τ

t∫
τ

�(ψ(t, s;ω)v(s))ds

=LIMτ→−∞
1

t − τ

t∫
τ

∫
H

�(ψ(t, s;ω)u)dμθsω(u)ds

(3.24)

for any nonnegative, real-valued continuous functional � on H . Moreover, for P a.s. ω ∈ �, μθtω

is invariant under the action of the random dynamical system {ψ(t, τ ; ω)}t�τ,ω∈� in the sense 
that

∫
A(θtω)

�(u)dμθtω(u) =
∫

A(θτ ω)

�(ψ(t, τ ;ω)u)dμθτ ω(u), ∀t � τ. (3.25)

We next investigate the random Liouville type theorem for the 2D incompressible Navier-
Stokes equations with additive white noise. To this end, we need the definition of the class of test 
functions. Write equation (3.2) as

du = F(u, t,ω) = −(νAu + B(u))dt + f dt +
m∑

	j dwj . (3.26)

j=1
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Definition 3.1. We define the class T of test functions as the set of nonnegative, real-valued 
continuous functionals ϒ = ϒ(w) on H that are bounded on bounded subset of H and satisfy

(1) for any w ∈ V , the Fréchet derivative ϒ′(w) exists: for each w ∈ V there exists an element 
ϒ′(w) such that

|ϒ(w + v) − ϒ(w) − (ϒ′(w), v)|
‖v‖V

−→ 0 as ‖v‖V → 0, v ∈ V ;

(2) ϒ′(w) ∈ V for all w ∈ V , and the mapping w �−→ ϒ′(w) is continuous and bounded as a 
functional from V to V ;

(3) for every global solution u(t, ω) of equation (3.2), there holds for P a.a. ω ∈ �

d

dt
ϒ(u(t,ω)) = 〈F(u, t,ω),ϒ′(u)〉. (3.27)

For the existence of functions satisfying Definition 3.1, one can refer to [22, Definition 2.5]. 
Here we omit the details.

Theorem 3.2. Let the conditions of Theorem 3.1 hold. Then, for P a.s. ω ∈ �, the following 
random Liouville type equation

∫
A(θtω)

ϒ(u)dμθtω(u) −
∫

A(θτ ω)

ϒ(u)dμθτ ω(u)

=
t∫

τ

∫
H

〈F(u,η,ω),ϒ′(u)〉dμθηω(u)dη, ∀t � τ,

(3.28)

holds for all test functions ϒ ∈ T .

Proof. Let ϒ ∈ T be given. By (3.27), we have for P a.s. ω ∈ � that

ϒ(ψ(t, s;ω)u) − ϒ(ψ(τ, s;ω)u) =
t∫

τ

〈F(u,η,ω),ϒ′(u)〉dη, ∀t � τ. (3.29)

Now for any s < τ , let u∗ ∈ H and u(η, ω) = ψ(η, s; ω)u∗ for η � s. By (3.29),

ϒ(ψ(t, s;ω)u∗) − ϒ(ψ(τ, s;ω)u∗) =
t∫

τ

〈F(ψ(η, s;ω)u∗, η,ω),ϒ′(ψ(η, s;ω)u∗)〉dη. (3.30)

Using (3.24), (3.30) and Fubini’s theorem, we arrive at
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∫
H

ϒ(u)dμθtω(u) −
∫
H

ϒ(u)dμθτ ω(u)

=
∫

A(θtω)

ϒ(u)dμθtω(u) −
∫

A(θτ ω)

ϒ(u)dμθτ ω(u)

=LIMγ→−∞
1

τ − γ

τ∫
γ

∫
H

(ϒ(ψ(t, s;ω)u∗)) − ϒ(ψ(τ, s;ω)u∗))dμθsω(u∗)ds

=LIMγ→−∞
1

τ − γ

τ∫
γ

∫
H

t∫
τ

〈F(ψ(η, s;ω)u∗, η,ω),ϒ′(ψ(η, s;ω)u∗)〉dηdμθsω(u∗)ds

=LIMγ→−∞
1

τ − γ

τ∫
γ

t∫
τ

∫
H

〈F(ψ(η, s;ω)u∗, η,ω),ϒ′(ψ(η, s;ω)u∗)〉dμθsω(u∗)dηds.

(3.31)

Now using the invariance of the random dynamical system ψ(η, s; ω) = ψ(η, τ ; ω)ψ(τ, s; ω)

and (3.25), we obtain

∫
H

〈F(ψ(η, s;ω)u∗, η,ω),ϒ′(ψ(η, s;ω)u∗)〉dμθsω(u∗)

=
∫
H

〈F(ψ(η, τ ;ω)ψ(τ, s;ω)u∗, η,ω),ϒ′(ψ(η, τ ;ω)ψ(τ, s;ω)u∗)〉dμθsω(u∗)

=
∫
H

〈F(ψ(η, τ ;ω)u∗, η,ω),ϒ′(ψ(η, τ ;ω)u∗)〉dμθτ ω(u∗),

which is independent of s. It then follows from (3.31) that

∫
A(θtω)

ϒ(u)dμθtω(u) −
∫

A(θτ ω)

ϒ(u)dμθτ ω(u)

=
t∫

τ

∫
H

〈F(ψ(η, τ ;ω)u∗, η,ω),ϒ′(ψ(η, τ ;ω)u∗)〉dμθτ ω(u∗)dη

=
t∫

τ

∫
H

〈F(u,η,ω),ϒ′(u)〉dμθηω(u)dη.

The proof is complete. �
The result of Theorem 3.2 can be regarded as the random Liouville type theorem. If the ran-

dom statistical equilibrium has been reached by the addressed stochastic Navier-Stokes system, 
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then the statistical informations do not change with time, that is 	′(u(·, ω)) = 0. In this situation, 
we follow from (3.25) and (3.28) that for P a.s. ω ∈ �

∫
A(θtω)

ϒ(u)dμθtω(u)

=
∫

A(θτ ω)

ϒ(ψ(t, τ ;ω)u)dμθτ ω(u) =
∫

A(θτ ω)

ϒ(u)dμθτ ω(u), τ ∈R. (3.32)

(3.32) describes exactly the invariant property of the sample measures {μθtω}t∈R under the action 
of the random dynamical system {ψ(t, τ ; ω)}t�τ,ω∈�. It reveals that for P a.s. ω ∈ �, the shape 
of the global random attractor A(θtω) could change randomly with the evolution of time from τ
to t , along with the sample point ω ∈ �, but the measures of A(θτω) and A(θtω) coincide with 
each other. This is the random version of the Liouville Theorem in Statistical Mechanics. Thus 
we say that the invariant sample measures {μθtω}t∈R of the stochastic Navier-Stokes equations 
satisfies a random Liouville type theorem.
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