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Abstract

i

The Software as a Service (SaaS) paradigm has become entrenched in the industry as a

deployment model, bringing flexibility to the customers and a recurring revenue to the

business. The main architectural paradigm of SaaS systems is the service-oriented one

since it provides numerous advantages in terms of elasticity, fault tolerance, and flexible

architectural design. Currently, the RESTful paradigm, a layer of abstraction on the

server created by defining resources and entities that can be accessed by means of a

URI, is the preferred choice for the construction of SaaS, as it promotes the deployment,

isolation and integration of microservices through APIs.

Nowadays, APIs are regarded as a new form of business product and ever more orga-

nizations are publicly opening up access to their APIs as a way to create new business

opportunities. In the same way, other organizations also consume a number of third-party

APIs as part of their business.

We henceforth define the concept of a RESTful System as an information system

following the RESTful paradigm to shape the integration model between both its own

components as well as other information systems.

Furthermore, understanding governance as the way in which a component is directed

and controlled, in RESTful Systems, those components will be the RESTful APIs and

what we aim to control or regulate is their behavior (i.e., how an API is being consumed

or provided).

As APIs are increasingly regarded as business products, a crucial activity is to describe

the set of plans (i.e., the pricing) that depicts the functionality and performance being

offered to clients. API providers usually define certain limitations in each instance of

a plan (e.g., quotas and rates); for example, a free plan might be limited to having one

hundred monthly requests, and a professional plan to have five hundred monthly requests.

However, although API providers use the Service Level Agreement (SLA) concept to

delimit the functionality and guarantees to which they commit to their customers, there is

no standard model used by API providers for modeling API pricing (including the plans



and limitations). Although some providers do model the information regarding the API

pricing and API limitations with an ad hoc approach, there is no widely accepted model in

the industry. Wherefore answering questions regarding API limitations (e.g., determining

whether or not a certain pricing is valid) is still a manual or non-interoperable process

coming along with some inconveniences (being tedious, time-consuming, error-prone, etc.).

Understating governance as to how a system is directed and controlled, we translate

this concept to meet the SLA-driven approach: we consider the SLA (i.e., API pricing)

as the element that will drive the directions, policies and rules to deliver and maintain

the RESTful System. Adding the SLA to the idea of governance of RESTful systems

leads to the main hypothesis of this dissertation: there is no well-established model for

describing API pricings)in RESTful systems, which is hindering the automatic SLA-

Driven governance.

We claim the main goal of this thesis to be: the creation of an expressive, fully-fledged

specification of SLAs for RESTful APIs endorsed with an open ecosystem of tools aimed

at the SLA-Driven Governance of RESTful systems. The results of this endeavor are

twofold:

(I) Creation of a sufficiently expressive specification for the description of API pricings

and the analysis of their validity. This comprises: (i) conducting an analysis of real-world

APIs to evaluate the characteristics of the API pricings and limitations; (ii) identifying

the relevance of SLAs in APIs in both academic and industrial scenarios; (iii) proposing

a comprehensive model for describing API pricings; (iv) defining analysis operations for

common questions regarding the validity in API pricings and limitations; (v) performing

an evaluation of the model in real-world APIs.

(II) Implementation of an ecosystem of tools to support the SLA-Driven governance

of RESTful APIs. This includes: (i) developing a set of API governance tools; (ii) im-

plementing a validity analysis operation; (iii) performing a validation of the tools and

operations in realistic scenarios.

In this thesis, we present the Governify4APIs ecosystem as the set comprised of (i) a

model aimed at describing API pricings that is closely aligned with industry standards

in APIs (OpenAPI Specification) and (ii) a set of companion tools for enacting the au-

tomatic governance using our specification, ranging from low-level validation tasks to

SaaS solutions based on our model. Governify4APIs is, therefore, a fully-fledged speci-

fication, aligned with the mainstream standards and intended to enable an SLA-Driven

Governance of RESTful Systems.
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Resumen

iii

El paradigma del software como servicio (SaaS) se ha afianzado en la industria como

modelo de despliegue, aportando flexibilidad a los clientes y unos ingresos constantes

a las organizaciones. El principal paradigma arquitectónico de los sistemas SaaS es la

arquitectura orientada a servicios, ya que proporciona numerosas ventajas en términos

de elasticidad, tolerancia a fallos y diseño flexible. RESTful, una capa de abstracción

sobre el servidor creada mediante la definición de recursos y entidades a las que se puede

acceder mediante una URI, es la opción preferida para la construcción de SaaS, ya que

promueve el despliegue, el aislamiento y la integración de microservicios a través de APIs.

Hoy en día, las APIs se consideran una nueva forma de producto empresarial y cada vez

más organizaciones abren públicamente el acceso a sus APIs como forma de crear nuevas

oportunidades de negocio. Del mismo modo, otras organizaciones también consumen una

serie de APIs de terceros como parte de su negocio.

A partir de ahora definimos el concepto de Sistema RESTful como un sistema de in-

formación que sigue el paradigma RESTful para conformar el modelo de integración tanto

entre sus propios componentes como con otros sistemas de información. Además, enten-

diendo gobierno como la forma en que se dirige y controla un componente, en los sistemas

RESTful, esos componentes serán las APIs RESTful y lo que pretendemos controlar o

regular es su comportamiento (es decir, cómo se está consumiendo o proporcionando una

API).

Dado que las APIs están, cada vez más, siendo consideradas como productos comer-

ciales, una actividad crucial es describir el conjunto de planes (es decir, el pricing) que

describe la funcionalidad y el rendimiento que se ofrece a los clientes. Los proveedores de

API suelen definir ciertas limitaciones en cada instancia de un plan (por ejemplo, quotas y

rates); por ejemplo, un plan gratuito podría estar limitado a tener cien peticiones mensu-

ales, y un plan profesional a tener quinientas peticiones mensuales. Sin embargo, aunque

los proveedores de APIs utilizan el concepto de Acuerdo de Nivel de Servicio (SLA) para

delimitar la funcionalidad y las garantías a las que se comprometen con sus clientes, no

existe ningún modelo estándar usado por los proveedores para modelar el pricing de las

API (incluyendo los planes y limitaciones). Aunque algunos proveedores modelan la in-



formación relativa a los pricings y las limitaciones de las APIs con un enfoque ad hoc,

no existe un modelo ampliamente aceptado en el sector. Por lo tanto, responder a las

preguntas relativas a las limitaciones de la APIs (por ejemplo, determinar si un determi-

nado pricing es válido o no) sigue siendo un proceso manual o no interoperable, cosa que

conlleva algunos inconvenientes (es tedioso, consume tiempo, es propenso a errores, etc.).

Entendiendo el gobierno como la forma de dirigir y controlar un sistema, podemos

traducir este concepto teniendo en cuenta el SLA, esto es, consideramos este elemento

como aquel sobre el que se realiza la dirección, políticas y reglas para entregar y mantener

el sistema RESTful. Añadir el concepto SLA a esa idea de gobierno de sistemas REST-

ful nos lleva a la hipótesis principal de esta tesis: no existe un modelo bien establecido

para describir los SLAs (o pricing) en los sistemas RESTful, lo que está dificultando el

gobierno automático. Es, por tanto, el objetivo principal de esta tesis la creación de una

especificación expresiva y completa de SLAs para APIs RESTful, respaldada por un eco-

sistema abierto de herramientas orientadas al gobierno de sistemas RESTful dirigido por

SLAs. Los resultados principales han sido:

(I) Creación de una especificación suficientemente expresiva para la descripción de los

pricings de la API y el análisis de su validez. Esto comprende: (i) realizar un análisis de

APIs del mundo real para evaluar las características de los pricings y limitaciones de las

APIs; (ii) identificar la relevancia de los SLAs en las APIs tanto en escenarios académicos

como industriales; (iii) proponer un modelo completo para describir los pricings de las

APIs; (iv) definir operaciones de análisis para preguntas comunes sobre la validez en los

pricings y limitaciones de las APIs; (v) realizar una evaluación del modelo en APIs del

mundo real.

(II) Implementación de un ecosistema de herramientas para apoyar la gobernanza SLA-

Driven de las APIs RESTful. Esto incluye: (i) desarrollar un conjunto de herramientas

de gobierno de APIs; (ii) implementar una operación de análisis de validez; (iii) realizar

una validación de las herramientas y operaciones en escenarios realistas.

En esta tesis, presentamos el ecosistema Governify4APIs como el conjunto compuesto

por (i) un modelo destinado a describir los pricings de las APIs y alineado estrechamente

con los estándares de la industria (OpenAPI) y (ii) un conjunto de herramientas com-

plementarias para el gobierno automático utilizando este modelo, que van desde tareas

de validación hasta soluciones SaaS. Por lo tanto, Governify4APIs es una especificación

acompañada de todo lo necesario, alineada con los estándares industriales y destinada a

permitir un gobierno de sistemas RESTful dirigidos por SLAs.
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Introduction

3

T
his chapter introduces both the research and the thesis context and outlines the

goals that have led this thesis. Specifically, Section §1.1 describes the concepts

of the research context which frame the scope of the work. Next, Section §1.2

details the relationship of this thesis to broader research projects. Then, Section §1.3

exposes the main goals aimed at this dissertation as well as the hypothesis that supports our

research. Finally, Section §1.4 describes how the content of this dissertation is organized.
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1.1. RESEARCH CONTEXT

1.1 Research Context

The Software as a Service (SaaS) paradigm has become entrenched in the industry as a

deployment model, bringing flexibility to the customer in pay-for-use models and making

it unnecessary to maintain its own infrastructure. In particular, software delivered with

the SaaS paradigm presents business models that depend on the expected benefits for

certain infrastructure costs.

The main architectural paradigm of the SaaS deployment model is service-oriented

architecture (SOA) [1], [2]. They have a number of characteristics such as low coupling,

abstraction, reusability, autonomy, and interoperability. These architectures have tradi-

tionally relied on a set of specifications (SOAP, WSDL) that allow varying degrees of

granularity and provide complex interfaces that often require heavy deployment infras-

tructures.

In recent years, there has been a trend towards a new architectural style that has been

called microservice. This style requires that each component (a microservice) can evolve,

scale and be deployed independently from the rest, increasing the flexibility of the system

as a whole. This architectural style is employed by high-performance commercial systems

architectures such as eBay, Amazon and Netflix [3].

A common element of these architectures in particular, and, in general, when defin-

ing and implementing microservices is that they follow the RESTful paradigm. This

paradigm provides a unified approach to identify the granularity and operational interface

of microservices that have a high degree of extensibility. Microservices provide numerous

advantages in terms of elasticity, fault tolerance and flexible architecture design [4]. Both

industry [5] and academia [6] agree to identify the management and evolution of services

as a key element to achieve a more agile integration of systems and to have a technological

infrastructure that responds quickly to the business needs. These challenges are magni-

fied in the context of microservice architectures since the independent life cycle of each

microservice must be coordinated as part of a service catalog that has a higher growth

rate than that of classical architectures [7].

Currently, the RESTful paradigm is the preferred choice for the construction of Soft-

ware as a Service: as these architectures promote the deployment, isolation and integration

of components (i.e., microservices) typically by means of RESTful APIs, they pave the

way to easily connect to external APIs (as service consumers) or expose internal APIs

to the market (as service providers). From now on, these microservices interacting with

each other by means of RESTful APIs will be designated as RESTful systems. In these

5



CHAPTER 1. INTRODUCTION

systems, we usually find an API provider exposing a set of APIs that is totally or partially

consumed by one or many API clients.

The term of API Economy is being increasingly used to describe the movement of

the industries to share their internal business assets as APIs [8] not only across internal

organizational units but also to external third parties; in doing so, this trend has the

potential of unlocking additional business value through the creation of new assets [9, 10].

In fact, we find several examples in the industry that are deployed solely as APIs (such

as Meaningcloud, Flightstats or Twilio, amongst many others).

In this API Economy context, APIs frequently define their pricing by means of plans

which defines the cost and the API limitations, such as quotas and rates. For instance,

Meaningcloud’s pricing has a Start-Up plan whose cost is 99$ and whose limitations are:

a quota of 120K requests monthly and a rate of 5 requests per second.

Additionally, a frequent problem is the description of the functional elements of each

microservice. In the case of RESTful systems, the resources and the available operations

have to be defined. In this context, during the last years, a successful standardization

effort to have a specification for the functional part of the APIs has been developed; it is

the OpenAPI Specification1.

This specification has pushed forward the creation of a rich open ecosystem of tools2

and techniques to help the industry in the development lifecycle and evolution of APIs

and microservice architectures. This set of tools includes code generators, visual editors,

tools for automated testing, validators, etc.

Likewise, a crucial activity is to describe the set of plans (i.e., the pricing) that depicts

the functionality and performance being offered to clients. API providers usually define

certain limitations in each instance of a plan (e.g., quotas and rates). For example, a free

plan might be limited to having 100 monthly requests, and a professional plan to have

500 monthly requests.

With a similar approach as in other industries, several providers use the Service Level

Agreement (SLA) concept to delimit the functionality and guarantee to which they com-

mit to their customers. We identify both computational SLAs and support SLAs: they

differ in that the former refers to a service provided by an automated system (such a web

service), while the latter refers to a service provided by people. In this thesis, an SLA

will always be a computational SLA and we will use interchangeably both SLA and API

1https://www.openapis.org
2https://apis.guru/awesome-openapi3
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1.1. RESEARCH CONTEXT

pricing terms to refer to that piece of information that holds the API limitations.

Besides, this information regarding the API pricing and API limitations is neither

typically structured nor standardized. Wherefore answering questions regarding API lim-

itations (e.g., determining whether or not a certain pricing is valid) is still a manual

process with the consequent inconveniences (being tedious, time-consuming, error-prone,

etc.).

Although formal specifications have been proposed for the definition of SLAs that

arise in the context of the classical SOAs, web services or cloud environments (WSLA [11],

SLAng [12], SLA* [13], WS-Agreement [14], SLAC [15], CSLA [16], rSLA [17], L-USDL

Agreement [18], ySLA [19]), providers usually have an ad hoc approach with a low degree

of automation. For example, some API marketplaces such as RapidAPI3 do have simple

models for applying simple rate or quota limitations, but they are just ad hoc solutions

with no interoperability between different providers. This ad hoc approach suggests that

the SaaS industry has not incorporated the idea of a model that can be integrated within

the infrastructure as a first-class citizen.

Having a standard model for SLAs for APIs (i.e., API pricings) may boost an open and

interoperable ecosystem of tools that would represent an improvement for the industry

by automating certain tasks and assisting users (both providers and consumers). For

example, code generators, visual editors, tools for automated testing, validators, etc.

Moreover, this API pricing model also paves the way to a catalog of analysis operations.

It may include aspects such as determining whether or not a certain pricing is valid,

calculating the number of available requests in a certain period or deciding whether a

plan is compliant with certain user needs. Those questions could be answered in an

automated way if a sufficiently expressive model for API pricings arises.

However, not only single-purpose tools can be created, but a wider, eclectic approach is

aimed in this thesis: we want to provide an automated SLA-Driven governance framework

and to regulate the behavior of each component (i.e., API providers and clients) in the

context of the agreed SLAs. For instance, an API provider limiting the service to those

API clients who perform more than 10 requests secondly or an API client adapting their

API consumption to a certain API plan to always hit the free tier.

We understand governance in a similar approach as ITIL does. Governance refers to

the means by which an organization is directed and controlled. In service management,

governance defines the common directions, policies and rules that the organization uses

3https://rapidapi.com
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CHAPTER 1. INTRODUCTION

to deliver and maintain its services. Every organization, regardless of the size, takes

direction from a governance body: an entity that is accountable at the highest level for

the performance and compliance of the organization [20].

Assimilating the forenamed governance idea into our approach to SLAs (i.e., SLA-

Driven governance), and RESTful APIs, the Service Level Agreement is responsible for

directing the RESTful system in accordance with the API limitations, but also it is in

charge of monitoring and evaluating the system. These tasks are not straightforward and

should be assisted by open tools so that this complexity is hidden to users: that is our

vision of an automated SLA-Driven governance of RESTful Systems, the object of this

thesis.

In this respect, in our research group, Governify4 has emerged as a framework to

build SLA-Driven infrastructures. It can be considered as a set of components, exposed

as RESTful APIs, utilities and techniques. Some of them are generic whereas others are

extensions or adaptations for a domain-specific purpose. Broadly speaking, it is aimed at

supporting the design, monitoring and implementation of SLAs-Driven infrastructures.

In this thesis, we seek to go forward and extend, closely aligned to industry standards

such as the OpenAPI Specification, the concept of SLA to the RESTful API domain, thus

supporting the governance of RESTful systems, that is, the design, monitoring and im-

plementation of techniques and tools, aimed at improving the management and evolution

of the microservices as part of RESTful system.

We believe that an expressive, fully-fledged specification for SLAs in APIs may boost

an open ecosystem of tools that would represent an improvement for the industry. How-

ever, both the SLA model and its surrounding ecosystem should be carefully evaluated

and validated in several contexts before we can affirm it is an actual improvement.

Hypothesis

There is no well-established model for describing API

pricings (SLAs) in RESTful systems, which is hindering

the automatic governance

4https://www.isa.us.es/3.0/tool/governify
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1.2. THESIS CONTEXT

1.2 Thesis Context

This thesis has been developed in the context of the Applied Software Engineering

Research Group5 of the Universidad de Sevilla and it is intended to extend the scope

of BELI 6 (TIN2015-70560-R), a Spanish national government project, whose objectives

include the development of a governance system for hybrid services systems that integrate

information systems (computer services) and teams of people. In this context, the initial

stages have been covered with the Governify7 ecosystem, a framework to build SLA-

Driven infrastructures. It can be considered as a set of components, exposed as RESTful

APIs, utilities and techniques. It is aimed at supporting the design, monitoring and

implementation of SLAs-Driven infrastructures.

The relevance in the industry of the thesis topic is evidenced in numerous ICT projects.

Specifically, we highlight the SLA@OAI 8 project in 2016, initially developed in conjunc-

tion with Icinetic, which aims at developing an operational extension to define SLAs

within the framework of the OpenAPI Initiative (OAI). We named this extension SLA

for OpenAPI (SLA4OAI). In 2018, the OpenAPI Governance Board approved the cre-

ation of a Specific Interest Group9 (SIG) to coordinate this extension. It is integrated by

a number of the companies that are part of the OpenAPI Initiative, including but not

limited to: API Evangelist, Apigee, Apimetrics, AsyncAPI, Google, Level 250, Metadev,

Paypal and SpotLight. In 2021, an initial proposal was presented to the OpenAPI Gover-

ance Board and, with their feedback, the work on a next version started.

Other projects have had an impact on this thesis. On the one hand, in national

research projects such as TAPAS10, THEOS11 and HORATIO12 the concept of SLA has

played a crucial role; during the execution of these projects we have refined and enhanced

the concept of SLAs in a variety of contexts. On the other hand, ICT projects such as

PROSAS13 (2016) with Accenture and GAUSS14 (2017) with Everis Spain, both focused

on the SLA governance in business processes, had a tangential impact in this thesis as

they help in the enhancing of the SLA model that later will be extended for APIs.

5https://isa.us.es
6https://investigacion.us.es/sisius/sis_proyecto.php?idproy=26807
7https://www.governify.io
8https://investigacion.us.es/sisius/sis_proyecto.php?idproy=26651
9https://github.com/isa-group/SLA4OAI-TC

10https://investigacion.us.es/sisius/sis_proyecto.php?idproy=21610
11https://investigacion.us.es/sisius/sis_proyecto.php?idproy=18670
12https://investigacion.us.es/sisius/sis_proyecto.php?idproy=29623
13https://investigacion.us.es/sisius/sis_proyecto.php?idproy=27485
14https://investigacion.us.es/sisius/sis_proyecto.php?idproy=28203
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CHAPTER 1. INTRODUCTION

1.3 Thesis Goals

This thesis focuses on the study of the ways to support, improve and automate the

SLA-Driven governance of RESTful APIs through the definition of methodologies, tech-

niques and tools. Specifically, we have identified two main challenges:

• CH1: Establish a sufficiently expressive specification for the description

of API pricings and the analysis of their validity.

This challenge is focused on defining a specification having every necessary element

to support the description of pricings in APIs with limitations. This specification

should include aspects regarding the API itself as well as pricing aspects since the

regulation of an API is closely related to its business model. This challenge involves

several requirements, namely:

– Analyze, systematically, a representative set of real-world APIs to evaluate the

characteristics of the API limitations as part of the API pricing.

– Identify both the importance and the role of SLAs during the API development

lifecycle in different scenarios, considering both academic and industrial points

of view.

– Propose a comprehensive model for describing the API pricings.

– Develop a catalog of operations for answering common questions regarding the

validity in API limitations and API pricings.

– Evaluate the proposal by modeling the API pricings of a representative set of

real-world APIs.

• CH2: Implement an ecosystem of tools and operations to support the

SLA-Driven governance of RESTful APIs.

This challenge aims at addressing the evolution from the current SLAs manage-

ment libraries, existing at the time of starting this thesis, to an open ecosystem of

tools articulated in microservices as new components within the Governify frame-

work. This ecosystem should allow integrating both models and analysis operations

APIs so that it results in a useful and ready-to-use platform for researchers and

practitioners. This challenge involves several requirements, namely:

– Implementation of the tools aimed to support the governance of APIs.

– Implementation of a catalog of operations regarding common questions in the

context of API pricings validity.

10
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– Validation of the ecosystem of tools in research and industrial contexts.

In order to succeed in our primary focus of supporting, improving and automating

SLA-Driven governance of RESTful APIs, both challenges ought to be accomplished. We

need an expressive specification of API pricings as well as a ready-to-use implementation

of an ecosystem of tools and operations. We wherefore claim the main goal of this thesis

to be:

Main goal

Creation of an expressive, fully-fledged specification of

SLAs for RESTful APIs endorsed with an open ecosystem

of tools and operations aimed at the SLA-Driven

Governance of RESTful systems.

The next chapters will focus on refining how we have contributed to deal with the

aforementioned challenges.
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CHAPTER 1. INTRODUCTION

1.4 Outline

This thesis document is organized as follows:

Part I: PRELIMINARIES. First, Chapter §1 includes the research context, the

justification of the relevance, the hypothesis and main goals. Next, Chapter §2 describes

the main results of the research presented as part of this thesis.

Part II: PUBLICATIONS. It includes the three core publications that comprise

this compendium as well as other supporting publications in both national and interna-

tional forums. The overview of these publications can be found in Chapter §3. Specifically,

Section §3.1 discusses the main contributions of the thesis with regard to the goals and

Section §3.2 holds the list of relevant publications. Finally, the full-text copy of the three

core publications can be found in Chapter §4, Chapter §5 and Chapter §6 respectively.

Part III: FINAL REMARKS. The Chapter §7 concludes the dissertation. Sec-

tion §7.1 summarises the contributions and discusses their usefulness. Finally, Section §7.2

includes the limitations and future work.

Part IV: APPENDICES. It includes additional publications to serve as supplemen-

tal material. Specifically, Appendix §A and Appendix §B are papers published in a demo

conference track while Appendix §C presents some ongoing work yet to be submitted to

a journal.

12
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Summary of Results

13

T
his chapter briefly describes the main results of the research presented in this the-

sis. Specifically, Section §2.2 summarises our work on the model, Section §2.3

highlight the analysis operations and, finally, Section §2.4 describes the ecosys-

tem of tools.



14



2.1. INTRODUCTION: GOVERNIFY4APIS

2.1 Introduction: Governify4APIs

In this section, we summarize the main results of this thesis, which are part of the

compendium presented in Section §3.2. The high-level contribution is the Governify4APIs

Ecosystem, a set of new components or adaptations aimed at supporting the SLA-Driven

Governance of RESTful systems.

This Governify4APIs ecosystem consists of two main differentiated parts; first, the

creation of a sufficiently expressive specification for the description of API pricings and

the analysis of their validity and secondly, the implementation of an ecosystem of tools to

support the SLA-Driven governance of RESTful APIs.

To begin with, we briefly present this expressive specification, our Governify4APIs

Model, by means of a real example in Section §2.2. Next, in Section §2.2.4, we present a

serialization of the previous model as an extension of the OpenAPI Specification. Finally,

in Section §2.3 we propose a validity analysis operation for API pricings.

Thereafter, Section §2.4 describes the ecosystem of tools that has been developed

around the Governify4APIs Model, including the SLA Editor, SLA Engine, SLA-Driven

API Gateway, ELEcTRA and the SLA4OAI Analyzer.

2.2 Governify4APIs Model

In the API Economy world, API providers have to make sufficient information avail-

able for the consumer to get informed about their products. This includes information

regarding the API itself (endpoints and methods), the plans that a user can subscribe

to, and the associated cost. A plan includes information regarding the API’s limitations

(quota and rates) for each of its resources.

All this information is typically found in a section called pricing (however, cloud in-

frastructure providers tend to refer to it as an offering). Consequently, we shall henceforth

consider a pricing to be a set of plans having an associated cost.

In order to illustrate these concepts, we present a real example: the FullContact API,

a tool for managing and combining contacts from different sources (Gmail, social media,

etc.). The API allows users to programmatically look up information and match email

addresses with publicly available information so as to enrich the contacts. Figure §2.1
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depicts the pricing extracted from the FullContact1 API.

Person API Matches

Company API Matches

Company API Key People Queries

Name/Location/Stats API 

Card Reader

Rate Limit

6000 + $.006 overage

2400 + $.006 overage

250

15000 each + $.001 

25 cards + $0.15 overage

300 queries/min

Basic Contract Information

Licensed for Business Use

Select Plan

$99
$99/mo Starter Plan

Person API Matches

Company API Matches

Company API Key People Queries

Name/Location/Stats API 

Card Reader

Rate Limit

15000 + $.006 overage

6000 + $.006 overage

250

50000 each + $.001 

25 cards + $0.15 overage

300 queries/min

Basic Contract Information

Licensed for Business Use

Select Plan

$199
$199/mo Basic Plan

Figure 2.1: Plans of the FullContact API.

This pricing example consists of two paid plans having a fixed price cost billed monthly.

With respect to the limitations, for each operation, a quota is applied. For example, in

the starter plan, only 6000 matches on Person are available. Nevertheless, an overage is

defined, i.e., it is possible to surpass the limit by paying a certain amount of money, in

this case, $0.006 per request. Regardless of the plan, a common rate of 300 queries per

minute is applied.

In this context, several analytical challenges can arise since the API providers need

to understand the plans in depth before taking further action. In particular, they should

verify the validity of their plans (i.e., that there is nothing inconsistent). Those challenges

correspond to common questions on the API’s pricing and plans that could be answered

automatically with an appropriate model and analytical framework providing validity

analysis operations.

In this thesis, we propose Governify4APIs, a model for API pricings (i.e., of each plan

and the associated cost for a given API) which starts from the idea that each API resource

1https://www.fullcontact.com/developer. Accessed May 2019.
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(HTTP path and method) has a related set of limitations (quotas and rates) for each API

plan.

Figure §2.2 depicts the entire Governify4APIs model. For the sake of clarity, we

have split it into three areas: (i) in dark grey, pricing, plans and cost; (ii) in light grey,

limitations and limits; (iii) in medium grey, capacity. In the following subsections, we

will detail each part of the model with examples extracted from the FullContact API in

Figure §2.1, considering each part: the plan area (Subsection §2.2.1), the limitations area

(Subsection §2.2.2), and the capacity area (Subsection §2.2.3).

Limitation

Plan

name: String

Operation

path: String
method: String

Metric

name: String

Cost

currency: String
price: Number

ThresholdedLimitation

OverageCost

overage: Number

...

...

ThresholdedLimit

threshold: Number

Period

amount: Number

<<enumeration>>
TimeUnit

SECOND
MINUTE
HOUR
...

Capacity

ThresholdedCapacity

threshold: Number

...

Pricing
OperationCost

volume: Number

<<enumeration>>
ThresholdType

MAX
...

Quota Rate

0..*

1..*

1

0..1

1..*

0..1

1

1

1

1

1

1

Figure 2.2: Governify4APIs model for API pricing.

2.2.1 Pricing, Plans, and Cost

As depicted in the model (dark grey in Figure §2.2), a Pricing consists of a set of

Plans. A Plan has a name and a Cost that defines the price charged to users so that they

can access the service. In our example, the FullContact API has two plans: a starter

and a basic Plan.

The Cost may be very simple (e.g., assign a constant price to the Plan, e.g., $99 or

$199 as in our example) or may depend on other properties. In this latter case, when
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the cost depends on a Limitation, we distinguish two costs: OperationCost, when an

Operation is being charged for each time it is invoked; and OverageCost, when once a

certain value of the Limitation has been reached (cf. Subsection §2.2.2), there start to

be imposed charges per volume.

Either type of Cost can be periodic, defining a Period with an amount and a Time-

Unit. In our example, the Cost of the Starter Plan is 99$ billed monthly, i.e., it has a

Period with value 1 of the TimeUnit MONTH.

An OperationCost is frequent in pay-as-you-go payment models in which there is no

monthly fixed Cost and the API consumer is only charged for, given a requests metric,

the number of requests. In the model, this cost is associated with the operation by means

of the Limitation. For example, a service might offer a Plan A in which each request can

be charged at 0.10$ (volume: 1) and a Plan B where each pack of 1000 requests (volume:

1000) is charged at 75$. Depending on the client’s needs, they might prefer Plan A or

Plan B.

An OverageCost is usual when providers do not want to cut off the service once a

Limitation has been reached, but want to continue providing it at a certain charge. Our

example defines an overage when the quota values are reached: each additional match

after 6000 monthly matches is charged at $0.006.

2.2.2 Limitations and Limits

As depicted in the model (unshaded section in Figure §2.2), in order to carry out this

regulation of the consumption of an API, each Operation in a Plan can be subject to

Limitations on a Metric. The most frequent type of Limitation is the Threshold-

edLimitation which establishes one or more ThresholdLimits on the number of Metric

units in a Period. The ThresholdType is usually MAX (i.e., the ThresholdLimit would

therefore represent the maximum number of Metric units). In defining their Pricing,

Limitations allow providers to adjust the API’s consumption to the platform’s total

Capacity (cf. Subsection §2.2.3).

An Operation is defined by the pair formed by HTTP method and path. For example,

GET /contacts would represent the query operation on a collection of user-type objects.

A common example of a Metric is the number of requests. Nonetheless, other metrics can

be defined such as storage, bandwidth or CPU consumption.

In accordance with the implementation, i.e., the algorithm used to enforce the Limi-
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tations, we say that a ThresholdedLimit is a Quota if the computation of the number

of metric units is done over a static window, i.e., in a fixed time window. For example,

a one-week static window might be such that it always starts on Monday at 00:00 and

ends on Sunday at 23:59, regardless of when the first metric unit is computed. On the

contrary, if the time window is sliding, i.e., relative to the first metric unit computed, we

say that the ThresholdedLimit is a Rate. For example, in a one-week sliding window, if

the first metric unit were computed on Wednesday at 15:36:39, that window would close

on the following Wednesday at 15:36:38.

Figure §2.3 illustrates graphically the differences between sliding and static windows.

Considering the instant t when the last request was made, the analysis of the situation

is twofold: (i) inspecting 1 second back, i.e., a 1-second sliding window, there exist 4

occurrences; (ii) observing only the 1-second static window elapsed from 0s to 1s and

from 1s to t, there only exist two occurrences. In short, depending on whether a sliding

(rate) or a static (quota) window is chosen, the observed occurrences may differ.

0 s 1 s 2 s

0 s 1 s

2 occurrences2 occurrences

4 occurrences

Figure 2.3: Sliding (rates) vs static (quotas) windows.

For example, if we use the number of requests as a Metric, and we want to prevent our

users from making more than 4 requests per second, there are two different alternatives: a

1-second sliding time window with a limit of 4 requests, that opens after the first request

and prevents more than 4 from being made during that second; or a 1-second static

window with a limit of 2 requests, that could concentrate the first two requests at the end

of the first second and the other two at the beginning of the next one.

In the industry, these limitations tend to follow definite patterns [21]. Specifically,

Quotas tend to be defined over any metric and are measured in periods longer than an

hour (e.g., daily, weekly, monthly or yearly), while Rates tend to be defined over the

number of requests and are measured in shorter periods (e.g., secondly or minutely).

In our FullContact example, the starter plan has one Rate and four different Quotas.

For example, the Rate is 300 requests in a 1-minute sliding window and a Quota is 6000
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matches in a 1-month static window.

The model distinguishes two concepts: ThresholdedLimitation and Threshold-

edLimit. A ThresholdedLimitation over a certain metric and operation establishes

a fraction of the overall Capacity of the service. A ThresholdedLimitation, however,

can be expressed in various ways, one of which is by defining a set of ThresholdedLim-

its that, within a time period, restrict the percentage of Capacity that consumers are

allowed to use. For example, a ThresholdedLimitation on a certain operation can be

defined as a set of ThresholdedLimits as follows: 30 requests every 1 week and 1 request

every 1 second.

A different way to express a Limitation (as represented by the ellipsis "..." in the

model) would be to use frequency distributions [22], so that referring to percentiles would

allow the form of the distribution and its different attributes to be considered. For ex-

ample, a percentile, such as 99.0 or 99.9 would show a plausible value in the worst case,

while the 50th percentile would emphasize the typical case. In the present communication,

however, we will not address limitations specified as frequency distributions.

2.2.3 Capacity

Finally, a crucial aspect that is not explicitly depicted in a pricing or a plan is the

Capacity. This is an internal aspect that providers do not put out publicly. The Capacity

of the service represents a subset of the constraints of the platform or system on which

the service is being deployed. It is the result of having to satisfy mainly technical and

budget criteria (e.g., CPU or memory, number of nodes of the cluster, etc.).

Estimating the service’s Capacity is fundamental to defining the Pricing and analysing

the Limitations. In particular, all the Limitations ought to be satisfied by the service,

i.e., they must not exceed the service’s Capacity.

As depicted in the model (medium grey in Figure §2.2), once the Capacity has been

identified, it is specified as if it were a Limitation, i.e., the number of certain metric

units in a given Period. Therefore, analogously to the Limitation, the Thresholded-

Capacity has a threshold value and a ThresholdType (usually MAX) in a given Period

of a TimeUnit.

A possible way to express the Capacity on the metric request is the number of requests

per second (RPS) for each operation and plan. For example, a capacity of 10 000 RPS

in GET /pets in the free plan would mean that the entire set of free-plan users will be

20



2.2. GOVERNIFY4APIS MODEL

able to make 10 000 RPS. The Capacity can be different for each plan since different

infrastructures may be used to provide a better level of service to the clients.

For example, an organization might have calculated, based on performance and stress

tests, that its production cluster is able to accept 10 000 RPS. Consequently, if a limitation

had been set of 10 requests per second per client, the theoretical number of concurrent

requests would be 10000/10 = 1000 concurrent clients.

A useful instrument when analysing Limitations is the percentage of capacity uti-

lization or simply the percentage of utilization (PU). Intuitively, this percentage directly

determines whether or not a Limitation can be set because this will be impossible if the

PU is greater than 100%.

The PU will depend on how a consumer consumes the API. There are two interpreta-

tions given a Limitation: uniform and burst. Therefore, the PU can be calculated in two

different ways. To illustrate this idea, let us consider a ThresholdedLimitation with a

single ThresholdedLimit of 43 200 requests every 1 day:

In a first approximation, an API consumer could assume that, since 1 day is 86 400

seconds, for every second, they will have 43200/86400 = 0.5 requests. In this case, it

is assumed a uniform distribution in which, little by little, the consumer will reach the

43 200 requests available in the day. This scenario corresponds to the minimum PU. But

the ThresholdedLimitation states that for 1 day it is possible to make 43 200 requests,

and in no case does it prevent the consumer from making all of them in a burst in the

first instant of time. Indeed, in 1 second the consumer could make the whole set of 43 200

requests. This scenario implies a burst distribution, and corresponds to the maximum PU.

Consequently, the PU must take both these models into account, so that we define

the bounded PU (BPU) as this range:

1. The lower bound is the minimum PU, in which a uniform distribution of utilization

over the period is assumed.

2. The upper bound is the maximum PU, which assumes the utilization of the maxi-

mum allowed in a single burst.

Figure §2.4 illustrates different consumption scenarios for the same ThresholdedLim-

itation of 60 requests every 60 seconds.

In a uniform consumption, 60 requests in 60 seconds would be equivalent to 1 request

every 1 second. However, in a burst consumption, 2, 3, 6, or even a maximum of 60
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60 req/min 

0 s ...1 s 2 s 60 s59 s 0 s ...1 s 2 s 30 s29 s

0 s ...1 s 2 s 20 s19 s 0 s ...1 s 2 s 10 s9 s

1 req/s 2 req/s 60 req/min 

60 req/min 3 req/s 6 req/s 60 req/min 

Figure 2.4: Examples of different consumption scenarios for the same ThresholdedLim-

itation.

requests could be made in 1 second. Therefore, to calculate the BPU in the limitation of

60 requests every 60 seconds, we should take as a minimum value the uniform distribution

of 1 request per second and as a maximum value the burst of 60 requests in 1 second in

a 1 minute window.

2.2.4 SLA4OAI: A Serialization for our Model

The Governify4APIs model can be serialized to be aligned to a variety of API de-

scription specifications. Specifically, we propose SLA4OAI2 [23, 24], an extension of the

OpenAPI Specification (OAS), as it is currently the de facto industrial standard for de-

scribing APIs. Nevertheless, our model could easily be serialized to other API description

languages (e.g., RAML, API Blueprint, I/O Docs, WSDL or WADL).

In SLA4OAI, the original OAS document is extended with an optional attribute, x-

sla, with a URI pointing to the JSON or YAML document containing the SLA definition.

The SLA4OAI metamodel contains the following elements: context information, holding

the main information of the SLA context; infrastructure information providing details

about the toolkit used for SLA storage, calculation, governance, etc.; pricing information

regarding the billing; and a definition of the metrics to be used. The main part of a

SLA4OAI document is the plans section. This describes different service levels, including

the limitations set in the quotas and rates sections. In what follows, we shall detail some of

2https://github.com/isa-group/SLA4OAI-Specification
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the fields in a SLA4OAI file. Nevertheless, for a comprehensive description of the syntax,

a JSON Schema document is available[25]. Further information is also available in the

the specification’s GitHub page 3.

As depicted in Listing 2.1, for the SLA4OAI model, starting with the top-level element,

one can describe basic information about the context, the infrastructure endpoints

that implement the Basic SLA Management Service [24] (i.e., a protocol as part of the

SLA4OAI proposal, beyond the scope of the present communication), the availability,

the metrics and, inside plans, an entry defining quotas, rates, and pricing. Note

that, in the model, the pricing of a plan is related to its cost and billing information.
✞ ☎

1 context : ...

2 infrastructure : ...

3 availability : ...

4 metrics : ...

5 plans :

6 MyPlan :

7 pricing : ...

8 quotas : ...

9 rates : ...
✝ ✆

Listing 2.1: Main elements in SLA4OAI

Specifically, as depicted in Listing 2.2, the context contains general information, such

as the id, the version, the URL pointing to the api OAS document, the availability

of the document, and the type (this field can be either plans or instance). The infras-

tructure contains the endpoints that implement the Basic SLA Management Service, i.e.,

the monitor and supervisor services.
✞ ☎

1 context :

2 id: FullContact

3 sla: ’1.0’

4 type: plans

5 api: ./ fullcontact -oas.yaml

6 provider : FullContact

7 infrastructure :

8 supervisor : https ://...

9 monitor : https ://...

10 availability : ’2009 -10 -09 T21 :30:00.00Z’
✝ ✆

Listing 2.2: Context, infrastructure and availability details in SLA4OAI

In the Metrics field, as depicted in Listing 2.3, it is possible to define the metrics that

will be used in the limitations, such as the number of requests or the bandwidth used per

request. For each metric, the type, format, unit, description, and resolution (when

3https://github.com/isa-group/SLA4OAI-ResearchSpecification

23



CHAPTER 2. SUMMARY OF RESULTS

the metric will be resolved, e.g., check or consumption to indicate that it will be sent

before of after its consumption, respectively) can be defined.
✞ ☎

1 metrics :

2 requests :

3 type: integer

4 format : int64

5 description : Number of requests

6 resolution : consumption

7 matches :

8 type: integer

9 format : int64

10 description : Number of matches
✝ ✆

Listing 2.3: Metric details in SLA4OAI

The Plans section, as depicted in Listing 2.4, has the elements that will describe the

plan-specific values – quotas, rates, and pricing.

In this context, it is important to stress that the plans section maps the structure in

the OAS document so as to attach the specific limitations (quotas or rates) for each path

and method. In particular, the limitations are described with a max value that can be

accepted, a period with amount and a time unit, and the scope over which they should

be enforced. As an extensible scope model, we propose two possible initial values (tenant

or account as default).

Furthermore, the cost section defines the overage (including the overage threshold

and cost per extra unit) and the operation (including the volume and the cost per

unit) costs.
✞ ☎

1 plans :

2 Starter :

3 pricing :

4 cost: 99

5 currency : USD

6 period :

7 amount : 1

8 unit: month

9 quotas :

10 ’v3/ person .enrich ’:

11 post:

12 matches :

13 - max: 6000

14 cost:

15 overage :

16 overage : 1

17 cost: 0.006

18 rates :

19 ’v3/ person .enrich ’:

20 post:

21 requests :
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22 - max: 10

23 period :

24 amount : 1

25 unit: month
✝ ✆

Listing 2.4: Plans details in SLA4OAI

2.3 Analysis

In this section, we propose an analysis framework to form a ground on which to

reason about the pricing model presented. Consequently, this framework paves the way

to exploiting the information contained in the model, and has been used to develop a

validity analysis operation that could be useful in a real setting for both consumers and

providers of APIs. As a foundation for the analysis operations, the first of the following

subsections addresses the cornerstone of the analysis framework – the relationship between

limitations and capacity.

2.3.1 Limits as Percentages of Capacity Utilization

Since the capacity of the platform on which the service is deployed is not unlimited,

the pricings should be defined to be compatible and coherent with that capacity. As

an example, ensuring that the total capacity is sufficient for the potential use of the

service defined in a particular plan should be analyzed. Furthermore, we proposed (in

Subsection §2.2.3) the notion that any given limitation corresponds to a Bounded set of

Percentage of capacity Utilization (BPU) values derived from the potential usage scenarios

a client could have for their consumption within the API while meeting its limitation.

In this context, the correspondence between limitations and BPU can be obtained

by means of a normalization procedure that transforms the unit of the limitation to the

capacity time unit, and then computing the minimum and maximum possible PUs. This

procedure comprises just simple calculations, as is illustrated in the following example:

Consider a limitation with a limit of 43 200 rquests / 1 day and assume a total capacity

of 50 000 RPS. Since all limitations should be expressed using the time unit of the capacity

(second), the limitation is 43 200 requests / 86 400 seconds. First, assume a uniform

consumption, i.e., if in 1 day (86 400 seconds) there are 43 200 requests, in there will be

43200/86400 = 0.5 RPS. Given the value of the capacity, 50 000 RPS, the minimum PU

is 0.5/50000 = 0.00001 = 0.001%. Now assume a single burst consumption, i.e., if a burst
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of 43 200 requests can occur during any 1 second window over 1 day. Given the value of

the capacity, 50 000 RPS, the maximum PU is 43200/50000 = 0.864 = 86.4%. Therefore,

the BPU of 43 200 requests / 1 day subject to a capacity of 50 000 RPS is [0.001%-86.4%].

The calculation of the overall system capacity is a non-trivial procedure. It requires

great technical effort in order to make a proper estimate. But, depending on the stage of

development, even this will not always be feasible. In the present study, when the value

of the system’s capacity is unknown, we shall assign it the value of the highest capacity

needed. To calculate this value, we shall assume uniform consumption after normalizing

to the smallest time unit, and take the greatest value. The following is an example:

Consider the following two limitations: 1 RPS and 100 RPW (1 week, 604 800 s).In

order to take the value of the highest capacity needed, we must first determine what

the strongest limitation is. For this case, we normalize to the smallest unit, the second,

1 RPS = 1 and 100 req/604800s = 0.000165 RPS, since 1 > 0.000165 we have that the

highest capacity needed is 1 RPS. Therefore, we will take 1 RPS as the value of the

capacity. As a conclusion, it is worth noting that 1 RPS requires a higher capacity than

100 RPW, which only requires 0.000 165 RPS.

2.3.2 Pricing Validity

We define the validity of a pricing as checking whether it is valid depending on a set

of validity criteria. These include the absence of different types of conflict, for example,

two limits within a limitation that cannot be met at the same time. The validity of a

Governify4APIs model is defined as certain validity criteria being met in each part of the

model. In the model, a pricing has a set of plans, and these plans consist of limitations,

each with its own limits. This hierarchy carries over to the validity operation. Hence, for

example, a pricing will be valid, notwithstanding its satisfying other additional validity

criteria, if all of its plans are also valid.

For solving validity conflicts, a priority criterion is required. For example, if two

limits are defined with different values for a given metric and operation, which one should

prevail over the other? In order to satisfy these requirements we assume henceforth the

following default priority criteria: i) limitations with smaller periods over limitations with

higher periods; ii) rates over quotas; iii) metric number of requests over any other metric.

Notwithstanding, these criteria can be re-defined in other scenarios (e.g., metric requests

is less important than the bandwidth in a certain business context).

We shall present the validity criteria in a hierarchy, starting from the fine-grained
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VC 4 (pricing)VC 3 (plan)VC 2 (limitation)

VC 1 (limit)
VC 1.1

natural number

VC 2.4
no limitation capacity conflict

VC 2.1

VC 2.2
no limit consistency conflict

VC 2.3
no ambiguity conflict

VC 3.1

VC 3.2
no limitation consistency conflict

VC 4.1

VC 4.2
no cost consistency conflict

Figure 2.5: Validity criteria hierarchy.

(VC1 - limits, VC2 - limitation) to the coarse-grained (VC3 - plan, VC4 - pricing) validity

criteria. Each validity criterion comprises multiple validity subcriteria. Figure §2.5 gives

an overview of this hierarchy of validity criteria.

The details of each validity criterion are as follows:

VC1 - Valid limit A limit is valid if its threshold is a natural number (VC1.1).

VC2 - Valid limitation A limitation is valid if: all its limits are valid (VC2.1); there

are no limit consistency conflicts between any pair of its limits, i.e., there is no

situation exceeding a limit with more priority while it is allowed by another limit

with less priority (VC2.2); there are no ambiguity conflicts between any pair of its

limits, i.e., two limits using the same period with different values (VC2.3) and there

is no capacity conflict, i.e., the limitation does not surpass the associated capacity

(VC2.4).

VC3 - Valid plan A plan is valid if: all its limitations are valid (VC3.1) and there are

no limitation consistency conflicts between any pair of its limitations, i.e., two limi-

tations on two related metrics (by a certain factor) cannot be met at the same time

(VC3.2). If they happen to exist, the priority criteria will be used for determining

which limit has to be prioritized.

VC4 - Valid pricing A pricing is valid if: all its plans are valid (VC4.1) and there are

no cost consistency conflicts between any pair of its plans, i.e., a limitation in one

plan is less restrictive than the equivalent in another plan but the former plan is

cheaper than the latter (VC4.2).
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In order to understand these validity criteria, on the following subsections we will

present examples of existence and absence of conflicts of each type.

Limit Consistency Conflict (VC2.2)
✞ ☎

1 Capacity : 1000000 RPS

2 Limitations :

3 Quota : 100 requests / 1 day

4 Quota : 1000 requests / 1 week
✝ ✆

Listing 2.5: Validity criterion VC2.2 (no limit consistency conflict)

An example of a situation where there is no limit consistency conflict can be ob-

served in Listing 2.5. An inconsistency occurs when there is a possible situation exceeding

a limit with more priority while it is allowed by another limit with less priority, according

to the priority criteria hereinbefore mentioned. An example, using the size of the periods

as the priority criterion, a conflict shall happen if the minimum PU of the limit with the

longest period is less than the minimum PU of the limit with the shortest period.

The limit having the longest period is 1000 requests / 1 week whose minimum PU

is 1000/1000000 = 0.10%. The limit with the shortest period, 100 requests / 1 day,

has a minimum PU of 100/1000000 = 0.01%. Since 0.10% ≮ 0.01%, there is no conflict

between these limits.
✞ ☎

1 Capacity : 1000000 RPS

2 Limitations :

3 Quota : 100 requests / 1 day

4 Quota : 10 requests / 1 week
✝ ✆

Listing 2.6: Validity criterion VC2.2 (limit consistency conflict)

On the other hand, in Listing 2.6 there is a limit consistency conflict. The limit

with the longest period is 10 requests / 1 week whose minimum PU is 10/1000000 =

0.001%. The limit with the shortest period, 100 requests / 1 day, has a minimum PU

of 100/1000000 = 0.01%. Since 0.001% < 0.01%, there is a limit consistency conflict

between these limits.

Ambiguity Conflict (VC2.3)
✞ ☎

1 Limitation :

2 Limit : 1 request / 1 second

3 Limit : 100 requests / 1 day
✝ ✆

Listing 2.7: Validity criterion VC2.3 (no ambiguity conflict)

An example where there is no ambiguity conflict is presented in Listing 2.7, be-

cause the limits of the limitation use different periods, i.e., 1 second and 1 day.
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✞ ☎

1 Limitation :

2 Limit : 1 requests / 1 second

3 Limit : 100 requests / 1 second
✝ ✆

Listing 2.8: Validity criterion VC2.3 (ambiguity conflict)

Conversely, in Listing 2.8 there is a consistency conflict because the limits of the

limitation use the same period, i.e., 1 second.

Capacity Conflict (VC2.4)
✞ ☎

1 Capacity : 100 requests / 1 second

2 Limitations :

3 Quota : 50 requests / 1 day
✝ ✆

Listing 2.9: Validity criterion VC2.4 (no capacity conflict)

A possible situation where there is no capacity conflict is shown in Listing 2.9.

First, we normalize using the unit of the capacity (i.e., seconds). Thus, there are 50

requests / 86 400s (1 day). Next, to calculate the BPU, we need both (i) the minimum

PU (uniform distribution) and (ii) the maximum PU (burst distribution). For (i), if

in 86 400 seconds there are 5 requests, in 1 second there will be 50/86400 = 0.00057

requests. The minimum PU is 0.00057/100 = 0.0057%. For (ii), in 1 second there will

be a burst of 50 requests. The maximum PU is 50/100 = 50%. Therefore, the BPU is

[0.0057%,50%].

Since BPU is always less than 100%, there is no capacity conflict.
✞ ☎

1 Capacity : 100 requests / 1 second (100 RPS)

2 Limitations :

3 Quota : 200 requests / 1 day
✝ ✆

Listing 2.10: Validity criterion VC2.4 (capacity conflict)

On the contrary, in Listing 2.10 there is a capacity conflict. First, we normalize

using the unit of the capacity (i.e., seconds). Thus, there are 200 requests / 86 400s (1

day). Next, to calculate the BPU, we need both (i) the minimum PU (uniform distribu-

tion) and (ii) the maximum PU (burst distribution). For (i), if in 86 400 seconds there

are 5 requests, in 1 second there will be 200/86400 = 0.0023 requests. The minimum PU

is 0.0023/100 = 0.00023%. For (ii), in 1 second there will be a burst of 200 requests. The

maximum PU is 200/100 = 200%. Therefore, the BPU is [0.000 23%,200%].

Since BPU is greater than 100%, there is a capacity conflict because of the maximum

PU.
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✞ ☎

1 Capacity : 100 requests / 1 second (100 RPS)

2 Limitations :

3 Quota : 200 requests / 1 day

4 Rate: 99 requests / 1 second
✝ ✆

Listing 2.11: Validity criterion VC2.4 (no capacity conflict)

Additionally, Listing 2.11 presents another example where there is no capacity

conflict. First, we normalize using the unit of the capacity (i.e., seconds). Thus, there

are 200 requests / 86 400s (1 day) and 99 requests / 1s Next, we calculate the BPU in

each limitation as in other examples. The first limitation’s BPU is [0.000 23%,200%].

Next, to calculate the BPU, we need both (i) the minimum PU (uniform distribution)

and (ii) the maximum PU (burst distribution). For (i), the minimum PU is 99/100 =

99%. For (ii), in 1 second there will be a burst of 99 requests. The maximum PU is

99/100 = 99%. Therefore, the BPU is [99%,99%].

Now, we aggregate both BPUs: first, we get the maximum value of the minimum PU:

max(0.000 23%, 99%)=99%. Next, we obtain the minimum value of the maximum PU:

min(200%,99%)=99%.

Therefore, as a result, we got [99%,99%]. Given that it does not surpass the capacity,

we state that there is no capacity conflict.

2.4 Governify4APIs Ecosystem

Across the years, in our research group, Governify4 has emerged as a framework to

build SLA-Driven infrastructures. Governify can be considered as a set of components,

exposed as RESTful APIs, utilities and techniques. Within this ecosystem, some com-

ponents are generic whereas others are extensions or adaptations for a domain-specific

purpose, ranging from the business process domain to ensuring best practices in software

development.

In this thesis, we present the Governify4APIs Ecosystem, a set of new components or

adaptations, on the top of Governify, for the SLA-Driven Governance of RESTful systems.

Specifically, Figure §2.6 shows the big picture of the Governify4APIs architecture.

First, we have adapted two main top-level components: (i) an SLA Editor, for creating

and editing SLA4OAI documents and (ii) an SLA Engine implementing a protocol for
4https://www.governify.io

30

https://www.governify.io


2.4. GOVERNIFY4APIS ECOSYSTEM

Governify

...

...

...

...

SLA-Driven API Gateway

sla4oai-tools

Other components 
(http proxy, db, etc…)

SLA Engine

SLA4OAI
Monitor

SLA4OAI
Supervisor

SLA4OAI
Tenants

Governify Registry

SLA Editor

Other Editor 
Modules

Governify Editor

SLA4OAI
Editor Module

ELeCTRA

CSP Engine

SLA4OAI Analyzer API

Analysis operations 
logic

Existing Governify 
component

New component

New top-level 
component

Adapted top-level 
component

Other Governify 
components

...

...

...

Figure 2.6: Governify4APIs’ architecture

enforcing SLAs. Next, we have developed three main top-level components: (i) an SLA-

Driven API Gateway which, using the SLA Engine, helps users to seamlessly govern their

APIs; (ii) a SLA4OAI analyzer implementing the pricing validity analysis operation; (iii)

ELeCTRA an initial prototype of an analysis tool based on CSP (Constraint Solving

Programming) for performing complex analysis operations.

Our view of an SLA-Driven Governance of RESTful systems to success is that users

should be assisted by a set of tools during each activity, from the development until the

validation. Since we seek to offer a fully-fledged SLA4OAI language, we provide an initial

working implementation of these tools.

The SLA Editor, the SLA Engine and the SLA-Driven API Gateway are extensively

described at SLA [26]; next, ELeCTRA is described at [27]; finally, SLA4OAI Analyzer

is not yet published as it is an ongoing work.

From a technical point of view, every Governify (and, consequently, each Governify4APIs)

service is inspired in the microservice architectural style, they are mostly written in
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Node.js and they are have been packed as container images5 and formerly deployed for

public online access at the University’s own infrastructure (under DNS domains *.gov-

ernify.io).

In the subsequent sections, we present each Governify4APIs’ component:

2.4.1 SLA Editor

In modeling tasks, supporting tools are commonly provided to the users. In this

scenario, we provide the SLA editor6, aiming the modeling of pricings in APIs once it has

been modeled with OAS. This editor is an extension of the Governify Editor : we have

created a SLA4OAI module and it has been integrated into the editor.

Our editor is a user-friendly and web-based text editor specifically developed for as-

sisting the user during modeling tasks, including auto-completion, syntax checking, and

automatic binding. It is possible to create plans (e.g., free and pro) with quotas and rates.

Clicking on the + sign, the user is able to select the path and method (previously defined

in the OAS document) for entering the value of the limitation. Note that custom metrics

can also be defined at the bottom, however, the calculation logic is left open for a specific

implementation.

Figure 2.7: Editing plans in the SLA Editor tool

5https://hub.docker.com/u/isagroup
6https://hub.docker.com/r/isagroup/designer-studio
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2.4.2 SLA Engine

The SLA4OAI specification outlines the Basic SLA Management Service7 (BSMS)

defining the interaction flows and the endpoints /check and /metrics. Our engine provides

a concrete implementation which also includes a particular way to handle SLA saving/re-

trieving tasks. Specifically, Monitor8 is an implementation of the Metrics BSMS service

and Supervisor9, of the Check service.

The Monitor service exposes a POST operation in the route /metrics for gathering

the metrics collected from different services. It can collect a set of basic metrics and send

them to a data store for aggregation and later consumption. The metrics can be grouped

in batches or sent one by one to fine-tune performance versus real-time SLA tracking.

The Supervisor service has a POST /check endpoint for the verification of the current

state of the SLA for a given operation in a certain scope. For each request, this service

will evaluate the state of the SLA and will respond with a positive or negative response

depending on whether a limitation has been overcome.

In addition, this service also implements (outside the scope of the BSMS) these addi-

tional endpoints: GET/POST /tenants, GET/POST /slas and PUT/DELETE slas/<id>

for managing both users (tenants and accounts) and SLA4OAI documents themselves.

2.4.3 SLA-Driven API Gateway

We provide a SLA-Driven API Gateway10, an implementation for registering APIs

that will be automatically governed regarding the specified pricing.

Particularly, we provide an online preconfigured instance of an SLA-Driven API Gate-

way. As depicted in Figure §2.8, API providers are only required to enter: (i) The real

endpoint of their API; (ii) A URL pointing to the SLA4OAI document. Once an API is

registered, the SLA-Driven API Gateway exposes a public and SLA-regulated endpoint,

as well as the /plans endpoint for the provisioning portal. Clients who have selected a

plan will get an API-key from the portal that will be a bearer token to consume the

SLA-regulated API.

Figure §2.9 represents how the gateway works. First, requests will pass through the

7https://sla4oai.specs.governify.io/operationalServices.html
8https://hub.docker.com/r/isagroup/governify-project-oai-monitor
9https://hub.docker.com/r/isagroup/governify-project-oai-supervisor

10https://hub.docker.com/r/isagroup/governify-project-oai-gateway
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Figure 2.8: Configuration UI of the SLA-Driven API Gateway

API Gateway until they are directed to the node that will serve it (step 1). Next, the API

Gateway query the SLA Check API to determine if the request is authorized to develop

the actual operation based on the appropriate SLA (step 2). Afterward, if it is authorized,

the actual API is invoked and the response is returned (step 3). If it is not, a status code

and a summary of the reason (as generated by the SLA check API) are returned (step

3). After the consumption ends (step 4), the metrics are sent to the SLA Metrics API

(step 5), which is in charge of updating the status of the agreement with the new metrics

introduced (step 6).

SLA Check SLA Metrics

Request
workload

API

API Gateway

APIAPI

1

2

3

4 5

6

Figure 2.9: Gateway enforce defined in the SLA4OAI BSMS

Internally, this gateway uses an SLA Instrumentation Library in Node.js11, which is a

middleware (i.e., a filter that intercepts the HTTP requests and performs transformation

11https://www.npmjs.com/package/sla4oai-tools
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if necessary) written for Express, the most used Node.js web application framework. This

middleware intercepts all inbound/outbound traffic to perform the BSMS flow.

2.4.4 ELEcTRA

Providers, when building complex services, they often depend on third-party APIs.

Before defining their own API pricing, it is crucial to know each pricing from the APIs

you depend on (i.e., that is what we mean by induced limitations) Each API provider

typically defines different limitations, therefore, performing a manual analysis of external

APIs and their impact in a microservice architecture is a complex and tedious task.

ELeCTRA12 is a tool to automate the analysis of induced limitations in an API,

derived from its usage of external APIs. This tool takes the structural, conversational

and SLA specifications of the API, generates a visual dependency graph and translates the

problem into a constraint satisfaction problem (CSP) to obtain the effective limitations.

Figure §2.10 depicts a screenshot of ELeCTRA tool. The details of the implementation

and a demonstration13 are in [27].

2.4.5 SLA4OAI Analyzer

The main operation regarding API limitations is Validity (cf. Section §2.3.2). This

operation, in order to be useful for practitioners, needs to be automated by means of

a specific tool. To this end, we have developed sla4oai-analyzer, an initial version of

a publicly available command-line tool [28]. Once installed, given a SLA4OAI file, the

command sla4oai-analyzer -o <operation> -f <myFile.yaml> will initiate the validity

analysis for this file. In order to be integrated into the Governify framework, this tool is

also available as an API [29].

For example, for the validity operation, sla4oai-analyzer first checks the syntax va-

lidity according to the JSON Schema defined in the repository, and then checks each

validity criterion in each part (pricing, plan, limitation, and limit). Figure §2.12 depicts

a consistency conflict detected by this tool, caused by a modeling mistake.

As illustrations of some outputs of the tool, Figure §2.11 shows a pricing with syntax

errors and Figure §2.12 a consistency conflict.

12https://hub.docker.com/r/isagroup/governify-electra
13http://youtu.be/axbkDax1N9g
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Figure 2.10: Sample calculation of induced limitations using ELEcTRA.

 > sla4oai-analyzer -o validity -f ‘.\yelp.yaml’
------ BEGIN CHECKING FILE: .\yelp.yaml ------
CHECKING SYNTAX...
SYNTAX ERRORS in yelp.yaml
  SYNTAX ERROR: in path "#/":
    Missing required property: metrics
------ END CHECKING FILE: .\yelp.yaml ------

Figure 2.11: Tool running a syntax check.

 > sla4oai-analyzer -o validity -f ‘.\inconsistent-ex.yaml’ 
------ BEGIN CHECKING FILE: .\inconsistent-ex.yaml ------ 

CHECKING SYNTAX... 

SYNTAX OK 

CHECKING VALIDITY... 

  USING DEFAULT CAPACITY 

    LIMIT CONSISTENCY CONFLICT: 

      in Plan1>/method1>get>requests 

      ('60 per 60/second' and '1 per 1/second') 

VALIDITY ERROR 

------ END CHECKING FILE: .\inconsistent-ex.yaml ------ 

Figure 2.12: Tool running the validity operation with errors.
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T
his chapter outlines the main contributions of this thesis and presents the list

of publications. Precisely, Section §3.1 discusses the main contributions of the

thesis with regard to the goals mentioned hereinbefore. Next, Section §3.2 holds

the list of relevant publications that comprise this compendium. Finally, the full-text copy

of the three core publications can be found in Chapter §4, Chapter §5 and Chapter §6

respectively.
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3.1 Discussion of Results

This section discusses the main contributions of the thesis aimed at addressing the

research goals described in Section §1.1.

3.1.1 General Overview

Figure §3.1 depicts an overview of the objectives, goals, related publications, developed

tools and associated research projects.

Objective

Goals

Publications

Tools
Research 
projects

Expressive and fully-fledged specification of SLAs for RESTful APIs endorsed with 
an open ecosystem of governance tools.

CH1: Expressive specification for describing 
SLA-Driven RESTful APIs and validity 

analysis operations

CH2: Ecosystem of tools to support the 
governance of SLA-Driven RESTful APIs

National 
conferences

[31, 32, 33]

ESEC
FSE’19[23] ICSOC’19[24]ICSOC’18

Demos[27]

Governify4APIs Ecosystem

HORATIO
RTI2018-101204-B-C21

EKIPMENT-PLUS
P18-FR-2895

BELI
TIN2015-70560-R

COPAS
P12-TIC-1867

THEOS
P10-TIC-5906

TAPAS
TIN2012-32273

ICSOC’17[21] ICSOC’17 
PhD[30]

ESEC
FSE’19 
Demo[26]

Figure 3.1: Overview of this thesis.

The context and goals are extensively described at Section §1.1 and Section §1.3

respectively. Next, the summary of publications is presented in Section §3.1.2. Then,

the tools are described in Section §2.4 and, finally, the associated research projects are

outlined in Section §1.2.

3.1.2 Summary of the Contributions

Figure §3.2 depicts the general outline of the contributions of this dissertation. It

highlights the main two contributions and their relationship with the publications as part

of this compendium.

The high-level contribution is Governify4APIs, a set of new components or adaptations

aimed at supporting the SLA-Driven Governance of RESTful systems. It has been built

on the top of Governify, a framework to build SLA-Driven infrastructures. For building

Governify4APIs two main contributions have been done: C1, creation of a sufficiently

expressive specification for the description of API pricings and the analysis of their validity

and C2, implementation of an ecosystem of tools to support the SLA-Driven governance
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PhD Thesis: SLA-Driven Governance of RESTful APIs

C2 - Ecosystem to support the SLA-Driven governance of RESTful APIs

C1 - Sufficiently expressive specification for API pricings and their  
validity analysis operations

Analysis of RESTful APIs
(Chapter §4)

Industrial relevance of SLAs in 
APIs

(Chapter §5)

SLA4OAI: serialization for SLAs in APIs described with 
OpenAPI
(Chapter §6)

Governify4APIs: expressive model of API pricings and validity 
analysis operations

(Appendix §C)

Automated validity analysis operations for APIs pricings
(Appendix §C)

ELeCTRA: analysis of 
induced limitations

(Appendix §A)

Governify4APIs: API 
governance ecosystem

(Appendix §B)

Figure 3.2: Overview of the contributions of this thesis.

of RESTful APIs.

C1: Creation of a sufficiently expressive specification for the description of

API pricings and the analysis of their validity: the Governify4APIs Model

To this end, we first performed a systematic analysis of 69 RESTful APIs to thoroughly

evaluate the characteristics of the API pricings and API limitations. This analysis paved

the way to identify the requirements for the creation of an expressive model to describe

SLAs in APIs. This contribution is presented in [21] (Chapter §4).

Second, we analyzed the landscape of SLAs in RESTful APIs in two different direc-

tions: i) Clarifying the SLA-driven API development lifecycle: its activities and partic-

ipants; 2) Developing a catalog of relevant concepts and ulterior prioritization based on

different perspectives from both Industry and Academia. As a main result, we presented

a scored list of concepts that paves the way to establish a concrete roadmap for a standard

industry-aligned specification to describe SLAs in APIs. This contribution is presented

in [23] (Chapter §5).
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Next, we presented SLA4OAI, pioneering in extending the OpenAPI Specification

not only allowing the specification of SLAs but also supporting some stages of the SLA-

Driven API lifecycle with an open-source ecosystem. Finally, we validated our proposal

having modeled 5488 limitations in 148 plans of 35 real-world APIs. This contribution is

presented in [24] (Chapter §6).

Finally, we continue evolving the SLA4OAI model, which is just a simplified serializa-

tion intended to be compatible with the OpenAPI Specification, into the Governify4APIs

model. We have incorporated some missing features after having analyzed with rigor the

concept of an API pricing and its properties. We also paved the way for a catalog of

analysis operations, starting from defining what is the definition of a API pricing validity.

This contribution is, at the time of writing, under active elaboration. However, an initial

version is available in this thesis as an appendix in Appendix §C.

C2: Implementation of an ecosystem of tools to support the SLA-Driven

governance of RESTful APIs: the Governify4APIs Ecosystem

First, we developed ELeCTRA, a simple tool to automate the analysis of induced

limitations in an API, derived from its usage of external APIs. This tool takes the struc-

tural, conversational and SLA specifications of the API, generates a visual dependency

graph and translates the problem into a constraint satisfaction optimization problem

(CSOP) to obtain the optimal usage limitations. This contribution is presented in [27]

(Appendix §A).

Next, we introduced Governify4APIs, an ecosystem of tools aimed at the SLA-Driven

governance of RESTful APIs. Namely, an SLA Editor, an SLA Engine and an SLA

Instrumentation Library. We also present a fully operational SLA-Driven API Gateway

built on top of our ecosystem of tools. To evaluate our proposal, we used three sources for

gathering validation feedback: industry, teaching and research. This is presented in [26]

(Appendix §B).

Finally, we evolved Governify4APIs by enhancing the tools with new analysis opera-

tions regarding the validity of an API pricing, the calculation of the effective limitation in

a period and the compliance of a certain API pricing with the given user needs. As stated

above, this contribution is under active elaboration, but an initial version is available in

this thesis (Appendix §C).

Regarding the evaluation of this contribution, we seek three main contexts: industrial,

educational and research.
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Concerning the industrial evaluation, some OpenAPI Initiative members have ex-

pressed their interest in SLA4OAI, the SLA modeling proposal, and in promoting a work-

ing group for evolving and extending it. We collaborated with people from Google, Paypal,

AsyncAPI Initiative and Metadev for analyzing, starting from SLA4OAI, the status of

SLAs and limitations in the industry. Furthermore, in spite of the fact the SLA4OAI

extension and tools have not been widely announced nor promoted, we have disclosed the

tooling ecosystem into the main public Node.js artifact repository (i.e., NPM) and this

platform provides a set of analytics of usage since their publishing. Specifically, based on

its data we observe that SLA Instrumentation Library has been downloaded and installed

more than 600 times while the SLA Engine was downloaded more installed than 2800

times1.

Regarding the use of Governify4APIs in teaching, it has been extensively used in,

at least, two undergraduate service-oriented related subjects. As students were required

to create their own APIs2, they also had to set the rate and quota limitations using

Governify4APIs. Whereas we do not have any specific usage report, we collected useful

information, issues and bugs derived from running in production.

As for the research context, we are validating our proposal (language and tools) in a

national research network. Several members are exposing their research results by creating

an API and applying limitations using Governify4APIs. Then, all these artifacts are being

deployed in a central publicly available catalog3.
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Offerings in the Industry. In proceedings of the 15th International Conference
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• A. Gámez-Díaz, P. Fernández, A. Ruiz-Cortés, P. Molina, N. Kolekar, P. Bhogill, M.

Mohaan, F. Méndez. The Role of Limitations and SLAs in the API Industry.

In proceedings of the 27th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019) [23].

GGS class 1 (A+).

1https://npm-stat.com/charts.html?package=sla4oai-tools
2https://github.com/gti-sos
3https://www.isa.us.es/rcis. Accessed Oct 2020.
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Abstract. As distribution models of information systems are moving to
XaaS paradigms, microservices architectures are rapidly emerging, hav-
ing the RESTful principles as the API model of choice. In this context,
the term of API Economy is being used to describe the increasing move-
ment of the industries in order to take advantage of exposing their APIs
as part of their service offering and expand its business model.

Currently, the industry is adopting standard specifications such as
OpenAPI to model the APIs in a standard way following the RESTful
principles; this shift has supported the proliferation of API execution
platforms (API Gateways) that allow the XaaS to optimize their costs.
However, from a business point of view, modeling offering plans of those
APIs is mainly done ad-hoc (or in a platform-dependent way) since no
standard model has been proposed. This lack of standardization hinders
the creation of API governance tools in order to provide and automate
the management of business models in the XaaS industry.

This work presents a systematic analysis of 69 XaaS in the industry
that offer RESTful APIs as part of their business model. Specifically, we
review in detail the plans that are part of the XaaS offerings that could
be used as a first step to identify the requirements for the creation of
an expressive governance model of realistic RESTful APIs. Additionally,
we provide an open dataset in order to enable further analysis in this
research line.

1 Introduction

In the last decade, distribution models of information systems are evolving into
XaaS [10] paradigms where customers no longer need to buy a perpetual license,
host the software or maintain the infrastructure [5]. As part of this trend, the
microservices architectures are rapidly emerging as they provide a flexible evo-
lution model [7]. In particular, this architectural model proposes a division of the
information system into a set of small services deployed independently which com-
municate each other using Web APIs that adhere typically to REST principles [6].

This work has been partially supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programs (grants TIN2015-70560-R (BELI) and
P12–TIC-1867 (COPAS)) and the FPU scholarship program, granted by the Spanish
Ministry of Education, Culture and Sports (FPU15/02980).

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 589–604, 2017.
https://doi.org/10.1007/978-3-319-69035-3_43
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In this context, the term of API Economy is being increasingly used to
describe the movement of the industries to share their internal business assets
as APIs [21] not only across internal organizational units but also to external
third parties; in doing so, this trend has the potential of unlocking additional
business value through the creation of new assets [3]. In fact, we can find a num-
ber of XaaS examples in the industry that are deployed solely as APIs (such as
Meaningcloud1, Flightstats2 or Twilio3).

In order to be competitive in this such a growing market of APIs, at least
two key aspects can be identified: (i) ease of use for its potential developers; (ii)
a flexible usage plan that fits their customer’s demands.

Regarding the ease of use perspective, third party developers need to under-
stand how to use the exposed APIs so it becomes necessary to provide a good
training material but, unfortunately, several API providers do not often write
a good documentation of their products [8]. Alternatively, in the last year, we
found the promising proposal of the Open API Initiative4 (OAI) whose aim is
to support the creation, evolution and promotion of a vendor neutral descrip-
tion format for RESTful APIs and that is currently being backed by a growing
number of leading industrial stakeholders.

Conversely, from the usage plans perspective, to the best of our knowledge,
do not exists a widely accepted model to describe usage plans including elements
such as cost, functionality restrictions or limits. In this context, we can find some
example of API management platforms in the industry (commonly known as API
Gateways), which have tried to address the problem of usage plans modeling but
they are typically constrained by their platform architecture and no interoperable
usage plan specification is provided. For instance, Mashape presents a limited
governance ecosystem, since it only allows users to define quotas and not rates.

Figure 1 illustrates a real plan extracted from FullContact5, a real-world SaaS
offering which includes an API that manages and organizes contacts in a collabo-
rative way, it also matches emails addresses and tries to find as much information
as available on the Internet to complete the profiles. Note that in this work, we
focus on XaaS offering a RESTful API in order to access either fully or partially
to the functionality they offer. In traditional XaaS, these actions are accessed
using the graphic user interface.

This example is composed of three plans, one of them is free whereas the
remaining are paid. Focusing on paid ones, they have a fixed price that is
monthly billed. Regarding the limits, for each resource, a quota is being applied;
for instance, in the starter plan, only 6000 matches over Person are available.
Nevertheless, an overage is defined, that is, it is possible to overcome the limit
by paying a certain amount of money; in this case, $0.006 per each request.
Regardless of the accessed resources, a common rate of 300 queries per minute is

1 https://www.meaningcloud.com/products/pricing.
2 https://developer.flightstats.com/getting-started/pricing.
3 https://www.twilio.com/sms/pricing.
4 https://www.openapis.org/.
5 https://www.fullcontact.com/developer/.
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Fig. 1. Example of an API plan.

being applied. In this plan, there are not any functionality limitation, even the
free plan has the same functionality that paid ones have. In this case, the free
tier is regulated by limits such as quotas and rates.

The main aim of this paper is to develop the first step towards an expres-
sive, platform neutral, usage plan model that could be used to create open API
governance tools. Specifically, this work presents a systematic analysis of the
usage plans identified in a wide spectrum of real-world APIs; in doing so, the
main contributions of this paper are: (i) present a systematic method to ana-
lyze XaaS offerings in the industry including RESTful APIs; (ii) undertake a
comparative analysis of 69 industrial APIs selected from two widely used API
directories, identifying the common trends related to the modeling of usage plans;
(iii) provide an open dataset that can be used to replicate our analysis and to
be extended in further researches.

This paper is organized as follows: Sect. 2 shows the methodology that we
use in our study as well as the characteristics we analyze. Next, in Sect. 3, we
discuss the results of the analysis. In addition, Sect. 4 shows the existing work
related to this paper. Finally, Sect. 5 shows some remarks and conclusions.

2 Research Method and Conduct

The study6 presented herein was entirely conducted during the 2017 first quarter
and it is a primary study in which we analyze real-world APIs. Whereas primary
research data are collected from, for instance, research subjects or experiments,
secondary studies involve the synthesis of existing research. Specifically, our work

6 Data used in this study is publicly available at https://goo.gl/gQPDxz.
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is based on the guidelines provided by Kitchenham and Charters in [12], adapting
these guides about how to carry out secondary studies to a primary study. We
consider that using these guidelines helps to systematize the research we are
doing since they define a workflow directly applicable to primary research and
give recommendations with the aim of avoiding undesired bias.

In our work, we systematically analyze a set of characteristics in real-world
APIs following the steps depicted in Fig. 2.

Fig. 2. BPMN representation of the research process.

– SP01-Research questions definition. We start our systematic analysis
with a series of motivating questions which will drive the investigation. We
consider that these questions can pave the way for future research activities.
Specifically, we define the following questions:

• RQ01. What are the most common business models in the context of
XaaS that offer a RESTful API?

• RQ02. How are the plans, in terms of the characteristics that they have,
used in XaaS that provide a RESTful API?

• RQ03. Which regulations do XaaS offerings state over the RESTful APIs?

– SP02-Sources identification. Based on the literature and the analysis of
the industry that we have conducted, 10 API repositories were collected. Nev-
ertheless, we have considered those ones which included more than 5000 APIs
and whose last update date was in the year 2017, remaining 2 valid sources:
S01-ProgrammableWeb7: with 17511 APIs distributed in 478 categories

7 https://www.programmableweb.com.
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and S02-Mashape8 with 7500 APIs distributed in 28 categories. Note that
Mashape directory has been recently moved to RapidAPI9 catalog, so subse-
quent analysis should be made over RapidAPI rather than Mashape.

– SP03-Preliminary study. After a preliminary examination of API directo-
ries S01 and S02, the more popular categories in each one were identified. We
did a percentile study over the categories and the number of users in each one.
Particularly, we fixed P97 for S01 and P50 for S02. Additionally, we included
some handpicked APIs, looking for these ones with complex plans.

– SP04-Data extraction. We designed two different forms since the quality
criteria have to be used to identify inclusion/exclusion criteria, according to
the Kitchenham guidelines [12]. The first one10 tried to identify basic infor-
mation about the analyzed API as well as information regarding the plans.
The second one11 went in depth into the overage and both functionality and
quota/rate limitations, including the API characteristics showed in Sect. 2.1.
30 students were given S01 and S02 API directories so that they chose two
XaaS offerings following the eligibility criteria. They collected manually the
required information in a session guided by the authors and they filled out the
forms. In order to have a broader vision of the APIs offered in the industry,
we defined an incremental process composed of three rounds. We started from
defining strict eligibility criteria and the number of developers that the API
has. Then we relaxed some criterion so that a new set of APIs was included.

In the first round (R01) we limited the APIs selected from S01, consid-
ering only a certain set of categories12, according to its popularity (see
SP03). In addition, we set a threshold of 50 registered developers in S01
and limited the APIs selected from S02 having, at least, 100 users and
being in categories either paid or premium.

In the second round (R02) we were informed by some students about they
did not found any API according to the established search restrictions.
At this moment, we determined to relax the criteria in S01, removing the
50 developers’ threshold. After finishing this round, we have collected 62
APIs.

In the third round (R03) we started the guided session in class to fill
out the form. Nevertheless, we noticed that there was a number of APIs
without a clear plan, and students found quite difficult to find all the
information that we asked for. At this point, we decided to start a new
API gathering session with the help of the instructors. After finishing this
round, we harvested extra 28 APIs.

8 https://www.mashape.com.
9 https://rapidapi.com.

10 Available at https://goo.gl/rqwvH7.
11 Available at https://goo.gl/sbzXEh.
12 Mapping, social, e-commerce, mobile, search, tools, messaging, API, video, financial,

cloud, payments, enterprise, analytics, data.
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– SP05-Subsequent analysis. We did a subsequent analysis in two different
steps: (i) manual data validation and classification: giving a result a set of 69
analyzed XaaS offerings with more than one plan. We detected some inconsis-
tencies in some points that were manually reviewed and corrected; (ii) ulterior
results classification: in which we separated the data gathered regarding the
source, obtaining 42 APIs from S01 and 27 from S02.

2.1 Analyzed Attributes

We developed a comparative framework based on 60 attributes grouped in 7 areas
illustrating the traceability between the research questions and the gathered
characteristics. Following, we describe each group of attributes.

General information (see Table 1). We collected information about the
API itself, including the name (GI01) and the source (GI02) where these
APIs was selected from (i.e. Mashape or ProgrammableWeb); and the plans URL
(GI03).

API characterization (see Table 1). We distinguished two attributes, API
type (AC01) and API maturity level (AC02), in terms of giving a more precise
classification of APIs. Specifically, we propose a classification of four types for the
API type: T01 if the XaaS offering does not provide any API at all; T02 when
the XaaS offering does provide a non-RESTful API; T03 if the XaaS offering
does provide as part of its offer a RESTful API, (e.g., a SaaS which allows
customers to access their data in a RESTful way, but the primary access way is
a GUI); and T04 if the XaaS offering is, actually, a RESTful API (e.g., an API
to send emails or SMS). For API type T03 or T04, we identify a set of three API
maturity levels: ML01 if the API does not define any limitations nor explicit
Service Level Agreement (SLA); ML02 when the API defines limitations and/or
explicit SLAs but they are not in the plans (i.e., the limitations are applied
regardless of the selected plan); and ML03 if the API defines limitations and/or
explicit SLAs depending on the selected plan.

Pricing (see Table 1). We identify economic information of the API pricing
including the currency (P01) in which clients are billed, the billing cycle (P02)
and a set of statistics of the plan cost (P03, P04, P05).

Business model (see Table 1). We consider the main primary business model
(BM05) in the API, inspired by a number of works in the literature, as shown
in Sect. 4. Namely: free (FR), when no payment is needed; pay-as-you-go simple
(PG-S), when you pay just for the usage you do (e.g., you pay per each request
made); pay-as-you-go with intervals (PG-I), when the payment for each unit
depends on the usage volume (e.g., the first 1 K request cost $0.1 each, but the
subsequent $0.05 each); tiered with fixed prices (TO1), when each plan has a
non-variable price; tiered with overage (TO2), when existing plans with a certain
price and limitations you can overcome the limits by paying an extra amount.
We also gathered the number of plans (BM06) and discover the existence of
discounts per annual upfronts (BM01), the existence of customs plans (BM03),
the main limitation of the free plan (BM04); or the existence of a free plan
(BM02).
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Table 1. First set of API analyzed attributes.

General information RQ01 RQ02 RQ03

GI01-Name of the API

GI02-Source � � �

GI03-Plans URL

API characterization

AC01-API type � �

AC02-API maturity � �

Pricing

P01-Currency used � �

P02-Billing cycle � �

P03/P04/P05-Plan cost(max/min/avg) � �

Business model

BM01-Existence of discounts per annual upfront � �

BM02-Existence of a free plan � �

BM03-Existence of custom plans � �

BM04-Main limitation of the free plan � �

BM05-Main business model � �

BM06-Number of plans � �

Overage (see Table 2). We define overage as the extra cost in which a cus-
tomer incurs when a certain limitation or set of limitations is exceeded (O01).
The overage scope (O02) depends over what item the limitation is made (e.g.,
requests, the number of resources, etc.). Moreover, we collected data about the
overage cost (maximum -O09-, minimum -O10- and average -O11- across the
different plans) and the overage limit (maximum -O03-, minimum -O07- and
average -O08- across the different plans), i.e., the amount of scoped data allowed
per each overage payment. Furthermore, we consider the existence of an overage
in every paid plan (O04) and we analyze whether in the same paid plan all the
resources have an overage (O05) and all the resources have the same overage
value (O06).

Functionality limitations (see Table 2). We identify the limitations over
the API functionality (FL01) and study the granularity: resource access gran-
ularity (FL02), if the limitation is applied to the resource endpoint (e.g. it is
not possible to access some parts of the resource in some plans); HTTP method
granularity (FL03), if the limitation is applied to a certain HTTP verb (e.g., it
is not possible to make a POST in some plans) request body granularity (FL04),
when the limitation is based on the specific payload sent to an endpoint. Further-
more, we identify the existence of a functionality limitation in every paid plan
(FL05) and we analyze whether in the same paid plan all the resources have a
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Table 2. Second set of API analyzed attributes.

Overage RQ01 RQ02 RQ03

O01-Existence of an overage � � �

O02-Overage scope � �

O04-Existence of an overage in every paid plan � �

O05-In the same paid plan all the res. have an overage � �

O06-In the same paid plan all the res. have the same overage
value

� �

O03/O07/O08-Overage limit value(max/min/avg) � �

O09/O10/O11-Overage cost (max/min/avg) � �

Functionality limitations

FL01-Existence of functionality limitations � � �

FL02-Limitation granularity: resource access �

FL03-Limitation granularity: HTTP methods �

FL04-Limitation granularity: request body �

FL05-Existence of functionality limitations in every paid plan �

FL06-In different paid plans each one has the same func. lim. �

FL07-In the same paid plan all the resources have a func. lim. �

functionality limitation (FL06) and all the resources have the same functionality
limitations (FL07).

Quotas/Rates (see Table 3). We analyze two time-based limitations in the
API, commonly known as quotas and rates. The main difference is the sliding
window that rates have: whereas with quotas it is possible to define limits such as
up to 1000 requests per day, with rates it is possible to express limits with a rel-
ative period of time, such as up to 100 requests in the last minute. Specifically,
we identify the scope of these limitations: (i) requests scope (Q02/R02), (ii)
storage scope (Q03/R03); (iii) resource scope (Q04/R04); (iv) transaction size
scope (Q05/R05) and other scopes not explicitly mentioned (Q06/R06). More-
over, we collected the value of the limitation (maximum -Q12/R12-, minimum
-Q13/R13- and average -Q14/R14- across the plans) and periodicity. Further-
more, we consider the existence of a functionality limitation in every paid plan
(Q07/R07), we analyze if in different plans each one has the same quotas/rates.
(Q08/R08), whether in the same paid plan all the resources have a quotas/rates
(Q09/R09) and, finally, if all the resources have the same quota/rate value.
(Q10/R10).
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Table 3. Third set of API analyzed attributes.

Quotas and rates RQ01 RQ02 RQ03

Q01/R01-Existence of quotas/rates � � �

Q02/R02-Quotas/Rates over requests �

Q03/R03-Quotas/Rates over storage �

Q04/R04-Quotas/Rates over resources �

Q05/R05-Quotas/Rates over transaction size �

Q06/R06-Quotas/Rates over another scope �

Q07/R07-Quotas/Rates in every paid plan �

Q08/R08-Quota/Rates in all resources of different plans �

Q09/R09-Quota/Rates in all resources of the same plan �

Q10/R10-Same quota/rate value for a given plan & resource �

Q11/R11-Quota/rate periodicity �

Q12/R12/Q13/R13/Q14/R14-Quota/Rate value
(max/min/avg)

�

3 SP06-Results

In this section, we present the results of the study grouped in three differ-
ent blocks: (i) attributes regarding the business model and pricing; (ii) aspects
related to limitations and overage application; (iii) quotas and rates limitations.
Due to the fact that there exist notable differences between the APIs and their
governance models, we decided to perform a separate analysis regarding the
source of the API: Mashape and ProgrammableWeb.

In Fig. 3 we observe that most of the APIs analyzed are, indeed, the XaaS
offering (AC01). In the case of Mashape, all the APIs are T04. Regarding the
maturity (AC02), in both cases, we observe that the defined limitations depend
on the plan that the client selects. Note we have established a search protocol
that picked primarily popular APIs from popular categories, a fact that explains
this polarization in AC01 and AC02. A small number of APIs offer a discount per
an anticipated payment or upfront (BM01), but the vast majority define a free
tier with some specific limitations (B02). In addition, it is frequent to have a way
to define custom plans by talking directly to the company (BM03). Regarding
the business models (BM05), it is very likely for APIs from Mashape to have
a tiered plan with an overage, in contrast to the ones from ProgrammableWeb,
in which is common to have a tiered plan with fixed prices. It is remarkable
that the more common billing cycle (P02) is monthly and the number of plans
(BM06) oscillates between two and four.

Figure 4 depicts the most interesting attribute analysis about how limitations
are being applied in APIs. First, we observe that a high number limits the oper-
ations, rather than functionality or time (BM04). Secondly, from the providers
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Fig. 3. Business model and pricing analysis.

Fig. 4. Limitations and overage analysis.
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that apply an overage if a certain limit is reached (O01), it is frequent that all
the resources have an overage (O05), but it has not to be the same (O06). The
most common scope (O02) is requests. On the other hand, some APIs apply
limitations over the functionality (FL01), being more frequent in the APIs cho-
sen from ProgrammableWeb. Most of the limitations are applied to the resource
itself (FL2). Furthermore, functionality limitations use to be present in every
plan (FL05), but they neither are the same across the plans (FL06) nor have the
same values (FL07).

Fig. 5. Quotas and Rates analysis.

In Fig. 5 we observe some charts regarding the limitations using quotas
and rates. Whereas both quotas and rates are very frequent (Q01/R01), we
have noticed that Mashape does not allow users to define rates. Quotas are
usually defined using monthly periods, whereas rates are more common to be
secondly or minutely (Q11/R11). Furthermore, most of quotas and rates are
defined over requests (Q02/R02), rather than over resources (Q04/R04) or stor-
age (Q03/R03). It is also remarkable that most of quotas and rates have the
same values within a plan (Q10/R10), but in different plans they usually have
different values (Q08/R08).

Each of these attributes paves the way to give an answer to the stated research
questions. Specifically, (i) regarding the most common business models (RQ01),
as depicted in Fig. 3, BM05 attribute points out that the more common business
models are the tiered ones with or without overage; (ii) regarding the plans
(RQ02), as shown in Fig. 3, most APIs define between two or four plans, with
a monthly billing cycle; (iii) regarding the regulations (RQ03), as illustrated in
Figs. 4 and 5 most XaaS providers apply limitations in somehow. They limit the
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free tier by restricting the operations allowed and, for paid plans, they define
both quotas and rates. These limitations unusually are scoped over the number
of requests, and the periodicity intervals range from minutely for quotas, to
secondly for rates. This situation may be caused by the lack of versatility and
expressivity existent in current modeling tools.

In our analysis, we identify two different threats to the validity of the results
herein presented: (i) the size of the sample may not be statistically representative
regarding the total population of APIs in the real world. Nevertheless, we have
tried to prioritize the more popular categories in each repository so that we can
maximize the API usage; (ii) despite the fact that we have tried to do our best
when validating data, there may be some errors since the process is manual.
Apart from offering the open dataset we plan, as future work, to revisit it and
undertake a comprehensive examination.

4 Related Work

A number of analyses of web services in the industry and, especially, of RESTful
APIs, have been presented. They usually focus on characteristics inherent to the
API design. This work presents a new research direction by developing a system-
atic study of RESTful APIs focusing on how providers deal with non-functional
properties in plans by establishing limitations, such as rates and quotas. We
emphasize our work in providing an open and machine-readable dataset to other
researchers.

The more relevant literature we have revised is summarized in the following:
A first set of studies is focused on traditional web services (WSDL/

XML/SOAP). On the one hand, Li et al. show a study on Web services [13]
in order to get the diversity of the specification of key elements in the industry.
Specifically, they focus on statistics based on the number of defined operations,
WSDL document size, average words used in the description fields and func-
tion diversity. They crawled some web services catalogs and collected informa-
tion about 570 WSDL documents from active services, nevertheless, they focus
only on a single search engine. On the other hand, Al-Masri et al. present a
broader study [1] in which the authors have developed a crawler for collecting
information about 5077 WSDL references available in different sources, such as
Google, Yahoo, Alltheweb and Baidu. They determine statistics about object
sizes, technology and function among others. They also point out the discon-
nection between UDDI registries and the current web, since these registries are
incapable of providing Quality of Service (QoS) measurements for registered
Web services and they do not clearly define how service providers can advertise
business models.

Coinciding with the progressive increase of RESTful APIs, a second set of
works are focused on these services. In [14], Maleshkova et al. analyze a set of ran-
domly chosen 222 APIs of ProgrammableWeb, not just RESTful APIs but RPC
and hybrid style also. They analyze six API characteristics: general information,
types, input parameters, output formats, invocation details and complementary
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documentation. They found that a lack of a standard format to document APIs.
In particular, it shows that APIs suffer from under-specification because some
important information (e.g., data type and HTTP methods) are missing. Fur-
thermore, in [18], Renzel et al. show a study over the 20 most popular RESTful
Web Services from ProgrammableWeb against 17 RESTful design criteria found
in the literature. The point out that hardly any of the services claiming to be
RESTful is truly RESTful. This study also offers the full dataset showing the
values for each analyzed characteristic. Finally, in [4], Bülthoff et al. analyze a
dataset which comprises 45 Web APIs in total, primarily chosen from Program-
mableWeb directory, and provide conclusions about common description forms,
output types, usage of API parameters, invocation support, the level of reusabil-
ity, API granularity and authentication details. In this study, the authors show
that an 89% of APIs state and implement rate limitations, either written down
as part of the documentation or included with the general terms and conditions.

In a third set of studies in the last years, authors are moving to conducting
other analysis to determine how the APIs are evolving and whether best prac-
tices are being followed. For instance, in [20], Sohan et al. conduct a case study of
9 evolving APIs to investigate what changes are made between versions and how
the changes are documented and communicated to the API users. Furthermore,
they extract some recommendations, such as the use of semantic versioning, sep-
arate releases for bug fixes and new features, auto-generated API documentation
cross-linked with changelogs and providing live API explorers. Next, Palma et
al. in [15,16], present a framework to undertake API analysis, specifically, in the
first work, they analyze 12 APIs in order to recognize some patterns and anti-
patterns for RESTful APIs; in the second work, analogously, they study 15 APIs
to detect some linguistic patterns and anti-patterns in URL paths. Furthermore,
in [17], Petrillo et al. present a study evaluating and comparing the design of the
RESTful APIs of 3 cloud providers in terms of the fulfillment of a catalog of 73
best practices. They show that APIs reach an acceptable level of maturity when
they consider best practices related to understandability and reusability. More-
over, in [19], Rodriguez et al. evaluate some good and bad practices in RESTful
APIs. In particular, they analyze data logs of HTTP calls collected from the
Internet traffic, identify usage patterns from logs and compare these patterns
with design best practices.

Furthermore, from an industrial perspective some studies have been carried
out; Musser, VP of ProgrammableWeb, highlights in a conference13 what are
the more common business models nowadays. In this sense, Yu et al. carried
out a study [25] that analyzes structure and dynamics of ProgrammableWeb,
determining that cumulative API use follows a power law distribution: a large
number of APIs is used in a few mashups and a small number of APIs is used
by many mashups. Furthermore, Haupt et al. present a study [11] of some API
properties over 286 Swagger descriptions using a custom framework to analyze
these Swagger documents.

13 Available at https://goo.gl/8eZwwv.
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In a pricing model perspective, we found initial works such as [2] in which
Andrikopoulos et al. present a cost calculator for cloud ecosystems. More specifi-
cally, Vukovic et al. have presented some relevant works in the sense API ecosys-
tems analysis and formal representations of service licenses. In [24] they pre-
sented a graph-based data model for API ecosystem built on an RDF data store.
It stores temporal information about when entities and relationships were cre-
ated and possibly deleted, allowing insights into the evolution of API ecosystems.
On the other hand, in [22] they present a data model for API terms of service
that captures a set of non-functional properties of APIs and allows for terms and
conditions to be automatically assessed and composed. Later, in [23] they define
a formal representation of service license description that facilitates automated
license generation and composition. They also care about some QoS parameters
and its relationship between the agreed SLA. Nevertheless, they do not identify
any limitation that actually exists in real API plans, such as quotas and rates.
Moreover, they restrict the concept of Service Level Agreements (SLAs) to two
components: condition and action, whereas our approach pretends to go further.

To the best of our knowledge, our work differs from the one presented herein
in three specific points: (i) Any of the analyzed works present a study over a
number of RESTful APIs in terms of non-functional aspects and limitations
(e.g., quotas and rates), plans and business models. (ii) We have carried out our
analysis systematically, defining a specific set of objectives and research ques-
tions, rules to select the APIs and a specific methodology to analyze the gathered
data. (iii) None of the works provides an open dataset in a machine-readable for-
mat so that researchers could improve and use the data gathered by authors in
further studies. The only one that presents a dataset is [18], nevertheless, they
do not offer it in a machine-readable way.

5 Conclusions and Future Work

In this paper, we have systematically studied 69 RESTful APIs of XaaS offer-
ings; after identifying the research questions, we selected two valid sources to
extract APIs from: Mashape and ProgrammableWeb. Next, we analyzed a set of
characteristics regarding the type of the API, pricing, business models used in
the XaaS offering, functionality limitations, overage and quotas and rates. We
found that there exists a wider expressibility in terms of API limitations when
the API is not explicitly regulated by an API Gateway, such as Mashape.

As an additional value, we believe the results of this study can also be useful
for practitioners who plan to design a new plan for an API. Finally, as a future
work, we plan to identify: (i) a correlation between the price plan offered and
the types of limits; (ii) a specific set of requirements to define a formal gover-
nance model that supports a realistic usage plan specification for RESTful APIs,
including temporality elements such as scheduling restrictions as defined in [9].
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15. Palma, F., Dubois, J., Moha, N., Guéhéneuc, Y.-G.: Detection of REST patterns
and antipatterns: a heuristics-based approach. In: Franch, X., Ghose, A.K., Lewis,
G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 230–244. Springer, Hei-
delberg (2014). doi:10.1007/978-3-662-45391-9 16

16. Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y.-G., Tremblay, G.: Are
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19. Rodŕıguez, C., Baez, M., Daniel, F., Casati, F., Trabucco, J.C., Canali, L.,
Percannella, G.: REST APIs: a large-scale analysis of compliance with princi-
ples and best practices. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.)
ICWE 2016. LNCS, vol. 9671, pp. 21–39. Springer, Cham (2016). doi:10.1007/
978-3-319-38791-8 2

20. Sohan, S.M., Anslow, C., Maurer, F.: A case study of web API evolution. In:
SERVICES 2015, pp. 245–252. IEEE, June 2015

21. Tan, W., Fan, Y., Ghoneim, A., Hossain, M.A., Dustdar, S.: From the service-
oriented architecture to the web API economy. IEEE Internet Comput. 20(4),
64–68 (2016)

22. Vukovic, M., Laredo, J., Rajagopal, S.: API terms and conditions as a service. In:
ISCC 2014, pp. 386–393. IEEE, June 2014

23. Vukovic, M., Zeng, L.Z., Rajagopal, S.: Model for service license in API ecosystems.
In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol.
8831, pp. 590–597. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45391-9 51

24. Wittern, E., Laredo, J., Vukovic, M., Muthusamy, V., Slominski, A.: A graph-
based data model for API ecosystem insights. In: ICWS 2014, pp. 41–48. IEEE,
June 2014

25. Yu, S., Woodard, C.J.: Innovation in the programmable web: characteriz-
ing the mashup ecosystem. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC
2008. LNCS, vol. 5472, pp. 136–147. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01247-1 13

64



5

The Role of Limitations and

SLAs in the API Industry

65

P
ublished in the 27th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE), Tallinn,

Estonia. August 2019.

Authors: Antonio Gámez Díaz, Pablo Fernández Montes, Antonio Ruiz Cortés, Pedro

J. Molina, Nikhil Kolekar, Prithpal Bhogill, Madhurranjan Mohaan, Francisco Méndez.

DOI: 10.1145/3338906.3340445.

Rating: GGS class 1 (A+).

https://doi.org/10.1145/3338906.3340445


66



The Role of Limitations and SLAs in the API Industry

Antonio Gamez-Diaz
Universidad de Sevilla

Seville, Spain

antoniogamez@us.es

Pablo Fernandez
Universidad de Sevilla

Seville, Spain

pablofm@us.es

Antonio Ruiz-Cortés
Universidad de Sevilla

Seville, Spain

aruiz@us.es

Pedro J. Molina
Metadev

Seville, Spain

pjmolina@metadev.pro

Nikhil Kolekar
PayPal

San Jose, California, USA

nikhil@openweave.ai

Prithpal Bhogill
Google

Mountain View, California, USA

prithpal@google.com

Madhurranjan Mohaan
Google

Mountain View, California, USA

madhurranjanm@google.com

Francisco Méndez
AsyncAPI Initiative

Barcelona, Spain

fmvilas@gmail.com

ABSTRACT

As software architecture design is evolving to a microservice para-

digm, RESTful APIs are being established as the preferred choice

to build applications. In such a scenario, there is a shift towards

a growing market of APIs where providers ofer diferent service

levels with tailored limitations typically based on the cost.

In this context, while there are well established standards to

describe the functional elements of APIs (such as the OpenAPI

Speciication), having a standard model for Service Level Agree-

ments (SLAs) for APIs may boost an open ecosystem of tools that

would represent an improvement for the industry by automating

certain tasks during the development such as: SLA-aware scafold-

ing, SLA-aware testing, or SLA-aware requesters.

Unfortunately, despite there have been several proposals to de-

scribe SLAs for software in general and web services in particular

during the past decades, there is an actual lack of a widely used

standard due to the complex landscape of concepts surrounding the

notion of SLAs and the multiple perspectives that can be addressed.

In this paper, we aim to analyze the landscape for SLAs for

APIs in two diferent directions: i) Clarifying the SLA-driven API

development lifecycle: its activities and participants; 2) Developing

a catalog of relevant concepts and an ulterior prioritization based

on diferent perspectives from both Industry and Academia. As a

main result, we present a scored list of concepts that paves the way

to establish a concrete road-map for a standard industry-aligned

speciication to describe SLAs in APIs.

CCS CONCEPTS

• Information systems → RESTful web services; • Software

and its engineering → Extra-functional properties; System

description languages.
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1 INTRODUCTION

In the last decade, RESTful APIs are becoming a clear trend as

composable elements that can be used to build and integrate soft-

ware [6, 12]. One of the key beneits this paradigm ofers is a sys-

tematic approach to information modeling leveraged by a growing

set of standardized tooling stack. In this context, the term of API

Economy is being increasingly used to describe the movement of

the industries to share their internal business assets as APIs [22]

not only across internal organizational units but also to external

third parties; in doing so, this trend has the potential of unlocking

additional business value through the creation of new assets [4].

In fact, we can ind a number of examples in the industry that are

deployed solely as APIs (such as Meaningcloud1, Flightstats2 or

Twilio3).

In order to be competitive in this such a growing market of APIs,

at least two key aspects can be identiied: i) ease of use for its po-

tential developers; ii) a lexible usage plan that its their customer’s

demands.

Regarding the ease of use perspective, third-party developers

need to understand how to use the exposed APIs so it becomes

necessary to provide good training material but, unfortunately, sev-

eral API providers do not often write good documentation of their

products [7]. Notwithstanding, during the last years, the OpenAPI

1https://www.meaningcloud.com/products/pricing
2https://developer.lightstats.com/getting-started/pricing
3https://www.twilio.com/sms/pricing
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Speciication4 (OAS), formerly known as Swagger speciication, has

become the de facto standard to describe RESTful APIs from a func-

tional perspective providing an ecosystem that helps the developer

in several aspects of the API development lifecycle5.

The beneits are twofold: from the API provider’s perspective,

there are tools aimed to automate the server scafolding, an inter-

active documentation portal creation or the generation of unit test

cases; from API consumer’s perspective, there are tools to auto-

mate the creation of API clients, the security coniguration or the

endpoints discovery and usage [1, 19, 21].

Concerning the usage plans perspective, as APIs are deployed

and used in real settings, the need for non-functional aspects is

becoming crucial. In particular, the adoption of Service Level Agree-

ments (SLAs) [17] could be highly valuable to address signiicant

challenges that industry is facing, as they provide an explicit place-

holder to state the guarantees and limitations that a provider ofers

to its consumers. Exemplary, these limitations (such as quotas or

rates) are present in most common industrial APIs [8] and both

API providers and consumers need to handle how they monitor,

enforce or respect them with the consequent impact in the API

deployment/consumption.

However, to the best of our knowledge, there is no widely ac-

cepted model to describe usage plans including elements such as

cost, functionality restrictions or limits. In this context, a new type

of infrastructure, coined as API Gateway [10], has emerged to sup-

port API developers in the management of multiple non-functional

aspects such as consumer authentication, request throttling or

billing. From a deployment perspective, API Gateways are usu-

ally implemented as virtual appliances, virtual machine images

or reverse proxies that promote a decoupling from the main API

artifact. In contrast, the vendor-speciic approach to non-functional

concerns typically represents a strong dependence with the API

Gateway provider.

In this paper, we aim to analyze the landscape in the SLA and lim-

itations for APIs directly from those participants who have shown

interest on participating in the deinition of an industrial standard

for SLAs in APIs. Speciically, we have started up conversations

with members of the OpenAPI Initiative who belong to the SLA

interest group aiming to gather information about their industrial

perspective of the role of SLAs and limitations in the APIs.

The rest of the paper is structured as follows: in Section 2 we

introduce, briely, the idea of Service Level Agreements (SLA) and

its importance in the API ecosystem. Next, in Section 3, we describe

the related work. Continuing, in Section 4 we describe the SLA-

driven API lifecycle. Further, in Section 5 we present the industrial

insights from diferent participants. Finally, in Section 6, we show

some inal remarks and conclusions.

2 SLAS IN A NUTSHELL

Service Level Agreements (SLAs) consist of a set of terms that

include information about functional features, non-functional guar-

antees, compensation, termination terms and any other terms with

relevant information to the agreement. An agreement signed by

4The latest version of the OpenAPI Speciication is available at https://github.com/
OAI/OpenAPI-Speciication
5https://openapi.tools

all interested parties should be redacted carefully because a fail-

ure to specify their terms could carry penalties to the initiating

or responding party. Therefore, agreement terms should be spec-

iied in a consistent way, avoiding contradictions between them.

However, depending on the complexity of the agreement, this may

become a challenging task. SLAs can, therefore, be used to describe

the rights and obligations of parties involved in the transactions

(typically the service consumer and the service provider); among

other information, SLA could deine guarantees associated with the

idea of Service Level Objectives (SLOs) that normally represent key

performance indicators of either the consumer or the provider. In

case the guarantee is under-fulilled or over-fulilled SLAs could

also deine some compensations (i.e. penalties or rewards). In such

a context, during the last years, there have been important steps

towards the automation of the management of SLAs, however, the

formalization in SLAs still remains an important challenge.

A SLA typically contains these concepts:

Name identiies the agreement and can be used for reference.

Context includes information such as the name of the parties

and their roles as initiator or responder in the agreement.

Additionally, it can include other important information for

the agreement.

Terms the two main types of terms are:

Service terms they provide service information

by means of:

Service description terms which includes information

to instantiate or identify the services and operations

involved in the agreement.

Service properties which includes the measurable prop-

erties that are used in expressing guarantee terms. They

consist of a set of variables whose values can be estab-

lished inside the service description term. These terms

play an key role in the deinition of the service level

which is actually ofered to clients and the price they pay

for. For instance, in APIs, it is common to see quota (e.g.,

30K request/month) and rate (e.g., 1 request/second)

limitations that deine the service.

Guarantee terms they describe the service level objectives

(SLOs) agreed by a speciic obligated party, using Service

Level Indicators (SLIs), a set of carefully deined quantita-

tive measures of some aspect of the level of service that

is provided. It also includes the scope of the term (e.g. if

it applies to a certain operation of a service or the whole

service itself) and a qualifying condition that speciies

the validity condition under which the term is applied.

Guarantee terms often include compensations [17], that is,

penalties (or rewards) applied when the SLO is unfulilled

or overfulilled.

The concept of SLA is, very frequently, misunderstood: some

services claim to have an SLA when they are only deining the

service description terms (e.g., limitations). SLAs are agreements,

that is, an explicit or implicit contract with your users that includes

consequences of the meeting (or missing) the SLOs they contain [3,

20]. In many services, including APIs, there is no SLA: if nothing

happens if the SLOs are not being met, it is not an SLA, but a mere

description of SLOs and service properties.
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In the industry, the way in which a customer can select and

purchase a certain service level is by using pricing plans. In Figure 1

it is depicted a real plan extracted from FullContact6, a product

which includes an API for managing and organizing contacts in a

collaborative way and it also matches emails addresses looking for

publicly available information on the Internet to enrich the proiles.

Person API Matches

Company API Matches

Company API Key People Queries

Name/Location/Stats API 

Card Reader

Rate Limit

6k + $.006 overage

2.4k + $.006 overage

250

15k each + $.001 overage

25 cards + $0.15 overage

300 queries/min

Basic Contract Information

Licensed for Business Use

Select Plan

$99
$99/mo Starter Plan

Person API Matches

Company API Matches

Company API Key People Queries

Name/Location/Stats API 

Card Reader

Rate Limit

15k + $.006 overage

6k + $.006 overage

250

50k each + $.001 overage

25 cards + $0.15 overage

300 queries/min

Basic Contract Information

Licensed for Business Use

Select Plan

$199
$199/mo Basic Plan

Figure 1: Example of an API plan

This example is composed of two paid plans having a ixed price

that is monthly billed. Regarding the limitations, for each resource,

a quota is being applied; for instance, in the starter plan, only 6000

matches over Person are available. Nevertheless, an overage is

deined, that is, it is possible to overcome the limit by paying a

certain amount of money; in this case, $0.006 per each request.

Regardless of the accessed resources, a common rate of 300 queries

per minute is being applied.

In this example, there is neither guarantee term nor SLOs. All

these elements belong to the set of service properties, particularly,

the limitations, which are, actually, deining the service level (e.g.,

free, starter or basic)

3 RELATED WORK

The software industry has embraced integration as a key challenge

that should be addressed in multiple scenarios. In such a context,

the proliferation of APIs is a reality that has been formally analyzed:

in [18], authors performed an analysis of more than 500 publicly-

available APIs to identify the diferent trends in current industrial

landscape with the following key results: in terms of paradigm they

conclude that 500 out of 522 analyzed APIs provide an API based on

REST; regarding the format, the authors identiied that nearly two

thirds of the APIs support JSON without supporting XML. Concern-

ing the access control, authors showed that most APIs require some

form of service registration for developers to start using the API.

Regarding the documentation, they showed that generated docu-

mentation is being used in about a half of the APIs, with documents

6https://www.fullcontact.com/developer

Table 1: Analysis of SLA Models

Name F1 F2 F3 F4 F5 F6 F7

SLAC [24] DSL ✓ ✓

CSLA [14] XML ✓ ✓

L-USDL Ag. [11] RDF ✓ ✓ ✝ ✓

rSLA [23] Ruby ✓ ✓ ✓ ✓

SLAng [15] XML ✓

WSLA [16] XML ✓ ✓ ✓

SLA* [13] XML ✓ ✓ ✓

WS-Ag. [2] XML ✓ ✓ ✓ ✝

✝ Supported with minor enhancements or modiications.

generated by SwaggerUI (from an OpenAPI Speciication) taking

the lead, suggesting some tendency to make the API documentation

machine-readable and understandable as well. Speciically, from

a functional point of view, there is a clear trend with respect to

the functional description of the service: during the last years, the

OpenAPI Speciication has consolidated as a de-facto standard to

deine the diferent functional properties an API provides. One of

the reasons behind this success has been a growing ecosystem of

tools that leverages from the API development life-cycle based on

the information included in OAS: from automated code generators

that create an initial scafolding of the API to dynamic documenta-

tion portals that allow developers to understand and test the API

usage.

In such a consolidated market of APIs, non-functional aspects

are also becoming a key element in the current landscape. In [8],

authors analyze a set of the 69 real APIs in the industry to charac-

terize the variability in its oferings, obtaining a number of valuable

conclusions about real-world APIs, such as: (i) Most APIs provide

diferent capabilities depending on the tier or plan of the API con-

sumer is willing to pay. (ii) Usage limitations are a common aspect

all APIs describe in their oferings. (iii) Limitations over API re-

quests are the most common including quotas over static periods

of times (e.g., 1.000 request each natural day) and rates for dynamic

periods of times (3 request per second). (iv) Oferings can include

a wide number of metrics over other aspects of the API that can

be domain-independent (such as the number of returned results

or the size in bytes of the request) or domain-dependent (such as

the CPU/RAM consumption during the request processing or the

number of diferent resource types). Based on these conclusions,

we identify the need for non-functional support in the API devel-

opment life-cycle and the high level of expressiveness present in

the API oferings.

Furthermore, as monitoring is a key aspect, a number of works

have been presented aiming to analyze diferent approaches for

runtimemonitoring. In [20], authors developed a comparison frame-

work for runtimemonitoring approaches and validate it by applying

it to 32 existing approaches and by comparing 3 selected approaches

in the light of diferent monitoring scenarios.

Furthermore, during the last decade, a number of SLA models

have been presented. We have analyzed the most prominent aca-

demic and industrial proposals aimed to the deinition of SLAs in

both traditional web services and cloud scenarios.
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Speciically, in Table 1, we have considered 7 aspects to analyze in

each SLA proposal, namely: F1 determines the format in which the

document is written syntax; F2 shows whether the target domain

is web services; F3 indicates if it can model more than one ofering

(i.e., diferent operations of a web service); F4 determines if it allows

modeling hierarchical models or overriding properties and metrics;

F5 shows whether temporal concerns can be model (e.g., in metrics);

F6 indicates if there exists a tool for assisting users to model using

this proposal; F7 determines if there exists a tool/framework for

enacting the SLA.

Based on the comparison of the diferent SLA models (summa-

rized in Table 1), we highlight the following conclusions: (i) None of

the speciications provides any support or alignment with the Ope-

nAPI Speciication; (ii) Most of the approaches provide a concrete

syntax on XML, RDF (some of them they even lack concrete syntax)

and there is no explicit support to YAML or JSON serializations.

(iii) An important number of proposals are complete, but others

leave some parts open to being implemented by practitioners. (iv)

Besides the fact that a number of proposals are aimed to model

web services, they are focused on traditional SOAP web services

rather than RESTful APIs. In this context, they do not address the

modeling standardization of the RESTful approach: i.e., the concept

of a resource is well uniied (a URL), and the amount of operations

is limited (to the HTTP methods, such as GET, POST, PUT and

DELETE). This lack of support of the RESTful modeling prevents

the approaches to have a concise and compact binding between

functional and non-functional aspects. (v) They do not have enough

expressiveness to model limitations such as quotas and rates, for

each resource and method and with complete management of tem-

porally (static/sliding time windows and periodicity) present in the

typical industrial API SLAs. (vi) Most proposals are designed to

model a single ofering and they mostly lack support to modeling

hierarchical models or overriding properties and metrics (F4); in

such a context, they cannot model a set of tiers or plans that yield

a complex ofering that maintains the coherence by model and

instead they rely on a manual process that is typically error-prone.

(vii) inally, the ecosystem of tools proposed in each approach (in

the case of its existence) is extremely limited and aimed to be solely

as a prototype; moreover, they apparently are not integrated into a

developer community nor there is evidence of this usage by practi-

tioners in the industry.

4 INTRODUCING SLAS IN THE API
LIFECYCLE

In spite of the fact that each organization could address the API

lifecycle with slightly diferent approaches, we identify a minimal

set of general stages and activities. The irst activity corresponds

with the actual Functional Development of the API implementing

and testing the logic; next a Deployment activity where the devel-

oped artifact is conigured to be executed in a given infrastructure;

inally, once the API is up and running, an Operation activity starts

where the requests from consumers can be accepted. This process

is a simpliication that can be evolved to add intermediate steps

(such as testing) or to include an evolutionary cycle where diferent

versions are deployed progressively. In order to incorporate SLAs

in this process, we expand to this basic lifecycle where both API

Provider and API Consumer interact (as depicted in Figure 2).

Speciically, from the provider’s perspective, the Functional De-

velopment can be developed in parallel with a SLA modeling where

the actual SLA ofering is written and stored in a given SLA Registry.

Once both the functional development and the SLA modeling has

concluded, the SLA instrumentation must be carried out, where

the tools and/or developed artifacts are parameterized, so they can

adjust their behavior depending on a concrete SLA and provide

the appropriate metrics to analyze the SLA status. Next, while the

deployment of the API takes place, a parallel activity of SLA enact-

ment is developed where the deployment infrastructure should be

conigured in order to be able to enforce the SLA before the API

reaches the operation activity.

Complementary, from consumer’s perspective, once the provider

has published the SLA ofering (i.e., Plans) in the SLA Registry,

it starts the ofer analysis to select the most appropriate option

(ofer selection activity) and to create and register its actual SLA;

inally, the API Consumption is carried out as long as the API is the

Operation activity and its regulated based on the terms (such as

quotas or rates) deined in the SLA.

In order to implement this lifecycle, it is important to highlight

that the SLA instrumentation, SLA enactment and Operation activi-

ties should be supported by an SLA enforcement protocol aimed

to deine the interactions for checking if the consumption of the

API for a given consumer is allowed (e.g., it meets the limitations

speciied in its SLA) and to gather the actual values of the metrics

from the diferent deployed artifacts that implement the API.

From an industrial perspective and regarding the implication

across the entire development lifecycle of APIs, diferent roles or

stakeholders appear, as discussed below. The mapping role-activity

is also depicted in Figure 2 by using the RALPH notation [5].

Developer This role is composed by the team responsible for the

development of a certain API and making it available for

other teams. Their use cases are related to the deinition of

Service Level Objectives (SLOs) since they are the role most

aware of the internal functioning of the API. Namely:

• a better understanding of what SLOs can they reasonably

target so that they can ofer an SLO for the API.

• a better understanding of the performance of their down-

stream dependencies (e.g., back-ends) so that they can

determine their efect on the SLOs.

• a better understanding of the performance of policies in

the proxy so that they can determine their efect on the

SLOs.

Productmanager This role is composed of business people, aligned

with the company’s objectives. Their use cases aim to satisfy

customer’s needs and be aware of the overall picture of the

dependencies between services. Namely, knowing the SLOs

of the downstream dependencies so that they can create

products which meet the customers’ needs.

Product operator This role is composed of system administration

people, who are responsible for monitoring and reporting

the service performance in SLOs. Their use cases aim to be

notiied of any alert or incident and take remedial actions.

Namely:
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Figure 2: SLA-Driven API development lifecycle

• having alerts automatically set based on SLOs to alert

them of the risk of missing the objective so that they can

take remedial action.

• receiving regular reports detailingAPI performance against

SLOs, so that they can report to the business owners.

• watching both the internal and external SLO commitments

for various APIs or Products so that they can quickly cate-

gorize and prioritize the operational eforts.

Consumer This role is composed of the set of API clients. Their

use cases aim to be informed of the diferent service levels

and claim if the SLOs are not being met. Namely:

• knowing what service level is ofered so that they can

make an informed decision about adopting the API.

• understanding the historical actual performance of an API

so that they can know how reliable they might expect

them to be.

• assuring that they are getting the service level that they

are paying for so that they can claim remedies if SLOs are

not met.

5 INDUSTRIAL DISCUSSION

5.1 The Discussion Process

We opened a call for interest on participating in a research paper

open to the OAI members belonging to the SLA4OAI group7, as part

of the OpenAPI Initiative. Our main goal is to gather information

about their industrial perspective of the role of SLAs in the APIs.

In order to present general vision, we have classiied the partici-

pants in diferent groups regarding their role in the API industry,

namely: i)API infrastructure manager : are the creator of middleware

solutions such as API Gateways or proxies, they do not develop any

particular API, but they enhance and enrich third-party ones with

other features; ii) API providers: are the developers of one or many

APIs and also responsible for setting the proper service level and

limitations values; iii) Others: represent a diferent set of participant

not included before, for instance, API enthusiasts and people who

have been involved in the creation of other speciications.

7More information at sla@openapi.groups.io
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As for an API infrastructure manager, we have Google Apigee.

As for an API provider, we have PayPal. Finally, other participants

include Async API and Metadev.

5.2 Describing some API Concepts

In order to have a common vocabulary prior discussion, some con-

siderations about the concepts and terminology took place:

5.2.1 SLA General Concepts.

Context describes aspects such as the version, stakeholders or the

validity period.

Metrics are the elements that are being gathered and computed.

Service Level Indicator (SLI) is a particular case of metric which

is used to assess one key aspect of the system. They are typ-

ically implemented as a time series and may involve some

level of sophistication (e.g., sliding windows) in its calcula-

tion.

Service Level Objective (SLO) is a precise numerical target (of-

ten a ratio) for one or more SLIs, describing the minimum

acceptable reliability or performance of a system. A given

system may have diferent SLOs for diferent users, e.g., an

internal objective and an external one.

Guarantee terms describe the commitments over certain SLI.

They also should describe the consequences of not meet-

ing this commitment in terms of compensations.

Service Level Agreement (SLA) is, therefore, a contract signed

with a user. Notably, SLIs and SLOs are technical constructs

whereas SLAs are business constructs.

Service properties (or coniguration) are the attributes constraints

that are being used to drive the API behavior.

5.2.2 API Constraints.

Quotas describe the limitations of use for a ixed/static period

of time. It is an entitlement to API usage over a (usually

relatively long) time period, e.g., 100000 calls per month.

Rates describe the limitations of use for a dynamic period of time.

It is an entitlement to API usage over a (usually short) time

period, e.g., 10 calls per second per consumer.

Time constraint someAPIs can ofer a set of limitations regarding

the time in which it is being requested. For instance, some

calls could be thought to be cheaper during of-peak hours.

Authentication is the veriication of the credentials of the request.

This process is based on sending the credentials from the

remote client to the server by using an authentication proto-

col. Likewise, the authorization is the process of veriication

that the connection attempt is allowed. These mechanisms

are required for the API monetization.

5.2.3 API Monetization.

Pricing is the way in which APIs are monetized. Typically, some

pricing models are: ixed (with or without overage) and pay-

as-you-go. The irst allows a developer to purchase ixed

values for a set of metrics (e.g., number of calls) within a

period (e.g., per month), but they cannot exceed the estab-

lished limitations; when overage is allowed, a small fee is

charged if the developer exceeds the values of the metrics

(e.g., number of calls).

Plans is an approach to it a wide range of business needs by

organizing the pricing in a set of tiers of plans.

Metering is the recording of the API usage in suicient detail to

perform rating.

Rating is the conversion of records of API usage into an owed

amount of money. This conversion may involve simply a

ixed charge per API call, or considerably more complex

schemes.

Billing is the presentation to an API user of a report of amounts

owed, taking into account any discounts, service credits,

taxes, and revenue sharing.

Collection is the way of receiving and recording payments of

amounts owed by users of APIs.

Enforcement is preventing a user from using an API once they

have exhausted their pre-paid service credit, or reached a

credit limit.

5.3 API Provider’s Vision

For some API providers, the inclusion of SLAs is something rela-

tively new (less than ive years ago), but the main issue is the SLA

ield is the set of activities surrounding the SLOs to improve the

customer experience; for instance, the deinitions of metrics and

SLIs and the monitoring process.

They believe that, in general, SLOs are drivers for customer

experience and digital businesses. As applications and experiences

are composed of business capabilities and they are realized as APIs

which may use other APIs to achieve their business function, the

customer experience is fueled by complex tiered orchestration of

APIs and, therefore, performance and availability of experiences is

a function of those underlying services.

SLOs for APIs dictate suitability and choice of utilization and,

hence, having the ability to accurately measure and monitor SLOs

is a fundamental requirement. SLOs, also, dictate performance and

availability proiles for the application and provide individual ac-

countability for performance and availability across enabling ser-

vices. The common thread is the correlation and tracking of the

call-chain for service invocation, the identiication of the API sub-

scription for applications, monitoring aggregated and apportioned

performance proiles for applications and, inally, a common set of

performance metrics need to be deined, logged, monitored, ana-

lyzed and reported.

As API providers, they use to consider the following set of met-

rics/SLIs in their APIs:

• Call volume: number of API operations invocations irre-

spective of response.

• Response time: the total amount of time, in milliseconds,

it takes the service to respond to an API operation request

aggregated as the 95th percentile, 90th, and 50th.

• Availability: percentage of API calls completed without

causing a Failed Customer Interaction.

• Business Error Rate: percentage of API calls with business

error responses. A business error is an error that is not a

system error and could be caused by invalid input, user error,

business rules, policy constraints, or lack of authorization.

• System Error Rate: percentage of API calls with system

error responses. A system error is an error that is caused by
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a code defect, timeouts for underlying services, or a frame-

work failure, including a hardware network or environment

failure.

Regarding the SLI, these metrics need to be measured at the indi-

vidual API operation level. For REST APIs, the URI for the resource

and the HTTP method need to be used as identiiers for API opera-

tion. The method identiier from the API speciication must be used

for correlation. The API operation metrics need to be correlated to

the API product and its major and minor version. This correlation

will provide insights into capability and ownership attribution form

the observed quality of service with respect to published SLAs. The

application identity of the originating application, along with that

of the immediate application invoking the API operations must be

tracked. The identity of Remote Availability Zone (RAZ) for the

service application must be tracked to help understand the quality

of service across RAZs.

Concerning the monitoring, the published SLOs for API oper-

ations must be monitored for compliance. Since there could be

variance in API metrics for diverse application use-cases, compli-

ance must be computed using 95th, 90th percentiles, and average

aggregations initially, before being base-lined for a longer term.

As a daily basis, developer and operation teams are responsible

for checking the service status and monitoring the key metrics.

Speciically, the SLIs are expected to be in an acceptable range, as

deined in the SLOs. For instance, the SLIs availability and latency

are measured to meet the target metrics in the SLOs.

Regarding the SLAs, they see SLAs as part of a wider contract,

which includes other legal aspects. In such a context, the SLA is just

a part of the service contract. At some organizational levels, the

value of the SLAs is concentrated in the fulillment of the guarantee

terms when negotiating contractual agreements and invoicing, that

is, the SLA reporting. At this point, the SLA of the API services

should be considered to be reportable, that is, showing, at a glance,

the overall picture of the SLA state in each moment.

In service-based applications (SBAs) the fruitful composition of

diferent services and APIs play a crucial role. There is a strong

dependency between diferent components and, therefore, they are

expected to be as reliable as possible (and agreed in the SLA). As

an SBA provider, it is strictly necessary to know in advance all the

values of the limitations and the agreed SLA terms. Otherwise, the

provider is not able to set its own SLOs

5.4 API Infrastructure Manager’s Vision

As API infrastructure manager, such as an API Gateway, their plat-

forms aim to deine API concerns such as diferent service levels,

API limitations (or entitlement) and pricing. They also lay out their

position on extending the OpenAPI speciication in this area.

Regarding the pricing, their platform provides support for: ixed

fee per API call, ixed fee per time period, volume-based tiers of fees

per API call, volume-based bundles of API calls, revenue sharing

schemes, charging variable amounts based on arbitrary runtime

attributes (parameters in the request, elements of the response,

time, geography, current load on the API, etc).

They consider two diferent types of API limitations: quotas and

rate limits: i) Quotas are the business level construct of enforcing

how much access does one client have to an API based on their tier.

For instance: a gold tier customer may have access to invoking a

set of APIs 1000 per day, whereas a bronze tier customer may only

able to invoke 100 per day. 2) Rate limiting, on the other hand, has

a system-centric connotation. For instance: if the infrastructure is

only expected to work for loads under 100 transactions per second,

the proper level of rate limiting policy would be irrespective of the

kind of customer invoking it.

Regarding the roles, they consider API producers as a team re-

sponsible for API development and making the APIs available for

every other team. Additionally, they identify the role of an API

Product Manager as the one that has business ownership of a port-

folio of APIs also known as an API Product. Their main focus is to

manage these products and look into ways of monetizing them via

partners and external developers. As API infrastructure managers,

they use to consider the following set of metrics/SLIs in their APIs:

• Availability: percentage of API calls completed without

errors.

• Error rates: percentage of API calls with error responses

• Latency: the total amount of time that takes the service to

respond to an API operation request aggregated as a per-

centile.

Concerning the modeling issues, their current priority would be

to codify SLIs and SLOs for APIs in a formal description language by

extending the OpenAPI Speciication. Based on such a codiication

their tooling could then ofer richer native support for the user

stories. Nevertheless, they recommend focusing irst on deining

an extension to describe technical concerns (e.g., SLIs and SLOs)

and keep SLAs (as a business contract) out of the scope for a later

extension. They believe that SLAs, as well as not being readily

amenable to such a codiication, probably don’t belong in OpenAPI

Speciication in any case.

They also suggest thatmonetization and pricing deinition should

be part of a separate initiative. In the real world, there is signii-

cant complexity in rating API usage, likely deserving of its own

OpenAPI extension.

5.5 Discussion’s Results

In this section, we show some inal remarks aiming to be able to

deine a roadmap in the standardization of the SLA and limitations

in an API context.

The relevance of each concept described in Section 5 is difer-

ent for each provider. After asking them for scoring each one, we

gathered and aggregated the responses, as stated in Table 2.

The most important concepts are metrics/SLIs, quotas and rates.

The importance of the deinition of SLOs for both API producers

and infrastructure manager is notorious. As also stated by other

participants, it is important to keep separate concerns and diferent

aspects (i.e., SLOs, plans, metrics); they can be always be referenced

externally if needed. The granularity of deinitionswhen deining an

SLA model is a problem: there exists the dichotomy between a ine-

grained approach (i.e., a fully comprehensive model description)

and a coarse-grained one (i.e., a description the most common

elements and paving the way for custom extensions).
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Table 2: Relevance of concepts for industrial participants

Items Score

General concepts

Context   #

Metrics    

SLIs    

SLOs   #

Guarantees   #

SLAs  ##

Coniguration ###

API constraints

Quotas    

Rates    

Time constraints  ##

Authorization  ##

API monetization

Pricing  ##

Plans  ##

Metering   #

Rating   #

Billing  ##

Collection  ##

Enforcement   #

Symbol denotes the relevance for the industrial participants.

In general terms, the participants belonging to the SLA4OAI

group, as part of the OpenAPI Initiative, tend to agree in a manifesto

during the standardization tasks:

Motivation fostering the importance of the SLA inside the API

development lifecycle is that SLAs are already present in

most commercial APIs. Since OAI is becoming the de facto

standard for the deinition of APIs, natural evolution to de-

scribe SLAs into OpenAPI Speciication would expand the

OAI beneits.

Goals Three are identiied:

• Be as aligned as possible with the OpenAPI principles.

• Describe the most common elements in SLAs (e.g., plans,

metrics, quotas, rates).

• Be integrated with the main OpenAPI Speciication.

Non-goals There are two:

• Deine a particular way to enforce SLAs.

• Be fully comprehensive including a wide set of elements

found in diferent industrial APIs.

Design principles They are two:

• Pragmatism to spot the most common elements;

• Promote tooling to take advantage of the SLA4OAI Speci-

ication.

6 CONCLUSIONS

From the Academia’s point of view, the fact of having a standard

model for the deinition of SLAs in APIs could foster the devel-

opment of novel techniques aiming to deal with the information

contained in the SLAs. There is already a number of works in the

SLA ield, as pointed out in Section 3, so aligning that with the API

ecosystem would pave the way for new challenges.

As an example, this SLA model could enable SLA-aware moni-

toring and testing techniques: including non-functional and QoS

requirements into the test cases. Moreover, a formal analysis on the

SLA model could unveil inconsistencies in the set of API limitations.

Furthermore, SLA-aware model-driven development would experi-

ence an improvement, since taking into account the SLA could be

helpful when deciding among diferent architectures. A irst step

in this direction, in [9], we presented Governify for APIs, an initial

set of tools aimed to settle down our idea of SLA-driven APIs.

Finally, this work is intended to collect the industrial perspective

on the challenge of standardizing the modeling of SLAs and limi-

tations in the API context, under the umbrella of a well-assented

speciication for APIs as it is the OpenAPI Speciication. The con-

tribution presented herein just lay the irst stone on the roadmap

that is the modeling efort in conjunction with relevant industrial

players.
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Abstract. The OpenAPI Specification (OAS) is the de facto standard
to describe RESTful APIs from a functional perspective. OAS has been
a success due to its simple model and the wide ecosystem of tools sup-
porting the SLA-Driven API development lifecycle. Unfortunately, the
current OAS scope ignores crucial information for an API such as its
Service Level Agreement (SLA). Therefore, in terms of description and
management of non-functional information, the disadvantages of not hav-
ing a standard include the vendor lock-in and prevent the ecosystem to
grow and handle extra functional aspects.

In this paper, we present SLA4OAI, pioneering in extending OAS not
only allowing the specification of SLAs, but also supporting some stages
of the SLA-Driven API lifecycle with an open-source ecosystem. Finally,
we validate our proposal having modeled 5488 limitations in 148 plans
of 35 real-world APIs and show an initial interest from the industry with
600 and 1900 downloads and installs of the SLA Instrumentation Library
and the SLA Engine.

1 Introduction

In the last decade, RESTful APIs are becoming a clear trend as composable
elements that can be used to build and integrate software [7,18]. One of the
key benefits this paradigm offers is a systematic approach to information mod-
eling leveraged by a growing set of standardized tooling stack from both the
perspective of the API consumer and the API provider.

Specifically, during the last years, the OpenAPI Specification1 (OAS), for-
merly known as Swagger specification, has become the de facto standard to
describe RESTful APIs from a functional perspective providing an ecosystem

1 https://github.com/OAI/OpenAPI-Specification.

This work is partially supported by the European Commission (FEDER), the Span-
ish Government under projects BELI (TIN2015-70560-R) and HORATIO (RTI2018-
101204-B-C21), and the FPU scholarship program, granted by the Spanish Ministry of
Education, Culture and Sports (FPU15/02980).
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that helps the developer in several aspects of the API development lifecycle2.
As an example, from the API provider perspective, there are tools that aim to
automate the server scaffolding, an interactive documentation portal creation or
the generation of unit test cases; from the perspective of the consumer, there are
tools to automate the creation of API clients, the security configuration or the
endpoints discovery and usage [1,15,16].

However, as APIs are deployed and used in real settings, the need for non-
functional aspects is becoming crucial. In particular, the adoption of Service
Level Agreements (SLAs) [13] could be highly valuable to address significant
challenges that the industry is facing, as they provide an explicit placeholder to
state the guarantees and limitations that a provider offers to its consumers. For
example, these limitations (such as quotas or rates) are present in most common
industrial APIs [3] and both API providers and consumers need to handle how
they monitor, enforce or respect them with the consequent impact in the API
deployment/consumption.

In this paper, we address the challenge of SLA modeling and management in
APIs by providing the following contributions:

– SLA4OAI, an open SLA specification that is integrated with the OpenAPI
Specification joint with a Basic SLA Management Service (i.e., a minimum
definition of endpoints required for the SLA enforcing in the APIs) that can
be used to promote the vendor independence.

– A set of tools to support the different activities of the API development
lifecycle when it becomes aware of the existence of an SLA.

– An initial validation over 5488 limitations in 35 of real-world APIs show-
ing the expressiveness coverage and the potential evolution roadmap for the
specification.

The rest of the paper is structured as follows: in Sect. 2, we describe the
related work and motivate the need for our proposal. In Sect. 3 we describe in
brief words the OpenAPI Specification focusing on its extension’s capabilities. In
Sect. 4 we describe our SLA4OAI model proposal. In Sect. 5 we show the ecosys-
tem of tools that have been built around our proposal. In Sect. 6 we validate
our proposal by modeling 5488 limitations in 35 of real-world APIs. Finally, in
Sect. 7 we show some remarks and conclusions.

2 Motivation and Related Work

The software industry has embraced integration as a key challenge that should
be addressed in multiple scenarios. In such a context, the proliferation of APIs is
a reality that has been formally analyzed: in [14], authors performed an analysis
of more than 500 publicly-available APIs to identify the different trends in the
current industrial landscape. Specifically, regarding the documentation, there is
a clear trend with respect to the functional description of the service: during

2 https://openapi.tools.
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the last years, the OpenAPI Specification has consolidated as a de-facto stan-
dard to define the different functional properties an API provides. For instance,
in [12], authors study on the presence of dependency constraints among input
parameters in web APIs in industry.

With such a consolidated market of APIs, non-functional aspects are also
becoming a key element in the current landscape. In [3], authors analyze a set
of the 69 real APIs in the industry to characterize the variability in its offerings,
obtaining a number of valuable conclusions about real-world APIs, such as: (i)
Most APIs provide different capabilities depending on the tier or plan of the API
consumer is willing to pay. (ii) Usage limitations are a common aspect all APIs
describe in their offerings. (iii) Limitations over API requests are the most com-
mon including quotas over static periods of times (e.g., 1.000 request each natural
day) and rates for dynamic periods of times (3 request per second). (iv) Offerings
can include a wide number of metrics over other aspects of the API that can be
domain-independent (such as the number of returned results or the size in bytes
of the request) or domain-dependent (such as the CPU/RAM consumption during
the request processing or the number of different resource types). Based on these
conclusions, we identify the need for non-functional support in the API develop-
ment life-cycle and the high level of expressiveness present in the API offerings.

From the perspective of the API development life-cycle, the lack of a standard
spec for non-functional aspects integrated with existing standards OpenAPI, pre-
vents the tooling ecosystem to grow and provide support advanced issues: as an
example, to support the API consumer, it could be possible to develop tools to
automate the generation of SLA-aware API clients able to self-adapt the request
rate to the API limitations; to support the API provider, it could be possible to cre-
ate of SLA-aware API testers enriching the habitual tests with information about
limitations in order to analyze the actual performance capabilities to decide the
maximum number of API consumers to be allowed with a certain SLA that explic-
itly states the limitations in their usage. We have analyzed the most prominent
academic and industrial proposals that aim to the definition of SLAs in both tra-
ditional web services and cloud scenarios in order to outline their scope and limita-
tions. Specifically, in Table 1, we have considered 7 aspects to analyze in each SLA
proposal, namely: F1 determines the format in which the document is written;
F2 shows whether the target domain is web services; F3 indicates if it can model
more than one offering (i.e., different operations of a web service); F4 determines
if it allows modeling hierarchical models or overriding properties and metrics; F5

shows whether temporal concerns can be model (e.g., in metrics); F6 indicates if
there exists a tool for assisting users to model using this proposal; F7 determines
if there exists a tool/framework for enacting the SLA.

Based on this comparison of the different SLA models, we highlight the follow-
ing conclusions: (i) None of the specifications provides any support or alignment
with the OpenAPI Specification; (ii) Most of the approaches provide a concrete
syntax on XML, RDF (some of them they even lack concrete syntax) and there is
no explicit support to YAML or JSON serializations. (iii) An important number
of proposals are complete, but others leave some parts open to being implemented
by practitioners. (iv) Besides the fact that a number of proposals are that aims to
model web services, they are focused on traditional SOAP web services rather than
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Table 1. Analysis of SLA models

Name F1 F2 F3 F4 F5 F6 F7

SLAC [19] DSL ✓ ✓

CSLA [9] XML ✓ ✓

L-USDL Ag. [6] RDF ✓ ✓ ✝ ✓

rSLA [17] Ruby ✓ ✓ ✓ ✓

SLAng [10] XML ✓

WSLA [11] XML ✓ ✓ ✓

SLA* [8] XML ✓ ✓ ✓

WS-Ag. [2] XML ✓ ✓ ✓ ✝

✝ Supported with minor enhancements or modifica-

tions.

RESTful APIs. In this context, they do not address the modeling standardization
of the RESTful approach: i.e., the concept of a resource is well unified (a URL), and
the amount of operations is limited (to the HTTP methods, such as GET, POST,
PUT and DELETE). This lack of support of the RESTful modeling prevents the
approaches to have a concise and compact binding between functional and non-
functional aspects. (v) They do not have enough expressiveness to model limita-
tions such as quotas and rates, for each resource and method and with complete
management of temporally (static/sliding time windows and periodicity) present
in the typical industrial API SLAs. (vi) Most proposals are designed to model a
single offering and they mostly lack support to modeling hierarchical models or
overriding properties and metrics (F4); in such a context, they cannot model a set
of tiers or plans that yield a complex offering thatmaintains the coherence bymodel
and instead they rely on a manual process that is typically error-prone. (vii) finally,
the ecosystem of tools proposed in each approach (in the case of its existence) is
extremely limited and that aims to be solely as a prototype; moreover, they appar-
ently are not integrated into a developer community nor there is evidence of this
usage by practitioners in the industry.

In order to overcome the limitations of existing approaches, the main goals
of this paper can be summarized as follows: (i) An interoperable model fully-
integrated with leading API description language (OAS) to express the API
limitations. (ii) an initial ecosystem of tools to provide support to different parts
of the SLA-Driven API development lifecycle. (iii) validation of this model in
real-world scenarios to assess its expressiveness.

3 OAS in a Nutshell

In this section, we briefly present the OpenAPI Specification (OAS), consid-
ering its goals, structure and extension capabilities. OAS, formerly known as
Swagger, is a vendor-neutral, portable and open specification for the functional
deception of APIs. It is promoted by the OpenAPI Initiative (OAI), an open
source consortium hosted by The Linux Foundation and supported by a grow-
ing number of leading industry stakeholders, such as Google, IBM, Microsoft or
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Oracle, amongst others. Both API clients and vendors are able to benefit from
the formal definition using the OAS: from the clients’ point of view, they can use
any tool from the extensive ecosystem created around the OAI; conversely, from
the vendors’ point of view, they can generate interactive documentation portals,
create auto-generated prototypes and perform automatic API monitoring and
testing. Specifically, as a minimum content, an OAS document should describe a
set of aspects including API general information (such as title, description and
version), a list of Resources, Paths and Methods allowed, and set of Schemas
(following the JSON-schema specification) to identify the structure of the data
to be exchanged with the API (e.g., a resource structure). In order to have a
more concise description, it is possible to reuse definitions of schemes by means
of the $ref constructor as proposed in the JSON-schema standard. Comple-
mentary, API provider can include optional elements such as the different API
endpoints, where the API can be accessed. This is especially useful in scenarios
with different endpoints for development and production stages.

✞ ☎
1 openapi: 3.0.0

2 info:

3 title: Simple petstore API

4 description: ...

5 version: ...

6 x-sla: ./pets -plans.yaml

7 servers:

8 - url: ....

9 paths:

10 /pets:

11 get:

12 description: ...

13 parameters: ..

14 responses:

15 200:

16 description: pet response

17 content:

18 application/json:

19 schema:

20 $ref: "#/ components/schemas/pet"

21 post:

22 ...

23 components:

24 schemas:

25 pet:

26 title: pet model

27 ...
✝ ✆

Listing 1.1. RESTful API in OAS

✞ ☎
1 context:
2 id: plans
3 sla: ‘1.0’
4 type: plans
5 ...
6 infrastructure: ...
7 metrics:
8 requests:
9 type: integer

10 format: int64
11 description: #requests
12 resolution: consumption
13 ...
14 plans:
15 free:
16 pricing:
17 cost: 0
18 currency: USD
19 billing: monthly
20 quotas:
21 /pets:
22 post:
23 requests:
24 - max: 100
25 period: daily
26 rates:
27 /pets:
28 get:
29 requests:
30 - max: 2
31 period: secondly
32 scope: tenant
33 pro:
34 ...

✝ ✆
Listing 1.2. SLA written in
SLA4OAI

As an example, Listing 1.1 shows an OAS fragment from a basic RESTful
API that corresponds with a single endpoint (/pets) and two methods. Lines
9–22 describe the definition of the pet resource including the GET and POST
methods for retrieving and creating resources; specifically, line 11 starts modeling
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the GET method with a description and the parameters that the request might
be able to handle and responses section (lines 14–20) describe the model of
a successful HTTP response (i.e., status code 200 ) returning a pet resource
conforming with the appropriate schema reference (line 20). Finally, in lines 24–
27, the data model (schema) of the pet object is being defined. A key feature
of the OAS is the capability of being extended with the definition of custom
properties starting with x-, paving the way for customizing or adding additional
features according to specific business needs. As an example, line 6 shows the
use of the x- extension point to include a reference to the SLA description of the
API following our proposal (c.f., Sect. 4).

4 Our Proposal

4.1 SLA4OAI Language

SLA4OAI3 is a language which provides a model for describing SLA in APIs in a
vendor-neutral way by means of extending the main specification. This proposal
is open for evolution based on the discussion with the community and other
partners of the OpenAPI Initiative, hosted by the Linux Foundation. For the
sake of completeness, always refer to the online version so as to have a complete
reference of the language.

The figure available online4 depicts an abstract syntax of an SLA4OAI
description. Starting with the top-level placeholder (denoted as SLA4OAI Doc-
ument in the figure) we can describe basic information about the context, the
infrastructure endpoints that implement the Basic SLA Management Service,
the metrics and a default value for quotas, rates, guarantees and pricing.

Context contains general information, such as the id, the version, the URL
pointing to the api OAS document, the type and the validity of the document;
in this context, the type field can be either plans or instance and it indicates
whether the document corresponds with the general plan offering or it corre-
spond with a specific SLA agreed with a given customer. The Metrics enables
the definition of custom metrics which will be used to define the limitations,
such as the number of requests, or the bandwidth used per request. For each
metric, the type, format, unit, description, and resolution should be defined.
The Plan configuration (configuration parameters for the service tailored for
the plan), availability (availability of the service for this plan expressed via time
slots using the ISO 8601 time intervals format), and the rest of the elements that
will override the default with plan-specific values: quotas, rates and guarantees,
pricing. In this context, it is important to highlight that the Plan section maps
the structure in the OAS document to attach the specific limitations (quotas or
rates) for each path and method. Specifically, after defining the configuration,
the availability, pricing, guarantees, the limitations quotas and rates can be mod-
eled; particularly, the limitations are described in the Limit with a max value

3 https://sla4oai.specs.governify.io.
4 https://isa-group.github.io/2019-05-sla4oai/files/sla4oai_diagram.png.
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that can be accepted, a period (i.e., secondly, minutely, hourly, daily, monthly
or yearly) and the scope where they should be enforced; as an extensible scope
model, we propose two possible initial values (tenant or account as default) cor-
responding with a two-level structure: a limitation or guarantee with a tenant
scope will be applicable to the whole organization while an account scope would
be applicable to each specific user or account (typically with a different API key)
in the organization.

Considering the features of the existing SLA proposals previously analyzed
and available in the online appendix, SLA4OAI is a proposal serialized using the
YAML/JSON syntax (F1) specifically designed for web services (F2), concretely,
RESTful APIs. It is able to model one or more offerings (F3) in a hierarchical
model (F4) since plans can override the default values for the limitations. Fur-
thermore, our proposal takes into account the temporality (F5), since each limi-
tation is scoped to a precise period of time and each plan has its own availability
information. Finally, as stated in following sections, SLA4OAI has a set of tools
for assisting users to write the model (F6) and an initial ecosystem of tools to
support parts of the development lifecycle (F7).

Let us consider the aforementioned example (as modeled in Listing 1.1) to be
extended with a basic SLA: as a provider, it would be useful to limit, on the one
hand, the number of requests a consumer is allowed to make in a static window
(quota) of 1 day depending on the plan purchased and, on the other hand, the
requests allowed to be made in a sliding window (rate), differing from GET and
POST methods to avoid the API saturation derived from abusive customers.
Specifically, Listing 1.2 illustrates the model in SLA4OAI of the limitations of
this example API: in lines 14–34 the free and pro plans are being modeled.
Focusing on the first, line 15 define a specific plan by its limitations quotas (lines
20–25) and rates (lines 26–32). For instance, a quota of 100 POST requests over
the resource /pets in a static window of 1 day is defined in lines 23–25. Conversely,
a rate of 2 requests per second is defined for /pets GET requests (lines 29–32).
Finally, note that line 4 indicates that this document is for describing plans.
Whenever a client accepts a specific plan, type field would become an instance
one. It is interesting to highlight the scope: tenant (line 32) in the rates for
the GET request represents a limitation for the whole consumer organization
affecting all the accounts of the organization, while the rest of the quotas and
rates are enforced on a default per-account basis.

4.2 SLA-Driven API Development Lifecycle

In spite of the fact that each organization could address the API development
lifecycle with slightly different approaches, a minimal set of activities can be
identified: a first activity corresponds with the actual Functional Development of
the API implementing and testing the logic; next a Deployment activity where
the developed artifact is configured to be executed in a given infrastructure;
finally, once the API is up and running, an Operation activity starts where the
requests from consumers can be accepted. This process is a simplification that
can be evolved to add intermediate steps (such as testing) or to include an
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evolutive cycle where different versions are deployed progressively. In order to
incorporate SLAs in this process, we expand this basic lifecycle where both API
Provider and API Consumer can interact (as depicted in Fig. 1).
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Fig. 1. SLA-Driven API development lifecycle

Specifically, from the provider’s perspective, the Functional Development can
be developed in parallel with a SLA modelling where the actual SLA offer-
ing (type plans) is written and stored in a given SLA Registry. Once both the
functional development and the SLA modeling has concluded, the SLA instru-
mentation must be carried out, where the tools and/or developed artifacts are
parameterized so they can adjust their behavior depending on a concrete SLA
and provide the appropriate metrics to analyze the SLA status. Next, while the
deployment of the API takes place, a parallel activity of SLA enactment is devel-
oped where the deployment infrastructure should be configured in order to be
able to enforce the SLA before the API reaches the operation activity.

Complementary, from consumer’s perspective, once the provider has pub-
lished the SLA offering (i.e., Plans) in the SLA Registry, it starts the offer
analysis to select the most appropriate option (offer selection activity) and to
create and register its actual SLA (type instance); finally, the API Consumption
is carried out as long as the API is the Operation activity and its regulated based
on the terms (such as quotas or rates) defined in the SLA.

In order to implement this lifecycle, it is important to highlight that the SLA
instrumentation, SLA enactment and Operation activities should be supported
by an SLA enforcement protocol that aims to define the interactions for checking
if the consumption of the API for a given consumer is allowed (e.g., it meets the
limitations specified in its SLA) and to gather the actual values of the metrics
from the different deployed artifacts that implement the API.
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4.3 Basic SLA Management Service

TheBasicSLAManagementService (BSMS) is abasicnon-normativeAPIdescrip-
tion to provide basic support for the SLA enforcing protocol as motivated in the
SLA-Driven API development lifecycle (c.f., Sect. 4.2) and addresses the following
features: (i) Checking the current state of a given SLA (SLA Check). (ii) Reporting
metrics to calculate the current state of a given SLA (SLA Metrics). To this end,
thisBSMSproposal represents a descriptive interface that could be implemented in
different technologies and acts as a decoupling mechanism to the underlying infras-
tructure that actually provides support to the development lifecycle.

Moreover, the definition of a BSMS paves the way to define multiple SLA
enforcing architectures that could be selected depending on the performance or
technological constraints of a given scenario. Specifically, Figs. 2 and 3 represent
an overview of two different SLA enforcing architectures: on the one hand, the
Standalone enforcing define an SLA instrumentation as part of the API with a
direct communication with the SLA management infrastructure; on the other
hand, a Gateway enforcing relays on the front load balancer to connect with
the SLA management infrastructure so a potential set of API instances do only
provide the functional logic.

SLA Check SLA Metrics

Request
workload

API

1

2

3

4 5

6

Fig. 2. Standalone SLA enforcing arch.

SLA Check SLA Metrics

Request
workload

API

API Gateway

APIAPI

1

2

3

4 5

6

Fig. 3. Gateway SLA enforcing arch.

In order to illustrate the interactions and behavior of each component imple-
menting (or interacting with) the BSMS, we will focus on the Gateway enforcing
architecture (See Fig. 3) as it is a more complete scenario:

1. Requests will pass through the API Gateway until they are directed to the
node that will serve it (step 1).

2. The API Gateway query the SLA Check component to determine if the
request is authorized to develop the actual operation based on the appropri-
ate SLA (step 2).

(a) If it is authorized, the actual API is invoked and the response is returned
(step 3).

(b) If it is not authorized, a status code and a summary of the reason (as
generated by the SLA check component) is returned (step 3).

3. After the consumption ends (step 4), the metrics are sent to the SLA Metrics
component (step 5). This component is in charge of updating the status of the
agreement with the new metrics introduced (step 6). This new information
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could be processed to determine the SLA state that should be taken into
account in further requests.

In the following subsections, we overview the interface and the expected
behavior of the SLA Check and SLA Monitor components; a complete description
of the proposed API is available online5.

SLA Check. This component should support the verification process to decide
whether an API request can be satisfied based on the current state of its SLA.
In particular, it should provide two different endpoints:

– A query (GET ) operation over the /tenants path in order to locate the SLA
scope and the SLA id that should regulate the consumption based on a given
token (typically an API key sent by the consumer as a query or header
parameter). The SLA scope should determine the actual tenant (the con-
sumer organization that has signed the SLA) and the account (that belongs
to the consumer organization).

– A verification (POST ) operation over the /check path in order verify whether
a specific request can be done; specifically, it will respond true or false to notify
the provider if it is: (i) Acceptable to fulfill the request (positive case), or on
the contrary; (ii) Not acceptable and then, the request should be denied (neg-
ative case); in such a case, it could include optional information describing the
reason for the SLA violation. Concerning the HTTP status code, in a general
case, a negative response should correspond with standard 403 Forbidden;
if the denial reason is rate/quota limit enforcement, then the recommenda-
tion is to use 429 Too Many Requests and include rate limit information as
metadata into the consumer response to explain the denial of service: as an
example it could include the actual metric computation, the limit or a future
timestamp when the rate/quota will be reset for the given consumer.

It is important to note that, while a complete interaction with the SLA Check
component involves the invocation to both endpoints, in demanding scenarios,
a local API key cache can be introduced in order to avoid the first query over
the/tenants path.

SLA Metrics. This component should implement a mechanism for metric gath-
ering in order to support the analysis of SLA fulfillment. In particular, it should
provide a storage (POST ) operation over the /metric path in order to register
a certain metric. In addition to the actual metric value, as mandatory elements,
it should also include information about the metric context including the SLA
Scope, the SLA Id and the sender (i.e., the specific API instance or API Gateway
generating the metric).

The metrics can correspond with a standard set of well-defined domain-
independent metrics such as request count or response time, or domain-dependent
metrics such as a certain payload attribute (e.g., the size of a specific parameter).

5 https://sla4oai.specs.governify.io/operationalServices.html.
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Since metrics flow could be dense in the same scenarios a buffering can be
introduced; to this respect, the SLA Metric component should allow reception
of multiple metrics values in a single operation. Consequently, metrics can be
grouped in batches or sent one by one to fine-tune performance versus real-time
SLA tracking in each scenario.

5 Tool Support

The SLA-Driven API development lifecycle, depicted in Fig. 1 and explained in
Sect. 4.2, should be assisted by a set of tools during certain activities. Since we
seek to provide a fully-fledged language, we provide an initial working implemen-
tation of these tools [4]. Specifically, for the SLA modeling activity we present
the SLA Editor for hiding the complexity of the language to the end user. The
concrete implementation of the SLA instrumentation activity is provided in the
SLA Engine, an implementation of the Basic SLA Management Service, defining
the /metrics and /check endpoints. On the one hand, for the Standalone SLA
enforcing architecture, we support the SLA instrumentation and SLA enact-
ment activities with the SLA Instrumentation Library in a Node.js module; on
the other hand, for the Gateway SLA enforcing architecture, a complete SLA-
Driven API Gateway is provided as a service.

SLA Editor. In modeling tasks, supporting tools are commonly provided to the
users. In this scenario, we provide the SLA editor6, for the SLA modeling activ-
ity in the SLA-Driven API development lifecycle. SLA editor is a user-friendly
and web-based text editor specifically developed for assisting the user during
the modeling tasks, including auto-completion, syntax checking, and automatic
binding. It is possible to create plans (e.g., free and pro) with quotas and rates.
Clicking on the + sign, the user is able to select the path and method (previously
defined in the OAS document) for entering the value of the limitation. Note that
custom metrics can also be defined at the bottom, however, the calculation logic
is left open for a specific implementation.

SLA Engine. Whereas the BSMS (c.f., Sect. 4.3 defines the interaction flows
and the endpoints /check and /metric, a reference implementation should be
provided in order to properly carry out the SLA instrumentation activity in
the SLA-Driven API development lifecycle. The SLA Engine, thus, provides a
concrete implementation which also includes a particular way to handle SLA sav-
ing/retrieving tasks. Specifically, Monitor7 is an implementation of the Metrics
BSMS service and Supervisor8, of the Check service.

The Monitor service exposes a POST operation in the route /metrics for
gathering the metrics collected from other different services. It can collect a

6 https://designer.governify.io.
7 http://monitor.oai.governify.io/api/v1/docs.
8 http://supervisor.oai.governify.io/api/v1/docs.
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set of basic metrics and send them to a data store for aggregation and later
consumption. The metrics can be grouped in batches or sent one by one to
fine-tune performance versus real-time SLA tracking.

The Supervisor service has a POST /check endpoint for the verification of
the current state of the SLA for a given operation in a certain scope. For each
request, this service will evaluate the state of the SLA and will respond with
a positive or negative response depending on whether a limitation has been
overcome. In addition, this service also implements (outside the scope of the
BSMS) these additional endpoints: GET/POST /tenants, GET/POST /slas and
PUT/DELETE slas/<id> for managing both users (tenants and accounts) and
SLA4OAI documents themselves.

SLA Instrumentation Library. Despite the fact that the BSMS defines the
interaction flows between the endpoints, the concrete implementation of these
interactions is left open for the activities of SLA instrumentation and SLA enact-
ment of the SLA-Driven API development lifecycle. The tool that we present aims
to cover this lack in the Standalone SLA enforcing architectures. Specifically, we
present an SLA Instrumentation Library for Node.js9, which is a middleware (i.e.,
a filter that intercepts the HTTP requests and perform transformation if neces-
sary) written for Express, the most used Node.js web application framework. This
middleware intercepts all the inbound/outbound traffic to perform the BSMS flow.

Specifically, Monitor is an implementation of the Metrics BSMS service and
Supervisor, of the Check service, as explained in the SLA Engine section.

Once the API uses the SLA Instrumentation Library, a new endpoint /plans
is added. It creates a provisioning portal for clients to purchase a plan. Once
the customer purchases (or simply selects, in case of the free ones) a plan, this
customer will get an API-key, acting as a bearer token for HTTP authentication.

SLA-Driven API Gateway. A more transparent way to implement the inter-
action flows defined is the BSMS is achieved by using an SLA-Driven API Gate-
way10. We provide an open-source implementation for deploying SLA-Driven
API Gateways using any SLA Engine and supporting the SLA instrumentation
and SLA enactment activities of the SLA-Driven API development lifecycle in
a Gateway SLA enforcing architecture.

Particularly, we provide as a service, an online preconfigured instance (using
the aforementioned SLA Instrumentation Library) of an SLA-Driven API Gate-
way. API providers are only required to enter: (i) The real endpoint of their API;
(ii) A URL pointing to the SLA4OAI document. Once an API is registered, the
SLA-Driven API Gateway exposes a public and SLA-regulated endpoint, as well
as the /plans endpoint for the provisioning portal. Clients who have selected
a plan will get an API-key from the portal that will be as a bearer token to
consume the SLA-regulated API.

9 https://www.npmjs.com/package/sla4oai-tools.
10 https://gateway.oai.governify.io.
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6 Validation

In this section, we describe how we have evaluated our proposal. In particular,
the goal of the evaluation was to answer the following research questions:

RQ1: How expressive is our SLA4OAI model in comparison to real-world APIs’
SLAs We want to know whether the SLA4OAI model that we use is expres-
sive enough to model a wide variety of real-world SLAs and which are the
characteristics of the SLAs that we are not able to express.

RQ2: Which difficulties appear when modeling SLAs defined are expressed in nat-
ural language? All real-world APIs’ SLAs are expressed in natural language.
Therefore, before checking their limitations, it is necessary to formalize them.
With this question, we examine the problems that may appear in this step.

RQ3: What is the reception of our SLA4OAI model and tools in the community?
Besides this proposal has not been officially published, it is publicly available
in our code and artifact repositories (such as NPM). We wonder whether our
proposal is being used by a set of external users and how large this set is.

RQ1: Expressiveness of SLA4OAI. To evaluate the expressiveness of the
SLA4OAI proposal, we have modeled the limitations of a set of APIs. For select-
ing this set we considered the work of [3], where the authors analyzed a set of
69 APIs from two of the largest API directories, Mashape (now integrated into
RapidAPI) and ProgrammableWeb, studying 27 and 41 respectively.

For our evaluation, we have manually selected a subset of these APIs, giving, as
a result, a number of 35 APIs whose modeling using SLA4OAI is challenging (i.e.,
the 27 ones from RapidAPI have the same expressiveness, as the authors noted).
Specifically, have modeled 5488 limitations (quotas/rates) over 7055 combinations
of metrics (e.g., number of requests) and periods (e.g., secondly, monthly) in 148
plans of 35 real-world APIs. We provide a workspace11 with the 35 modeled APIs
and the statistical analysis that we have performed. Focusing on these limitations,
the quotas use to be defined over custom metrics based on their business logic
(e.g., credits spent by request, the number of returned results or the storage con-
sumed).On the other hand, rates aremostly defined over the number of requests. In
both cases, APIs usually define their limitations over one or two different metrics.
Finally, regarding the periods, both limitations are usually over just one period:
monthly for quotas, and secondly for rates.

RQ2: Modeling Issues. During the modeling process we have noticed a few
issues, namely: (i) When an overage exists (i.e., one can overcome the limita-
tion value by paying an extra amount of money per request), the quotas are
soft, that is, the service is still accessible, but this situation should be taken
into account. (ii) Sometimes plans in real APIs are the result of an aggregation
of other plans. For instance, one can buy a base plan with N requests/s, but,
purchasing an upgrade, it is possible to reach the N+1 requests/s. (iii) Using

11 https://isa-group.github.io/2019-05-sla4oai.
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more than one period for limitations. For instance, (1000 requests/month and
100 requests/week). Despite the fact that it is supported in SLA4OAI, it is not
present in the current reference implementation. (iv) Some limitations use a cus-
tom period by means of defining the amount and unit, for example, every 5min,
every 2.5months, etc. (v) In a few APIs, especially for trial plans, forever periods
are often used.

RQ3: SLA4OAI Interest in the Community. Despite the SLA4OAI exten-
sion and tools have not been widely announced nor promoted, we have dis-
closed the tooling ecosystem into the main public NodeJS artifact repository
(i.e., NPM) and this platform provides a set of analytics, refering to individ-
ual installations12, of the usage since it was published. Specifically, based on its
data, it is observed that the SLA Instrumentation Library has been downloaded
and installed more than 600 times13 while the SLA Engine was downloaded
more installed than 1900 times. Furthermore, several industry members of the
Open API Initiative (including Google or PayPal) have expressed their interest
in this proposal and to promote a working group for evolving and extending the
SLA4OAI proposal [5].

7 Conclusions

The current de facto standard for modeling functional aspects of RESTful APIs,
the OpenAPI Specification, ignore crucial non-functional information for an API
such as its Service Level Agreement (SLA). This lack of a standard to define
the non-functional aspects leads to vendor lock-in and it prevents the open tool
ecosystem to grow and handle extra functional aspects. In this paper, we pioneer
in extending OAS to define a specific model for SLAs description and we provide
an initial set of open-source tools that leverage the pre-existing OAI ecosystem
in order to automate some stages of the SLA-Driven API lifecycle. Our proposal
has been validated in terms of expressivity in 35 real-world APIs and, in spite of
the lack of promotion, the initial metrics of usage of the tools proof an interest
from the industry.

As future work, the modeling issues identified in Sect. 6 spot the potential
improvements of SLA4OAI specification and the ecosystem of tools, namely: (i)
Incorporate the concept of hard/soft limitation types. (ii) Add the definition of
custom periods, rather than limiting them to a fixed set of values. (iii) Design
a process for creating composite plans on the top of simpler ones. (iv) Improve
the reference implementation of the tools to support more than one period in
each limitation. From a community perspective, based on the interest received
in the industry, we are in the process of creating an official working group for the
industrial members in OAI to incorporate more feedback from the industry and

12 Details about how this calculation is being made is available at http://bit.ly/npm-
calculation.

13 https://npm-stat.com/charts.html?package=sla4oai-tools.
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define a coordinated mechanism of evolution for future versions of the current
SLA4OAI proposal.
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T
his chapter concludes this dissertation by highlighting the main conclusions and

future work. Specifically, Section §7.1 details the conclusions as well as the

limitations of our proposal. Next, Section §7.2 discusses the possible extensions

to this work, new research interests and collaborations to be explored in the future.
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7.1. CONCLUSIONS

7.1 Conclusions

This thesis dissertation focuses on the problem of defining an expressive, fully-fledged

specification of SLAs for RESTful APIs with two main challenges: (CH1) Establish a

sufficiently expressive specification for the description of API pricings and the analysis

of their validity; (CH2) Implement an ecosystem of tools and operations to support the

SLA-Driven governance of RESTful APIs. As a result of the herein accomplished work,

the main thesis’ output is:

Main conclusion

An expressive, fully-fledged specification of SLAs for

RESTful APIs endorsed with an open ecosystem of tools

can be created to support the SLA-Driven Governance for

RESTful systems

7.1.1 Discussion of Results

To this end, we, first of all, had to analyze the state of the art on API: plans, SLAs,

pricing, etc. To this end, we performed a systematic analysis of 69 RESTful APIs as part

of their business model (Chapter §4). It paved the way to identify the requirements for

the creation of an expressive governance model of realistic RESTful APIs.

Later, we continued analyzing the landscape aimed at finding a catalog of relevant

concepts based on different perspectives from both industry and academia by joining forces

with representatives from top-level organizations belonging to the OpenAPI Consortium

(Chapter §5).

Then, we presented SLA4OAI, pioneering in extending the OpenAPI Specification not

only allowing the specification of SLAs (Chapter §6), but also supporting some stages of

the SLA-Driven API lifecycle with an open-source ecosystem of tools, Governify4APIs

(Appendix §B).

Finally, we also started leveraging from this SLA4OAI specification by the development
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of ELeCTRA, a tool to automate the analysis of induced usage limitations in an API,

derived from its usage of external APIs (Appendix §A).

7.1.2 Limitations

The work herein presented is subject to numerous improvements and extensions in

either the proposed model and the implemented tools. We will address them from a

threefold perspective: descriptive, formal and methodology, as Broy identifies in [37].

In the descriptive perspective, SLA4OAI provides an expressive, fully-fledged specifi-

cation of SLAs for RESTful APIs. To this end, we have tried to cover as many realistic

use cases as possible, by exploring industrial API offerings and validating the proposal in

certain scenarios. Notwithstanding, the methods used to analyze and capture the expres-

siveness in real APIs are error-prone and we may have missed some interesting variability.

Besides, as RESTful APIs are becoming so popular nowadays, newer APIs could have

defined more richer pricings that our model is not able to represent. Additionally, a well-

known limitation of our model is the multitenancy issue: currently, the analysis operations

do not consider more than one user, since they are aimed at answering questions with

regards to the pricing plan as a whole (i.e., is the plan valid? but no is the plan valid for

30K users?.

In the formal perspective, our model has been defined with rigor aimed at capturing

the plurality of business and pricing models for defining the nature of an API limitation.

However, we have not closely dug into any formal semantics or formal specification. We

came to the decision of putting aside the strictly formal perspective in favor of sticking

close to industrial standards. This perspective, therefore, is the one that should be more

extensively improved.

In the methodology perspective, it also extends to the ecosystem of tools and the

ulterior validation, there is a long way to go. Even if we have worked in providing a wide

set of tools, some of them being actively used in the community, the vast majority still

are just proofs of concept. We are currently working on evolving SLA4OAI so that it

becomes part of the OpenAPI Initiative; this will be the main scenario for providing and

validating more methodology aspects.
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7.2 Future Work

This thesis dissertation has opened new research challenges that can be explored in

the future, including:

• Considering temporality in our SLA4OAI model: for instance, in [38], the authors

distinguish five types of incoming workloads: static, periodic, once-in-a-lifetime,

unpredictable, and continuously changing. If we introduce the concept of temporal-

ity in the pricing, i.e., to consider that certain plans have a determined temporal

validity (e.g., day/night plan), the operations have to be adapted to consider this

temporality. Joining temporality with workload models, one could automate the

management of this type of advanced scenarios which require infrastructures that

are dynamic (e.g., instances that start or stop and have a variable cost).

• Taking multitenancy into account: a limitation of our model is that our analysis

operators are scoped for a single user. Once we add the concept of consumption

scenarios we will able to deal with new operations, such is this plan valid for periodic

workload with peaks of 30K users?, can we guarantee that our plan is valid 99% of

times?. This research path will focus on the paramount importance of the SLA

classical concept.

• Adding more dimensions in the model: we have considered continuing working in

giving a unified and comprehensive description model for RESTful APIs, combining

structural, conversational, and SLAs. This path was only explored in [27].

• Automated discovery/validation of RESTful APIs usage plans: once we have the

SLA4AOI model, we can implement a tool that monitors a given set of API resources

to determine which number of metric units (e.g., incoming requests) the service is

able to provide. It would be useful to verify if the pricing plans being offered by the

providers can, indeed, be fulfilled.

• Continue validating the proposal in industrial environments: we will continue fos-

tering the adoption of the SLA4OAI model as part of the OpenAPI Initiative and

other similar forums in the open-source community.
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Abstract. As software architecture design is evolving to microservice
paradigms, RESTful APIs become the building blocks of applications. In
such a scenario, a growing market of APIs is proliferating and developers
face the challenges to take advantage of this reality. For example, third-
party APIs typically define different usage limitations depending on the
purchased Service Level Agreement (SLA) and, consequently, performing
a manual analysis of external APIs and their impact in a microservice
architecture is a complex and tedious task. In this demonstration paper,
we present ELeCTRA, a tool to automate the analysis of induced usage
limitations in an API, derived from its usage of external APIs. This
tool takes the structural, conversational and SLA specifications of the
API, generates a visual dependency graph and translates the problem
into a constraint satisfaction optimization problem (CSOP) to obtain
the optimal usage limitations.

1 Motivation

In recent years, there has been a clear trend towards the micro-service architec-
tural style where each component (i.e. micro-service) can evolve, scale and get
deployed independently. This style increases the flexibility of the system and has
been applied in demanding web applications such as eBay, Amazon or Netflix.

From an engineering perspective, a key element of these architectures, with
respect to the modeling and implementation of microservices, is the use of the
RESTful paradigm. From a business perspective, this microservice architecture
tendency represents a recent shift in software engineering towards API-driven
building and consumption, fostering a breeding landscape for RESTful API mar-
ket in which composite service providers face new issues, such as, how to set their
usage limitations accordingly to 3rd party providers’ usage limitations [6].

This work has been partially supported by the European Commission (FEDER),
the Spanish and the Andalusian R&D&I programs (grants TIN2015-70560-R (BELI),
P12–TIC–1867 (COPAS) and TIN2014-53986-REDT (RCIS)) the FPU scholar-
ship program, granted by the Spanish Ministry of Education, Culture and Sports
(FPU15/02980).
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Automatic discovery of usage limitations requires the serialization of devel-
opers’ knowledge regarding the SLA usage limitations based on the API struc-
ture and the implemented RESTful conversation [8]. This automatic discovery
becomes crucial when there are frequent changes in the usage limitations of the
external services or when the microservice architecture itself experiences changes.
In this automatic discovery of usage limitations scenario, a key concept is the
boundary service that corresponds to an API that has the closest interaction
with the end-user by means of actions in the GUI. Specifically, each action in
the GUI triggers what we coin as root operations (composed by a given path and
an HTTP method) that are typically related to the user story. Commonly, as a
facade, all the boundary services are deployed behind an API Gateway [7] that
enhances the security of the infrastructure.

Given the frequent and multiple ways in which the third party APIs’ usage
limitations evolve and are likely to keep evolving, when building an application,
we need to adapt our customer’s expectations regarding the performance of the
tool (i.e., how many operations can be generated over time and how long it will
take to produce an operation). Therefore, to rapidly react to these changes, there
is a need of automating the process to obtain the usage limitations that a provider
can offer to its end-users based on certain optimal criteria in a microservice
architecture, such as minimizing the requests made to the third-party providers.
Specifically, the problem addressed is finding the usage limitations of a root
operation induced by the rest of the services (internal and external) composing
the microservice architecture. Despite the fact that knowing the usage limitations
in the internal services can be useful, calculating the usage limitations in the root
operations (i.e., the operations closer to the end users) is more valuable since
they help the service provider to set its own usage limitations to end users and
to understand the induced service level agreement he can offer to its users.

In this demonstration paper, we propose a tool that, given: (i) the external
usage limitations (as derived from the purchased SLA) as well as the boundary
service structure and root operation conversation; it translates the problem into
a constraint satisfaction optimization problem (CSOP) to obtain the induced
usage limitations for the specified root operation.

2 Using ELeCTRA to Calculate the Usage Limitations

In order to illustrate the problem, let us consider the following example: we
have developed a report generation application for the internal evaluation of
the researchers in our university. For this purpose, we needed to collect, per
researcher, the quality indicators of his/her publications. After considering dif-
ferent bibliometric providers, we opted for the Scopus API [4] as it provides the
set of publications as well as the CitesScoreTM index, an impact factor index
calculated by Elsevier. Specifically, our application depends upon four Scopus
APIs. Per researcher, the following invocations are needed: (i) retrieving the sim-
ple list of publications; (ii) collecting the details regarding each publication; (iii)
gathering the details concerning each publication’s venue (journal or conference).
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Each of these Scopus APIs present different usage limitations [6], so, depending
on the input and the usage limitations of each API operation, the induced usage
limitations for our end-users will vary. The question to be addressed is: what

is the maximum amount of researchers per week for which this report can be

generated without over-passing the Scopus API usage limitations?

We use ELeCTRA1 to answer the question. First, we have to model the struc-
tural viewpoint of each Scopus RESTful service using the Open API Specification
(OAS) [3], as well as the usage limitations by using the SLA4OAI Specification
[5]. Each of these models should be publicly available through an URL. Finally,
using the embedded editor in ELeCTRA, the x-conversation model is introduced
to define the dependencies between the internal and external services, as well
as the parameters needed to calculate automatically the usage limitations. This
example is preloaded at ELeCTRA and can be accessed by selecting the simple

example. ELeCTRA is composed of two different microservices (ELeCTRA-DOT
and ELeCTRA-CSOP) and a user interface (ELeCTRA-UI) accessible through
a web browser. This UI includes a textual editor so that a user can directly mod-
ify the x-conversation document and visualize the OAS and SLA4OAI models.
When the user saves the model, two actions are carried out. On the one hand,
an invocation to ELeCTRA-DOT, the graphical representation microservice, is
performed. The x-conversation model is parsed and according to a set of rules,
it is converted to a graph using the dot [1] notation. A png image is returned
back to the UI. On the other hand, a request to ELeCTRA-CSOP, the CSOP
model generator and solver microservice, is developed in order to calculate the
usage limitations for the boundary operation.

ELeCTRA-DOT first represents all the RESTful requests (i.e., each pair of
method and path) as the nodes of the graph by using the structural information
present in the OAS model. Then, an edge between two operations is included if
they are related in the x-conversation model. Next, this edge is labeled with the
information about the number of invocations based on the x-conversation mode.
Finally, for each operation of each service, the usage limitations information is
retrieved by means of the SLA4OAI extension. ELeCTRA-CSOP, on the other
hand, is the main microservice in this tool, since it is responsible for transform-
ing the x-conversation model to a constraint satisfaction optimization problem in
order to obtain the usage limitations for an operation. By using a set of rule con-
structs, the x-conversation is transformed into a set of parameters (e.g., the val-
ues of the usage limitations, the number of invocations from an operation to the
next one), variables (e.g., the quota of the boundary operation to be maximized)
and constraints (e.g., the sum of the requests made to a certain operation should
not overpass the quota value for this operation). Specifically, this microservice uses
the MiniZinc’s [2] syntax, a language designed for specifying constrained optimiza-
tion and decision problems over integers and real numbers. Once the problem has
been successfully translated and validated, ELeCTRA-CSOP invokes the solver
through the MiniZinc interface and gets the response back. Then, ELeCTRA-UI

1 https://electra.governify.io.
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receives the information and sends the updated usage plans to ELeCTRA-DOT to
complete the remaining usage limitations. Finally, all this information is presented
to the end user.

3 Instructions for the Organizers

This software tool is bundled into a v10.6.0 Node.js application, running in a
Windows 10 system which should have installed (and added to the user PATH
environment variable) Minizinc v2.1.7 and Graphviz v2.38.0.

Nevertheless, for the sake of simplicity and portability, authors have packed
the entire app into a Docker Image2. Therefore, any x86 64 machine with
Docker3 will be able to run the application by typing: docker run -p 8080:80

isagroup/governify-electra.
Furthermore, to avoid any installation issue, the online web application is

deployed at: https://electra.governify.io.
The demonstration video is available at: http://youtu.be/axbkDax1N9g.
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ABSTRACT

As software architecture design is evolving to a microservice para-

digm, RESTful APIs are being established as the preferred choice

to build applications. In such a scenario, there is a shift towards

a growing market of APIs where providers ofer diferent service

levels with tailored limitations typically based on the cost. In such

a context, while there are well-established standards to describe the

functional elements of APIs (such as the OpenAPI Speciication),

having a standard model for Service Level Agreements (SLAs) for

APIs may boost an open ecosystem of tools that would represent an

improvement for the industry by automating certain tasks during

the development.

In this paper, we introduce Governify for APIs, an ecosystem of

tools aimed to support the user during the SLA-Driven RESTful

APIs’ development process. Namely, an SLA Editor, an SLA Engine

and an SLA Instrumentation Library. We also present a fully opera-

tional SLA-Driven API Gateway built on the top of our ecosystem of

tools. To evaluate our proposal, we used three sources for gathering

validation feedback: industry, teaching and research.

• Website: links.governify.io/link/GovernifyForAPIs

• Video: links.governify.io/link/GovernifyForAPIsVideo

CCS CONCEPTS

• Information systems → RESTful web services; • Software

and its engineering → Extra-functional properties; System

description languages.
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1 INTRODUCTION

In the last decade, RESTful APIs are becoming a clear trend as

composable elements that can be used to build and integrate soft-

ware [8]. One of the key beneits this paradigm ofers is a systematic

approach to information modeling leveraged by a growing set of

standardized tooling stack. In this context, the term of API Econ-

omy is being increasingly used to describe the movement of the

industries to share their internal business assets as APIs [7, 11]

not only across internal organizational units but also to external

third parties; in doing so, this trend has the potential of unlocking

additional business value through the creation of new assets [1, 7].

In order to be competitive in such a growing market of APIs, at

least two key aspects can be identiied: i) ease of use for its poten-

tial developers; ii) a lexible usage plan that its their customer’s

demands.

Regarding the ease of use perspective, third-party developers

need to understand how to use the exposed APIs so it becomes

necessary to provide good training material but, unfortunately, API

providers do not often write good documentation of their prod-

ucts [2]. Notwithstanding, during the last years, the OpenAPI Spec-

iication1 (OAS), formerly known as Swagger, has become the de

facto standard to describe RESTful APIs from a functional perspec-

tive providing an ecosystem of tools2 that helps the developer in

several aspects of the API development lifecycle.

Concerning the usage plans perspective, as APIs are deployed

and used in real settings, the need for non-functional aspects is

becoming crucial. In particular, the adoption of Service Level Agree-

ments (SLAs) [9] could be highly valuable to address signiicant

challenges that industry is facing, as they provide an explicit place-

holder to state the guarantees and limitations that a provider ofers

to its consumers. Exemplary, these limitations (such as quotas or

rates) are present in most common industrial APIs [3] and both API

providers and consumers need to handle how they monitor, enforce

or respect them with the consequent impact in the API deployment

and consumption.

However, to the best of our knowledge, there is no widely ac-

cepted and open source tool that leverages from the functional

model as well as the non-functional description to create usage

plans including elements such as cost, functionality restrictions or

limits and performing actual API governance in production.

In this paper, we introduce the Governify for APIs ecosystem, a

set of tools which, starting from an OAS description, assist the user

during the RESTful APIs’ development process for the creation of

usage plans (or SLAs) and performing seamlessly SLA-Driven API

governance. Ultimately, we have evaluated our proposal in three

diferent scenarios: teaching, research and industry.

1The latest version of the OpenAPI Speciication is available at https://github.com/
OAI/OpenAPI-Speciication
2https://openapi.tools
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The rest of the paper is structured as follows: Section 2 analyzes

diferent alternatives to our proposal, Section 3 presents the Gov-

ernify for APIs ecosystem and Section 4 outlines the evaluation that

we performed. Finally, in Section 5, shows some inal remarks and

conclusions.

2 RELATED TOOLS

Despite ad-hoc solutions for regulating APIs have emerged, we

focus on the so-called API Gateways [5], which have emerged to

support API developers in the management of aspects such as con-

sumer authentication, request throttling or billing. The increasing

growth of APIs has resulted in a proliferation of API Gateways

platforms that provide diferent levels of support for functional and

non-functional aspects.

In order to spot these diferences, we have considered3 the pub-

licly available information of 18 API Gateways. The conclusions:

1) Regarding the functional point of view: (i) Almost every API

Gateway do allow the usage of the OAS for the functional deinition

of the API. (ii) Almost a half have an explicit (vendor-speciic)

model to deine some parts of the coniguration of the platform

(e.g. endpoints, limitations, general information), but only one third

allow importing/exporting. (iii) As stated by the authors in [10],

the importance of OAS made it a key feature widely supported by

the API Gateway provider.

Concerning the non-functional point of view: (i) Most API Gate-

ways support quotas, against two thirds supporting rates. (ii) All

API Gateways allow request as a metric, a third allows other pre-

deined metric and only two API Gateways allow deining custom

metrics. (iii) As pointed out in [3], API providers typically support

limitations (quotas and/or rates) and they are usually deined over

the number of requests with a minimal frequency supported that

starts from minutely in the case of quotas, and secondly in the case

of rates.

Based on these indings, we observe that, in spite all API Gate-

ways spot similar features, the underlying model and concepts are

diferent and each platform describes the coniguration in a speciic

format, hindering, thus, the interoperability among providers. Con-

sequently, organizations that face the transition from a certain API

Gateway to a diferent one, they are required to perform a manual

migration process and complex evaluation of the behavioral and

vocabulary diferences between the vendor-speciic models of each

API Gateway.

3 GOVERNIFY FOR APIS

3.1 Motivating Example

We will guide the explanation of the Governify for APIs ecosystem

by means of a real-world RESTful API which needs to be governed;

namely, the DBLP API, a service for retrieving bibliometric infor-

mation in the Computer Science research area. It is a quite simple

API that ofers three GET endpoints for searching authors, publi-

cations and venues by introducing parameters in the query (e.g.,

http://dblp.org/search/author/api?q=gamez+diaz).

This API does not ofer any explicit information of the non-

functional properties or limitations besides of an entry in the FAQ4

3Avaliable at https://isa-group.github.io/2019-05-sla4oai-demo/iles/api_gw.html
4https://dblp.org/faq/1474706

in natural language (sic. you should always be ine when waiting for

at least one or two seconds between two consecutive requests). This

lack hinders the creation of limitations-aware API clients because of

the need for a prior human progressing of the aforementioned FAQ.

Nevertheless, from the functional perspective, this API could be eas-

ily described by means of the OpenAPI Speciication (c.f., resources

on the website5). For the non-functional modeling, SLA4OAI6 will

be used. It is a vendor-neutral open-source proposal for describing

APIs’ aspects such as quotas and rates. It enables users to model

the typical limitations that can be usually found in an API [3]. Note

SLA4OAI is able to model a subset of terms that usually appear in

an SLA; nevertheless, SLA can compliant with other SLA speciica-

tions, such as iAgree [6], including support for other metrics (e.g.,

availability) and concepts (e.g., penalties and rewards).

Starting from an API functionally deined with OAS, our goal

will be to use Governify for APIs to regulate that API accordingly to

its quota and rate limitations using a vendor-neutral speciication.

3.2 Architecture

We have developed a Node.js set of tools, inspired in the microser-

vice architectural style, packed as Docker public images7 and de-

ployed for a publicly online access. An overview of all the com-

ponents is depicted in Figure 1. The source code and technical

information are available at the supplementary website5. Specii-

cally, we introduce the SLA Editor for hiding the complexity of the

language to the end user. Next, we support two diferent enforces:

gateway and standalone. The former, see Figure 3, is intended to

be developers who want to regulate an API without modifying the

source code. The latter is supposed to serve to developers who need

a more ine-grained control by modifying the API code. We provide

a SLA-Driven API Gateway for the irst enforce and an SLA Instru-

mentation Library as part of a Node.js module for the latter. Both

enforces are instrumented by the SLA Engine. Next, we describe in

detail each tool.

SLA-Driven API Gateway

SLA Engine

Monitor Supervisor

sla4oai-tools library for 

Node.js
SLA

Supporting tools

OAS

SLA Editor

defines

* Actual interaction flows depends 
on the chosen enforce type

used

 in

* 

* 

Figure 1: Governify for APIs’ simpliied architecture

3.3 SLA Editor

Governify for APIs provides an SLA editor8, a user-friendly web-

based text editor speciically developed for assisting the user during

the modeling tasks, including auto-completion, syntax checking,

and automatic binding (i.e., the changes in the UI are synchronized

5https://links.governify.io/link/GovernifyForAPIs
6https://sla4oai.specs.governify.io
7https://hub.docker.com/u/isagroup
8https://designer.governify.io
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with the underlying SLA4OAI textual model). Precisely, Figure 2

depicts this textual-visual binding. It is possible to create diferent

plans (e.g., free and pro) with quotas and rates over speciic metrics.

Clicking in the + sign, the user is able to select the path and method

(previously deined in the OAS document) for entering the value

of the limitation. Note that other custom metrics besides requests

can also be deined. Precisely, in the case of the DBLP API, after

having modeled the functional part with OAS, the plan can be easily

created. We added a made up professional plan just to show the

modeling capabilities.

Over resource: /search/publ/api

60 GETs / requests / minutely

Over resource: /search/author/api

60 GETs / requests / minutely

Over resource: /search/venue/api

1 add

Quotas

GET requests select...

Over resource: /search/publ/api

1 GETs / requests / secondly

Over resource: /search/author/api

1 GETs / requests / secondly

Over resource: /search/venue/api

1 add

Rates

GET requests select...

secondly minutely hourly daily secondly minutely hourly daily

Figure 2: Editing DBLP plans in the SLA Editor tool

3.4 SLA Engine

The SLA4OAI speciication outlines the Basic SLA Management

Service9 (BSMS) deining the interaction lows and the endpoints

/check and /metrics. In Figure 3 we focus on the Gateway enforce as

it is a more complete scenario.

SLA Check SLA Metrics

Request
workload

API

API Gateway

APIAPI

1

2

3

4 5

6

Figure 3: Gateway enforce deined in the SLA4OAI BSMS

First, requests will pass through the API Gateway until they are

directed to the node that will serve it (step 1). Next, the API Gateway

query the SLA Check API to determine if the request is authorized

to develop the actual operation based on the appropriate SLA (step

2). Afterward, if it is authorized, the actual API is invoked and the

response is returned (step 3). If it is not, a status code and a summary

of the reason (as generated by the SLA check API) is returned (step

3). After the consumption ends (step 4), the metrics are sent to the

SLA Metrics API (step 5), which is in charge of updating the status

of the agreement with the new metrics introduced (step 6).

Since we stick to the SLA4OAI speciication and it left open the

implementation, our tooling for theSLA Engine, provides a concrete

9https://sla4oai.specs.governify.io/operationalServices.html

implementation of the BSMS, including also a particular way to

handle SLA and users saving/retrieving tasks (SLA Registry and

Tenants). Speciically,Monitor10 is an implementation of theMetrics

BSMS service and Supervisor11, of the Check service.

TheMonitor service exposes a POST operation in the route /met-

rics for gathering the metrics collected from other diferent services.

It can collect a set of basic metrics and send them to a data store for

aggregation and later consumption. The metrics can be grouped

in batches or sent one by one to ine-tune performance versus

real-time SLA tracking.

The Supervisor service has a POST /check endpoint for the veri-

ication of the current state of the SLA for a given operation in a

certain scope. For each request, this service will evaluate the state

of the SLA and will respond with a positive or negative response

depending on whether a limitation has been overcome. In addi-

tion, this service also implements (outside the scope of the BSMS)

these additional endpoints: GET/POST /tenants, GET/POST /slas

and PUT/DELETE slas/<id> for managing both users (tenants and

accounts) and SLA4OAI documents themselves.

3.5 SLA Instrumentation Library

Despite the fact that the BSMS deines the interaction lows between

the endpoints, the concrete implementation of these interactions is

left open. That is the way our aims to cover this lack. Speciically,

we present an SLA Instrumentation Library for Node.js12, which

is a middleware (i.e., a ilter that intercepts the HTTP requests

and perform transformation if necessary) written for Express, the

most used Node.js web application framework. This middleware

intercepts all the inbound/outbound traic to perform the BSMS

low. Throughout the Listing 1 we observe that it is necessary to

import the library (line 3), to conigure the endpoints of the services

(lines 8 and 9) and inally register the middleware (line 12).

1 // Imports

2 const express = require (" express ");

3 const slaInstrumentationLib = require (" sla4oai ");

4
5 const app = express (); // Express init

6
7 // SLA4OAI init

8 const supervisorURL = {url: "supervisor.oai.governify.io"};

9 const monitorURL = {url: "monitor.oai.governify.io"};

10
11 // Express middleware registration

12 slaInstrumentationLib.register(app ,supervisorURL ,monitorURL);

Listing 1: Excerpt of the coniguration of the SLA

Instrumentation Library

3.6 SLA-Driven API Gateway

Amore transparent way to implement the interaction lows deined

is the BSMS is achieved by using a Gateway SLA enforce. Our tool,

the SLA-Driven API Gateway is an open-source implementation

to be deployed using any SLA Engine. Particularly, we provide

an online preconigured instance13 using the aforementioned SLA

Instrumentation Library. As depicted in Figure 4, API providers are

only required to enter: (i) The real endpoint of their API; (ii) An

10https://monitor.oai.governify.io/api/v1/docs
11https://supervisor.oai.governify.io/api/v1/docs
12https://www.npmjs.com/package/sla4oai-tools
13https://gateway.oai.governify.io
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URL pointing to the SLA4OAI document. Once an API is registered,

the SLA-Driven API Gateway exposes a public and SLA-regulated

endpoint, as well as a /plans endpoint for a provisioning portal. It

enables customers to purchase a plan, after that, this customer will

get an API-key, acting as a bearer token for HTTP authentication

to consume the SLA-regulated API.

LIST OF SERVICES 

• 
• 
• 

Name 

[ petstore __ ___, 

SCOPUS API 

(docs) II SCOPUS 

API (plans) 

DBLP API (docs) II 

DBLP API (plans) 

BUS SERVICE API 

(docs) II BUS 

SERVICE API 

(plans) 

API endpoint 

https://example 

Go to the service 

URL 

Go to the service 

URL 

Go to the service 

URL 

SLA-Driven OAS 

https://example 

View OAS file 

View OAS file 

View OAS file 

Action 

+add 

•• 
• 

•• 

Figure 4: Coniguration UI of the SLA-Driven API Gateway

4 EVALUATION

We have performed a threefold qualitative evaluation in industry,

teaching and research contexts.

Concerning the industrial evaluation, some OpenAPI Initiative

members have expressed its interest in SLA4OAI, the SLA modeling

proposal, and in promoting a working group for evolving and ex-

tending it. Indeed, in [4], we collaborated with people from Google,

Paypal, AsyncAPI Initiative and Metadev for analyzing, starting

from SLA4OAI, the status of SLAs and limitations in the industry.

Furthermore, in spite of the fact the SLA4OAI extension and tools

have not been widely announced nor promoted, we have disclosed

the tooling ecosystem into the main public Node.js artifact reposi-

tory (i.e., NPM) and this platform provides a set of analytics of usage

since their publishing. Speciically, based on its data we observe that

SLA Instrumentation Library has been downloaded and installed

more than 600 times14 while the SLA Engine was downloaded more

installed than 1900 times.

Regarding the use of Governify for APIs in teaching, it has been

extensively used in, at least, two undergraduate service-oriented

related subjects. As students were required to create their own

APIs15, they also had to set the rate and quota limitations using

Governify for APIs. Whereas we do not have any speciic usage

report, we collected useful information, issues and bugs derived

from running in production.

As of the research context, we are validating our proposal (lan-

guage and tools) in a national research network. Several members

are exposing their research results by creating an API and applying

limitations using Governify for APIs and SLA4OAI. Then, all these

artifacts are being deployed in a central publicly available catalog16.

14https://npm-stat.com/charts.html?package=sla4oai-tools
15https://github.com/gti-sos
16https://services.rcis.governify.io

5 CONCLUSIONS

In this work, we have presented the Governify for APIs ecosystem,

a set of tools integrated aimed to support the user during the SLA-

Driven RESTful APIs’ lifecycle. Speciically, an SLA Editor and an

SLA-Driven API Gateway on the top of an SLA Engine composed by

an SLA Monitor and an SLA Check APIs.

We have evaluated our proposal in three diferent scenarios:

teaching, research and industry, getting, therefore, a highly valuable

source of information that will be used in the upcoming improve-

ments. With Governify for APIs we prove that, with state-of-the-art

tools, it is possible to improve lifecycle of SLA-Driven RESTful APIs,

especially those problems derived from design and operation.

Speciically, (i) Complex usage plans with quota and rate lim-

itations can be modeled with an OAS-compliant vendor-neutral

format; (ii) The support of vendor-neutral initiatives paves the way

for the interoperability between API Gateway providers; (iii) Gov-

ernify for APIs left a publicly available ecosystem of open-source

tools supporting the SLA-Driven RESTful APIs’ lifecycle.
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A Pricing Modeling Framework for RESTful APIs

Regulated with Limitations

Antonio Gamez-Diaz, Rafael Fresno-Aranda, Pablo Fernandez and Antonio Ruiz-Cortes

Abstract—Today, APIs are regarded as a new form of business product, and ever more organizations are publicly opening up access to

their APIs as a way to create new business opportunities in the so-called API Economy. A crucial activity in such a context is to

define the set of plans (i.e., the pricing) that clearly depicts the functionality and performance being offered to clients. API providers

usually define certain limitations in each instance of a plan (e.g., quotas and rates). For example, a free plan might be limited to

having 100 monthly requests, and a professional plan to having 1000 monthly requests. Several proposals have emerged to model the

functional part of the API (i.e., resources, responses, authentication, etc.). Specifically, the OpenAPI Initiative (OAI) has become the

de facto standard in the industry. The alignment with standards is fostering the growth of an open ecosystem of tools aimed at

automating both API development and operations (i.e., the DevOps paradigm). However, there is no proposal for modeling API

pricing (including the plans and limitations), and this information is neither typically structured nor standardized. Therefore,

answering questions regarding API limitations (e.g., determining whether or not a certain pricing is valid) is still a manual process

with the consequent inconveniences (being tedious, time-consuming, error-prone, etc.). Additionally, the lack of standards-aligned

specifications of API pricings and limitations hinders the creation of an open ecosystem of tools that can leverage this invaluable

information so as to help in the DevOps cycle (e.g., limitation-aware testing, or automated gateway configuration). Specifically, this

paper presents a pricing modeling framework that includes: (a) Governify4APIs model, a comprehensive and rigorous model of the

concept of API pricing and its elements (e.g., plans, limitations, etc.). This model is accompanied by SLA4OAI, a serialization that

extends the widely used OAI Specification; (b) a validity operation to validate the description of API pricings, with a tool set

(sla4oai-analyzer) that has been developed to automate this operation and which provides both a stand-alone module and a RESTful

API. Additionally, we performed a rigorous analysis of 244 real-world APIs, and the pricings of 32 of them were manually modeled to

assess the expressiveness of the model and its serialization.

✦

1 Introduction

Today, APIs are regarded as a new form of business prod-
uct, and ever more organizations are publicly opening

up access to their APIs as a way to create new business
opportunities in this so-called API Economy. Indeed, this
trend has been given a boost by the shift towards microservice
architectures as the preferred choice for the construction of
cloud-native Software as a Service. Since these architectures
typically promote the deployment, isolation, and integration
of components (i.e., microservices) by means of RESTful
Web APIs (henceforth, for the sake of simplicity, APIs),
they pave the way for easy connection to external APIs (as
service consumers) or opening up internal APIs to the market
(as service providers). Moreover, during the last few years,
there has been a successful effort made for standardization
(the Open API Specification1). Its core is the proposal of a
standard specification for the functional part of the APIs (i.e.,
the resources and operations available). This specification
has led to the creation of a rich open ecosystem of tools
and techniques to help the industry in the development and
evolution of APIs and microservice architectures.

In this context, from a non-functional perspective, defining
business models and plans with API limitations, such as
quotas or rates, has become crucial for the regulation of the
behaviour expected from all participants and for a guarantee
of a certain service level. However, the information regarding

• Authors are with the Universidad de Sevilla (Seville, Spain).
Corresponding author e-mail: pablofm@us.es

1. More details can be found at https://www.openapis.org

the limitations in APIs is neither structured nor standard-
ized [1]. As a consequence, answering questions regarding
limitations (e.g., calculating the number of requests attainable
in a certain period) has to be a manual process with the
consequent inconveniences (of being tedious, time-consuming,
error-prone, etc.).

The objectives of the present study were fourfold: (i) to
model and validate with rigour the concept of API limitation,
and to study its properties; (ii) to provide a specific serial-
ization of the model aligned with the Open API Specification
(OAS); (iii) to define a validity operation for validating the de-
scription of API limitations; and (iv) to present a prototyping
tool to automate this operation that can help users address
API limitations.

The rest of this paper is structured as follows: Section 2
presents the motivation behind our proposal by discussing a
real scenario, and we introduce the vocabulary used in the
industry; Section 3 sets out a pricing model and a correspond-
ing OAS-aligned serialization; Section 4 presents a validity
operation; in Section 5 we validate our approach by reviewing
244 APIs in the industry to define a representative subset
of 32 APIs that is modeled and analysed with our model,
and we describe the tools developed to automate the analysis
operation; Section 5.2 presents our prototyping tool; Section 6
describes related work; and Section 7 and Section 8 presents
some conclusions and final remarks.

2 Pricing in the API Economy

In the API Economy world, API providers have to make suf-
ficient information available for the consumer to get informed
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about their products. This includes information regarding the
API itself (endpoints and methods), the plans that a user
can subscribe to, and the associated cost. A plan includes
information regarding the API’s limitations (quota and rates)
for each of its resources.

All this information is typically found in a section called
pricing (however, cloud infrastructure providers tend to refer
to it as an offering). Consequently, we shall henceforth con-
sider a pricing to be a set of plans having an associated cost.

In order to illustrate these concepts, we present a real
example: the FullContact API – a tool for managing and
combining contacts from different sources (Gmail, social me-
dia, etc.). The API allows users to programmatically look
up information and to match email addresses with publicly
available information so as to enrich the contacts. Figure 1
depicts the pricing extracted from the FullContact2 API.

Person API Matches

Company API Matches

Company API Key People Queries

Name/Location/Stats API 

Card Reader

Rate Limit

6000 + $.006 overage

2400 + $.006 overage

250

15000 each + $.001 

25 cards + $0.15 overage

300 queries/min

Basic Contract Information

Licensed for Business Use

Select Plan

$99
$99/mo Starter Plan

Person API Matches

Company API Matches

Company API Key People Queries

Name/Location/Stats API 

Card Reader

Rate Limit

15000 + $.006 overage

6000 + $.006 overage

250

50000 each + $.001 

25 cards + $0.15 overage

300 queries/min

Basic Contract Information

Licensed for Business Use

Select Plan

$199
$199/mo Basic Plan

Fig. 1. Plans of the FullContact API.

This pricing example consists of two paid plans having a
fixed price cost billed monthly. With respect to the limita-
tions, for each operation, a quota is applied. For example, in
the starter plan, only 6000 matches on Person are available.
Nevertheless, an overage is defined, i.e., it is possible to
surpass the limit by paying a certain amount of money, in this
case, $0.006 per request. Regardless of the plan, a common
rate of 300 queries per minute is applied.

In this context, several analytical challenges can arise
since the API providers need to understand the plans in
depth before taking further action. In particular, they should
verify the validity of their plans (i.e., that there is nothing
inconsistent).

Those challenges correspond to common questions on the
API’s pricing and plans that could be answered automatically
with an appropriate model and analytical framework provid-
ing different analysis operations. The following two sections
will detail the proposed model (Section 3) and the definition
of a validity operation (Section 4).

2. https://www.fullcontact.com/developer. Accessed May 2019.

3 Pricing Model

In this section, we first present the Governify4APIs model
(Section 3.1), then introduce SLA4OAI (Section 3.2), a
specific textual serialization compatible with the OpenAPI
Specification. Both sections will use the FullContact pricing
described above as a running example.

3.1 The Governify4APIs model

The Governify4APIs is a model for API pricing, i.e., of each
plan and the associated cost for a given API. It starts from the
idea that each API resource (HTTP path and method) has a
related set of limitations (quotas and rates) for each API plan.

Figure 2 depicts the entire Governify4APIs model. For the
sake of clarity, we have split it into three areas: (i) in dark grey,
pricing, plans and cost; (ii) in light grey, limitations and limits;
(iii) in medium grey, capacity. In the following subsections, we
will detail each part of the model with examples extracted
from the FullContact API in Figure 1, considering each part:
the plan area (Subsection 3.1.1), the limitations area (Subsec-
tion 3.1.2), and the capacity area (Subsection 3.1.3).

3.1.1 Pricing, plans, and cost

As depicted in the model (dark grey in Figure 2), a Pricing

consists of a set of Plans. A Plan has a name and a Cost that
defines the price charged to users so that they can access the
service. In our example, the FullContact API has two plans:
a starter and a basic Plan.

The Cost may be very simple (e.g., assign a constant price
to the Plan, e.g., $99 or $199 as in our example) or may
depend on other properties. In this latter case, when the cost
depends on a Limitation, we distinguish two costs: Opera-

tionCost, when an Operation is being charged for each time
it is invoked; and OverageCost, when once a certain value of
the Limitation has been reached (cf. Subsection 3.1.2), there
start to be imposed charges per volume.

Either type of Cost can be periodic, defining a Period

with an amount and a TimeUnit. In our example, the Cost

of the Starter Plan is 99$ billed monthly, i.e., it has a Period
with value 1 of the TimeUnit MONTH.

An OperationCost is frequent in pay-as-you-go payment
models in which there is no monthly fixed Cost and the API
consumer is only charged for, given a requests metric, the
number of requests. In the model, this cost is associated with
the operation by means of the Limitation. For example, a
service might offer a Plan A in which each request can be
charged at 0.10$ (volume: 1) and a Plan B where each pack of
1000 requests (volume: 1000) is charged at 75$. Depending on
the client’s needs, they might prefer Plan A or Plan B.

An OverageCost is usual when providers do not want to
cut off the service once a Limitation has been reached, but
want to continue providing it at a certain charge. Our example
defines an overage when the quota values are reached: each
additional match after 6000 monthly matches is charged at
$0.006.

3.1.2 Limitations and limits

As depicted in the model (unshaded section in Figure 2), in
order to carry out this regulation of the consumption of an
API, each Operation in a Plan can be subject to Limita-

tions on a Metric. The most frequent type of Limitation
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Limitation

Plan

name: String

Operation

path: String
method: String

Metric

name: String

Cost

currency: String
price: Number

ThresholdedLimitation

OverageCost

overage: Number

...

...

ThresholdedLimit

threshold: Number

Period

amount: Number

<<enumeration>>
TimeUnit

SECOND
MINUTE
HOUR
...

Capacity

ThresholdedCapacity

threshold: Number

...

Pricing
OperationCost

volume: Number

<<enumeration>>
ThresholdType

MAX
...

Quota Rate

0..*

1..*

1

0..1

1..*

0..1

1

1

1

1

1

1

Fig. 2. Governify4APIs model for API pricing.

is the ThresholdedLimitation which establishes one or more
ThresholdLimits on the number of Metric units in a Pe-

riod. The ThresholdType is usually MAX (i.e., the Thresh-

oldLimit would therefore represent the maximum number of
Metric units). In defining their Pricing, Limitations allow
providers to adjust the API’s consumption to the platform’s
total Capacity (cf. Subsection 3.1.3).

An Operation is defined by the pair formed by HTTP
method and path. For example, GET /contacts would repre-
sent the query operation on a collection of user-type objects.
A common example of a Metric is the number of requests.
Nonetheless, other metrics can be defined such as storage,
bandwidth or CPU consumption.

In accordance with the implementation, i.e., the algorithm
used to enforce the Limitations, we say that a Thresh-

oldedLimit is a Quota if the computation of the number
of metric units is done over a static window, i.e., in a fixed
time window. For example, a one-week static window might
be such that it always starts on Monday at 00:00 and ends
on Sunday at 23:59, regardless of when the first metric unit
is computed. On the contrary, if the time window is sliding,
i.e., relative to the first metric unit computed, we say that
the ThresholdedLimit is a Rate. For example, in a one-
week sliding window, if the first metric unit were computed
on Wednesday at 15:36:39, that window would close on the
following Wednesday at 15:36:38.

Figure 3 illustrates graphically the differences between
sliding and static windows. Considering the instant t when
the last request was made, the analysis of the situation is
twofold: (i) inspecting 1 second back, i.e., a 1-second sliding
window, there exist 4 occurrences; (ii) observing only the 1-
second static window elapsed from 0s to 1s and from 1s to
t, there only exist two occurrences. In short, depending on
whether a sliding (rate) or a static (quota) window is chosen,
the observed occurrences may differ.

For example, if we use the number of requests as a Metric,
and we want to prevent our users from making more than 4

0	s 1	s 2	s
2	occurrences2	occurrences

4	occurrences
duration	1s

t

Fig. 3. Sliding (rates) vs static (quotas) windows.

requests per second, there are two different alternatives: a 1-
second sliding time window with a limit of 4 requests, that
opens after the first request and prevents more than 4 from
being made during that second; or a 1-second static window
with a limit of 2 requests, that could concentrate the first two
requests at the end of the first second and the other two at the
beginning of the next one.

In the industry, these limitations tend to follow definite
patterns [1]. Specifically, Quotas tend to be defined over any
metric and are measured in periods longer than an hour (e.g.,
daily, weekly, monthly or yearly), while Rates tend to be
defined over the number of requests and are measured in
shorter periods (e.g., secondly or minutely).

In our FullContact example, the starter plan has one
Rate and four different Quotas. For example, the Rate is 300
requests in a 1-minute sliding window and a Quota is 6000
matches in a 1-month static window.

The model distinguishes two concepts: ThresholdedLimi-

tation and ThresholdedLimit. A ThresholdedLimitation

over a certain metric and operation establishes a fraction of
the overall Capacity of the service. A ThresholdedLimita-

tion, however, can be expressed in various ways, one of which
is by defining a set of ThresholdedLimits that, within a time
period, restrict the percentage of Capacity that consumers
are allowed to use. For example, a ThresholdedLimitation
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on a certain operation can be defined as a set of Threshold-

edLimits as follows: 30 requests every 1 week and 1 request
every 1 second.

A different way to express a Limitation (as represented
by the ellipsis "..." in the model) would be to use frequency
distributions [2], so that referring to percentiles would allow
the form of the distribution and its different attributes to be
considered. For example, a percentile, such as 99.0 or 99.9
would show a plausible value in the worst case, while the 50th
percentile would emphasize the typical case. In the present
communication, however, we will not address limitations spec-
ified as frequency distributions.

3.1.3 Capacity

Finally, a crucial aspect that is not explicitly depicted in a
pricing or a plan is the Capacity. This is an internal aspect
that providers do not put out publicly. The Capacity of the
service represents a subset of the constraints of the platform or
system on which the service is being deployed. It is the result
of having to satisfy mainly technical and budget criteria (e.g.,
CPU or memory, number of nodes of the cluster, etc.).

Estimating the service’s Capacity is fundamental to defin-
ing the Pricing and analysing the Limitations. In particu-
lar, all the Limitations ought to be satisfied by the service,
i.e., they must not exceed the service’s Capacity.

As depicted in the model (medium grey in Figure 2), once
the Capacity has been identified, it is specified as if it were
a Limitation, i.e., the number of certain metric units in a
given Period. Therefore, analogously to the Limitation, the
ThresholdedCapacity has a threshold value and a Thresh-

oldType (usually MAX) in a given Period of a TimeUnit.
A possible way to express the Capacity on the metric

request is the number of requests per second (RPS) for each
operation and plan. For example, a capacity of 10 000 RPS in
GET /pets in the free plan would mean that the entire set of
free-plan users will be able to make 10 000 RPS. The Capacity

can be different for each plan since different infrastructures
may be used to provide a better level of service to the clients.

For example, an organization might have calculated, based
on performance and stress tests, that its production cluster is
able to accept 10 000 RPS. Consequently, if a limitation had
been set of 10 requests per second per client, the theoretical
number of concurrent requests would be 10 000/10 = 1000
concurrent clients.

A useful instrument when analysing Limitations is the
percentage of capacity utilization or simply the percentage of
utilization (PU). Intuitively, this percentage directly deter-
mines whether or not a Limitation can be set because this
will be impossible if the PU is greater than 100%.

The PU will depend on how a consumer consumes the API.
There are two interpretations given a Limitation: uniform and
burst. Therefore, the PU can be calculated in two different
ways. To illustrate this idea, let us consider a Threshold-

edLimitation with a single ThresholdedLimit of 43 200
requests every 1 day:

In a first approximation, an API consumer could assume
that, since 1 day is 86 400 seconds, for every second, they
will have 43 200/86 400 = 0.5 requests. In this case, it is
assumed a uniform distribution in which, little by little,
the consumer will reach the 43 200 requests available in the
day. This scenario corresponds to the minimum PU. But the

ThresholdedLimitation states that for 1 day it is possible
to make 43 200 requests, and in no case does it prevent the
consumer from making all of them in a burst in the first
instant of time. Indeed, in 1 second the consumer could make
the whole set of 43 200 requests. This scenario implies a burst
distribution, and corresponds to the maximum PU.

Consequently, the PU must take both these models into
account, so that we define the bounded PU (BPU) as this
range:

1) The lower bound is the minimum PU, in which a uniform
distribution of utilization over the period is assumed.

2) The upper bound is the maximum PU, which assumes the
utilization of the maximum allowed in a single burst.

Figure 4 illustrates different consumption scenarios for
the same ThresholdedLimitation of 60 requests every 60
seconds.

60 req/min 

0 s ...1 s 2 s 60 s59 s 0 s ...1 s 2 s 30 s29 s

0 s ...1 s 2 s 20 s19 s 0 s ...1 s 2 s 10 s9 s

1 req/s 2 req/s 60 req/min 

60 req/min 3 req/s 6 req/s 60 req/min 

Fig. 4. Examples of different consumption scenarios for the same
ThresholdedLimitation.

In a uniform consumption, 60 requests in 60 seconds would
be equivalent to 1 request every 1 second. However, in a burst
consumption, 2, 3, 6, or even a maximum of 60 requests could
be made in 1 second. Therefore, to calculate the BPU in the
limitation of 60 requests every 60 seconds, we should take as
a minimum value the uniform distribution of 1 request per
second and as a maximum value the burst of 60 requests in 1
second in a 1 minute window.

3.2 SLA4OAI: A serialization for our model

The Governify4APIs model can be serialized to be aligned
to a variety of API description specifications. Specifically,
we propose SLA4OAI3 [3], [4], an extension of the OpenAPI
Specification (OAS), as it is currently the de facto industrial
standard for describing APIs. Nevertheless, our model could
easily be serialized to other API description languages (e.g.,
RAML, API Blueprint, I/O Docs, WSDL or WADL).

In SLA4OAI, the original OAS document is extended with
an optional attribute, x-sla, with a URI pointing to the
JSON or YAML document containing the SLA definition.
The SLA4OAI metamodel contains the following elements:
context information, holding the main information of the SLA
context; infrastructure information providing details about
the toolkit used for SLA storage, calculation, governance, etc.;
pricing information regarding the billing; and a definition
of the metrics to be used. The main part of a SLA4OAI
document is the plans section. This describes different service
levels, including the limitations set in the quotas and rates

3. https://github.com/isa-group/SLA4OAI-Specification
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sections. In what follows, we shall detail some of the fields in a
SLA4OAI file. Nevertheless, for a comprehensive description
of the syntax, a JSON Schema document is available [5].
Further information is also available in the the specification’s
GitHub page 4.

As depicted in Listing 1, for the SLA4OAI model, starting
with the top-level element, one can describe basic infor-
mation about the context, the infrastructure endpoints
that implement the Basic SLA Management Service [4] (i.e.,
a protocol as part of the SLA4OAI proposal, beyond the
scope of the present communication), the availability, the
metrics and, inside plans, an entry defining quotas, rates,
and pricing. Note that, in the model, the pricing of a plan

is related to its cost and billing information.
✞ ☎

1 context : ...
2 infrastructure : ...
3 availability : ...
4 metrics : ...
5 plans :
6 MyPlan :
7 pricing : ...
8 quotas : ...
9 rates : ...
✝ ✆
Listing 1. Main elements in SLA4OAI

Specifically, as depicted in Listing 2, the context contains
general information, such as the id, the version, the URL
pointing to the api OAS document, the availability of
the document, and the type (this field can be either plans

or instance). The infrastructure contains the endpoints
that implement the Basic SLA Management Service, i.e., the
monitor and supervisor services.
✞ ☎

1 context :
2 id: FullContact
3 sla: ’1.0’
4 type: plans
5 api: ./ fullcontact -oas.yaml
6 provider : FullContact
7 infrastructure :
8 supervisor : https ://...
9 monitor : https ://...

10 availability : ’2009 -10 -09 T21 :30:00.00Z’
✝ ✆
Listing 2. Context, infrastructure and availability details in SLA4OAI

In the Metrics field, as depicted in Listing 3, it is possible
to define the metrics that will be used in the limitations, such
as the number of requests or the bandwidth used per request.
For each metric, the type, format, unit, description, and
resolution (when the metric will be resolved, e.g., check or
consumption to indicate that it will be sent before of after its
consumption, respectively) can be defined.
✞ ☎

1 metrics :
2 requests :
3 type: integer
4 format : int64
5 description : Number of requests
6 resolution : consumption
7 matches :
8 type: integer
9 format : int64

10 description : Number of matches
✝ ✆
Listing 3. Metric details in SLA4OAI

The Plans section, as depicted in Listing 4, has the
elements that will describe the plan-specific values – quotas,
rates, and pricing.

4. https://github.com/isa-group/SLA4OAI-ResearchSpecification

In this context, it is important to stress that the plans

section maps the structure in the OAS document so as to
attach the specific limitations (quotas or rates) for each path
and method. In particular, the limitations are described with
a max value that can be accepted, a period with amount and a
time unit, and the scope over which they should be enforced.
As an extensible scope model, we propose two possible initial
values (tenant or account as default). Furthermore, the cost

section defines the overage (including the overage threshold
and cost per extra unit) and the operation (including the
volume and the cost per unit) costs.
✞ ☎

1 plans :
2 Starter :
3 pricing :
4 cost: 99
5 currency : USD
6 period :
7 amount : 1
8 unit: month
9 quotas :

10 ’v3/ person .enrich ’:
11 post:
12 matches :
13 - max: 6000
14 cost:
15 overage :
16 overage : 1
17 cost: 0.006
18 rates :
19 ’v3/ person .enrich ’:
20 post:
21 requests :
22 - max: 10
23 period :
24 amount : 1
25 unit: month
✝ ✆
Listing 4. Plans details in SLA4OAI

4 Analysis

In this section, we propose an analysis framework to form a
ground on which to reason about the pricing model presented.
Consequently, this framework paves the way to exploiting
the information contained in the model, and has been used
to develop a validity analysis operation that could be useful
in a real setting for both consumers and providers of APIs.
As a foundation for the analysis operations, the first of the
following subsections addresses the cornerstone of the analysis
framework – the relationship between limitations and capac-
ity. The subsequent subsections will detail and exemplify the
list of analysis operations that have been defined.

4.1 Limits as percentages of capacity utilization

Since the capacity of the platform on which the service is
deployed is not unlimited, the pricings should be defined to be
compatible and coherent with that capacity. As an example,
ensuring that the total capacity is sufficient for the potential
use of the service defined in a particular plan should be
analysed. Furthermore, we proposed (in Subsection 3.1.3) the
notion that any given limitation corresponds to a Bounded
set of Percentage of capacity Utilization (BPU) values derived
from the potential usage scenarios a client could have for their
consumption within the API while meeting its limitation.

In this context, the correspondence between limitations
and BPU can be obtained by means of a normalization
procedure that transforms the unit of the limitation to the
capacity time unit, and then computing the minimum and
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maximum possible PUs. This procedure comprises just simple
calculations, as is illustrated in the following example:

Consider a limitation with a limit of 43 200 requests / 1
day and assume a total capacity of 50 000 RPS. Since all
limitations should be expressed using the time unit of the
capacity (second), the limitation is 43 200 requests / 86 400
seconds. First, assume a uniform consumption, i.e., if in 1 day
(86 400 seconds) there are 43 200 requests, in there will be
43 200/86 400 = 0.5 RPS. Given the value of the capacity,
50 000 RPS, the minimum PU is 0.5/50 000 = 0.000 01 =
0.001%. Now assume a single burst consumption, i.e., if a
burst of 43 200 requests can occur during any 1 second window
over 1 day. Given the value of the capacity, 50 000 RPS, the
maximum PU is 43 200/50 000 = 0.864 = 86.4%. Therefore,
the BPU of 43 200 requests / 1 day subject to a capacity of
50 000 RPS is [0.001%-86.4%].

The calculation of the overall system capacity is a non-
trivial procedure. It requires great technical effort in order
to make a proper estimate. But, depending on the stage of
development, even this will not always be feasible. In the
present study, when the value of the system’s capacity is
unknown, we shall assign it the value of the highest capacity
needed. To calculate this value, we shall assume uniform
consumption after normalizing to the smallest time unit, and
take the greatest value. The following is an example:

Consider the following two limitations: 1 RPS and 100
RPW (1 week, 604 800 s). In order to take the value of the
highest capacity needed, we must first determine what the
strongest limitation is. For this case, we normalize to the
smallest unit, the second, 1 RPS = 1 and 100 req/604 800s =
0.000 165 RPS, since 1 > 0.000 165 we have that the highest
capacity needed is 1 RPS. Therefore, we will take 1 RPS as
the value of the capacity. As a conclusion, it is worth noting
that 1 RPS requires a higher capacity than 100 RPW, which
only requires 0.000 165 RPS.

4.2 Pricing validity

We define the validity of a pricing as checking whether it is
valid depending on a set of validity criteria. These include the
absence of different types of conflict, for example, two limits
within a limitation that cannot be met at the same time.

The validity of a Governify4APIs model is defined as
certain validity criteria being met in each part of the model. In
the model, a pricing has a set of plans, and these plans consist
of limitations, each with its own limits. This hierarchy carries
over to the validity operation. Hence, for example, a pricing
will be valid, notwithstanding its satisfying other additional
validity criteria, if all of its plans are also valid.

For solving validity conflicts, a priority criterion is
required. For example, if two limits are defined with different
values for a given metric and operation, which one should
prevail over the other? In order to satisfy these requirements
we assume henceforth the following default priority criteria: i)
limitations with smaller periods over limitations with higher
periods; ii) rates over quotas; iii) metric number of requests
over any other metric. Notwithstanding, these criteria can
be re-defined in other scenarios (e.g., metric requests is less
important than the bandwidth in a certain business context).

We shall present the validity criteria in a hierarchy, start-
ing from the fine-grained (VC1 - limits, VC2 - limitation)

to the coarse-grained (VC3 - plan, VC4 - pricing) validity
criteria. Each validity criterion comprises multiple validity
subcriteria. Figure 5 gives an overview of this hierarchy of
validity criteria. The details of each validity criterion are as
follows:

VC1 - Valid limit A limit is valid if its threshold is a natural
number (VC1.1).

VC2 - Valid limitation A limitation is valid if: all its limits
are valid (VC2.1); there are no limit consistency conflicts
between any pair of its limits, i.e., there is no situation
exceeding a limit with more priority while it is allowed
by another limit with less priority (VC2.2); there are no
ambiguity conflicts between any pair of its limits, i.e., two
limits using the same period with different values (VC2.3)
and there is no capacity conflict, i.e., the limitation does
not surpass the associated capacity (VC2.4).

VC3 - Valid plan A plan is valid if: all its limitations are
valid (VC3.1) and there are no limitation consistency
conflicts between any pair of its limitations, i.e., two
limitations on two related metrics (by a certain factor)
cannot be met at the same time (VC3.2). If they happen
to exist, the priority criteria will be used for determining
which limit has to be prioritized.

VC4 - Valid pricing A pricing is valid if: all its plans are
valid (VC4.1) and there are no cost consistency conflicts
between any pair of its plans, i.e., a limitation in one plan
is less restrictive than the equivalent in another plan but
the former plan is cheaper than the latter (VC4.2).

In order to understand these validity criteria, on the
following subsubsections we will present examples of existence
and absence of conflicts of each type.

4.2.1 Limit consistency conflict (VC2.2)
✞ ☎

1 Capacity : 1000000 RPS
2 Limitations :
3 Quota : 100 requests / 1 day
4 Quota : 1000 requests / 1 week
✝ ✆
Listing 5. Validity criterion VC2.2 (no limit consistency conflict)

An example of a situation where there is no limit consis-

tency conflict can be observed in Listing 5. An inconsistency
occurs when there is a possible situation exceeding a limit
with more priority while it is allowed by another limit with
less priority, according to the priority criteria hereinbefore
mentioned. An example, using the size of the periods as the
priority criterion, a conflict shall happen if the minimum PU
of the limit with the longest period is less than the minimum
PU of the limit with the shortest period.

The limit having the longest period is 1000 requests / 1
week whose minimum PU is 1000/1 000 000 = 0.10%. The
limit with the shortest period, 100 requests / 1 day, has a min-
imum PU of 100/1 000 000 = 0.01%. Since 0.10% 6< 0.01%,
there is no conflict between these limits.
✞ ☎

1 Capacity : 1000000 RPS
2 Limitations :
3 Quota : 100 requests / 1 day
4 Quota : 10 requests / 1 week
✝ ✆
Listing 6. Validity criterion VC2.2 (limit consistency conflict)

On the other hand, in Listing 6 there is a limit con-

sistency conflict. The limit with the longest period is 10
requests / 1 week whose minimum PU is 10/1 000 000 =
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VC 4 (pricing)VC 3 (plan)VC 2 (limitation)

VC 1 (limit)
VC 1.1

natural number

VC 2.4
no limitation capacity conflict

VC 2.1

VC 2.2
no limit consistency conflict

VC 2.3
no ambiguity conflict

VC 3.1

VC 3.2
no limitation consistency conflict

VC 4.1

VC 4.2
no cost consistency conflict

Fig. 5. Validity criteria hierarchy.

0.001%. The limit with the shortest period, 100 requests /
1 day, has a minimum PU of 100/1 000 000 = 0.01%. Since
0.001% < 0.01%, there is a limit consistency conflict between
these limits.

4.2.2 Ambiguity conflict (VC2.3)
✞ ☎

1 Limitation :
2 Limit : 1 request / 1 second
3 Limit : 100 requests / 1 day
✝ ✆
Listing 7. Validity criterion VC2.3 (no ambiguity conflict)

An example where there is no ambiguity conflict is
presented in Listing 7, because the limits of the limitation use
different periods, i.e., 1 second and 1 day.
✞ ☎

1 Limitation :
2 Limit : 1 requests / 1 second
3 Limit : 100 requests / 1 second
✝ ✆
Listing 8. Validity criterion VC2.3 (ambiguity conflict)

Conversely, in Listing 8 there is a consistency conflict

because the limits of the limitation use the same period, i.e.,
1 second.

4.2.3 Capacity conflict (VC2.4)
✞ ☎

1 Capacity : 100 requests / 1 second
2 Limitations :
3 Quota : 50 requests / 1 day
✝ ✆
Listing 9. Validity criterion VC2.4 (no capacity conflict)

A possible situation where there is no capacity conflict

is shown in Listing 9. First, we normalize using the unit of the
capacity (i.e., seconds). Thus, there are 50 requests / 86 400s
(1 day). Next, to calculate the BPU, we need both (i) the
minimum PU (uniform distribution) and (ii) the maximum
PU (burst distribution). For (i), if in 86 400 seconds there
are 5 requests, in 1 second there will be 50/86 400 = 0.000 57
requests. The minimum PU is 0.000 57/100 = 0.0057%. For
(ii), in 1 second there will be a burst of 50 requests. The
maximum PU is 50/100 = 50%. Therefore, the BPU is
[0.0057%,50%].

Since BPU is always less than 100%, there is no capacity
conflict.
✞ ☎

1 Capacity : 100 requests / 1 second (100 RPS)
2 Limitations :
3 Quota : 200 requests / 1 day
✝ ✆
Listing 10. Validity criterion VC2.4 (capacity conflict)

On the contrary, in Listing 10 there is a capacity

conflict. First, we normalize using the unit of the capacity
(i.e., seconds). Thus, there are 200 requests / 86 400s (1 day).
Next, to calculate the BPU, we need both (i) the minimum
PU (uniform distribution) and (ii) the maximum PU (burst
distribution). For (i), if in 86 400 seconds there are 5 requests,
in 1 second there will be 200/86 400 = 0.0023 requests. The
minimum PU is 0.0023/100 = 0.000 23%. For (ii), in 1 second
there will be a burst of 200 requests. The maximum PU is
200/100 = 200%. Therefore, the BPU is [0.000 23%,200%].

Since BPU is greater than 100%, there is a capacity
conflict because of the maximum PU.
✞ ☎

1 Capacity : 100 requests / 1 second (100 RPS)
2 Limitations :
3 Quota : 200 requests / 1 day
4 Rate: 99 requests / 1 second
✝ ✆

Listing 11. Validity criterion VC2.4 (no capacity conflict)

Additionally, Listing 11 presents another example where
there is no capacity conflict. First, we normalize using
the unit of the capacity (i.e., seconds). Thus, there are 200
requests / 86 400s (1 day) and 99 requests / 1s Next, we
calculate the BPU in each limitation as in other examples.
The first limitation’s BPU is [0.000 23%,200%].

Next, to calculate the BPU, we need both (i) the minimum
PU (uniform distribution) and (ii) the maximum PU (burst
distribution). For (i), the minimum PU is 99/100 = 99%.
For (ii), in 1 second there will be a burst of 99 requests.
The maximum PU is 99/100 = 99%. Therefore, the BPU is
[99%,99%].

Now, we aggregate both BPUs: first, we get the maxi-
mum value of the minimum PU: max(0.000 23%, 99%)=99%.
Next, we obtain the minimum value of the maximum PU:
min(200%,99%)=99%.

Therefore, as a result, we got [99%,99%]. Given that it does
not surpass the capacity, we state that there is no capacity
conflict.

4.2.4 Limitation consistency conflict (VC3.2)
✞ ☎

1 Limitation :
2 Limit : 1000 KB / 1 month
3 Limitation :
4 Limit : 1000 requests / 1 month
5Relationship
6 1 request = 0.5 KB



8

✝ ✆
Listing 12. Validity criterion VC3.2 (no limitation consistency conflict
by a related metric)

On the one hand, in Listing 12 there is no limitation

consistency conflict by a related metric because, if each
request consumes 0.5 KB, in 1000 KB one would have at most
1000/0.5 = 2000 requests. Given that 1000 < 2000, the value
of the limit on requests would not lead to any conflict.
✞ ☎

1 Limitation :
2 Limit : 1000 KB / 1 month
3 Limitation :
4 Limit : 5000 requests / 1 month
5 ( Relationship : 1 request = 0.5 KB)
✝ ✆
Listing 13. Validity criterion VC3.2 (limitation consistency conflict by a
related metric)

On the other hand, in Listing 13 there is a limitation

consistency conflict by a related metric because, if each
request consumes 0.5 KB, in 1000 KB one would have at most
1000/0.5 = 2000 requests. Since 5000 > 2000, one could never
reach 5000 requests, and there is therefore a conflict deriving
from the relationship between metrics.

4.2.5 Cost consistency conflict (VC4.2)
✞ ☎

1 Plan 1:
2 Limitation :
3 Limit : 10 requests / 1 second
4 Limitation :
5 Limit : 100 requests / 1 day
6 Cost: $10 / 1 month
7

8 Plan 2:
9 Limitation :

10 Limit : 100 requests / 1 second
11 Limitation :
12 Limit : 1000 requests / 1 day
13 Cost: $100 / 1 month
✝ ✆
Listing 14. Validity criterion VC4.2 (no cost consistency conflict)

An example where there is no cost consistency con-

flict can be observed in Listing 14, because any limitation in
one of the plans is less restrictive than the equivalent in the
other plan, but this other plan is also cheaper. In this example,
plan 1 has stricter limitations and a lower cost than plan 2.
The increase from 10 to 100 per-second requests, and from
100 to 1000 daily requests is also represented in the cost –
from $10 to $100.
✞ ☎

1 Plan 1:
2 Limitation :
3 Limit : 10 requests / 1 second
4 Limitation :
5 Limit : 100 requests / 1 day
6 Cost: $10 / 1 month
7

8 Plan 2:
9 Limitation :

10 Limit : 1 requests / 1 second
11 Limitation :
12 Limit : 1000 requests / 1 day
13 Cost: $1 / 1 month
✝ ✆
Listing 15. Validity criterion VC4.2 (cost consistency conflict)

On the contrary, in Listing 15 there is a cost consis-

tency conflict in the two plans’ limitations and cost. While
the decrease in per-second requests from 10 to 1 is indeed
represented in the costs going from $10 down to $1, the
increase from 100 to 1000 daily requests is in the contrary
direction to the decrease in costs. There is therefore a cost
inconsistency.

5 Evaluation

In this section, we shall describe how we evaluated our pro-
posal. In particular, the goal of the evaluation was to deter-
mine on the one hand the expressiveness of our model and
whether this is enough for it to express a wide variety of real-
world API pricings, and on the other which characteristics
of SLAs the model is unable to express. Since we also seek
to apply automated analysis techniques to solve the validity
operation described in Section 4, we also need to model a
variety of API limitations.

We aim to answer two main research questions (RQs),
namely:

• RQ1 - Expressiveness. Is the modeling language ex-
pressive enough to model real-world API pricings? We
validated our language based on the analysis of two
datasets containing a total of 244 selected APIs, with
multiple pricings.

• RQ2 - Automation. Is it possible to automate the
validation of API pricings? Pricings should be valid and
be devoid of inconsistencies between in their definition.
We developed a tool to automate the analysis of API
plans and solve the validity operation in 4.

5.1 RQ1 - Expressiveness

5.1.1 Analysing API limitations and pricing

For this analysis, we considered two earlier contributions: (i)
our work in Gamez-Diaz et al. [1] in which we analysed a set
of 69 APIs from two of the largest API directories; (ii) the
work of Neumann et al. [6] in which the authors analysed a set
of 500 APIs from the top most popular 4000 websites in the
Alexa ranking [7]. The websites are ordered by their 1-month
Alexa traffic rank, calculated using a combination of average
daily visitors and page views over the preceding month.

We adapted and applied the process described in contri-
bution [1] (i), screening the API repositories and applying the
inclusion criterion described by the authors (which includes
more than 5000 APIs with a last update in 2020 ). The re-
sult was the selection of one source: ProgrammableWeb. We
extracted the most popular API categories (97th percentile,
i.e., 14 categories selected, with more than 16 500 APIs). We
filtered this dataset by removing duplicates (only one API per
company was chosen at random). As a result, we had 2966
potential APIs to study. For a 90% confidence level and a 15%
margin of error [8], 30 APIs ought to be selected.

In contribution [6] (ii), the authors analysed a set of
attributes of 500 APIs by focusing on their general features
such as their fit to REST best practices and design decisions
rather than on their specific pricing aspects. Nevertheless,
this dataset is interesting as a starting point for our analysis
since it includes a variety of APIs and provides a compre-
hensive analysis of certain attributes. From this dataset, we
filtered out any rows which were not RESTful APIs, leaving
a subset of 499 unique APIs. First, we selected those APIs
with a Payment Plan, as specified in a column in the dataset,
obtaining 55 APIs, which represents the 11.02% of the total
499 APIs. We noted some errata in the classification of some
APIs that we are very familiar with (e.g., GitHub was wrongly
classified in the "not having plans" section). The reason behind
these errors might be that the APIs were analysed some time
ago, when they did not have plans at the time; alternatively,
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some APIs might have their pricing plans hidden within their
documentation (e.g., we found that Yelp has an implicit VIP
plan). This led us to analyse the rest of the dataset (444)
manually to check whether the API still existed and whether it
had API limitations. This analysis resulted in 162 APIs to be
included (67 with pricing plans and 95 without but with API
limitations, which represent 15.09% and 21.4% respectively
of these 444 APIs originally classified as "not having plans").
Adding these to the first set of 55 APIs, led to 217 APIs to be
analysed.

Combining the 30 APIs extracted according to [1] and the
217 from the dataset in [6] and removing duplicates left a
dataset of 244 APIs – the Governify4APIs dataset. Table 1
presents the overall picture of the analysis that was carried
out.

TABLE 1
Main numbers of our Governify4APIs dataset.

APIs from Gamez-Diaz (N=2966) 30 (90% conf., 15% error)
APIs from Neumann (N=217) 217
Total APIs after removing dups. 244
APIs having pricing 152 out of 244
Manually modeled APIs (N=244) 32 (85% conf., 11% error)

We analysed 244 APIs in regard to two main types of
attributes: limitations and pricing. Both types include a wide
range of other attributes, some supported by our model but
others not. For example, our model does support overage costs
(e.g., $0.1 per exceeded request), but it does not support
complex metrics based upon HTTP protocol-related aspects
(i.e., headers, parameters, etc.).

Although the Governify4APIs dataset comprises 244
APIs, only 152 of them, the 62.3%, present a pricing or a
plan. Consequently, the analysis of pricing is limited to this
reduced dataset. Table 2 presents some results of the analysis.

TABLE 2
Results of the analysis in real-world APIs.

N=244 N=152
Has limitations 95.5% 94%
Has quotas 55.7% 67.5%
Has rates 84% 76.8%
Has quotas and rates 44.3% 50.3%
Simple cost (e.g., monthly price) 57.4% 92.1%
Has a pay-as-you-go cost model 9.8% 15.8%
Includes overage cost 4.9% 7.9%

Limitations analysis: Most APIs (95.5%) have limitations
in terms of quotas (55.7%) or rates (84.0%). Almost half
use a combination of the two (44.3%). These limitations
are usually rather simple (e.g., monthly requests for quo-
tas and secondly requests for rates). However, a minority
tend to have a higher level of expressivity. For example,
they use the information from the HTTP request – from
query parameters (2.5%) to other low-level aspects of the
HTTP message such as headers, body, etc. (10.2%). A
marginal number of APIs allow consumers to exceed the
limitation value once or many times per month (1.2%).

Pricing analysis: the vast majority of the APIs (92.1%)
include a simple (e.g., monthly) cost. Nonetheless, they
may have operation costs (15.8%) or include overage costs
(7.9%). Finally, a minority have purchasable add-ons or

extras (6.6%) or their pricing is calculated based on the
number of users (11.8%).

ProgrammableWeb
(>16500)

Neumann dataset
(500)

Without duplicates
(2966)

RESTful APIs
(499)

With pricing plans 
and limitations

(55)

Without pricing 
plans
(444)

With pricing plans 
and limitations

(67)

With limitations but 
no pricings

(95)

Governify4APIs 
dataset
(244)

With pricing plans 
and limitations

(152)

Modeled APIs
(32)

Manually selected 
APIs
(30)

Fig. 6. Diagram of the database filtering process, starting from the
Gamez and Neumann datasets.

Given these 32 APIs, we analysed the different metrics
included in the documentation of each of them. We found a
total of 129 metrics, although different providers may name a
same metric with different names (e.g. requests per second
and transactions per second). 57.36% of these metrics are
domain independent (such as requests, storage or users), while
42,64% are dependent (such as emails, documents or invoices).
We grouped the 129 metrics in different categories based on
their similarity, resulting in 15 categories. The most populated
one is requests/TU, including 41 metrics. The second one
is AI (Artificial Intelligence, with 19 metrics, as some of
the analysed APIs are related to artificial intelligence and
include a considerable amount of metrics. Many categories
only include a few metrics because they are difficult to group
together.

Recently, we analysed 95 different APIs from the Gov-
ernify4APIs dataset to find new plans and metrics. We
found some interesting information about these APIs. The
most common names for pricing plans are Basic, Premium,
Enterprise and Professional. We also found that the most
common number of plans in an API is 4, closely followed by
3. Additionally, it seems that more expensive plans tend to
have more SLAs, such as high availability or 24/7 customer
support. More information about this analysis can be found
in dataset D02 in [9].

5.1.2 Modeling API pricings

In this work, we seek to perform automated operations
through analysers that solve the validity operation regarding
pricings, as were discussed in Section 4. Nevertheless, before
using any analyser or tool, these pricings have to be modeled.
This subsection describes a validation of our Governify4APIs
model by modeling a number of real-world APIs, first de-
scribing the modeling process and then the issues that arise
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during this process. This process included the construction of
an errorfree curated list of 32 API pricings with the model in
subsection 3.2, which represents the variability found in the
industry.

As noted above, we analysed different attributes of the
Governify4APIs dataset of 244 APIs. The next step would
be to write the OAS and SLA4OAI specification of every
API so that it can be passed to the automated analyser.
However, since this is a time-consuming task, we selected a
representative subset with a confidence level of 85% and an
error margin of 11%, resulting in in a subset of 32 APIs.

Note that the process of modeling a single API pricing
consists of (i) reading and understanding the entire API doc-
umentation, (ii) extracting the API endpoints and methods
(skipped if OAS documentation is available), (iii) reading
and understanding every limitation in every plan of the API
pricing, and (iv) specifying the metrics and API limitations in
accordance with our proposed model for each API path and
method. The process of modeling the API itself is tedious,
which is why APIs having a public OAS documentation
greatly facilitate the subsequent modeling task.

In the following sections, we determine the issues found
during this OAS modeling process.

In the process of modeling the pricings of this subset of
32 APIs, we encountered several issues. We have classified
them into two categories: modeling issues and open issues,
depending on whether they are issues that can be partially
modeled with SLA4OAI or issues that need changes that will
be taken into consideration when establishing future work.

Modeling issues:

MI-01 In pay-as-you-go plans, users are only charged with
the requests that they actually consume (e.g., FacePlusPlus).
This situation was modeled as a quota, with no max field (or
max: unlimited) with its corresponding OverageCost.

MI-02 In some APIs (e.g., FacePlusPlus), the operation
cost depends on the HTTP status code that is returned to
the consumer. Hence, the same request to the same endpoint
might well be billed differently with regard to the status code
(e.g., $0.01 if 200 OKs and $0.005 if 400 Bad Requests). We
modeled this situation as a new metric for each status code.
For example, in FacePlusPlus, the QPS metric has been split
into QPS_OK, QPS_timeout and QPS_invalidParam.

MI-03 If a certain plan explicitly denies access to certain
API operations (e.g., Azure Search), those operations are not
included in the model.

MI-04 If the actual value for a quota or rate is unknown
(e.g., Accuweather), we omit this rate/quota. For example, a
number of APIs explicitly mention that they apply some rate-
limiting value, but they do not mention what the actual value
is.

MI-05 Some metrics are dependent on some aspect of the
HTTP request (body, parameters, etc.) and do not have any
associated period (e.g., FacePlusPlus). In this case, the period
property is removed.

MI-06 There are also pricings with unknown cost (such as
educational plans, non-profit organizations, enterprise, etc.).
These are modeled with custom: true (e.g., GeoRanker). Ad-
ditionally, if a limitation has a custom value to be negotiated
with its provider, it is also modeled with custom: true (e.g.,
OpenWeatherMap.

MI-07 In plans whose billing depends on the number of
users (e.g., Box) or on other variables affecting the cost (num-
ber of organizations, consumers, accounts, etc.), we considered
the minimum case, i.e., the cost per single selectable unit (e.g.,
the total cost in a plan with 3 users, the minimum amount).

MI-08 Finally, in APIs whose documentation does not
specify whether the time window in which limits are calcu-
lated is fixed or sliding, we assumed that limits with longer
periods (e.g. years, months...) use fixed windows, and limits
with shorter periods (e.g. seconds, minutes...) use sliding
windows. This decision is based on the research in [1].

Open issues:

OI-01 Some HTTP query parameters are limited to a cer-
tain range of allowed values instead of a maximum value (e.g.,
Scopus). Despite the fact that we modeled some parameters as
a metric (e.g., number of results), parameters within a range
were not modeled. In the Scopus case, Scopus Search limits the
number of results to 25 in the non-subscriber plan, whereas
this number rises to 200 in the subscriber plan. Nevertheless,
it also limits the parameter view to STANDARD in the former
case and allows COMPLETE only in the latter.

OI-02 Another open issue arises when the overage cost
is also limited (e.g., Georanker). Some providers force one
to move to another plan if one surpasses a certain value of
the overage cost. This situation has not been modeled. For
example, the small plan includes 300 000 requests, with an
overage cost of 0.001$ per request. However, this overage cost
goes up to 750 000 requests. Once this amount is reached, one
has to move to the medium plan.

5.2 RQ2 - Automation

The main operation regarding API limitations is Validity
(cf. Section 4). This operation, in order to be useful for
practitioners, need to be automated by means of a specific
tool. To this end, we have developed sla4oai-analyzer, an
initial version of a publicly available command-line tool [10].
Once installed, given a SLA4OAI file, the command sla4oai-
analyzer -o <operation> -f <myFile.yaml> will initiate the
validity analysis for this file.

Fig. 7. Simple UI for the sla4oai-analyzer API.

In order to be integrated into the Governify framework,
this tool is also available as an API [11]. Furthermore, we
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provide a Postman documentation5 with 32 examples of invo-
cations of the validity operation using this API. Figure 7 is a
screenshot of a simple UI for using the API while analysing
the validity of the FullContact pricing.

 > sla4oai-analyzer -o validity -f ‘.\yelp.yaml’
------ BEGIN CHECKING FILE: .\yelp.yaml ------
CHECKING SYNTAX...
SYNTAX ERRORS in yelp.yaml
  SYNTAX ERROR: in path "#/":
    Missing required property: metrics
------ END CHECKING FILE: .\yelp.yaml ------

Fig. 8. Tool running a syntax check.

 > sla4oai-analyzer -o validity -f ‘.\inconsistent-ex.yaml’ 
------ BEGIN CHECKING FILE: .\inconsistent-ex.yaml ------ 

CHECKING SYNTAX... 

SYNTAX OK 

CHECKING VALIDITY... 

  USING DEFAULT CAPACITY 

    LIMIT CONSISTENCY CONFLICT: 

      in Plan1>/method1>get>requests 

      ('60 per 60/second' and '1 per 1/second') 

VALIDITY ERROR 

------ END CHECKING FILE: .\inconsistent-ex.yaml ------ 

Fig. 9. Tool running the validity operation with errors.

For example, for the validity operation, sla4oai-analyzer
first checks the syntax validity according to the JSON Schema
defined in the repository, and then checks each validity crite-
rion in each part (pricing, plan, limitation, and limit). Figure 9
depicts a consistency conflict detected by this tool, caused by
a modeling mistake.

As illustrations of some outputs of the tool, Figure 8
shows a pricing with syntax errors and Figure 9 a consistency
conflict.

5.3 Threats to validity

We need to analyse the various validity threats that may
have influenced our work, and the ways in which we tried to
mitigate them.

5.3.1 Internal validity

These threats refer to the factors that introduce bias in our
work and affect its utility. In our case, the main threat is the
subjective and manual review process of the documentation
of 32 different APIs. As a result, some limitations might have
been overlooked and omitted in our models. To mitigate this
threat, we checked each API multiple times and made the
appropriate changes when necessary, recording each change,
taking screenshots of their websites and saving their URLs.
Moreover, some APIs updated their documentation over the
span of time of writing this paper, so we updated their corre-
sponding models. In some cases, pricing plans were removed
from the API website, so we used the Wayback Machine tool
6 to retrieve older versions of these pages.

5. https://documenter.getpostman.com/view/683324/
TVKEYHv8

6. https://archive.org/web/

5.3.2 External validity

This refers to the extent to which we can generalise from the
results of our work. One threat is representativity. The APIs
were extracted from two sources – 217 valid APIs from the
Neumann dataset and 2966 APIs replicating the extraction in
Gamez-Diaz. Since this is too large a number to be analysed
manually, we opted to select a representative sample with a
90% confidence level and 15% margin of error – i.e., 32 APIs.
This means that our model may not generalise to the rest of
the APIs in the dataset. To mitigate this threat, we selected
APIs from a wide range of domains, and some of them are
popular and extensively consumed by a large number of users.

Another threat is that whereas our model supports the
majority of the attributes analysed, it does not support some
of them. With that in consideration, we concluded that we are
able to model 84% (N=244) of the APIs regarding limitation
attributes and 89.3% (N=152) regarding pricing attributes,
meaning that we are confident enough on the ability to gen-
eralise our model. Those APIs that can be modeled regarding
both limitation and pricing attributes comprise 76.2% of the
overall Governify4APIs dataset.

Finally, our proposal has not yet been validated with other
API consumers and providers. This means that SLA4OAI
might not be as usable or useful as we intended. To mitigate
this, we provide a JSON schema [5] to help understand
the specification. Additionally, we proposed the addition of
SLA4OAI within the OpenAPI Specification.

6 Related Work

Our goal has been to analyse the current proposal for defin-
ing API pricings. As far as we know, we are the first ones
to present a proposal that integrates with the OpenAPI
Specification. Certain related proposals have focused on Web
services while others allow the definition of entire Service-
Level Agreements (SLAs). We have analysed the most promi-
nent academic and industrial proposals that aim at defining
SLAs in both traditional Web services and cloud scenarios
in order to outline their scope and limitations. Specifically,
in Table 3, we consider 7 aspects to analyse in each SLA
proposal, namely: F1 determines the format in which the
document is written; F2 indicates whether the target domain
is that of Web services; F3 indicates whether it can model
more than one offering (e.g., different operations of a Web
service); F4 indicates whether it allows modeling hierarchical
models or overriding properties and metrics; F5 indicates
whether temporal concerns can be modeled (e.g., in metrics);
F6 indicates whether there exists a tool assisting users to
model with that proposal; F7 indicates whether there exists a
tool or framework to enact the SLA.

In [6], the authors analysed more than 500 publicly avail-
able APIs to identify the different trends in the current
industrial landscape. In [1], we analysed a set of 69 real APIs
in the industry to characterize the variability of their offers,
drawing a number of invaluable conclusions about real-world
APIs such as: (i) most APIs provide different capabilities
depending on the tier or plan that the API consumer is willing
to pay for; (ii) usage limitations are a common aspect that all
APIs describe in their offers; (iii) limitations on API requests
are the commonest, including quotas over static time periods
(e.g., 1.000 requests each natural day) and rates for dynamic
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TABLE 3
Analysis of SLA models.

Name F1 F2 F3 F4 F5 F6 F7

ysla [12] YAML ✓ ✓ ✓ ✓ ✓

SLAC [13] DSL ✓ ✓

CSLA [14] XML ✓ ✓

L-USDL Ag. [15] RDF ✓ ✓ ✝ ✓

rSLA [16] Ruby ✓ ✓ ✓ ✓

SLAng [17] XML ✓

WSLA [18] XML ✓ ✓ ✓

SLA* [19] XML ✓ ✓ ✓

WS-Ag. [20] XML ✓ ✓ ✓ ✝

✝ Supported with minor enhancements or modifications.

time periods (e.g., 3 requests per second); (iv) offers can
include a broad number of metrics over other aspects of the
API that may be domain-independent (such as the number of
results returned or the size of the request in bytes) or domain-
dependent (such as the CPU/RAM consumption during the
request processing or the number of different resource types).
Based on these conclusions, we identified the need for non-
functional support in the API development life-cycle and the
high level of expressivity present in the API offers.

Some of our previous studies in this line include: construct-
ing a proof of concept to highlight the importance of the
automated analysis of limitations [21]; presenting an initial
ecosystem of tools to support the SLA4OAI proposal [22];
ascertaining the importance of the role of SLAs in APIs in
an industrial context with high-level OpenAPI partners such
as PayPal or Google Apigee [3]; work on an initial SLA4AOI
proposal [4].

Based on the comparison of the different SLA models,
we would draw the following conclusions. (i) None of the
specifications provides any support for or alignment with the
OpenAPI Specification. (ii) Most of the approaches provide
a specific syntax for RDF/XML (some, however, lack such
a syntax), but there is no explicit support for YAML or
JSON serializations. (iii) While many proposals are complete,
others leave some parts open for practitioners to implement.
(iv) A number of proposals aim to model Web services but
are focused on traditional SOAP Web services rather than
RESTful APIs, so that they do not address the modeling
standardization of the RESTful approach in which the con-
cept of a resource is clearly unified (a URL), and the amount
of operations is limited (to HTTP methods such as GET,
POST, PUT and DELETE). This lack of support for RESTful
modeling prevents the approach from having a concise and
compact binding between its functional and non-functional
aspects. (v) They have insufficient expressivity to model such
limitations as quotas and rates for each resource and method,
and with full management of the temporality (static or sliding
time windows and periodicity) present in the typical industrial
API SLAs. (vi) Most are designed to model a single offer, and
usually lack support for hierarchical modeling or overriding
properties and metrics (F4). In such a context, they cannot
model a set of tiers or plans that yield a complex offer which
maintains coherence. Instead, they rely on a manual process
which is typically error prone. (vii) Finally, the ecosystem
of tools proposed in each approach (when indeed such an
ecosystem exists) is extremely limited, and is aimed solely

at being a prototype. Apparently, neither are they integrated
into a developer community nor is there evidence of their use
by practitioners in the industry.

There has also been a proposal of a model-driven approach
to defining API service licenses and an API SLA analyser
system which utilizes the proposed license model to uncover
SLA violations in real-time [23]. Other work has sought
to determine whether one can know how to price SaaS by
summarizing existing knowledge from different research areas
and SaaS pricing practice [24], and [25] presents a three-level
productization model for different phases of SaaS businesses.

To the best of our knowledge, while there does exist
previous work on analysing pricing in general, there has been
no work focused on relating API pricing and limitations (i.e.,
quotas, rates).

7 Future Work

In [26], the authors distinguish five types of incoming work-
loads: static, periodic, once-in-a-lifetime, unpredictable, and
continuously changing. If we introduce the concept of tempo-
rality in the pricing, i.e., to consider that certain plans have a
determined temporal validity (e.g., day/night plan), the oper-
ations have to be adapted to consider this temporality. Joining
temporality with workload models, one could automate the
management of this type of advanced scenarios which require
infrastructures that are dynamic (e.g., instances that start or
stop and have a variable cost).

Furthermore, alert systems can be defined which notify
users when certain percentages of consumption of the limi-
tations are reached, so that they can take this situation into
account and adjust their consumption accordingly.

With respect to the tool, as it is just a proof of concept,
it lacks various features. (i) It is a command-line tool and an
API, and is not really useful for end-users. (ii) The implemen-
tation of cost conflicts is too naive as it only supports simple
cost values (but neither overages nor operation costs).

In our model, we identified two open issues that should
be addressed: (i) extend the model to incorporate parameters
that are limited to a certain range of allowed values instead of
a maximum value; (ii) expand the overage concept to establish
a limit on the overage itself.

8 Conclusions

In this paper, we have proposed a model derived from the
plurality of business and pricing models that rigorously cap-
tures the nature of a limitation. In doing so, we have studied
both the limitations and the pricing plans of a set of 244
APIs using two different datasets. We then presented an er-
rorfree curated list of 32 API pricings with a formal validated
model that represents the variability found in the industry.
The Governify4APIs dataset used in the analysis is publicly
available as it could be a useful resource for both academics
and practitioners.

During the process of modeling the curated subset of 32
APIs from the entire Governify4APIs dataset of 244 analysed
APIs, we can extract some lessons that we learned which
might be useful for practitioners responsible for modeling
API pricing or API limitations. (i) When creating the initial
version of the model, many parts were inadvertently missed.
This was found to be crucial to having a strong syntax
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validation process. (ii) With respect to metrics, once we
had defined the limitations, we often forgot about defining
the metric in its corresponding section. Furthermore, after
modeling several plans, it was common to reuse the metric
definition by cropping and pasting. This resulted in a growing
section of unused metrics.

While our Governify4APIs model was serialized to be
compatible with the OpenAPI Specification (SLA4OAI), it
can easily be exported to other API descriptions (such as
RAML, API Blueprint, I/O Docs, WSDL, or WADL).

We have identified a common query that arises from the
limitations in APIs: their validity. We found out that this
operation can be automated, giving as a result a tool that
can help both customers and providers in dealing with API
limitations.

Since our work is aligned to open standards such as the
OpenAPI Initiative, it can pave the way to creating an open
ecosystem of tools for automating the development process,
taking into account API limitations – limitations-aware test-
ing or API clients, for example.

In conclusion, this communication has presented (i) Gov-
ernify4APIs, a rigorous agnostic model of API pricing, and
SLA4OAI, a specific serialization aligned with the OpenAPI
Specification, (ii) an analysis operation in API pricing auto-
mated by sla4oai-analyzer, (iii) a rigorous analysis of 244 APIs
and a curated publicly available [9] dataset of 32 API pricing
models; and (iv) an initial tool prototype to automate the
operation.
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