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Abstract. In recent work, stable evolutionary signal induced by orthologous proteins has
been observed in a Yeast protein-protein interaction (PPI) network. This finding suggests
more connected subgraphs of a PPI network to be potential mediators of evolutionary in-
formation. Because protein complexes are also likely to be present in such subgraphs, it is
interesting to characterize the bias of the orthology signal on the detection of putative protein
complexes. To this aim, we propose a novel methodology for quantifying the functionality of
the orthology signal in a PPI network at a protein complex level. The methodology performs
a differential analysis between the functions of those complexes detected by clustering a PPI
network using only proteins with orthologs in another given species, and the functions of
complexes detected using the entire network or sub-networks generated by random sampling
of proteins. We applied the proposed methodology to a Yeast PPI network using orthology
information from a number of different organisms. The results indicated that the proposed
method is capable to isolate functional categories that can be clearly attributed to the pres-
ence of an evolutionary (orthology) signal and quantify their distribution at a fine-grained
protein level.

1 Introduction

In general, two proteins are orthologous if they originated from a common ancestor, having been
separated in evolutionary time only by a speciation event. Orthologous proteins have high amino
acid sequence similarity and usually retain the same or very similar function, which allows one to
infer biological information between the proteins. Obviously, orthology as such is very important
in studying evolution. Therefore, the problem of establishing proper orthology relations has been
under the wide investigation in comparative genomics (see for instance [1]) and many databases
and public resources of orthologs have been made available, such as Inparanoid [2] and OrthoMCL-
DB[3].

Recent studies used this form of evolutionary information to analyse protein modules and PPI
networks, for instance [4–12]. In particular, in a study by Wutchy et al. [6] stable evolutionary signal
was found to be present in a Yeast PPI network as examined by its pairwise orthologs with respect
to various different species. They observed that a high local clustering around protein-protein
interactions correlates with evolutionary conservation of the participating proteins. This means
that highly connected proteins and protein pairs embedded in a well clustered neighbourhood
tend to be evolutionary conserved and therefore retain their evolutionary signal. These findings
suggest also that more connected areas of a PPI network are potential mediators of evolutionary
information.

Because more connected regions of PPI networks contain protein modules or complexes, in
this paper we focus on the explicit use of orthology to see whether there are functional complexes
that can be clearly attributed to this evolutionary signal. To this aim, we try to characterize
those functions of complexes predicted by clustering the subgraph of a PPI network induced by
all proteins with orthologs in another given species, but not predicted (or predicted for a smaller
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fraction of proteins) when clustering the entire network. We consider these functions as strong
characterization of the underlying evolutionary signal of orthologs, since they are suppressed or
not observed when clustering using the entire network.

Specifically, we examine highly functionally coherent putative protein complexes as detected
by two state-of-the-art clustering techniques in the Yeast PPI network using only proteins with
orthologs in another given organism. Our target clusters should contain a function which can be
genuinely attributed to the orthology signal and exclude the case that it could be attributed by
chance. Therefore we consider three classes of clusters, consisting of putative complexes as detected
by these clustering techniques applied to the Yeast PPI network with (1) all proteins, (2) only
proteins with ortholog in the considered other organism, and (3) randomly selected proteins. The
latter class of clusters is the collection of cluster sets produced by the application of clustering to
the PPI network induced by a random selection of a set of proteins (of size equal to that of the set
of proteins used to generate the class (2)) repeated for dozens times. For all clusters in each class
we infer putative functions by measuring their gene ontology (GO) functional enrichment [13].

In general, protein functions belong to certain functional categories. Hence, we map all putative
functions inferred from the clusters to these categories. For a set of clusters and a certain category,
we compute the fraction of proteins contained in the clusters and having functions mapped to
that category. This fraction quantifies (at protein level) the presence of that functional category
in a given cluster set. This allows us to identify functional categories whose proteins’ fraction is
higher in clusters from the class (2) than in clusters from the other two classes. We consider the
corresponding clusters in class (2) as describing the orthology signal (with respect to considered
species). Furthermore, we analyse those clusters of class (2) having a predicted function for its
proteins that is not inferred when using clusters of class (1). Finally we discuss the new meaningful
functions for well-defined as well as for unknown proteins that are present in the compilation of
putative complexes.

2 Other Related Work

In previous works on phylogenetic analysis of protein networks and complexes evolutionary infor-
mation was usually used as a mean for evaluating the preservation of orthology information in
functional modules [5, 8–10]. Here, however, we incorporate evolutionary information beforehand
for detecting evolutionary signal at complex, functional level. Our identification of protein com-
plexes uses only the topology of the network of the considered species and orthology information
from another species, without requiring knowledge on the interactome of the other species.

In general, our approach differs from comparative network methods [14], as the latter aim
to find evolutionary conserved modules across species, and exploit both orthology and network
topology of the considered organisms. The clusters we obtain are in one species and are related
to the orthology signal with respect to another species, but are not required to be evolutionary
conserved through species (we do not enforce any type of similarity at the graph-structure level).
Furthermore, comparative methods mostly do not use ‘known’ orthologs in available databases but
rather they rely on sequence similar proteins, where the level of required similarity is determined
by a minimal similarity score threshold. Instead, our method exploits the orthology information
available in existing databases.

3 Method

The following terminology is used in the sequel. A PPI network is represented by means of a graph
G(V,E), where V is the set of nodes (proteins) and E is the set of edges (binary interactions).
Let X be a subset of nodes V (e.g. ortholog set). The set X induces a subgraph G[X] = (X, EX)
of G, with set X of nodes and set EX of those edges of E that join two nodes in X. For a set S,
we denote by |S| the number of its elements.

We are interested in quantifying the orthology signal by means of a set of functions of putative
protein complexes detected by applying clustering to a PPI network. To this end, we directly exploit
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evolutionary information of proteins as described by the presence of orthologs in another, given
species. We call these proteins ’true orthologs’. Specifically, we propose the following methodology.

Given a PPI network G = (V,E) and a given species s, apply the following steps.

1. Retrieve from a database the set O of ’true orthologs’ of V with respect to s, with |O| = n.
2. Generate the following three classes of clusters, using a given clustering algorithm.

(a) Class 1 clusters (GC). Apply clustering to the whole PPI network G.
(b) Class 2 clusters (OC). Apply clustering to the sub-network induced by O.
(c) Class 3 clusters (RC). Apply clustering to the sub-network induced by a randomly selected

subset of V of size n. Repeat the process a number N of times. Consider all sets of clusters
detected across these runs (RC = {RC1, RC2, . . . , RCN}).

3. For each class of clusters,
(a) Infer putative complexes and their functional categories.
(b) For each functional category, compute the fraction of those proteins in the detected com-

plexes which have been assigned to that category.
4. Select the set of those functional categories derived using clusters from class 2 and whose

fraction are higher than those of the same category derived using clusters from class 1 or from
class 3.

5. Output the set of clusters having at least one of the selected functional categories.

In this study we consider as putative protein complex only a group of proteins of a higher
complexity than just a single protein-protein interaction. Therefore, after applying any clustering
method we retain only clusters of size greater or equal than 3.

In the sequel we describe in more detail the main steps of the proposed methodology.

Inferring Putative Complexes and their Functional Categories. In order to infer the
the putative functions of a cluster, we measure the enrichment of functional annotations of the
corresponding protein set, as entailed by the gene ontology (GO) annotation [13], using one of
the well-established tools, the Ontologizer1 [15]. The Ontologizer offers various algorithms for
measuring GO enrichments. Here, we apply the standard statistical analysis method based on the
one-sided Fisher’s exact test [15], which measures the statistical significance of an enrichment and
assigns to the cluster a p-value for each enriched function. The p-value is further corrected for
multiple testing by means of a Bonferroni correction procedure.

The GO is known to have a hierarchical structure (directed acyclic graph) which can be used
to define the level of an annotation. Specifically, the level of an annotation is equal to the length
of the shortest path from the root of GO hierarchy to the annotation. The GO terms closer to the
root of GO give more general description of biological functions while terms closer to the leaves
of GO have granular and very specific biological definitions.

Each detected cluster is a potential protein complex. The quality of a protein cluster is given
by the coherence of biological functions of proteins contained in the cluster. If a certain subset
of proteins in a cluster has a significantly coherent function, a prediction of that function for all
proteins in the cluster can be made. We may obtain more than one protein function prediction if
we find more significantly coherent functions in the cluster. We say that proteins of a cluster have
a significantly coherent function or functional GO annotation if the following criteria are satisfied:

1. the GO annotation is significantly enriched by the proteins in the cluster (p-value < 0.001).
2. more than half of the proteins in the cluster has this significant annotation.
3. the annotation is at least at the GO level four from the root of GO hierarchy.

In such a case the cluster can be used as protein function predictor and the significantly
enriched GO annotation of the cluster is used to predict protein function of each of the proteins in
that cluster. If a cluster does not satisfy the above conditions, no prediction can be made. Similar
criteria were used by, e.g. [16, 17]. The condition on GO hierarchy guarantees that the prediction
about biological functions is sufficiently specific and informative [18]. Each cluster which is a
predictor defines a putative protein complex and the set of significantly coherent functions defines
the set of inferred functions.
1 http://compbio.charite.de/index.php/ontologizer2.html
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Estimating the Frequency of a Functional Category. After identifying putative protein
complexes, we use them to quantify, at a fine-grained, protein level, the frequency with which a
functional category was detected: for each functional category inferred using the putative protein
complexes, we count the fraction of those proteins in the putative complexes assigned to that
category.

Specifically, functional categories are determined by GO slim functional terms, defined in the
GO hierarchy as a subset of the higher level GO terms. Each GO slim characterizes a certain
type of biological functions which have some features and tasks in common. As a result, each
fine-grained term can be mapped to these GO slims’ terms.

The GO also consists of three main independent domains, biological process, molecular func-
tion and cellular component, and each of them has its own GO slim terms and hence functional
categories. Given a GO domain and proteins of a cluster group of interest one can map all inferred
functions of each protein to their closest GO slims in the GO hierarchy. Then for every functional
category we can count the number of proteins being mapped to the category. In this framework
we define the frequency of a functional category as follows.

Let C be a set of putative complexes and P (f) denote the set of proteins contained in C and
being mapped to a functional category f . Let B be a set of background functional categories
(functional background). Then the frequency of a functional category f in C with respect to the
background B is

φC(f) =
|P (f)|
|P (B)|

, where P (B) =
∪

∀b∈B

P (b). (1)

Notice that in our definition we consider an individual background for each GO domain.
The frequency of a functional category can be viewed as the expectation that a protein in

a given set of putative complexes has that functional category. This results in a distribution of
functional categories associated to a set of complexes.

Identifying Orthology-Related Categories. Since we are interested in analysing the evolu-
tionary (orthology) signal, we use as the functional background the set of functional categories
enriched by the class 2 putative complexes. Therefore we compute the functional frequencies for
each class of putative complexes using this background. For class 3 (random sampling), for each
functional category, we average the frequencies over all random simulations as follows

φRC(f) =
∑N

i=1 φRCi(f)
N

. (2)

Once the functional frequencies are computed, we isolate functional categories related to the
orthology signal by the following simple rule:

A functional category f is orthology-related iff

φOC(f) > max{φGC(f), φRC(f)}. (3)

4 Experimental Settings

4.1 Data Collection

We chose to perform our analysis on the widely used and well-studied species Saccharomyces cere-
visiae (yeast), which PPI network is one of the best established and information on functionality
of its proteins are one of the most explored. This makes yeast as a good standard model species
for protein network analysis.

We used the same yeast interaction data as in [19] which combines interaction data from
DIP [20] and MPact [21], and interactions from the core datasets of the TAP mass spectrometry
experiments [22, 23]. This yeast interaction data are weighted by the method proposed by Jansen
et al. [24] to measure the confidence of interactome. As a result, the low confidence interactions
are ignored and the final yeast PPI network consists of 3545 proteins and 14354 interactions.
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For obtaining orthology information we used the Inparanoid Database of Pairwise Ortholog2

[2]. This database contains clusters of ortholog groups (COGs) constructed by the Inparanoid
program, which is a fully automatic method for finding orthologs and in-paralogs between two
species. Ortholog clusters in the Inparanoid are seeded with a two-way best pairwise match (the
seed ortholog pair), after which an algorithm for adding in-paralogs is applied. The Inparanoid
was found as one of the best performing algorithms for orthology detection with respect to its
false negative and false positive rates [25].

Because in-paralogs are homologs that arise when duplication occurs after speciation, and the
duplicated gene often still retains the function of the ortholog [26], they should be likely found in
one protein complex. Therefore we consider all proteins present in COGs for inducing an orthology
PPI sub-network and, for simplicity, we consider all proteins in a COG as orthologs. Specifically,
further in this study we call orthologous protein or ortholog a protein which is a part of an
orthologous cluster produced by the Inparanoid when comparing two species.

In our analysis, COGs were obtained for the following pairs of organisms:

– Saccharomyces cerevisiae vs. Escherichia coli
– Saccharomyces cerevisiae vs. Caenorhabditis elegans
– Saccharomyces cerevisiae vs. Drosophila melanogaster
– Saccharomyces cerevisiae vs. Homo sapiens

Escherichia coli (E.coli), Caenorhabditis elegans (worm), Drosophila melanogaster (fly) and
Homo sapiens (human) are standard organisms used in protein network and genome comparative
studies (e.g [27, 28]) and represent the diverse life-forms from a prokaryote (E.coli) to the highly
complex eukaryote (Human). Yeast proteins in the derived ortholog groups are called yeast or-
thologs. We considered the following 4 sets of yeast orthologs (present in the yeast PPI data),
namely Yeast-E.coli, Yeast-Worm, Yeast-Fly, Yeast-Human, consisting of 451, 1664, 1724, and
1850 number of proteins.

4.2 Yeast Protein Function Annotations and Gene Ontology Files

In order to measure functional enrichments of clusters we used only experimentally verified anno-
tations as reported in the yeast gene association file of Saccharomyces Genome Database3 (SGD),
available at the GO database4. We excluded all computationally assigned annotations to yeast pro-
teins to avoid introducing a possible bias, because many of these techniques use protein structural
or sequence similarity which may often refer to orthology. GO slims and terms are also available
at GO database.

4.3 Clustering

In this study we used two clustering techniques: SiDeS and MCL. We briefly address their properties:

MCL [29] computes clusters based on simulation of stochastic flow in graphs and it is widely used on
many domains. It is able to use information on weights of edges of a given network if available.
A first successful application of this algorithm on biological networks was presented in [30];
MCL was also modified for detecting orthologous groups [31]. A recently published comparative
study [32] indicated that MCL outperforms other algorithms for clustering PPI networks. The
inflation parameter of the algorithm was set to 1.8 as suggested in [32].

SiDeS [33], in contrast, is not able to use information on weights of edges. However, the main
advantage of SiDeS is that it directly addresses the problem of statistical significance of
cluster density, based on the topological structure of a PPI network, during computation.

2 http://inparanoid.sbc.su.se/
3 http://www.yeastgenome.org/
4 http://www.geneontology.org/GO.downloads.shtml, SGD version: 1.1523 date: 11/13/2010,

GO version: 1.1.1602 date: 16/11/2010, GO Slim version: 1.1.1543 date: 19/10/2010
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Thus, all clusters isolated by SiDeS have statistically significant density and therefore the
resulting clusters tend to be more biologically relevant than those produced by other methods,
albeit fewer in number. SiDeS modifies an existing state-of-the-art graph clustering algorithm,
HCS [34], based on recursive partitioning of a graph and incorporating the computation of
statistical significance of clusters.

The above two clustering algorithms are different in their basic concepts and combining their
results for identifying orthology-related functional categories should effectively minimize the pos-
sibility of finding an artefact. Therefore we applied both clustering algorithms on each yeast PPI
sub-network induced by every set of yeast orthologs as well as on all yeast PPI sub-networks in-
duced by repeated random protein selection of the same number of proteins as the protein count
of a particular yeast ortholog set. We labelled each resulting cluster group as follows:

– OYC-E - yeast clusters found in the sub-network induced by the Yeast-E.coli ortholog set.
– OYC-W - yeast clusters found in the sub-network induced by the Yeast-Worm ortholog set.
– OYC-F - yeast clusters found in the sub-network induced by the Yeast-Fly ortholog set.
– OYC-H - yeast clusters found in the sub-network induced by the Yeast-Human ortholog set.

These groups are of the class (2) and we generally refer to them by the common name OYC.
Analogically we also marked cluster groups induced by randomly sampled proteins as follows:

– RYC-E - yeast clusters found in the sub-network induced by random sampled proteins of the
same number as the number of proteins in the Yeast-E.coli ortholog set.

– RYC-W - yeast clusters found in the sub-network induced by random sampled proteins of the
same number as the number of proteins in the Yeast-Worm ortholog set.

– RYC-F - yeast clusters found in the sub-network induced by random sampled proteins of the
same number as the number of proteins in the Yeast-Fly ortholog set.

– RYC-H - yeast clusters found in the sub-network induced by random sampled proteins of the
same number as the number of proteins in the Yeast-Human ortholog set.

These groups belong to the class (3) and we generally refer to them by the common name RYC.
When MCL or SiDeS applied on the whole yeast network, we get clusters of the class (1) and

we refer to them by the name GYC (general yeast clusters).
We randomly sampled proteins 1000 times for each given number of orthologs. Recall that every

run produces one particular RYC group. In order to compare these clusters with GYC or OYC,
we always report average values of RYC groups computed over all 1000 simulations according to
a given ortholog set (average RYC values).

Tables 1 contains the number of all clusters and corresponding cluster predictors for GYC, all
four OYC and average RYC, as identified by MCL and SiDeS.

Table 1. Numbers of Clusters.

MCL SiDeS

Cluster Group #Clusters #Predictors #Clusters #Predictors

GYC 365 147 122 93

OYC-E 37 14 5 3
RYC-E 34.31 (±3.82) 12.69 (±2.96) 4.71 (±2.08) 3.8 (±1.76)

OYC-W 181 80 66 46
RYC-W 175.22 (±7.21) 67.85 (±5.87) 55.04 (±5.57) 40.32 (±4.54)

OYC-F 191 80 64 51
RYC-F 181.97 (±7.51) 70.32 (±6.01) 57.71 (±5.57) 42.25 (±4.49)

OYC-H 203 90 82 62
RYC-H 196.38 (±7.80) 75.71 (±6.21) 63.42 (±5.67) 46.12 (±4.68)
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5 Results

The detected cluster predictors are considered as putative protein complexes and used to iden-
tify orthology-related functional categories. For each cluster group of predictors we compute the
functional frequencies with respect to the categories enriched by OYC, as explained in Section 3.
Figure 1 shows the frequency distribution of GYC, OYC-W and RYC-W clusters as detected by
SiDeS.

In Tables 4 and 5 (see the Appendix) frequencies are reported as measured by MCL and SiDeS
OYC-W clusters, respectively. Observe that not all orthology-related functional categories are
shared by MCL or SiDeS cluster groups. To minimize the possibility of false positives, we employed
a conservative approach and considered as orthology-related functional categories only those iden-
tified by both clustering techniques. The results are listed in Table 2.
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Fig. 1. Functional frequencies for Yeast-Worm orthologs as estimated by SiDeS predictors. On x-axis GO
ids of GO slim functional categories are reported.

5.1 Orthology-related functional categories

For Yeast-E.coli orthologs, the identified clusters have higher frequencies of ribosomal and mito-
chondrial proteins. Indeed, it has been shown that the ribosomes in the mitochondria of eukaryotic
cells resemble those in bacteria, reflecting the likely evolutionary origin of this organelle [35].

Since worm, fly and human all belong to eukaryotes, we looked at which common functional
categories have yeast clusters containing orthologs with respect to these species (reported in Table
2 in boldface). Considering molecular functions, we observed that protein binding proteins and
kinases activity proteins are more frequently present in OYC clusters than in GYC clusters or
in RYC clusters. Thus these functional categories might be considered as orthology related. This
is true in particular for proteins of protein kinase activity, which have been found conserved
among eukaryotes: these kinase’ functional conservations were investigated for yeast, worm, fly
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and human when studying their evolution [36]. Moreover, kinases’ proteins are known to regulate
the majority of cellular pathways, especially those involved in signal transduction. As we may see,
signal transduction is also identified as orthology-related functional category. Regarding orthology-
related protein binding, many functions of this category also showed high sequence conservation
among eukaryotes (e.g [37, 38]).

The next functional category which is orthology-related is translation. Many machineries in-
volved with translation are expected to be evolutionary conserved as supported, e.g., by the evi-
dence of finding a conserved protein family involved in translation [39], or by the presence of an
evolutionary conserved mechanism for controlling the efficiency of protein translation [40].

Finally, we also observed OYC complexes containing vacuole proteins to be orthology-related.
This is again supported by works which investigated yeast vacuole’s proteins and function of their
orthologs in other species. In particular, mammalian orthologs of yeast vacuolar protein sorting
have been found to participate in early endosomal fusion and to interact with the cytoskeleton
[41], and a very recent study of the same protein group revealed homologous genes and pathways
that promote ageing in organisms ranging from yeast to mammals [42].

5.2 Orthology-related putative protein complexes

We consider orthology-related clusters those clusters whose proteins perform at least one function
of an orthology-related functional category. In Table 3 we report the number of orthology-related
clusters found by the generated predictors. We call unique MCL or SiDeS clusters those orthology-
related clusters whose proteins have a predicted function that is not inferred for those proteins by
any GYC cluster identified by MCL or by SiDeS, respectively. These are the complexes that are
new and derived using (the protein complex composition present in) the orthology sub-network,
that is, uniquely linked to the orthology signal.

Given a unique cluster and its protein having a novel predicted function not inferred by any
GYC cluster containing the protein. Then, if the function prediction is experimentally or compu-
tationally annotated in SGD, this prediction is verified. Analogously, if we find the novel predicted
function has not been experimentally or computationally annotated in SGD, then this prediction
is a new one. Observe that one cluster can have verified as well as new predictions at the same
time. The number of clusters that produce verified and/or new protein predictions are reported
in Table 3.

Examples of these novel complexes are given in the Appendix (Table 6): they demonstrate that
by examining different set of orthologs we found specific putative complexes, most of them crucial
for a living cell.

For instance, proteins of Cluster 1. are predicted to be involved in mitochondrial proton-
transporting ATP synthase, catalytic core. While ATP1 and ATP2 are indeed the part of the
catalytic core, ATP3 is part of the central stalk of mitochondrial proton-transporting ATP syn-
thase. Cluster 1., however, gives a proper suggestion for the mechanism of the ATP3. Moreover,
as ATP3 interacts with ATP2 it may be involved also in the catalytic core.

In Cluster 2. polyadenylation-dependent r-,t- and m-RNA catabolic process is newly predicted
for NRD1 protein. This complies with recent findings that NRD1 is RNA-binding protein function-
ing in the poly(A) independent termination, in which binding to the combined and/or repetitive
termination elements elicits efficient termination [43].

Cluster 3. is a predictor for INO80 complex. Three proteins, SWR1, IES6 and VPS72, have not
yet been found to be part of this complex, however all of them associate with chromatin, where
IES6 directly associates with the INO80 chromatin remodelling complex. This predictor has been
found by both clustering methods independently.

In Cluster 4. ERR3 is a protein of unknown function, which has similarity to enolases. The
predictor was found for Yeast-Worm as well as for Yeast-Fly orthologs, and it suggests that ERR3
is part of the ubiquitin conjugating enzyme complex.

Cluster 5. predicts COPII vesicle coat proteins. This cellular component was not predicted by
any GYC predictor. Newly associated proteins with COPII are HIP1 and BUG1. These predictions
seem to correctly suggest their functioning in a cell, as BUG1 is cis-golgi localized protein involved
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Table 2. Orthology-related functional categories. The spacing reflects the tree structure of GO slims in GO
hierarchy. Functional categories in boldface are those shared by all OYC groups of eukaryotic orthologs.

Cluster Group GO ID Name GO Domain

OYC-E GO:0005739 mitochondrion Cellular Component
GO:0005840 ribosome Cellular Component

OYC-W GO:0005622 intracellular Cellular Component
GO:0005730 nucleolus Cellular Component

GO:0005773 vacuole Cellular Component
GO:0016023 cytoplasmic membrane-bounded vesicle Cellular Component

GO:0006412 translation Biological Process
GO:0007165 signal transduction Biological Process
GO:0009056 catabolic process Biological Process
GO:0019538 protein metabolic process Biological Process

GO:0005515 protein binding Molecular Function
GO:0003824 catalytic activity Molecular Function

GO:0004721 phosphoprotein phosphatase activity Molecular Function
GO:0016301 kinase activity Molecular Function
GO:0004672 protein kinase activity Molecular Function

OYC-F GO:0005730 nucleolus Cellular Component
GO:0005773 vacuole Cellular Component
GO:0043234 protein complex Cellular Component

GO:0006412 translation Biological Process
GO:0007165 signal transduction Biological Process
GO:0009056 catabolic process Biological Process
GO:0019538 protein metabolic process Biological Process
GO:0006139 nucleobase,-side,-tide and nucl. acid metab. proc. Biological Process

GO:0005515 protein binding Molecular Function
GO:0003677 DNA binding Molecular Function
GO:0008135 translation factor activity, nucleic acid binding Molecular Function
GO:0016301 kinase activity Molecular Function
GO:0004672 protein kinase activity Molecular Function

OYC-H GO:0005654 nucleoplasm Cellular Component
GO:0005773 vacuole Cellular Component
GO:0005829 cytosol Cellular Component
GO:0016023 cytoplasmic membrane-bounded vesicle Cellular Component

GO:0006412 translation Biological Process
GO:0007165 signal transduction Biological Process
GO:0009056 catabolic process Biological Process

GO:0005488 binding Molecular Function
GO:0005515 protein binding Molecular Function

GO:0016740 transferase activity Molecular Function
GO:0016301 kinase activity Molecular Function
GO:0004672 protein kinase activity Molecular Function
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Table 3. Numbers of orthology-related clusters.

Cluster Group Method #Predictors #Ort-related. #Unique #Verified #New

OYC-E MCL 14 4 4 3 4
SiDeS 3 2 1 0 1

OYC-W MCL 80 37 32 29 31
SiDeS 46 29 20 19 15

OYC-F MCL 80 57 40 37 38
SiDeS 51 44 34 32 28

OYC-H MCL 90 33 24 20 23
SiDeS 62 31 26 17 21

in endoplasmic reticulum to Golgi transport, and HIP1 is a high-affinity histidine permease, also
involved in the transport of manganese ions.

Protein predictions for COPI vesicle coat are inferred by Cluster 6., where novel ones are for
ARF1, ARF2 and ERV41 proteins. ARF1 and ARF2 are ADP-ribosylation factors involved in
regulation of coated vesicle formation in intracellular trafficking within the Golgi. Because vesicles
with COPI coats are found associated with Golgi membranes at steady state [44], it suggests that
these predictions might be correct. ERV41 is a protein localized to COPII-coated vesicles, but
again our clusters at least properly predicts a possible role of protein in a cell.

Clusters 5. and 6. were partially also discovered by Yeast-Worm and Yeast-Human orthologs.
Interestingly, each of them was discovered by a different clustering technique.

Cluster 7. consists of mostly DNA-directed RNA polymerase II proteins. Although proteins
DST1, TFG2 and RPA135 have not been found to be directly part of this complex, the predictor
properly associates these proteins with RNA polymerase system functioning. DST1 is a general
transcription elongation factor TFIIS and it enables RNA polymerase II to read through blocks to
elongation. TFG2 is a Transcription Factor II middle subunit involved in both transcription initi-
ation and elongation of RNA polymerase II. Finally, RPA135 is RNA polymerase I second largest
subunit A135. Thus, the protein is correctly associated with RNA polymerases and additionally
our prediction also suggests that it may play a role in formation of RNA polymerase II.

6 Conclusions

We proposed a novel methodology for quantifying the functionality of the orthology signal in a
PPI network at a protein complex level. The methodology performs a differential analysis between
the functions of those complexes detected by clustering a PPI network using only proteins with
orthologs in another given species, and the functions of complexes detected using the entire network
or a sub-network generated by random sampling of proteins.

Results of our experimental analysis indicated the usefulness of the proposed methodology
to identify functional categories clearly attributed to the presence of an evolutionary (orthology)
signal. The distribution of these categories was described by means of protein functions inferred
from those putative complexes detected by clustering a PPI network using an explicit orthology
bias incorporated in the search space.
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Table 4. Frequencies of functional categories for Yeast-Worm MCL predictors. Orthology-related functional
categories are in boldface.

GO ID GYC OYC-W RYC-W Name

GO:0005623 0.162 0.083 0.103 (±0.032) cell
GO:0005737 0.120 0.037 0.086 (±0.035) cytoplasm
GO:0016023 0.026 0.031 0.025 (±0.015) cytoplasmic membrane-bounded vesicle
GO:0005783 0.034 0.031 0.018 (±0.012) endoplasmic reticulum
GO:0005768 0.034 0.035 0.014 (±0.010) endosome
GO:0005794 0.052 0.057 0.050 (±0.017) Golgi apparatus
GO:0005739 0.108 0.044 0.114 (±0.021) mitochondrion
GO:0005773 0.008 0.013 0.008 (±0.006) vacuole
GO:0005829 0.015 0.009 0.013 (±0.012) cytosol
GO:0005622 0.629 0.657 0.587 (±0.056) intracellular
GO:0005694 0.107 0.044 0.105 (±0.027) chromosome
GO:0000228 0.077 0.031 0.098 (±0.025) nuclear chromosome
GO:0005856 0.034 0.026 0.033 (±0.020) cytoskeleton
GO:0005634 0.447 0.510 0.461 (±0.057) nucleus
GO:0005730 0.059 0.191 0.111 (±0.044) nucleolus
GO:0005815 0.017 0.006 0.007 (±0.008) microtubule organizing center
GO:0005635 0.013 0.020 0.018 (±0.012) nuclear envelope
GO:0005654 0.140 0.172 0.183 (±0.033) nucleoplasm
GO:0043226 0.605 0.470 0.412 (±0.079) organelle
GO:0005886 0.003 0.009 0.002 (±0.005) plasma membrane
GO:0043234 0.418 0.539 0.536 (±0.053) protein complex

Table 5. Frequencies of functional categories for Yeast-Worm SiDeS predictors. Orthology-related func-
tional categories are in boldface.

GO ID GYC OYC-W RYC-W Name

GO:0005623 0.130 0.065 0.060 (±0.028) cell
GO:0005737 0.190 0.097 0.105 (±0.045) cytoplasm
GO:0016023 0.020 0.035 0.018 (±0.015) cytoplasmic membrane-bounded vesicle
GO:0005768 0.023 0.012 0.008 (±0.009) endosome
GO:0005794 0.060 0.035 0.048 (±0.021) Golgi apparatus
GO:0005739 0.105 0.029 0.135 (±0.023) mitochondrion
GO:0005840 0.101 0.015 0.123 (±0.029) ribosome
GO:0005773 0.010 0.012 0.007 (±0.008) vacuole
GO:0005829 0.032 0.074 0.038 (±0.030) cytosol
GO:0005622 0.670 0.691 0.660 (±0.065) intracellular
GO:0005694 0.118 0.041 0.100 (±0.031) chromosome
GO:0000228 0.105 0.041 0.100 (±0.030) nuclear chromosome
GO:0005856 0.037 0.026 0.028 (±0.020) cytoskeleton
GO:0005634 0.462 0.479 0.511 (±0.054) nucleus
GO:0005730 0.075 0.141 0.130 (±0.034) nucleolus
GO:0005654 0.216 0.244 0.234 (±0.036) nucleoplasm
GO:0043226 0.463 0.297 0.393 (±0.075) organelle
GO:0043234 0.630 0.594 0.603 (±0.045) protein complex



14 P. Jancura, E. Mavridou, B. Pontes, E. Marchiori

Table 6. Orthology-related clusters.

Cluster ID Proteins Prediction Cluster Group Method

Cluster 1. ATP1
mitochondrial proton-transporting ATP
synthase, catalytic core

OYC-E MCL

ATP2 OYC-E MCL

ATP3 OYC-E MCL

Cluster 2. MTR4
nuclear polyadenylation-dependent r-,t-and
m-RNA catabolic process

OYC-W MCL

TRF5 OYC-W MCL

PAP2 OYC-W MCL

NRD1 OYC-W MCL

Cluster 3. RVB1

INO80 chromatin remodelling complex

OYC-F MCL, SiDeS
RVB2 OYC-F MCL, SiDeS
ARP5 OYC-F MCL, SiDeS
ARP8 OYC-F MCL, SiDeS
INO80 OYC-F MCL, SiDeS
IES6 OYC-F MCL, SiDeS
SWR1 OYC-F MCL, SiDeS
VPS72 OYC-F MCL, SiDeS

Cluster 4. MMS2
ubiquitin conjugating enzyme complex

OYC-F,OYC-W MCL

UBC13 OYC-F,OYC-W MCL

ERR3 OYC-F,OYC-W MCL

Cluster 5. SEC23

COPII vesicle coat

OYC-F,OYC-W,OYC-H MCL

SEC24 OYC-F,OYC-W,OYC-H MCL

SFB2 OYC-F,OYC-W,OYC-H MCL

HIP1 OYC-F,OYC-W,OYC-H MCL

GRH1 OYC-F,OYC-W MCL

BUG1 OYC-F MCL

Cluster 6. RET2

COPI vesicle coat

OYC-F,OYC-H,OYC-W SiDeS

RET3 OYC-F,OYC-H,OYC-W SiDeS

SEC21 OYC-F,OYC-H,OYC-W SiDeS

SEC26 OYC-F,OYC-H,OYC-W SiDeS

SEC27 OYC-F,OYC-H,OYC-W SiDeS

ARF1 OYC-F,OYC-H,OYC-W SiDeS

ARF2 OYC-F,OYC-H,OYC-W SiDeS

COP1 OYC-F,OYC-H SiDeS

ERV41 OYC-F SiDeS

Cluster 7. SPT5

DNA-directed RNA polymerase II

OYC-H SiDeS

RPB2 OYC-H SiDeS

RPB3 OYC-H SiDeS

RPB4 OYC-H SiDeS

RPB7 OYC-H SiDeS

RPB8 OYC-H SiDeS

RPB9 OYC-H SiDeS

RPB11 OYC-H SiDeS

RPO21 OYC-H SiDeS

RPO26 OYC-H SiDeS

RPC10 OYC-H SiDeS

RPA135 OYC-H SiDeS

TFG2 OYC-H SiDeS

DST1 OYC-H SiDeS
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