
remote sensing

Article

On the Performance of One-Stage and Two-Stage Object
Detectors in Autonomous Vehicles Using Camera Data

Manuel Carranza-García * , Jesús Torres-Mateo , Pedro Lara-Benítez and Jorge García-Gutiérrez

����������
�������

Citation: Carranza-García, M.;

Torres-Mateo, J.; Lara-Benítez, P.;

García-Gutiérrez, J. On the

Performance of One-Stage and

Two-Stage Object Detectors in

Autonomous Vehicles Using

Camera Data. Remote Sens. 2021, 13,

89. https://doi.org/10.3390/

rs13010089

Received: 24 November 2020

Accepted: 26 December 2020

Published: 29 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Division of Computer Science, University of Sevilla, ES-41012 Seville, Spain; jestormat@alum.us.es (J.T.-M.);
plbenitez@us.es (P.L.-B.); jorgarcia@us.es (J.G.-G.)
* Correspondence: mcarranzag@us.es

Abstract: Object detection using remote sensing data is a key task of the perception systems of
self-driving vehicles. While many generic deep learning architectures have been proposed for this
problem, there is little guidance on their suitability when using them in a particular scenario such
as autonomous driving. In this work, we aim to assess the performance of existing 2D detection
systems on a multi-class problem (vehicles, pedestrians, and cyclists) with images obtained from the
on-board camera sensors of a car. We evaluate several one-stage (RetinaNet, FCOS, and YOLOv3)
and two-stage (Faster R-CNN) deep learning meta-architectures under different image resolutions
and feature extractors (ResNet, ResNeXt, Res2Net, DarkNet, and MobileNet). These models are
trained using transfer learning and compared in terms of both precision and efficiency, with special
attention to the real-time requirements of this context. For the experimental study, we use the Waymo
Open Dataset, which is the largest existing benchmark. Despite the rising popularity of one-stage
detectors, our findings show that two-stage detectors still provide the most robust performance.
Faster R-CNN models outperform one-stage detectors in accuracy, being also more reliable in the
detection of minority classes. Faster R-CNN Res2Net-101 achieves the best speed/accuracy tradeoff
but needs lower resolution images to reach real-time speed. Furthermore, the anchor-free FCOS
detector is a slightly faster alternative to RetinaNet, with similar precision and lower memory usage.

Keywords: autonomous vehicles; convolutional neural networks; deep learning; object detection;
transfer learning

1. Introduction

The increase in availability and quality of remote sensing data provided by modern
multi-modal sensors has allowed pushing the state-of-the-art in many computer vision
tasks. The data provided by high-resolution cameras and proximity sensors have helped to
develop more powerful machine learning models that have achieved unprecedented results
in visual recognition problems [1]. These developments have significantly improved the
perception systems used in many applications such as autonomous driving [2,3], security
surveillance [4], or land monitoring [5]. In recent years, autonomous vehicles are attracting
increasing attention given their potential to improve road safety and traffic congestions,
while also reducing harmful emissions [6]. However, the accurate perception of the multiple
traffic participants (cars, bikes, pedestrians, traffic signs, etc.) that interact with a vehicle
still remains a challenging task.

Current efforts in the autonomous driving community focus on building a reliable Ad-
vanced Driver-Assistance System (ADAS) that captures information about the environment
through many on-board sensors (RGB cameras, LiDAR, GPS, etc.). One of the essential
tasks that an ADAS needs to address is object detection. These remote sensing systems
need to detect traffic targets in real time in order to make informed driving decisions. Fur-
thermore, they have to be robust enough to operate effectively in complex scenarios such as
adverse weather, poor lighting, or occluded objects. These requirements present difficulties

Remote Sens. 2021, 13, 89. https://doi.org/10.3390/rs13010089 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4729-8604
https://orcid.org/0000-0002-6885-9669
https://orcid.org/0000-0003-0457-8099
https://orcid.org/0000-0002-1300-4647
https://doi.org/10.3390/rs13010089
https://doi.org/10.3390/rs13010089
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13010089
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/1/89?type=check_update&version=2

Remote Sens. 2021, 13, 89 2 of 23

that still prevent self-driving vehicles from operating safely in real-world environments.
Research in this field is mainly based on the use of RGB images and LiDAR data, which are
often fused to improve the reliability of the system. However, due to the high cost of the
LiDAR hardware, camera-based systems are increasing their popularity [7]. Camera data
is inexpensive, needs less memory usage, and is faster to process than LiDAR 3D point
clouds [8].

In this study, we aim to explore the performance of existing 2D object detection models
on a multi-class problem (vehicles, pedestrians, and cyclists), using images obtained from
the on-board cameras of an autonomous vehicle. In recent years, significant advances in
object detection problems were achieved due to the development of deep learning (DL)
architectures based on convolutional neural networks (CNNs). Many DL detection frame-
works were proposed, such as Faster R-CNN [9], Single Shot Detector (SSD) [10] which is
also known as RetinaNet, You Only Look Once (YOLO) [11], or the Fully Convolutional
One-Stage Detector (FCOS) [12]. If we only consider accuracy results, these models were
applied successfully to general-purpose benchmark datasets such as COCO [13]. How-
ever, they present limitations when applied to real-time applications such as autonomous
driving. Apart from detection accuracy, other aspects are essential in this scenario, such as
the required computational resources and the inference speed. With the many different
existing architectures, it is difficult for practitioners to find out which is the most suitable
for this particular problem. At a high level, existing deep learning architectures to detect
objects with remote sensing camera data present a common methodology: a convolutional
backbone as a feature extractor and a sliding window style prediction with a mixed regres-
sion and classification objective. This allows performing a unified comparison between a
large number of detection systems with different configurations [14].

The experimental study carried out in this work evaluates and compares the perfor-
mance of four detection meta-architectures using different feature extractors and image
resolutions. Given that state-of-the-art detectors are commonly divided into two families
(one-stage and two-stage), we have selected the most representative members of each
family in order to analyze their different characteristics. We study the combination of one-
stage (RetinaNet, FCOS, YOLOv3) and two-stage (Faster R-CNN) meta-architectures with
different feature extractors (ResNet-50, ResNet-101, ResNet-152, ResNeXt-101, Res2Net-101,
DarkNet-53, MobileNet V1, MobileNet V2). Furthermore, we perform experiments with
the camera images at the original high resolution and with reduced resolution. These
combinations comprise a total of 30 different models, which were trained using transfer
learning. The models are fine-tuned from publicly available models that were pre-trained
with the COCO dataset. Transfer learning allows adapting models from other domains
to our problem, avoiding the excessive time and resources required to train very deep
CNNs from scratch [15]. For the experiments, we use the Waymo Open Dataset [16], which
is the most extensive and diverse benchmark up to date. An online competition was
recently hosted with this dataset, but only considering the detection accuracy and ignoring
the computational efficiency of the proposed methodologies. For this reason, we aim to
provide a full picture of the speed/accuracy trade-off by exploring several models with
different settings.

To the best of our knowledge, no other studies analyze multi-class object detection
in autonomous vehicles with camera data by evaluating different factors such as accu-
racy, speed, and memory usage of several deep learning models. In summary, the main
contributions of this work are as follows:

• A review of the main deep learning meta-architectures and feature extractors for 2D
object detection.

• An evaluation of Faster R-CNN, RetinaNet, YOLO and FCOS architectures over
several performance metrics in the context of autonomous vehicles.

• An exhaustive analysis of the influence of different backbone networks and image
resolutions in the speed/accuracy trade-off of the models.

Remote Sens. 2021, 13, 89 3 of 23

The rest of the paper is organized as follows: Section 2 reviews relevant related work;
Section 3 presents the materials and the methods proposed in the study; Section 4 presents
the results obtained from the experimental study and discusses the main findings; Section 5
presents the conclusions and potential future work.

2. Related Work

Over the last decade, significant advances have been achieved in computer vision
thanks to the development of deep learning-based techniques. The increase in computing
capacity of modern GPUs has allowed researchers to design very deep convolutional
neural networks, which have proven to be the most effective method for extracting useful
information from images [17]. For the object detection problem, CNNs have also become the
reference method in the literature. The object detection task is a dual problem that consists
of the recognition and localization of objects. For this task, the state-of-the-art models
can be divided into two categories: two-stage and one-stage detectors. In general terms,
two-stage detectors tend to obtain higher accuracy, but with a higher computational cost
than one-stage detectors. However, this fact highly depends on the selected convolutional
backbone network and the hyperparameter configuration, which is a complex procedure.

2.1. Two-Stage Detectors

Two-stage frameworks divide the detection process into the region proposal and the
classification stage. These models first propose several object candidates, known as regions
of interest (RoI), using reference boxes (anchors). In the second step, the proposals are
classified and their localization is refined. In R-CNN [18], the pioneering deep learning-
based work, an external selective search was used to generate proposals that are fed to a
CNN to perform classification and bounding box regression. Later, Faster-RCNN proposed
a scheme in which features are shared between both stages, achieving a significant efficiency
improvement [9]. Faster R-CNN uses a convolutional backbone network, such as VGG [19]
or ResNet [20], which outputs global feature maps. These convolutional maps are shared
between the Region Proposal Network (RPN) and the detection network, which reduces
the cost of generating proposals externally. Faster R-CNN has inspired many follow-up
works that have tried to improve detection accuracy with different approaches, such as
designing better backbones that can obtain richer representations. For instance, feature
pyramid networks (FPN) were proposed in order to crop RoI features from different levels
depending on the scale [21]. Later works have tried to enhance the internal connections
of residual networks to better exploit the multi-scale properties of convolutional maps,
such as the ResNeXt with grouped convolutions [22] or the Res2Net [23]. Other studies
have enhanced the quality of detection by proposing modifications to the existing Faster
R-CNN framework. Cascade R-CNN proposes to concatenate several detectors that are
trained with increasing intersection-over-union (IoU) thresholds [24]. This architecture can
achieve more reliable detections, but increases the required computation, hence being less
convenient for real-time applications.

2.2. One-Stage Detectors

On the other hand, one-stage detectors contain a single feed-forward fully convo-
lutional network that directly provides the bounding boxes and the object classification.
The Single Shot MultiBox Detector (SSD) [10] and YOLO (You Only Look Once) [11] were
among the first to propose a single unified architecture, without requiring a per-proposal
computation. However, the extreme foreground-background imbalance in the images
prevented these one-stage models from achieving high accuracy. RetinaNet tried to solve
this problem by modifying the loss function used in the SSD architecture [25]. RetinaNet
also uses FPN and proposes a novel focal loss function that down-weights the importance
of easy samples in order to focus on difficult objects. Furthermore, specific lightweight
backbone networks that focus on maximizing speed were developed for this architecture,
such as MobileNets [26].

Remote Sens. 2021, 13, 89 4 of 23

YOLO detectors are another anchor-based alternative that divides the image into
regions and predict bounding boxes and probabilities for each region. YOLO networks
have proved to achieve faster inference rates than RetinaNet, although not being as accu-
rate. However, YOLOv3 was able to enhance detection accuracy by including multi-scale
predictions and a better backbone network, DarkNet-53, which uses residual blocks and
skip connections [27]. DarkNet-53 is much more powerful than the previous DarkNet-19
and still more efficient than ResNet backbones.

More recently, another popular approach has been to design anchor-free one-stage
detectors that do not rely on pre-defined anchor boxes. For instance, FCOS [12] aims
to simplify the object detection problem by using the center point of objects to define
positives and then predicts the four distances that build the bounding box. FCOS can
outperform RetinaNet while being more simple and flexible, eliminating the need for
carefully designing anchor boxes for each problem. Other methods such as CornerNet [28]
or ExtremeNet [29] first locate several keypoints (e.g., top-left corner and bottom-right
corner) and then generate bounding boxes to detect objects. However, these keypoint-based
methods require much more complicated post-processing and are considerably slower.

2.3. Object Detection in Autonomous Vehicles

In recent years, the interest in autonomous vehicles has risen. Many datasets have
been publicly released, which provides a unique opportunity for researchers to improve
the state-of-the-art. In [30], the authors provide a comprehensive overview of the existing
autonomous driving datasets and review the most relevant methodologies proposed for
detection and segmentation problems. For many years, KITTI was the reference benchmark
in the field [31]. More recently, datasets with higher quality and diversity were released,
such as PandaSet [32], NuScenes [33], or Waymo [16]. These companies organize online
challenges with these datasets for detection problems. However, the main focus is on
maximizing accuracy, ignoring the computational efficiency of the proposals, which is
extremely important in this context. Besides these challenges, there are several works
that addressed detection tasks in the context of autonomous vehicles. In [34], several
state-of-the-art models for traffic sign detection were evaluated. An anchor generation
optimization procedure to improve vehicle detection was presented in [8]. Other studies
provided insights on how to adapt convolutional networks to achieve better performance
on pedestrian detection [35]. All these works present different models that are highly tuned
for a specific task. However, there is the need to find out general guidelines on which
models are best suited for 2D on-board object detection, in which real-time speed is crucial.

3. Materials and Methods

In this section, we present the Waymo dataset and the methodology proposed for the
experimental study. Firstly, we review the characteristics of the selected meta-architectures
and feature extractors. Finally, we describe the experimental setup and training procedure.

3.1. Waymo Open Dataset

For this study, we selected the recently released Waymo Open Dataset [16], which
contains more than a thousand driving scenes recorded across different urban areas. It
is the most diverse dataset of this field up to date, in terms of both different locations
and weather conditions. Furthermore, Waymo has recently hosted an online challenge
on detection over the dataset. The website is still open for submissions, hence novel
proposals can be validated. However, the competition only evaluates the accuracy, without
considering the efficiency of the models. The dataset contains independently generated
labels for three-dimensional LiDAR and two-dimensional camera data. In this study, we
focus on the 2D object detection task with the images obtained from the five on-board
cameras of the vehicle. Waymo’s vehicle has three frontal cameras with a resolution of
1920× 1280 , and two lateral cameras with a resolution of 1920× 886. Figure 1 displays
two example images from the dataset.

Remote Sens. 2021, 13, 89 5 of 23

Figure 1. Example camera images from the Waymo Open Dataset.

The 2D object detection task in this dataset is a multi-class problem with three different
types of objects: vehicles, pedestrians, and cyclists. Table 1 presents the number of images
in each set and the label distribution across the three classes. The training and testing
division is directly provided by Waymo when downloading the dataset. The dataset
contains around 100,000 images in total with almost one million manually annotated
objects. As can be seen, the distribution of objects is highly imbalanced. The number of
pedestrians and cyclists is significantly lower than the number of vehicles. In this dataset,
the 2D bounding box labels are tight-fitting, covering only the visible parts of the objects.

Table 1. Distribution of object instances in the training and validation sets.

Training Validation Total

Images 74,420 (75%) 24,770 (25%) 99,190

Objects

Vehicle 589,583 (87.9%) 256,076 (91.7%) 845,659 (89.0%)
Pedestrian 77,569 (11.5%) 21,678 (7.8%) 99,247 (10.5%)

Cyclist 3842 (0.6%) 1332 (0.5%) 5174 (0.5%)

Total Objects 670,994 (71%) 279,086 (29%) 950,080

3.2. Deep Learning Meta-Architectures

In this section, we describe the four state-of-the-art meta-architectures with different
approaches that are used in this study: Faster R-CNN, RetinaNet, YOLOv3 and FCOS.
Faster R-CNN is the most representative model from the two-stage family, while RetinaNet
and YOLOv3 are the most widely used anchor-based one-stage architectures [30]. Further-
more, we also evaluate FCOS as an anchor-free alternative to traditional one-stage detectors.
Figure 2 illustrates the main differences between two-stage and one-stage approaches at
a high-level, providing a more detailed description in the following subsections. As can
be seen, two-stage architectures divide the process into the region proposal stage and the
classification stage. In contrast, one-stage detectors directly infer the detected boxes. For
simplicity, Figure 2 displays the detection process using a single-scale feature map from the
backbone network. However, it must be noted that the studied detectors integrate feature
pyramid networks in order to detect objects at multiple scales, hence maps with different
resolutions are used to generate proposals.

Remote Sens. 2021, 13, 89 6 of 23

(a) Two-stage Faster R-CNN (b) One-stage RetinaNet
Figure 2. Deep learning object detection meta-architectures.

3.2.1. Faster R-CNN

Faster R-CNN is a widely used architecture that follows a multi-task learning proce-
dure, combining classification and bounding box regression to solve the detection problem.
This framework uses a convolutional backbone to extract high-level features from the
images and consists of two stages: a region proposal network (RPN) and a Fast R-CNN
header network [9].

In the first stage, the RPN uses a convolutional sliding window approach over the fea-
ture maps extracted by the backbone network to generate proposals. Multi-scale reference
boxes (known as anchors) are used at each location of the feature map to predict multiple
candidate object boxes. To detect objects at different scales and shapes, the anchors are
defined with multiple scales and aspect ratios. The generated proposals pass through a
fully connected network that computes the bounding box regression and the objectness
score (foreground object vs. background). Afterwards, the top-ranked object candidates
are cropped using a RoI (Region of Interest) pooling layer from the same intermediate layer
of the feature extractor. A final classification and box-refinement operation are performed
for each proposal in the second stage.

The design of multi-scale anchors of this network is a core element for sharing fea-
tures without extra cost for detecting objects at different scales. Compared to previous
approaches in the R-CNN family, the convolutional feature maps are shared between
both stages, which enables nearly cost-free region proposals and an end-to-end training
procedure. However, since the computation of the second-stage network is run once per
each proposal, the candidates provided by the RPN must be limited to a certain num-
ber. This is a parameter that must be carefully chosen, as it has a significant influence
on the performance of the network, in both accuracy and speed. A larger number of
candidates from the RPN may lead to more accurate detections but with a higher inference
time, which is undesirable in this context. The typical value used in the original paper
is 300 proposals. Furthermore, Faster R-CNN uses non-maximum suppression (NMS) to
reduce redundancy within proposals. The NMS procedure is done in both stages and uses
an intersection-over-union (IoU) threshold (typically fixed at 0.7) to remove redundant
overlapping boxes.

3.2.2. RetinaNet

The RetinaNet is an object detection architecture based on the Single Shot Detector
(SSD) that predicts classes and box offsets using a single feed-forward convolutional
network [10]. Unlike R-CNN detectors, SSD does not need the second stage of the region
proposal network. This fact can lead to faster inference speed since the SSD does not

Remote Sens. 2021, 13, 89 7 of 23

require per-proposal computations. Furthermore, SSD introduces some improvements to
compensate for the lack of the second-stage network such as the use of feature maps of
different resolutions and default anchor boxes with varying scales and aspect ratios.

This architecture uses a convolutional backbone for feature extraction followed by a
feature pyramid network (FPN) which generates multi-scale higher-quality feature maps.
The FPN introduces top-down and lateral connections to the extracted maps at different
levels in order to build stronger semantic features. Then, SSD divides the image using
a grid and assigns pre-defined anchors to each grid cell. This is done for every feature
map in the pyramid, allowing SSD to handle objects with different sizes: higher resolution
layers for small objects and lower resolution layers for larger ones. A mobile variant of
this process, named FPNLite, was presented in [36]. FPNLite allows reducing training
parameters and computational cost by replacing the standard convolutions with separable
convolutions in the prediction layers.

The original SSD model claimed to outperform two-stage detectors in terms of compu-
tational time but was unable to reach the same level of detection accuracy. This performance
drop was strongly related to the foreground-background class imbalance present in the
image data, with most of the pixels of the images considered as background. Therefore, the
number of anchors assigned to objects is very small and the learning process is dominated
by background samples. RetinaNet introduced the use of focal loss training to address
this problem [25]. The focal loss consists of a weighted loss that down-weights the easy
examples and focuses more on training with the hard ones. It is performed using a modu-
lating factor that reduces the loss of easy examples increasing the importance of correcting
misclassified examples. The experimental study carried out in [25] proves the improvement
of SSD architectures using focal loss, maintaining the speed and outperforming two-stage
detectors in terms of accuracy. In this work, all the experiments involving SSD models use
the RetinaNet version, hence both terms are indistinctly used.

3.2.3. YOLOv3

YOLOv3 is an improved version over previous YOLO networks that have been widely
used for real-time detection [27]. The idea behind YOLO is to divide the image into cells
using a grid, which allows achieving faster inference rates. If the center of an object is in a
certain grid cell, that cell is responsible for detecting that object. YOLO considers object
detection as a regression problem, which means that each cell uses several pre-defined
anchor boxes to simultaneously predict the bounding box offsets, the confidence scores,
and the class probabilities. The prior anchor box dimensions are obtained with K-means
clustering over the training ground truth boxes using a distance metric based on IoU
scores [11]. To avoid predictions from diverging too much from the center location, the
boxes are calculated as offsets from the obtained cluster centroids.

Compared to previous versions, YOLOv3 presents several improvements such as
multi-scale detection, stronger backbone network, and changes in the loss function. In
YOLO v3, the predictions are obtained using 1× 1 kernels on three feature maps of different
scales at different stages of the backbone network. Therefore, more bounding boxes per
image are generated. Instead of applying 5 anchor boxes at the last feature map, YOLOv3
generates 9 anchor boxes and applies 3 of them at three different locations. Furthermore,
this version presents a deeper backbone network, Darknet-53, which incorporates state-of-
the-art techniques such as residual blocks, skip connections, and upsampling. Although
these enhancements improved accuracy, they also resulted in slower inference speed com-
pared to YOLOv2 that used the lightweight DarkNet-19 backbone. In addition, YOLOv3
predicts the confidence scores for each bounding box using logistic regression, instead of
using the sum of squared errors.

3.2.4. FCOS

The Fully Convolutional One-Stage Object Detector (FCOS) is an anchor-free model
that aims to solve object detection with a pixel-wise approach, similar to semantic segmen-

Remote Sens. 2021, 13, 89 8 of 23

tation [12]. Almost all state-of-the-art object detectors rely on a set of pre-defined anchor
boxes to compute proposals, including Faster R-CNN, RetinaNet, and YOLOv3. In contrast,
FCOS uses the center point of objects to define whether a location is positive and regresses
the four distances from the center to the object boundary. Instead of tiling several anchors
per location, FCOS tiles only one anchor point per pixel. This anchor-free approach reduces
the number of design parameters that need to be carefully tuned. The hyper-parameters
related to anchor boxes severely affect the detection performance, hence their elimination
increases the generalization ability of the model. Furthermore, anchor-free detectors also
avoid the computations related to anchor boxes such as the IoU overlapping and the
matching between anchors and ground truth boxes. Hence a considerably simpler model
is obtained, which allows faster training and inference times and lower memory usage.

FCOS considers all the locations that fall inside a ground truth object box as positives
and directly regress from those positive locations the four distances to form the bounding
box. A mapping function relates the pixels in a certain feature map to the original image
in order to know whether that location is inside a ground truth box. Furthermore, apart
from the two conventional classification and regression heads, FCOS proposes a novel
centerness head. This head provides a measure of the centerness of the positive location
inside the bounding box that is regressed for. This novel score considerably improves
performance, avoiding the appearance of low-quality proposals produced by locations
far-away from the center of the object. Moreover, similarly to RetinaNet, FCOS also features
multi-level prediction using feature pyramid networks. Anchor-based detectors assign
differently sized anchor boxes to each level of the pyramid, which avoids overlapping
ground truth boxes in different levels. FCOS achieves this by restricting the maximum
regression distance at each level. The rest of the hyper-parameters (learning rate, NMS
post-processing, etc.) are the same as those used in RetinaNet.

3.3. Feature Extractors

In all the meta-architectures presented above, the first step is to apply a convolutional
feature extractor to the input image in order to extract high-level features, as can be seen
in Figure 2. The choice of the backbone network is essential since it has a very significant
impact on performance. The depth and type of convolutions used in these networks affect
the memory usage, speed, and detection accuracy of the whole meta-architecture.

For this study, we selected five state-of-the-art deep convolutional neural networks
for image classification: ResNet-50, ResNet-101, ResNet-152, ResNeXt-101, Res2Net-101,
MobileNet V1, MobileNetV2 and DarkNet-53. All these networks are implemented in either
in the TensorFlow Object Detection [37] or MMDetection [38] APIs, and were extensively
used by the community in many computer vision tasks.

Given that we use COCO pre-trained models from these public repositories to do
transfer learning, not all combinations of meta-architectures and feature extractors are
considered in this study. We only selected existing pre-trained combinations since the
available resources prevent us from training from scratch for several weeks. Table 2 presents
the combinations of deep learning meta-architectures and feature extractors that are used in
the experimental study. For instance, MobileNets are exclusively used with the RetinaNet
architecture and DarkNet-53 with YOLO, for which they were originally designed. Please
note that except the DarkNet-53, the rest of feature extractors use FPNs to detect objects at
multiple scales. DarkNet-53 does not explicitly use FPNs, but the YOLO meta-architecture
uses three different feature maps of DarkNet to provide multi-scale predictions.

The following subsections present the specific characteristics of the different ResNets,
MobileNets, and DarkNet feature extractors. Figure 3 illustrates the difference between the
convolutional blocks proposed in each network. Furthermore, Table 3 describe in detail
their complete architecture. It specifies the convolutions and spatial size reductions that are
done at each stage of the networks, and other aspects such as the number of floating-point
operations (FLOPS) and the number of parameters.

Remote Sens. 2021, 13, 89 9 of 23

(a) ResNet (b) ResNeXt (c) Res2Net

(d) DarkNet-53 (e) MobileNet (f) MobileNetV2

Figure 3. Convolutional blocks of each feature extractor. F is the number of convolutional filters, C refers to the cardinality
of the ResNeXt block and S is the scale dimension of Res2Net block.

Table 2. Combinations of deep learning meta-architectures and feature extractors used in the
experimental study.

Feature Extractor Faster R-CNN RetinaNet YOLOv3 FCOS

FPN ResNet-50 X X X
FPN ResNet-101 X X X
FPN ResNet-152 X X

FPN ResNeXt-101 X X X
FPN Res2Net-101 X

FPN MobileNet V1 X
FPNLite MobileNet V2 X

DarkNet-53 X

Remote Sens. 2021, 13, 89 10 of 23

3.3.1. ResNet, ResNeXt, and Res2Net

The Deep Residual Networks (ResNet) [20] succeeded in addressing complex image
problems achieving the best results in competitions such as ILSVRC [39] and COCO [13].
ResNets were developed with the idea that introducing identity shortcut connections could
allow increasing the depth of convolutional networks successfully, avoiding the vanishing
gradient problem [40].

The ResNet networks are composed of four blocks with several convolutional blocks
inside. The convolutional operations inside each block have the same format in all versions
(50, 101, and 152), the only difference is the number of subsequent convolutional blocks. For
instance, in block 3 of the ResNet-50, there are 6 convolutional blocks, while in ResNet-152
there are 36. This increase in depth can lead to richer high-level representations but also
increases computation time. This can be observed in the number of FLOPS and parameters
provided in Table 3.

Table 3. Architectures of the different feature extractors used in the study. The output size is computed for a 224× 224
input image. Building blocks are shown in brackets. For ResNet, downsampling is performed in the first operation of each
residual block using stride 2. For ResNeXt, C = 32 indicates grouped convolutions with 32 groups. For MobileNet, the
stride is indicated with s1 and s2, and depth-wise convolutions are noted with dw.

Output Size ResNet-50 ResNet-101 ResNet-152 ResNeXt-101-32x4d DarkNet-53 MobileNet MobileNetV2

112× 112 7× 7, 64, stride 2
3× 3, 32, stride 1 3× 3, 32, stride 2

[
3×3, dw,s1
1×1, 64

]
× 1

[
1×1, 32
3×3, dw,s1
1×1, 16

]
× 13× 3, 64, stride 2

56× 56

3× 3 max pool, stride 2 [
1×1, 32
3×3, 64

]
× 1

[
3×3, dw,s2
1×1, 128

]
× 1

[
1×1, 96
3×3, dw,s2
1×1, 24

]
× 1[

1×1, 64
3×3, 64
1×1, 256

]
× 3

[
1×1, 64
3×3, 64
1×1, 256

]
× 3

[
1×1, 64
3×3, 64
1×1, 256

]
× 3

[
1×1, 128
3×3, 128, C=32
1×1, 256

]
× 3 [

3×3, dw,s1
1×1, 128

]
× 1

[
1×1, 144
3×3, dw,s1
1×1, 24

]
× 13× 3, 128, stride 2

28× 28
[

1×1, 128
3×3, 128
1×1, 512

]
× 4

[
1×1, 128
3×3, 128
1×1, 512

]
× 4

[
1×1, 128
3×3, 128
1×1, 512

]
× 8

[
1×1, 256
3×3, 256, C=32
1×1, 512

]
× 4

[
1×1, 64
3×3, 128

]
× 2

[
3×3, dw,s2
1×1, 256

]
× 1

[
1×1, 144
3×3, dw,s2
1×1, 32

]
× 1

[
3×3, dw,s1
1×1, 256

]
× 1

[
1×1, 192
3×3, dw,s1
1×1, 32

]
× 23× 3, 256, stride 2

14× 14
[

1×1, 256
3×3, 256
1×1, 1024

]
× 6

[
1×1, 256
3×3, 256
1×1, 1024

]
× 23

[
1×1, 256
3×3, 256
1×1, 1024

]
× 36

[
1×1, 512
3×3, 512, C=32
3×3, 1024

]
× 23

[
1×1, 128
3×3, 256

]
× 8 [

3×3, dw,s2
1×1, 512

]
× 1

[
1×1, 192
3×3, dw,s2
1×1, 64

]
× 1

[
1×1, 384
3×3, dw,s1
1×1, 64

]
× 3

3× 3, 512, stride 2

[
3×3, dw,s1
1×1, 512

]
× 5

[
1×1, 384
3×3, dw,s1
1×1, 96

]
× 1[

1×1, 256
3×3, 512

]
× 8 [

1×1, 576
3×3, dw,s1
1×1, 96

]
× 2

7× 7
[

1×1, 512
3×3, 512
1×1, 2048

]
× 3

[
1×1, 512
3×3, 512
1×1, 2048

]
× 3

[
1×1, 512
3×3, 512
1×1, 2048

]
× 3

[
1×1, 1024
3×3, 1024, C=32
1×1, 2048

]
× 3

3× 3, 1024, stride 2 [
3×3, dw,s2
1×1, 1024

]
× 1

[
1×1, 576
3×3, dw,s2
1×1, 160

]
× 1

[
1×1, 512
3×3, 1024

]
× 4

[
1×1, 960
3×3, dw,s1
1×1, 160

]
× 2[

3×3, dw,s1
1×1, 1024

]
× 1

[
1×1, 960
3×3, dw,s1
1×1, 320

]
× 1

FLOPS (109) 3.8 7.85 11.6 8.03 7.14 0.57 0.31
Parameters (106) 25.6 44.6 60.2 44.2 40.58 4.3 3.5

As can be seen in Figure 3a, the residual convolutional blocks are formed by three
convolutions and the projection shortcut. The first layer is a 1× 1 bottleneck that reduces
the number of feature maps before the expensive 3× 3 convolution. The last convolution
increases by four the number of filters. Finally, the residual connection adds the output
of convolutions to the input. Furthermore, batch normalization is performed after each
convolution and before activation.

Remote Sens. 2021, 13, 89 11 of 23

More recently, a variation of this architecture was introduced as ResNeXt [22]. As
shown in Figure 3b, in addition to the dimensions of depth and width, ResNeXt includes
a new dimension, cardinality, which refers to the size of the set of transformations. This
architecture aggregates C transformations with the same topology, resulting in a multi-
branch architecture. The authors empirically proved that increasing cardinality is able to
improve classification accuracy while maintaining the FLOPs complexity and number of
parameters, as can be seen in Table 3.

Later, in order to enhance the representation of features at multiple scales and increase
the range of receptive field, a novel architecture named Res2Net [23] was introduced. This
network, instead of extracting features using a group of 3 × 3 filters as in the ResNet
block, uses a set of S smaller groups of filters connected in a hierarchical residual-like style
(Figure 3c). The concatenated result of these blocks contains a combination of features at S
different scales. The Res2Net architecture is not displayed in Table 3 since it is identical to
the ResNet models. They only differ in the internal structure of the residual blocks.

3.3.2. DarkNet

Darknet networks were proposed as the feature extractor used in the YOLO detectors.
The most recent version, presented as the YOLOv3 backbone, is named Darknet-53 [27].
This network is based on its precedent version, Darknet-19 [11], which is composed of
successive 3 × 3 and 1 × 1 convolutional layers with global average pooling and batch nor-
malization to speed up convergence. As can be seen in Table 3, the Darknet-53 architecture
increases the number of convolutional layers up to 52, hence being significantly deeper
than its predecessor. With this increase in depth, DarkNet can no longer be considered a
lightweight backbone.

Furthermore, inspired by ResNet architectures, Darknet-53 included residual connec-
tions as shown in Figure 3d. Moreover, it also includes skip connections and upsampling
techniques using concatenation in order to build stronger semantic features. The YOLOv3
meta-architecture places 3 prediction heads at different stages of the DarkNet backbone
to allow for multi-scale prediction, similarly to feature pyramid networks. DarkNet-53 is
much more powerful than the previous version and still more efficient in terms of both
computation and memory than ResNet backbones. When compared to ResNet architec-
tures, the Darknet-53 achieves results that are similar to ResNet-101 and ResNet-152 but
with fewer floating-point operations, thus achieving faster inference rates. For an image of
size 224× 224, DarkNet-53 has 7.1 GFLOPS while the ResNet-101 and ResNet-152 have 7.8
and 11.6 respectively. It also presents fewer parameters to be optimized, only 40 million
versus the 44.6 and 60.2 present in the ResNet models.

3.3.3. MobileNet

The MobileNets [26] were introduced as an efficient model for vision applications
to be used in mobile or embedded devices with constrained resources. MobileNets were
successfully applied in the SSD meta-architecture and are based on depthwise separa-
ble convolutions. As can be seen in Table 3, the number of FLOPS and parameters is
considerably smaller compared to ResNets.

The MobileNet convolutional block (Figure 3e) contains one 3× 3 depthwise con-
volution, which applies a single filter to each input channel. It is followed by a 1× 1
pointwise convolution, which creates a linear combination of the output of the previous
layer. Additionally, batch normalization and ReLU activation layers are added after each
convolutional layer.

In MobileNetV2 [36], the convolutional blocks are the inverted of the residual blocks
from the ResNet, as can be seen in Figure 3f. MobileNetV2 applies the expansion before
the bottlenecks and use shortcuts directly between the bottlenecks. This inverted approach
has proven to be considerably more memory efficient.

Remote Sens. 2021, 13, 89 12 of 23

3.4. Training Procedure and Other Implementation Details

The experiments were carried out with the public repository MMDetection that uses
the PyTorch deep learning framework [38]. This repository contains several object detection
models that were pre-trained over the COCO dataset. We perform transfer learning over
these models in order to avoid excessive training times [41]. We reuse the weights learned
for the COCO task and fine-tune the networks for the Waymo dataset. For this reason,
the selected combinations of meta-architectures and feature extractors are subject to the
available models in the repository, as was stated in Table 2. Furthermore, all models are
tested using two different image resolutions: high resolution (1280× 1920) and lower
resolution (640× 960).

For training, we follow the default 1× learning rate schedule that is used in several
repositories such as MMDetection [38] or Detectron2 [42]. All the models are trained for
12 epochs with learning rate decays with a 1/10 factor at epochs 8 and 11. The initial
learning rate is configured depending on the batch size according to the linear scaling
rule proposed in [43]. Due to memory constraints of the used GPUs, the batch size used
is for high and lower resolution is 2 and 4 respectively. Therefore, their initial learning
rates are set to 0.005 and 0.0025 respectively. The models are trained using mixed precision
in order to run faster and use less memory. The rest of the training hyperparameters are
kept consistent across all experiments and follow the choices provided in the original
papers of the models. The SGD optimizer is used with learning momentum 0.9. We use
the default anchor configuration in anchor-based models and NMS with IoU 0.7. The only
data augmentation technique used is random horizontal flip, and scale augmentation is
not used in training nor in testing.

4. Results and Discussion

In this section, we present the experimental results obtained and discuss the per-
formance according to several metrics. The first part of the discussion focuses on the
comparison in terms of accuracy and speed. Furthermore, we also consider other aspects
such as memory usage, the number of parameters, and the number of floating-point op-
erations, which are independent of the employed hardware. All the experiments were
performed on the same machine and with the same configuration in order to report compa-
rable time results. We used a computer with an Intel i7-8700 CPU and an NVIDIA GeForce
RTX 2080Ti 12GB GPU.

4.1. Evaluation Metrics

The metric used to evaluate the detection accuracy of the models in the images from
the cameras of the autonomous vehicle is the Average Precision (AP). AP is the most widely
used performance metric in the object-detection literature [44]. The AP metric computes
the area under the precision-recall curve. Firstly, we replace the precision value for recall r
with the maximum precision for any recall r′ ≥ r (Equation (1)). Then, the area under this
curve is calculated by numerical integration. This function is approximated by the sum of
the precision at every k where the recall changes, multiplied by the change in recall ∆r(k)
(Equation (2)).

p(r) = max
r′ :r′>r

p(r′) (1)

AP =
∫ 1

0
p(r)dr ≈

N

∑
k=1

p(k)∆r(k) (2)

The intersection-over-union (IoU) metric is used in order to determine whether a
prediction is a true positive or a false positive. It measures how much a prediction and the
ground truth overlaps. A predicted object is considered true or false positive depending on
whether the IoU is above or below a specific threshold. The IoU can be computed using the
following equation:

Remote Sens. 2021, 13, 89 13 of 23

IoU(Bgt, Ba) =
area(Bgt ∩ Ba)

area(Bgt ∪ Ba)
=

area(Bgt ∩ Ba)

area(Bgt) + area(Ba)− area(Bgt ∩ Ba)
(3)

In this study, we evaluate the detection accuracy using two different IoU-based AP
metrics. We use the IoU thresholds defined by COCO dataset [13], which are usually
seen as a general benchmark, and the ones defined by Waymo that are specific for this
problem [16].

COCO defines three AP metrics with different IoU thresholds to measure the per-
formance of object detectors: 0.5, 0.75, and 0.5:0.95. The last one uses 10 IoU thresholds
(from 0.5 to 0.95 with steps of 0.05) and averages them, rewarding detectors with better
localization. Additionally, COCO also computes evaluation metrics separately for small
(<32× 32), medium (<96× 96) and large (>96× 96) object sizes. These scales were defined
for the COCO general-purpose dataset, with many different classes and types of images.
These metrics are not suited for this specific context with on-board cameras, hence Waymo
has provided different metrics in their online challenge.

In Waymo’s metrics, the AP IoU threshold is 0.7 for vehicles and 0.5 for pedestrians
and cyclists. Furthermore, the objects are divided into two different difficulty levels that are
not only related to the scale. These levels are directly provided in the manually annotated
labels given in the dataset and take into account other aspects such as occlusion, objects that
are facing backwards, etc. With these thresholds and difficulties, a more realistic evaluation
can be done, including a proper analysis of the performance over each individual class.
Please note that level 2 also includes all objects in level 1.

With regard to the computational efficiency, we report the training and inference time
in milliseconds for each model, considering a batch size of 1. We focus the discussion
mainly on the inference speed since it is the most important aspect of this scenario. We
consider real-time speed to be 10 frames per second (FPS), given that the input video comes
at 10 Hz in the Waymo data. However, we also discuss the performance under harder
requirements, given that video cameras traditionally record at 30 Hz. Besides speed, we
report other metrics such as memory usage, floating-point operations, and the number of
parameters. These factors allow comparing the models independently from the hardware
used in the experiments.

4.2. Precision and Efficiency Analysis

In this section, we report the precision and computation time obtained by the four
meta-architectures (Faster R-CNN, RetinaNet, YOLOv3, and FCOS) under several feature
extractors: FPN ResNet-50, FPN ResNet-101, FPN ResNet-152, FPN ResNeXt-101, FPN
Res2Net-101, DarkNet-53, FPN MobileNet V1, FPNLite MobileNet V2. Furthermore,
we divide the analysis depending on the resolution of the input image: high resolution
(1280× 1920) or lower resolution (640× 960). We provide two different precision reports,
with the COCO metrics and with the per-class Waymo metrics.

4.2.1. COCO Precision Metrics

Table 4 presents the precision results obtained by the high-resolution models according
to the COCO metrics, along with the training and inference computation time. As can
be seen, the more complex two-stage models, which are Faster R-CNN Res2Net-101 and
ResNeXt-101, obtain the best performance in terms of precision under all metrics. They
reach AP values of 40.8 and 40.3 respectively and present a strong performance over large
objects with more than 70 AP. However, they are not particularly good in terms of inference
speed, taking 160 ms per image (only 6 FPS), hence not being practical for this application.
The shallower ResNet-50 and 101 obtain 2.8 and 1.5 points less in the AP metric, while
processing an image 55 and 24 ms faster respectively. The deeper ResNet-152 does not
provide a significant advantage in terms of accuracy, with a lower AP than ResNeXt and
Res2Net and worse inference rates. Regarding the training time, it is worth mentioning that,

Remote Sens. 2021, 13, 89 14 of 23

due to the multi-branch residual block, the ResNeXt-101 presents a much higher value than
Res2Net-101. Furthermore, it can be observed that the results over the small objects COCO
metric are very poor since it is not an appropriate metric for this problem. Nevertheless, it
shows that two-stage models are able to achieve slightly better performance over small
objects than one-stage detectors.

Table 4. COCO precision metrics and computation time of all models with high-resolution images. S, M, and L indicate
small, medium and large objects respectively. The best results are highlighted in bold.

Architecture Feature Extractor
Computational Time (ms) Mean Average Precision

Training Inference AP AP0.5 AP0.75 APS APM APL

RetinaNet FPN ResNet50 166.31 103.50 36.1 58.1 37.1 7.8 39.8 65.9
RetinaNet FPN ResNet101 236.69 137.20 36.5 58.7 37.4 7.9 39.9 66.3
RetinaNet FPN ResNeXt101 405.26 159.93 37.1 59.5 38.7 7.8 40.8 68.0
RetinaNet FPN ResNet152 530.60 195.00 36.9 59.1 37.7 8.1 40.0 66.7
RetinaNet FPN MobileNet 130.20 72.63 27.0 43.2 29.1 1.1 23.8 59.2
RetinaNet FPNLite MobileNetV2 118.30 63.20 25.0 38.6 24.1 0.8 21.0 56.9

Faster RCNN FPN ResNet50 176.11 105.09 37.5 60.5 39.4 10.3 40.0 67.0
Faster RCNN FPN ResNet101 248.21 136.95 38.8 62.0 41.2 11.1 41.2 69.0
Faster RCNN FPN ResNeXt101 418.33 159.93 40.3 63.9 42.6 12.4 42.2 70.6
Faster RCNN FPN Res2Net101 334.74 159.89 40.8 64.4 43.2 12.3 44.0 70.7
Faster RCNN FPN ResNet152 520.30 185.00 39.1 62.3 41.5 11.2 41.3 69.2

FCOS FPN ResNet50 168.12 95.00 35.7 57.9 37.2 8.1 38.6 65.3
FCOS FPN ResNet101 234.58 126.11 35.8 58.0 37.4 8.3 38.9 65.6
FCOS FPN ResNeXt101 340.23 155.00 37.2 59.7 37.5 8.6 39.5 66.4

YOLOv3 DarkNet-53 180.52 70.81 30.7 54.9 31.1 10.3 37.0 49.2

Among the RetinaNet models, the ResNeXt-101 is again the backbone with better
detection accuracy. Compared to the Faster R-CNN ResNet countermodels, RetinaNet
detectors obtain two AP points less on average. The difference is more significant with the
ResNeXt-101 extractor, with Faster R-CNN obtaining 40.3 AP while RetinaNet only 37.1 AP.
However, the inference time is almost identical, meaning that there are no speed differences
between two-stage Faster R-CNN and one-stage RetinaNet models. It can also be observed
that the improvement obtained with deeper ResNet extractors in RetinaNet only applies
to large objects. The AP in medium and small objects is almost constant with all ResNet
models. The lightweight MobileNet V1 and V2 merit a special mention in terms of speed,
since they can achieve almost 13 and 15 FPS respectively, while RetinaNet ResNet-50 and
101 only achieve 9 and 7 FPS. In general, it can be seen that MobileNet extractors are
significantly faster than the ResNet extractors, but with much lower performance (around
10 AP points less).

The anchor-free FCOS detector is a slightly faster alternative to the anchor-based
RetinaNet, with very similar detection performance. The only noticeable difference is that
RetinaNet models seem to obtain a small improvement over large and medium objects,
while FCOS performs better over small objects. Finally, the YOLO detector is on par
with RetinaNet MobileNet models in terms of speed but outperforms them in detection
accuracy. Therefore, YOLO is a better alternative if we are more interested in achieving
better inference rates at the cost of sacrificing accuracy. YOLOv3 using DarkNet-53 provides
an AP of 30.7 at 70 ms (14 FPS), while the worst RetinaNet ResNet model obtains an AP
of 36.1 at 103.50 ms (10 FPS). The performance drop in YOLOv3 is mainly based on poor
accuracy over large objects. However, YOLOv3 performs well over medium objects and
even better than the other one-stage detectors in detecting small objects.

In contrast, Table 5 reports the results obtained using lower-resolution images. In this
case, the analysis presents slightly different conclusions. In general, it is observed that the
detection accuracy is considerably lower with all models. Using lower resolution images
leads to faster speed, which is more convenient in on-board devices, but at the cost of
degrading the precision. In low resolution, the best model in terms of accuracy is again
Faster R-CNN Res2Net-101. For this detector, resizing the images implies a speedup of

Remote Sens. 2021, 13, 89 15 of 23

9 FPS (from former 6.3 FPS to 15.7 FPS), but there is a precision downgrade from 40.8 to
32.4 AP.

Table 5. COCO precision metrics and computation time of all models with low-resolution images. S, M, and L indicate
small, medium and large objects respectively. The best results are highlighted in bold.

Architecture Feature Extractor
Computational Time (ms) Mean Average Precision

Training Inference AP AP0.5 AP0.75 APS APM APL

RetinaNet FPN ResNet50 75.62 47.47 27.3 44.4 28.0 1.0 24.8 64.2
RetinaNet FPN ResNet101 111.36 57.74 28.1 45.6 29.0 1.1 25.6 65.7
RetinaNet FPN ResNeXt101 156.57 67.91 28.6 46.4 29.1 1.2 26.0 66.7
RetinaNet FPN ResNet152 220.20 74.20 28.4 46.2 28.9 1.2 26.0 66.2
RetinaNet FPN MobileNet 56.20 33.02 25.1 39.4 24.3 1.3 20.0 57.3
RetinaNet FPNLite MobileNetV2 50.21 26.12 24.6 38.2 23.6 1.1 18.0 55.8

Faster RCNN FPN ResNet50 86.23 48.00 29.5 47.9 30.6 2.8 29.6 65.3
Faster RCNN FPN ResNet101 119.52 58.10 30.9 49.9 32.3 3.2 31.2 66.0
Faster RCNN FPN ResNeXt101 161.86 66.81 31.6 50.9 33.0 3.4 32.0 67.0
Faster RCNN FPN Res2Net101 151.30 63.78 32.4 51.7 34.2 3.6 33.2 68.3
Faster RCNN FPN ResNet152 210.20 75.30 31.7 51.2 33.3 3.4 31.5 67.1

FCOS FPN ResNet50 75.14 42.25 27.2 45.3 27.2 2.2 24.7 62.1
FCOS FPN ResNet101 103.50 52.59 28.9 47.1 29.7 2.7 26.5 64.6
FCOS FPN ResNeXt101 145.23 60.87 29.0 47.8 29.4 3.0 26.6 64.3

YOLOv3 DarkNet-53 82.56 40.19 29.6 53.1 29.2 5.5 30.2 58.4

Although Faster R-CNN still presents the most competitive results, the difference
with one-stage detectors is smaller in this case. For instance, RetinaNet models achieve
AP values similar to the two-stage detector for large objects. However, Faster R-CNN
is much more robust in the case of medium-sized objects. The inference time follows
the same pattern as in the high-resolution analysis, with Faster R-CNN and RetinaNet
with identical speed and FCOS being slightly faster. Furthermore, in low resolution, the
RetinaNet MobileNet model is a much more competitive alternative, achieving an AP of 25
at 33 ms (30 FPS). Finally, it must be mentioned that YOLOv3 is the best performing model
among one-stage detectors and obtains better AP than Faster R-CNN in two cases: the AP
with 0.5 IoU threshold and the AP over small objects. These results indicate that YOLOv3 is
better suited for working with smaller input images, given that its high-resolution version
was not very competitive.

Finally, Figure 4 presents a graphical summary of the results presented in Tables 4 and 5.
Each line in the figure represents the results obtained with low and high-resolution images
for each model. The figure provides a more informative picture of the speed/accuracy trade-
off of the models. The processing time is critical in the context of self-driving vehicles. If a
model is not able to process information in real time, important frames may be discarded.
This can severely impact the decisions made by the autonomous system and lead to safety
issues. Therefore, it is essential to analyze what models meet the real-time perception
requirements.

As can be seen, Figure 4 plots two reference lines in vertical that indicate two different
boundaries for real-time performance. As stated in Section 4.1, the 10 FPS limit indicate real-
time with respect to the characteristics of the Waymo dataset. However, we also consider a
harder limit of 30 FPS. At a first glance, it can be observed that the top-performing models
(Faster R-CNN Res2Net-101 and ResNeXt-101 with high-resolution images) do not meet
the real-time requirements, achieving less than 10 FPS. Furthermore, all one-stage detectors
with ResNet detectors at high resolution are also far from obtaining 10 FPS. Therefore, all
these models are not ideal for this context since many frames would have to be discarded.
At high resolution, only the FCOS ResNet-50, RetinaNet with MobileNets, and YOLOv3
are able to reach the 10 FPS limit. These findings indicate that it may be more suitable to
sacrifice some accuracy in order to have a detector that can process all incoming frames,
which will allow maintaining a better perception of the environment.

Remote Sens. 2021, 13, 89 16 of 23

Figure 4. Inference time versus accuracy of low and high resolution models with different architectures and feature
extractors. Low resolution models are always the left-most point of each line.

Among all the studied models, the Faster R-CNN Res2Net-101 strikes the best balance
between accuracy and speed, but needs smaller images to reach real-time rates. It achieves
an AP of 32.4 and can process a low-resolution image in 74.20 ms (15.7 FPS). The only
models that achieve 30 FPS are the RetinaNet MobileNets with low resolution, which
obtain around 25 AP points. However, YOLOv3 nearly reaches that speed (25 FPS) with
a significant improvement in accuracy (29.6 AP). It is also worth mentioning that the
inference times in low-resolution models are more similar when comparing increasingly
complex feature extractors. As can be seen, the points at the left part of the plot are closer
to each other, while the points at the right are more sparse. This indicates that the impact
on the speed of the feature extractor is more important as the size of the image increases.
Moreover, RetinaNet and FCOS seem to be less reliant on the selected feature extractor. The
different ResNet versions of these one-stage detectors obtain more similar results than their
Faster-RCNN counterparts, in which the differences between deeper networks are greater.

Another important aspect to consider is the difference in processing time between
one-stage and two-stage meta-architectures. Unlike it is often stated in the literature,
with our experimental study, we cannot claim that RetinaNet and FCOS models using
ResNet have significantly faster inference speed than Faster R-CNN models. This fact is
only true when considering the low-resolution images, and the difference is practically
minimal. The only one-stage alternative that is more efficient than Faster R-CNN is the
YOLOv3 detector. The reason for the other one-stage detectors not being faster may lie
in the fact that, in this study, we are using images that are considerably larger than those
used in existing works. For instance, in [14], the authors also perform an evaluation with
different images sizes. However, their high resolution is 600× 600 and their low resolution
is 300× 300, compared to our 1920× 1280 and 960× 640 respectively. It can be observed
that increasing the image size reduces the differences between one-stage and two-stage
meta-architectures, which present a very similar speed. The extreme case is RetinaNet
ResNet-152 that provides the worst performance in terms of efficiency, reaching only 5 FPS.
The competitive inference speed of Faster R-CNN is supported by the fact that the number
of proposals provided by the RPN in the Faster R-CNN is fixed to 1000 and not a higher
number. Overall, these findings suggest that RetinaNet and FCOS with high-resolution
images and ResNet backbones do not provide an advantage in this scenario and should be
avoided by practitioners.

Remote Sens. 2021, 13, 89 17 of 23

4.2.2. Waymo Precision Metrics

We also discuss the results with respect to the per-class precision metrics that are used
in Waymo’s online 2D detection challenge. There are three types of objects that have to be
identified in the images: vehicles, pedestrians, and cyclists. In this case, the IoU threshold
used in the AP metric is 0.7 for vehicles and 0.5 for pedestrians and cyclists. Furthermore,
each type of object presents two levels of detection difficulty, which are provided in the
manually annotated labels given by Waymo. These two levels are indicated depending on
different aspects such as the clarity with which objects can be seen, the size, the distance in
the picture, or if they are occluded.

Table 6 presents the results that are obtained with each model for each class. It can
be seen that, for all models, the performance is significantly better over the pedestrian
class. Despite vehicles being the majority class, their required IoU is higher, which explains
the lower AP values given that their detection is more complex. Furthermore, the results
are considerably poorer in the minority class (cyclist). The inherent imbalance in the data,
which is also present in real-world environments, prevent models from reaching a stable
performance over all types of objects.

Table 6. Waymo per-class precision metrics with two different detection difficulty levels. Results are provided for low and
high-resolution models. The best results are highlighted in bold.

Architecture Feature Extractor

Low Resolution High Resolution

Difficulty Level 1 Difficulty Level 2 Difficulty Level 1 Difficulty Level 2

Vehicle Pedest. Cyclist Vehicle Pedest. Cyclist Vehicle Pedest. Cyclist Vehicle Pedest. Cyclist

RetinaNet FPN ResNet50 49.5 54.9 33.9 38.7 50.1 27.7 62.3 69.5 46.6 51.3 64.8 39.3
RetinaNet FPN ResNet101 49.9 55.6 35.0 39.1 50.8 29.1 62.5 69.7 46.7 51.5 65.3 39.7
RetinaNet FPN ResNeXt101 50.5 56.6 35.7 39.7 51.8 30.7 62.9 70.4 50.0 51.8 66.0 40.1
RetinaNet FPN ResNet152 50.5 56.6 36.7 39.5 51.3 28.5 62.7 69.7 46.7 51.7 65.2 39.9
RetinaNet FPN MobileNet 46.6 45.7 27.0 34.7 32.4 22.1 49.2 47.5 33.6 37.0 34.2 28.1
RetinaNet FPNLite MobileNetV2 44.6 43.7 25.0 33.7 30.4 20.1 46.1 43.7 31.0 33.7 30.4 26.2

Faster RCNN FPN ResNet50 51.2 56.8 37.7 40.2 51.6 32.2 64.3 70.2 50.6 53.2 65.8 43.0
Faster RCNN FPN ResNet101 55.3 60.2 42.1 43.8 54.3 35.1 65.1 71.8 53.3 54.7 67.2 45.7
Faster RCNN FPN ResNeXt101 56.3 61.3 43.7 44.7 56.3 36.2 66.2 73.0 56.3 56.0 69.5 48.6
Faster RCNN FPN Res2Net101 56.6 61.7 44.8 44.9 56.8 37.8 66.6 74.4 56.3 56.3 69.9 48.9
Faster RCNN FPN ResNet152 56.4 61.5 43.5 44.8 56.5 36.0 65.5 71.9 53.6 54.9 67.4 45.8

FCOS FPN ResNet50 49.3 55.5 35.3 38.6 50.7 28.9 61.7 68.5 48.5 50.8 63.8 40.9
FCOS FPN ResNet101 52.1 57.3 37.1 41.2 52.4 30.5 62.3 68.6 47.2 51.4 63.9 39.8
FCOS FPN ResNeXt101 52.0 57.3 39.1 41.2 52.5 32.3 62.8 70.5 49.5 51.6 65.8 40.3

YOLOv3 DarkNet-53 53.1 65.3 44.1 42.0 60.6 36.7 49.6 68.4 48.6 41.3 63.9 41.0

To provide a better interpretation of the results, Figure 5 presents the level 2 precision
metrics for all high-resolution models. It can be observed that all models obtain consistent
results for both vehicles and pedestrians, maintaining a good level of detection accuracy.
Although the number of pedestrians in the dataset is only around 10%, the imbalance is not
as aggressive as with cyclists (less than 1%). The cyclist plot shows that many models suffer
an important decrease in performance in this class. The Faster R-CNN meta-architecture
with ResNet backbones are the only models maintaining an acceptable AP on cyclists.
These findings demonstrate that defining specific metrics for a particular detection problem
can provide more valuable insights than using the general COCO precision metrics.

In general, it can be seen that Faster R-CNN models achieve better results, although
the differences in the pedestrian class are less important. Faster R-CNN Res2Net-101
obtains the best trade-off between accuracy and speed if we consider all classes. On the
other hand, RetinaNet and FCOS models present very similar AP values regardless of the
feature extractor used. This fact indicates that using deeper networks in those one-stage
detectors does not provide an improvement for this problem. Therefore, given that it has
faster inference rates, the use of the ResNet-50 feature extractor is more reasonable. It
can also be observed that the performance of RetinaNet using MobileNets is poor over
all types of objects. Finally, in the case of YOLOv3, the accuracy over pedestrians and
cyclists stands out. It achieves similar AP values to the other one-stage detectors while

Remote Sens. 2021, 13, 89 18 of 23

being much faster. However, it suffers a considerable precision drop over vehicles, given
the harder IoU threshold of this class. As claimed in [27], the YOLOv3 detector provides
good performance with the 0.5 IoU threshold, but the increase of that value has a very
negative impact on its precision.

Figure 5. Inference time versus accuracy of high-resolution models for each object class with difficulty level 2.

4.3. Effectiveness of Transfer Learning

The models used in the experiments were trained using transfer-learning techniques.
The initial weights of all the models are taken from networks that were pre-trained over
the COCO dataset. [13]. Therefore, in this section, we aim to evaluate the effectiveness of
this approach by comparing our results with the reference precision values and analyzing
the employed training time.

In Table 7, we present a summary of the results with a ranking of the models. The
table is ordered by the AP obtained in the Waymo dataset after the fine-tuning procedure
with high-resolution models. Furthermore, it reports the reference AP results of the models
over the COCO 2017 validation set, which were obtained from the MMDetection repository.
To facilitate the comparison, we also provide the training time of each experiment along
with the inference rate in frames per second.

As can be observed, the use of transfer learning allows the models to adapt quickly
to the distribution of the new dataset, achieving a comparable accuracy to that of the
reference. The most complex model (RetinaNet ResNet-152) needs 26 and 11 h, in high
and low resolution respectively, to complete the training process. The model with better
accuracy (Faster R-CNN Res2Net-101) only needs 16 and 7 h respectively. Considering
that a single GPU is used for training, the obtained results are significantly good given the
reported training times.

Remote Sens. 2021, 13, 89 19 of 23

Table 7. Ranking of the models used ordered by the AP value obtained over the Waymo dataset with the high-resolution
version. The COCO Ref. AP refers to the reference value obtained by each model in the COCO 2017 validation set, extracted
from the MMDetection repository. The inference FPS and total training time in hours are also provided. The best results are
highlighted in bold.

Architecture Feature Extractor
COCO High Resolution Low Resolution

Ref. AP AP FPS Train Time (h) AP FPS Train Time (h)

Faster RCNN FPN Res2Net101 43.0 40.8 6.3 16.7 32.4 15.7 7.6
Faster RCNN FPN ResNeXt101 41.2 40.3 6.3 20.9 31.6 15.0 8.1
Faster RCNN FPN ResNet152 40.1 39.1 5.4 26.0 31.7 13.3 10.5
Faster RCNN FPN ResNet101 39.8 38.8 7.3 12.4 30.9 17.2 6.0
Faster RCNN FPN ResNet50 38.4 37.5 9.5 8.8 29.5 20.8 4.3

FCOS FPN ResNeXt101 40.4 37.2 6.5 17.0 29.0 16.4 7.3
RetinaNet FPN ResNeXt101 40.1 37.1 6.3 20.3 28.6 14.7 7.8
RetinaNet FPN ResNet152 39.2 36.9 5.1 26.5 28.4 13.5 11.0
RetinaNet FPN ResNet101 38.9 36.5 7.3 11.8 28.1 17.3 5.6
RetinaNet FPN ResNet50 37.4 36.1 9.7 8.3 27.3 21.1 3.8

FCOS FPN ResNet101 39.2 35.8 7.9 11.7 28.9 19.0 5.2
FCOS FPN ResNet50 36.9 35.7 10.5 8.4 27.2 23.7 3.8

YOLOv3 DarkNet-53 33.4 30.7 14.1 9.0 29.6 24.9 4.1
RetinaNet FPN MobileNet 29.1 27.0 13.8 6.5 25.1 30.3 2.8
RetinaNet FPNLite MobileNetV2 28.2 25.0 15.8 5.9 24.6 38.3 2.5

4.4. Other Useful Metrics

Besides the precision and time efficiency metrics, we have also studied other aspects
that are important in this application. In this section, we report the memory usage, the
number of parameters, and the number of floating-point operations of all the studied
models. These metrics are calculated for a batch size of one image and are presented in
Table 8. They provide useful information that is independent of the hardware employed
in this particular study. All these metrics are important when it comes to deciding the
resources that the networks will require.

Table 8. Memory usage and number of parameters and flops of all studied models.

Architecture Feature Extractor
Parameters GFlops Memory (GB)

(10e6) Low res. High res. Low res. High res.

RetinaNet FPN ResNet50 36.15 123.08 332.78 1.21 2.87
RetinaNet FPN ResNet101 55.14 168.72 456.01 1.80 4.27
RetinaNet FPN ResNeXt101 54.78 170.97 462.06 1.87 4.73
RetinaNet FPN ResNet152 70.24 203.85 520.42 2.54 5.62
RetinaNet FPN MobileNet 10.92 72.03 105.99 0.54 1.74
RetinaNet FPNLite MobileNetV2 2.60 10.12 40.45 0.45 1.52

Faster RCNN FPN ResNet50 41.13 129.56 326.01 1.34 3.67
Faster RCNN FPN ResNet101 60.13 175.21 449.24 1.94 4.89
Faster RCNN FPN ResNeXt101 59.76 177.46 455.29 2.11 5.55
Faster RCNN FPN Res2Net101 60.78 181.53 466.26 2.06 5.01
Faster RCNN FPN ResNet152 76.45 210.14 514.23 2.80 6.10

FCOS FPN ResNet50 31.84 117.99 318.98 0.88 1.98
FCOS FPN ResNet101 50.78 163.63 442.22 1.41 3.30
FCOS FPN ResNeXt101 49.89 165.23 448.45 1.55 4.02

YOLOv3 DarkNet-53 61.53 116.33 316.28 1.06 2.29

With respect to the number of parameters, it can be seen that RetinaNet with Mo-
bileNet presents a much lower number than the rest of the models. Using the ResNet as a
feature extractor implies a much higher number of parameters. However, there are small

Remote Sens. 2021, 13, 89 20 of 23

differences between the Faster R-CNN and RetinaNet model when using ResNet. Only the
anchor-free FCOS detectors present a lower number of parameters. YOLO with DarkNet-53
is on par with the Faster R-CNN using ResNet-101. This similarity further supports the
importance of selecting an appropriate feature extractor. The backbone network contains
the majority of parameters, independently of the meta-architecture used, hence it is key in
the training process. The parameters of a model is an important factor because an excessive
number in very deep architectures may lead to overfitting issues [45].

With respect to floating-point operations and memory usage, MobileNet feature
extractors also stand out. Since they are lightweight networks specifically designed for
mobile devices, they require significantly fewer resources than the ResNet models, as can
be seen in Table 8. The difference is even greater when considering high-resolution images.
In this case, ResNet models require at least 2.87 GB (RetinaNet ResNet-50) while RetinaNet
with MobileNet only uses 1.52 GB. However, MobileNets models did not obtain acceptable
AP values. It is more interesting the fact that FCOS and YOLO models are more efficient
in terms of memory usage than Faster R-CNN and RetinaNet. Models with less memory
could allow having several expert models running on the same device. For instance, in an
embedded device with limited memory, it could be interesting to have one expert model
for each specific class, instead of only having a single general model. Such ensemble
approaches are increasingly receiving attention in the object detection literature since they
have proved to enhance the accuracy [46]. In that sense, FCOS, YOLO, and RetinaNet with
MobileNet present an important advantage over Faster R-CNN models, which achieved
the best speed/accuracy balance. The FCOS models also obtained good precision results
and require much less memory.

5. Conclusions and Future Work

In this paper, we present an experimental study comparing the performance of several
deep learning-based object detection systems in the context of autonomous vehicles. Firstly,
we provided a concise review of the detection models and convolutional feature extractors
that are currently used by the community. Secondly, we evaluated several aspects of
modern 2D object detectors in a multi-class problem using images obtained from the on-
board cameras of Waymo’s self-driving cars. The study analyzes the performance of four
popular meta-architectures (Faster R-CNN, RetinaNet, FCOS, and YOLOv3) using several
feature extractors (ResNet, ResNeXt, Res2Net, DarkNet, and MobileNet) and with two
different image resolutions. These models were successfully trained using transfer learning
on existing models pre-trained over the COCO dataset. The performance analysis included
many metrics such as the global and per-class detection precision, speed, memory usage,
number of parameters, and the number of floating-point operations. With the results of
these experiments, we studied the speed/accuracy trade-off in different detection systems,
which is an essential aspect to consider in a real-time driving scenario.

The conclusions obtained from this experimental study can be summarized as follows:

• The most accurate detection models were obtained using high-resolution images and
do not reach real-time speed. Therefore, in this context, it is necessary to sacrifice
some accuracy by using smaller input images to improve the inference rate.

• Faster R-CNN using Res2Net-101 obtains the best speed/accuracy trade-off but needs
lower resolution images to achieve real-time inference speed.

• Two-stage Faster R-CNN models can achieve speeds comparable to one-stage detec-
tors with higher detection accuracy.

• The anchor-free FCOS detector is a slightly faster one-stage alternative to RetinaNet,
with similar precision and lower memory usage.

• RetinaNet MobileNet is the only model reaching 30 FPS, but with low precision.
YOLOv3 or FCOS ResNet-50 at 25 FPS are more convenient options for on-board
applications, although not as accurate as Faster R-CNN.

Remote Sens. 2021, 13, 89 21 of 23

• Increasing the image resolution significantly degrades the computational efficiency
of RetinaNet models with ResNet backbones, hence becoming impractical for this
application.

• One-stage models fail to achieve good results over the minority class in this problem.
Faster R-CNN models proved to be more robust to the presence of imbalanced data.

Future work should be focused on the study of new paradigms for object detection such
as the use of transformers or lambda networks. These novel models have achieved promising
results in general computer vision tasks and should be validated in the autonomous vehicle
domain. Further research should also analyze options to improve data quality by fusing cam-
era data with sensors such as LiDAR. The community would benefit from novel approaches
on how to combine the information of multi-modal sensors without damaging inference
speed. Moreover, another interesting line of work is to address the particularities presented
in autonomous-vehicle data. There are problems that need more in-depth studies such as
the high imbalance between classes and the overlapping of small objects. To address these
issues, more context-specific network architectures should be developed, together with more
powerful transfer learning approaches. Furthermore, the object detection problem could
potentially benefit from using temporal information across consecutive frames. Therefore,
next studies should evaluate the models with an online approach, respecting the order of
frames in the video recorded by the on-board cameras of the vehicle.

Author Contributions: All authors made substantial contributions to conception and design of the
study. M.C.-G. and J.T.-M. performed the experiments and analyzed the data. M.C.-G. and P.L.-B.
wrote the paper. J.G.-G. guided the research and reviewed the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has been funded by the Spanish Ministry of Economy and Competitiveness
under the project TIN2017-88209-C2-2-R and by the Andalusian Regional Government under the
projects: BIDASGRI: Big Data technologies for Smart Grids (US-1263341), Adaptive hybrid models to
predict solar and wind renewable energy production (P18-RT-2778).

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from Waymo and is available at https://waymo.com.

Acknowledgments: We are grateful to NVIDIA for their GPU Grant Program that has provided us
the high-quality GPU devices for carrying out the study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
FPN Feature Pyramid Network
FPS Frames per second
IoU Intersection over Union
NMS Non-Maximum Supression
R-CNN Regions with CNN
ReLU Rectified Linear Unit
RoI Region of Interest
RPN Region Proposal Network
SSD Single Shot Detector

https://waymo.com

Remote Sens. 2021, 13, 89 22 of 23

References
1. Lara-Benítez, P.; Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J. Asynchronous dual-pipeline deep learning framework

for online data stream classification. Integr. Comput. Aided Eng. 2020, 27, 101–119. [CrossRef]
2. Van Brummelen, J.; O’Brien, M.; Gruyer, D.; Najjaran, H. Autonomous vehicle perception: The technology of today and tomorrow.

Transp. Res. Part Emerg. Technol. 2018, 89, 384–406. [CrossRef]
3. Geng, K.; Dong, G.; Yin, G.; Hu, J. Deep dual-modal traffic objects instance segmentation method using camera and lidar data for

autonomous driving. Remote Sens. 2020, 12, 1–22. [CrossRef]
4. Real-time gun detection in CCTV: An open problem. Neural Netw. 2020, 132, 297–308. [CrossRef] [PubMed]
5. Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J.C. A Framework for Evaluating Land Use and Land Cover Classification

Using Convolutional Neural Networks. Remote Sens. 2019, 11, 274. [CrossRef]
6. Liu, F.; Zhao, F.; Liu, Z.; Hao, H. Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation. Energy

Policy 2019, 132, 462–473. [CrossRef]
7. Wang, Y.; Chao, W.L.; Garg, D.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-LiDAR From Visual Depth Estimation:

Bridging the Gap in 3D Object Detection for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8437–8445. [CrossRef]

8. Wang, Y.; Liu, Z.; Deng, W. Anchor generation optimization and region of interest assignment for vehicle detection. Sensors
(Switzerland) 2019, 19. [CrossRef]

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

10. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A. SSD: Single shot multibox detector. In Proceedings of the
ECCV 2016, Amsterdam, The Netherlands, 8–16 October 2016; Volume 9905 LNCS, pp. 21–37. [CrossRef]

11. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]

12. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 9626–9635. [CrossRef]

13. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C. Microsoft COCO: Common objects in
context. In Proceedings of the ECCV 2014, Zurich, Switzerland, 6-12 September 2014; Volume 8693 LNCS, pp. 740–755. [CrossRef]

14. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; Murphy,
K. Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3296–3297. [CrossRef]

15. Wang, M.; Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 2018, 312, 135–153. [CrossRef]
16. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in

perception for autonomous driving: Waymo open dataset. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Seattle, WA, USA, 16–18 June 2020; pp. 2443–2451. [CrossRef]

17. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–44. [CrossRef]
18. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014;
pp. 580–587. [CrossRef]

19. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations ICLR, San Diego, CA, USA, 7–9 May 2015.

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

21. Lin, T.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 936–944. [CrossRef]

22. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. arXiv 2017,
arXiv:1611.05431.

23. Gao, S.; Cheng, M.; Zhao, K.; Zhang, X.; Yang, M.; Torr, P.H.S. Res2Net: A New Multi-scale Backbone Architecture. IEEE Trans.
Pattern Anal. Mach. Intell. 2019. [CrossRef] [PubMed]

24. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [CrossRef]

25. Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.
2020, 42, 318–327. [CrossRef] [PubMed]

26. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

27. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
28. Law, H.; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. Int. J. Comput. Vis. 2020, 128, 642–656. [CrossRef]

http://dx.doi.org/10.3233/ICA-200617
http://dx.doi.org/10.1016/j.trc.2018.02.012
http://dx.doi.org/10.1109/TGRS.2020.2991985
http://dx.doi.org/10.1016/j.neunet.2020.09.013
http://www.ncbi.nlm.nih.gov/pubmed/32977275
http://dx.doi.org/10.3390/rs11030274
http://dx.doi.org/10.1016/j.enpol.2019.06.013
http://dx.doi.org/10.1109/CVPR.2019.00864
http://dx.doi.org/10.3390/s19051089
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/CVPR.2017.690
http://dx.doi.org/10.1109/ICCV.2019.00972
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1109/CVPR.2017.351
http://dx.doi.org/10.1016/j.neucom.2018.05.083
http://dx.doi.org/10.1109/CVPR42600.2020.00252
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/TPAMI.2019.2938758
http://www.ncbi.nlm.nih.gov/pubmed/31484108
http://dx.doi.org/10.1109/CVPR.2018.00644
http://dx.doi.org/10.1109/TPAMI.2018.2858826
http://www.ncbi.nlm.nih.gov/pubmed/30040631
http://dx.doi.org/10.1007/s11263-019-01204-1

Remote Sens. 2021, 13, 89 23 of 23

29. Zhou, X.; Zhuo, J.; Krahenbuhl, P. Bottom-up Object Detection by Grouping Extreme and Center Points. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 850–859.
[CrossRef]

30. Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.; Gläser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep Multi-Modal
Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. IEEE Trans. Intell.
Transp. Syst. 2020. [CrossRef]

31. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of
the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–24 June 2012; pp. 3354–3361.
[CrossRef]

32. Scale, H. PandaSet: Public Large-Scale Dataset for Autonomous Driving. 2019. Available online: https://scale.com/open-
datasets/pandaset (accessed on 30 October 2020).

33. Caesar, H.; Bankiti, V.; Lang, A.; Vora, S.; Liong, V.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. Nuscenes: A multimodal
dataset for autonomous driving. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 11618–11628. [CrossRef]

34. Arcos-García, A.; Álvarez García, J.A.; Soria-Morillo, L.M. Evaluation of deep neural networks for traffic sign detection systems.
Neurocomputing 2018, 316, 332–344. [CrossRef]

35. Zhang, S.; Benenson, R.; Omran, M.; Hosang, J.; Schiele, B. Towards Reaching Human Performance in Pedestrian Detection. IEEE
Trans. Pattern Anal. Mach. Intell. 2018, 40, 973–986. [CrossRef]

36. Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L. Inverted Residuals and Linear Bottlenecks: Mobile Networks for
Classification, Detection and Segmentation. arXiv 2018, arXiv:1801.04381.

37. Huang, J.; Rathod, V.; Sun, C. Tensorflow Object Detection API. 2020. Available online: https://github.com/tensorflow/models/
tree/master/research/object_detection (accessed on 13 November 2020).

38. Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open MMLab Detection
Toolbox and Benchmark. arXiv 2019, arXiv:1906.07155.

39. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [CrossRef]

40. Wu, Z.; Shen, C.; van den Hengel, A. Wider or Deeper: Revisiting the ResNet Model for Visual Recognition. Pattern Recognit.
2019, 90, 119–133. [CrossRef]

41. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 39, 640–651. [CrossRef]

42. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. Available online: https://github.com/facebookresearch/
detectron2 (accessed on 14 December 2020).

43. Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K. Accurate, Large Minibatch
SGD: Training ImageNet in 1 Hour. arXiv 2018, arXiv:1706.02677.

44. Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object Detection in 20 Years: A Survey. arXiv 2019, arXiv:1905.05055.
45. Keskar, N.S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.; Tang, P.T.P. On Large-Batch Training for Deep Learning: Generalization

Gap and Sharp Minima. arXiv 2017, arXiv:1609.04836.
46. Casado-García, Á.; Heras, J. Ensemble Methods for Object Detection. In Proceedings of the ECAI, Santiago de Compostela, Spain,

31 August–2 September 2020. [CrossRef]

http://dx.doi.org/10.1109/CVPR.2019.00094
http://dx.doi.org/10.1109/TITS.2020.2972974
http://dx.doi.org/10.1109/CVPR.2012.6248074
https://scale.com/open-datasets/pandaset
https://scale.com/open-datasets/pandaset
http://dx.doi.org/10.1109/CVPR42600.2020.01164
http://dx.doi.org/10.1016/j.neucom.2018.08.009
http://dx.doi.org/10.1109/TPAMI.2017.2700460
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1016/j.patcog.2019.01.006
http://dx.doi.org/10.1109/TPAMI.2016.2572683
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://dx.doi.org/10.3233/FAIA200407

	Introduction
	Related Work
	Two-Stage Detectors
	One-Stage Detectors
	Object Detection in Autonomous Vehicles

	Materials and Methods
	Waymo Open Dataset
	Deep Learning Meta-Architectures
	Faster R-CNN
	RetinaNet
	YOLOv3
	FCOS

	Feature Extractors
	ResNet, ResNeXt, and Res2Net
	DarkNet
	MobileNet

	Training Procedure and Other Implementation Details

	Results and Discussion
	Evaluation Metrics
	Precision and Efficiency Analysis
	COCO Precision Metrics
	Waymo Precision Metrics

	Effectiveness of Transfer Learning
	Other Useful Metrics

	Conclusions and Future Work
	References

