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ABSTRACT
In this paper, a new control design procedure for a class of power converters based on hybrid dynamical
systems theory is presented. The continuous-time dynamics, as voltage and current signals, and discrete-
time dynamics, as the on-off state of the switches, are captured with a hybrid model. This model avoids the
use of averaged and approximatedmodels and includes the PWMaswell as the sample-and-holdmechanism,
commonly used in the industry. Then, another simplified hybrid system, whose trajectories match with the
original one, is selected to design the controller and to analyse stability properties. Finally, an estimation of
the chattering in steady state of the voltage and current signals is provided. The results are validated through
simulation and experiments.

INDEX TERMS Control of power converters, PWM, switched affine systems, hybrid dynamical systems,
Lyapunov stability.

I. INTRODUCTION
Converter control has been widely studied by the electronics
and control communities. Most of these studies deal with
designing continuous-time control laws whose outputs are
discretized by modulators. The most common modulator is
the Pulse-Width Modulator (PWM) [1], [2]. Very often, this
modulator is not considered in the converter control design
and in the subsequent stability analysis. Instead, continuous-
time approximate models, such as averaged models [3]–[5]
are commonly used. These approaches have solved many
practical problems and provided reasonably solid theoretical
grounds, but these results might appear superficial when
compared with the depth of analysis reached in other areas
nowadays. Probably, themost relevant limitations are both the
difficulty of quantifying the precision of the approximation
resulting from the averaging procedure, and the fact that the
properties of the control laws are only valid locally. In this
way, it is known that PWM blocks have an effect on the
output, [6], [7]. Mainly, the problem arises when the control
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designer ignores the discrete character of the signal, which
is maintained constant for an elapsed time, possibly causing
output jitter in steady state.

Recently, the control community has devoted efforts to
the study of new hybrid control techniques [8], such as
sliding mode control [9] or model predictive control [10]
applied to power converters with the possibility of consid-
ering the continuous-time dynamics (voltage and current
signals) and discrete-time dynamics (the functioning mode
of the switches). This class of hybrid systems is modelled
by switched affine state-space equations, where the constant
matrices change depending on the state of the switches. Other
hybrid controllers are presented in [11], [12], where the
unique control action is the selection of an operating mode
among a finite set of possibilities. In the latter reference, the
problem is formulated in terms of the control of switched
systems, whose modes are described by affine differential
equations. However, it is possible to show that the obtained
switching rule can be interpreted as a sliding mode control
law where the sliding surfaces are implicitly determined
in terms of the state space variables (current, voltage) and
of the selected operating point [13]. On the other hand,
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relevant results on Hybrid Dynamical System (HDS) theory
[14]–[18] have been applied to power converters. It also
is worth to mention the design of hybrid controllers with
minimum dwell-time guarantees [19].Moreover, in [20]–[22]
DC-DC as well as DC-AC power converters were controlled
using this approach. The main feature in these references
is the implementation of an aperiodic sampled-data based
control signal with arbitrarily fast switching, and the pos-
sible induction of a Zeno behaviour. This issue is solved
in [23], [24], where suitable formalisms relying on con-
trolled switches with control inputs updated in a periodic or
aperiodic manner are presented, without considering PWM.
A hybrid control using HDS theory was proposed in [25] for
a DC-AC converter. However, with most of these variants,
which do not include PWM in the controller, the state of
the switching devices can only be changed at the sampling
instants. Notice that when a PWM is used, the manipulated
control input can change in any instant inside the sampling
period, with the only constraint in the maximum number
of commutations inside this time interval. When the use of
PWM is avoided, it is necessary to increase the sampling
frequency to preserve a suited performance. Thus, the con-
sideration of PWM in power converters using HDS theory
is of interest. In [26], under some assumptions, it is proved
for general systems that the solutions of an averaged system
are suited approximations of the original one composed of a
PWM. Theymention power converters as systems that benefit
from this result.

This paper proposes a new control law based on HDS
models, avoiding the use of classical approximations derived
from averaged systems and guaranteeing stability properties
including non-linearities as PWM and sampling-and-hold
mechanisms. A preliminary work regarding the direct design
of controllers for power converters with PWM based on HDS
is [27], where power converters with switched affine models
are considered together with the PWM and sampling-and-
hold mechanisms. Unlike this paper,
• the PWM carrier considered thereby was a sawtooth
signal. Although this requires simpler analysis, it is not
the most usual carrier signal in PWM for power convert-
ers, since it is well known that triangular carriers yield
better results in many applications, in terms of harmonic
distortion [28], [29].

• The study using HDS theory of triangular carriers for
PWM is more involved than the one for sawtooth sig-
nals, due to the fact that the number of commutations in
a PWM interval is increased (it is almost doubled). As it
will be shown here, it is not only necessary to enlarge the
jump set for the hybrid model, but the number of state
variables must also be increased.

• A fictitious, simpler system is introduced in the present
paper, and its behavior is proven to match the original
system’s at the sampling instants. This result is used
to design a control law with stability guarantee for
this system and to extend its validity to the original
one.

• An estimation of the chattering in the steady-state sig-
nals is provided for the original hybrid model in the
present work.

Experimental results verify the validity of the proposed
control loop. Moreover, these validations are extended with
an external loop to guarantee voltage output regulation, as it
is commonly done in this kind of converters [30], [31].

This paper is organized as follows. The problem state-
ment is given in Section II. Then, the hybrid general model
of triangular-carrier PWM-based converters is presented in
Section III. The main result is presented in Section IV,
and Section V provides a discussion about parameter tuning
effects. Section VI and Section VII present simulated and
experimental results, respectively. Finally, the paper closes
with a conclusion section.
Notation: Throughout the paper N denotes the set of

natural numbers and R the set of real numbers, Rn the
n-dimensional Euclidean space and Rn×m the set of all real
n × m matrices. The set of non-negative real numbers is
denoted by R≥0. M � 0 (resp. M ≺ 0) represents that M is
a symmetric positive (resp. negative) definite matrix. 0 and I
are the zero matrix and identity matrix respectively, of suited
dimension. The operator ‖ · ‖ represents the Euclidean norm.
He(M ) is theHermitianmatrix ofM , i.e. He(M ) = (M+M>).
Finally, satba(φ) is the standard saturation function defined in
R 7→ [a, b].

II. PROBLEM STATEMENT
Many switched power converters can be modelled as
switched affine systems, as follows

ż = Aσ z+ Bσ , (1)

where z ∈ Rn contains the state variables, i.e. the continuous-
time evolutions of the voltages and currents and σ ∈

{0, 1, 2, . . . ,N − 1} is the control input that represents the
switching between themodes of the converter. Finally,Aσ and
Bσ are matrices of suitable dimensions.

Model (1) covers many applications of power convert-
ers, such as the classical converters: buck, boost con-
verter, quadratic boost converter, half bridge converter, boost
inverter, etc. This set of power converters is modelled with
two functioningmodes,N = 2, and this is the case considered
here, while it is possible to extend the results to converters
with N > 2.

Generally, one can find in the literature that these systems
are governed by continuous-time control laws [7], [32]–[34],
i.e., σ ∈ {0, 1} is modeled by continuous signals λ ∈ [0, 1],
obtained by using averaging approaches, and implemented
in (1) by PWM, as depicted in Fig. 1, where κ(x) represents a
continuous control law whose output is limited to the interval
[0, 1]. Furthermore, the control law is usually implemented
in a digital device in discrete time by sampling the state
of the converter z(t) periodically. Thus, the value of λ in
Fig. 1 is constant during each sampling interval. The PWM
mechanism with a triangular carrier is illustrated in Fig. 2.
For the sake of simplicity, in this paper, it is assumed that the
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beginning of the triangular carrier period coincides with the
time instants when the variables are measured, and the duty
cycle is obtained from the controller equations.

FIGURE 1. Feedback scheme.

FIGURE 2. PWM mechanism. Top: Tp-periodic triangular carrier, s; λ is the
duty cycle, v is the slope of the carrier s and q is a binary signal, taking
value 0 when s is depicted in red, and 1 when in blue. Bottom: output of
the PWM block, σ .

The control objective is to design a function λ = κ(x) :
Rn
7→ R such that the control signal σ (λs), modelled by

a triangular carrier, ensures the convergence of z to a given
operating point ze. Due to the sampling mechanism, asymp-
totic convergence to ze is not possible, and a chattering phe-
nomenon is unavoidable. In any case, the desired operating
point ze must satisfy the following assumption.
Assumption 1: Given an operating point ze there exists a

λ = λe ∈ [0, 1] such that the following equation holds,

0 = (A0 + (A1 − A0)λe)ze + B0 + (B1 − B0)λe. (2)

This standard assumption for switched affine systems guar-
antees the existence of a switched signal for system (1),
inducing an equilibrium in z = ze in the generalized sense of
Filippov [35]. This means that, in steady state, σ is expected
to be a periodic signal of period Tp, spending a time λTp in
mode 1 and (1−λ)Tp in mode 0, corresponding to the convex
combination of the right hand side of (2). Then, the time spent
in each mode will be distributed in every sampling interval
according to the used modulator. In this paper, it is assumed
without loss of generality, that at t = 0 a triangular carrier as
well as a sampling period start.

The error equation associated with (1) in each interval
between sampling instants can be written as:

ẋ = Aσ x + Bσ , (3)

where x := z − ze and Bσ := Bσ + Aσ ze such that Bλe = 0,
if Assumption 1 is satisfied.
Problem 1: Consider the switched system (1) with N = 2

and a PWM with a triangular carrier, as shown in Fig. 2.
Then, the goals here are
• to model the closed-loop system considering its hybrid
character, that is, the existence of both discrete-time and
continuous-time signals, as well as the triangular-carrier
PWM and sample-and-hold mechanism with a given
periodic sampling time Tp.

• To design a new control law for the duty cycle λ.
• To achieve convergence of z to ze and to analyse stability
properties for both hybrid systems.

• To estimate the chattering of the voltages and currents in
steady state.

III. HYBRID DYNAMICAL MODEL
In this section, the framework given in [14] about hybrid
dynamical systems will be used to model the controlled sys-
tem, considering continuous-time and discrete-time dynam-
ics. Hence, the following hybrid dynamical model of the
controlled switched system (3) is presented, considering a
triangular carrier for the PWM mechanism,

H :
{
ξ̇ = f (ξ ), ξ ∈ C
ξ+ ∈ g(ξ ), ξ ∈ D, (4)

being ξ = [x s v σ q λ τ ]> ∈ H, such that, H := Rn
×

[0, 1] × {−2/Tp, 2/Tp} × {0, 1} × {0, 1} × [0, 1] × [0,Tp].
The maps f and g capture the continuous-time and discrete-
time dynamics, respectively, and are defined as follows:

f (ξ ) =



Aσ x + Bσ
v
0
0
0
0
1


,

g(ξ ) =



x
s

v− 2vq
(2σ − 1)q+ (1− σ )

1− q
(1− qσ )λ+ qσ sat10 κ(x)

(1− qσ )τ


. (5)

with ξ (0) = [x(0), 0, 2/Tp, σ (0), 0, λ(0), 0]. The following
sets

C1 := {ξ ∈ H : q = 1, 0 ≤ s ≤ 1}

D1 := {ξ ∈ H : q = 1, s ≤ 0 or s ≥ 1}

C2 := {ξ ∈ H : q = 0, sv ≤ λv}

D2 := {ξ ∈ H : q = 0, sv ≥ λv},
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define the so-called flow and jump sets

C := C1 ∪ C2 (6)

D := D1 ∪D2. (7)

This hybrid scheme (4)–(7) gathers the complete dynamics
of the system. Indeed, the continuous-time dynamics of x
evolves according to the switching of σ . The selection of the
latter is given by a triangular modulator defined by s, v, q
and λ. It is easy to see that s is a continuous-time triangular
carrier (the signal shown in Fig. 2); v defines the slope of s;
q is an artificial variable which takes values

q :=


0 if

{
s < λ and v ≥ 0
s ≥ λ and v ≤ 0

1 if

{
s > λ and v ≥ 0
s ≤ λ and v ≤ 0.

Variable λ ∈ [0, 1] is the duty cycle, and κ(x) is the
control law, to be defined, that computes the value of signal λ
in every sampling time. Inside the sampling intervals, λ is
held constant. It is worth noting that the solutions to H are
generalized Krasovskii solutions, not only in the map f (ξ ),
but also in g(ξ ).

Solutions to H(f ,G, C,D) are given on the well-known
hybrid time domain: dom(ξ ) ⊂ R≥0 × N, such that,

dom(ξ ) =
j̄−1⋃
j=0

([tj, tj+1], j), (8)

for some sequence 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tj̄ with j̄ finite
(being a compact set) or infinite.

In order to simplify the subsequent analysis, consider a sec-
ond hybrid dynamical system, which is simpler than (4)–(7)
and, as will be shown below, its trajectories match those
of (4)–(7) at the sampling instants.

Hp :

{
ξ̇p = fp(ξp), ξp ∈ Cp
ξ+p ∈ gp(ξp), ξp ∈ Dp,

(9)

where ξp = [xp λp τp]> ∈ Hp, such that,Hp := Rn
× [0, 1]×

[0,Tp]. The maps fp and gp capture both the continuous-time
and discrete-time dynamics and are defined as follows:

fp(ξp) =

Aλxp + Bp0
1

 ,
gp(ξp) =

 xp
sat10 κ(xp)

0

 , (10)

where Aλ and Bp can be computed in different ways depend-
ing on the properties of the system. For this, consider a value
of t corresponding to a sampling instant (when the period
of the triangular carrier starts), that is, q = 1, s = 0 in
system (4)–(7). It is clear that at this moment system (4)–(7)
jumps. Consider a value of k such that tk is equal to this time
instant. By direct integration of the dynamics of x inH along

the triangular carrier period (Fig. 2), starting from an initial
condition x(tk ) yields1

x(tk+1) = eA1
λ
2 Tpx(tk )+ (eA1

λ
2 Tp − I )A−11 B1 (11)

x(tk+3) = eA0(1−λ)Tpx(tk+1)+ (eA0(1−λ)Tp − I )A−10 B0

(12)

x(tk + Tp) = eA1
λ
2 Tpx(tk+2)+ (eA1

λ
2 Tp − I )A−11 B1, (13)

being tk+1 = tk + Tp λ2 and tk+3 = tk + Tp(1− λ
2 ).

Then, the following assumption will explore different
possibilities to compute Aλ (Bp will be considered later),
from (11)–(13) such that the following holds

x(t + Tp) = eAλTpx(t)+ (eAλTp − I )A−1λ Bp. (14)

Assumption 2: Using the following definition

ϒ(λ) := eA1
λ
2 TpeA0

(1−λ)
2 TpeA0

(1−λ)
2 TpeA1

λ
2 Tp ,

which arises from rewriting (11)–(13) as

x(tk + Tp) = ϒ(λ)x(tk )+ (eAλTp − I )A−1λ Bp,

it will be assumed that one of the following conditions are
verified by Tp and system matrices A0 and A1.

1 The sampling period Tp is sufficiently small such that
‖ϒ(λ)− I‖ < 1 for all λ ∈ [0, 1].

2 The matrices A0 and A1 are commutative, i.e. A0A1 =
A1A0. Under this condition, it is easy to prove that

ϒ(λ) = e(A0+(A1−A0)λ)Tp .

Now, for the definition of Aλ, there are two options.
• Aλ := log(ϒ(λ))/Tp if Assumption 2.1 holds, but
Assumption 2.2 does not. The assumption guaran-
tees the existence of the logarithmic matrix with real
elements.

• Aλ := A0 + (A1 − A0)λ if Assumption 2.2 holds.
Remark 1: Note that in Assumption 2, the conditions

would lead to exact results. However a less restrictive con-
dition can provide an approximation of Aλ. Indeed, a first-
order approximation of the Taylor series expansion of ϒ(λ)
with respect to Tp around Tp = 0 yields

ϒ̃(λ) ≈ e(A0+(A1−A0)λ)Tp = eAλTp .

For the cases where these conditions are not satisfied, the
search for an alternative to the matrix logarithm can be done
using the Baker–Campbell–Hausdorff formula, but this will
not be further investigated here.

For the definition of Bp in (10), using Eqs. (11)–(13) gives,

Bp :=
(
(eAλTp − I )A−1λ

)−1
Bdλ = (eAλTp − I )−1AλBdλ

= Aλ(eAλTp − I )−1Bdλ

Bdλ := eA1
λ
2 TpeA0(1−λ)Tp (eA1

λ
2 Tp − I )A−11 B1

1This formulation is valid for λ ∈ (0, 1) but can be extended to the cases
λ = 0 and λ = 1 yielding the same results.

151610 VOLUME 9, 2021



C. Albea et al.: Hybrid Modeling and Control of Class of Power Converters

+eA1
λ
2 Tp (eA0(1−λ)Tp − I )A−10 B0

+(eA1
λ
2 Tp − I )A−11 B1.

For future uses, it is worth noting that, when Tp → 0
(neglecting the second and higher order terms on Tp), this
expression approaches to

Bdλ→ (B0 + λ(B1 − B0))Tp = BλTp, (15)

where Bλ has been defined accordingly.
The flow and jump sets, are now

Cp := {ξp ∈ Hp : τp ∈ [0,Tp]} (16)

Dp := {ξp ∈ Hp : τp = Tp}. (17)

Note that system (9)–(10),(16)–(17), corresponds to a sam-
pled system controlled with a sample-and-hold mechanism,
and its relationship with system (4)–(7) is stated in the fol-
lowing proposition, which expresses that at the time instants
when system Hp jumps, system H also jumps and at these
instants x = xp. For this, consider the pair (t, jp) such that
system Hp jumps (subscript p in j has been introduced in
order to avoid confusion with the jumps ofH).
Proposition 1: Consider systems (4)–(7) and (9)–(10),

(16)–(17), with the same initial condition, i.e., x(0, 0) =
xp(0, 0) andwith the same control law κ(x) = κ(xp), ∀x = xp.
Moreover, consider that each subsystem is Hurwitz. Then,
at the time instants when system (9)–(10) jumps, i.e., when
ξp(t, jp) ∈ Dp, for a given jp, system (4)–(7) also jumps,
i.e., there exists an integer j such that ξ (t, j) ∈ D. Further-
more, x(t, j) = xp(t, jp).

Proof: We proceed by induction showing that if at a
given time t when system (9)–(10) jumps, x(t, j) = xp(t, jp)
for certain values of j and jp, then at the following jump of this
system, the state verifies that x(tj+Tp, j+4) = xp(tj+Tp, jp)
(see Fig. 2).

For this, integrating the dynamics of xp in (9)–(10) between
two consecutive jumps and using Assumption 2 the following
equation is reached

xp(t + Tp) = eAλTpxp(t)+ (eAλTp − I )A−1λ Bp. (18)

From (14), and because at t = 0 it holds that
x(0, 0) = xp(0, 0). The proposition statement is proved by
induction. �
In the next section, a control law will be designed for sys-

tem (9)–(10), (16)–(17) with stability guarantee. By Propo-
sition 1, application of this control law to system(4)–(7)
will inherit the stability property at sampling instants. The
behaviour inside the time interval between sampling times
will be analysed afterwards.

In the sequel, possibly with abuse of notation, the symbols
λ and τ , instead of, λp and τp will be used.
Notice that the flow equation that governs the dynamics of

xp in (9)–(10), (16)–(17), is

ẋp = Aλxp + Bp. (19)

This equation plays a similar role to the one of averaged
models used usually in power electronics. Indeed, the use of
variable λ instead of σ avoids the use of a discrete control sig-
nal. Nevertheless, the proposed approach presents important
differences:
• At sampling instants, the solution to (9)–(10),
(16)–(17) matches exactly the solution to (4)–(7), as it
has been stated in Proposition 1. In fact, the usual
averaged model would be similar to (19) but with Aλ =
A0 + λ(A1 − A0), instead of the logarithm definition
above, and Bp = B0 + λ(B1 − B0), where the equality
signs can be just an approximation depending on which
case of Assumption 2 is satisfied. In the approximated
case, some issues can appear, as has been reported in
designs based in averaged modes [36], [37].

• Model (9)–(10),(16)–(17), takes care of the discrete-
nature of the control action since the sample-and-hold
mechanism is included in the model.

Notice also that the non-hybrid model (18) (or its contin-
uous version ẋp = Aλxp + Bp) is not a ‘‘standard’’ affine
problem since the transmission matrix eAλTp (or Aλ) depends
on the control input λ.

Now, rewriting the continuous and discrete-time dynamics
of xp will lead to a new Lyapunov function candidate. To do

so, define 0q =
[
Aq Bq
0 0

]
, such that during the flows:

d
dt

[
xp
1

]
= 0q

[
xp
1

]
. (20)

Hence, the following Lyapunov function candidate is
considered

V (xp, λ, σ, τ )= max
{
W (xp, λ, σ, τ )− 1, 0

}
, (21)

where W is a quadratic function of [xp 1]>, defined as
follows,

W (xp, λ, σ, τ ) :=
[
xp 1

]
Pσ (λ, τ )

[
xp
1

]
(22)

with

P0(λ, τ ) := e−0
>

0 τ P̄e−00τ

P1(λ, τ ) := e−0
>

1 (λTp−τ )e−0
>

0 τ P̄e−00τ e−01(λTp−τ )

and P̄ :=
[
P 0
0 0

]
, being P � 0 a symmetric matrix.

We will see below that this Lyapunov function candidate
enjoys nice properties.
We are in position to define the compact attractor for which

it is desired to establish uniform globally asymptotic stability
(UGAS). This attractor set is

A := {ξp ∈ Hp : V (xp, λ, τ ) = 0}. (23)

Note that if the solution evolves in the interior of A in
steady state, its associated xp is bounded.
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The particular hybrid arcs starting from the origin after a
jump are defined as follows:

Eκ=
{
ξp∈Hp : xp(τ, λ)=

[
I 0
]
e0λ(λTp−τ )

[
0
1

]
,λ=sat10 κ(0)

}
.

(24)

Note that these arcs start from xp = 0 and describe a solu-
tion of x in the time arcs, [tjp , tjp+1] with (tjp , jp) ∈ dom(ξ ).

IV. MAIN RESULT
Inspired by [24], a controller is proposed for sys-
tem (9)–(10), (16)–(17) providing stability guarantees of the
compact attractor A.
Theorem 1: Consider a λe associated with the operating

point xe such that Assumption 1 is satisfied and matrices P �
0 ∈ Rn, Q � 0 ∈ Rn such that Q � P and M � P− Q ∈ Rn

satisfying

A>0 P+ PA0 ≺ −Q, (25)

A>1 P+ PA1 ≺ −Q. (26)

Consider system (9)–(10), (16)–(17), with control law

κ(xp)∈

λe
(
1+

x>p Mxp
2B>0 Pxp

)
if B>0 Pxp 6= 0

[0, 1] if B>0 Pxp = 0,
(27)

Then, there exists a value T ∗p > 0 such that for 0 < Tp <
T ∗p the following statements hold:
(i) A is UGAS.
(ii) Eκ is a subset of A.

Proof: Hybrid system Hp(fp, gp, Cp,Dp) with control
law (27) is well-posed, because it verifies:
• Cp and Dp are closed sets in Hp.
• fp is a continuous function, thus it is locally bounded and
outer semi-continuous. Moreover, it is convex for each
ξp ∈ Cp.

• gp is outer semi-continuous and locally bounded.
We will consider the proof item by item.
Proof of (i): The proof of this item proceeds by applying

[38, Theorem 1]. Note that the Lyapunov function candi-
date, V (xp, λ, τ ) (21) is continuous in Cp ∪ Dp and locally
Lipschitz near each point in Cp\A. Moreover, V (xp, λ, τ )
is strictly positive definite with respect to (Cp ∪ Dp)\A
and radially unbounded. Likewise, it verifies, by definition,
V (xp, λ, τ ) = 0, for all (xp, λ, τ ) in A.
The next step of the proof is to ensure that the time

derivative of V along flows outside of A is non positive (or
more precisely in this case, equal to zero). More formally, the
objective is to show that

〈∇V (xp, λ, τ ), f (xp, λ)〉 ≤ 0, ∀(xp, λ, τ ) ∈ Cp\A. (28)

For any (xp, λ, τ ) ∈ Cp\A, it is clear, from its definition,
that V (x, λ, τ ) = W (xp, λ, τ )− 1 getting

〈∇V (xp, λ, τ ), f (xp, λ)〉

=

[
xp
1

]>(̇
τ
∂

∂τ
P(λ, τ )+λ̇

∂

∂λ
P(λ, τ )

)
×

[
xp
1

]
+2
[
xp
1

]>
P(λ, τ )

[
ẋp
0

]
=

[
xp
1

]> (
∂

∂τ
P(λ, τ )+ P(λ, τ )He (0λ)

)[
xp
1

]
= 0.

The last equality comes from

∂

∂τ
P(λ, τ )+ P(λ, τ ) He(0λ) = 0.

Next, let us analyse the second stability condition from
[38, Theorem 1]. To do so, taking into account that the special
structure of hybrid system (9)–(10) implies that the jumps
occur periodically at the ordinary time instants t = jpTp for
jp ∈ N, the following notation will be adopted here according
the hybrid time domain (8): xp,jp = xp(jpTp, jp), λjp =
λ(jpTp, jp), τjp = τ (jpTp, jp) that corresponds to the variables
right before the jump at t = jpTp and λ

+

jp = λ(jpTp, jp + 1),
τ+jp = τ (jpTp, jp + 1) right after the same jump. In the same
way, the definition1V = V (x+p,jp , λ

+

jp , τ
+

jp )−V (xp,jp , λjp , τjp )
will be used. However, note that x+p,jp = xp,jp , τ

+

jp = 0 and
τjp = Tp.

Now, ∀(xp, λ, τ ) ∈ Dp \A the following equations hold,

1V = W (xp,jp , λ
+

jp , 0)−W (xp,j, λjp ,Tp)

=

[
xp,jp
1

]> (
P̄−9>λjp P̄9λjp

) [xp,jp
1

]
=

[
xp,jp+1

1

]>(
P̄−9>λjp+1P̄9λjp+1

)[xp,jp+1
1

]
being 9λjp = e−00Tpe−01(λTp−Tp).
Notice that the manipulable signal, λjp+1 = λ+jp has to

be computed at t = jpTp. For this, it is convenient to write
1V in terms of xp,jp instead of xp,jp+1. Hence, from (20), the
following relationship is obtained[

xp,jp+1
1

]
= 9λ+jp

[
xp,jp
1

]
. (29)

We have

1V =
[
xp,jp
1

]> (
9̄>λjp

P̄9̄λjp −P̄
) [xp,jp

1

]
. (30)

being 9̄λjp := 9
−1
λjp

. We highlight that λ+jp , which depends on
xp,jp according to the definition of Hp, is associated with the
value of xp at the jump instant. Indeed, (xp,jp , λ

+

jp , 0) refers
here to the initial value in each hybrid arc. In the sequel,
possibly with abuse of notation, λ and xp will be used to
represent λ+jp and xp,jp , respectively.

From (30), it is not easy to verify that 1V < 0. However,
only small values of Tp are of interest, and hence, one just can
analyse the following limit

lim
Tp→0

1V = lim
Tp→0

[
xp
1

]> (
9̄>λjp

P̄9̄λjp − P̄
) [xp

1

]
.
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When Tp→ 0, the following approximation can be used

9̄λjp ≈

[
I + Aλ+Tp Bλ+Tp

0 1

]
, (31)

with Bλ+ := B0 + (B1 − B0)λ+. Then, it holds that

lim
Tp→0

1V

= lim
Tp→0

[
xp

1

]>(̄
P−

(
e−0λ+Tp

)>P̄e−0λ+Tp)[xp
1

]

= lim
Tp→0

[
xp

1

]>(̄
P−

[
P−He(PAλ+)Tp −PBλ+Tp

−B>
λ+
PTp 1

])[
xp

1

]

= lim
Tp→0

x>p He(PAλ+ )xpTp + 2xpB>λ+PxpTp = 0, (32)

which is achieved neglecting T 2
p terms, both in (31) and

in (32).
On the other hand, in order to evaluate the behavior of

lim
Tp→0

1V for small Tp the following computation holds,

lim
Tp→0

1V
Tp

= x>p He(PAλ+ )xp + 2B>
λ+
Pxp

= x>p He(PAλ+ )xp+2B
>

0 Pxp+2λ
+(B1−B0)>Pxp

= x>p He(PAλ+ )xp + 2
(
1−

λ+

λe

)
B>0 Pxp. (33)

The last step is reached from the next property

B0 + (B1 − B0)λe = 0⇒ B1 = −
1− λe
λe

B0, (34)

stemmed from Assumption 1 and the error equation (3).
It is worth to remind that λ+ ∈ [0, 1]. Now, consider that

B>0 Pxp = 0, then

lim
Tp→0

1V
Tp
= x>p He(PAλ+ )xp < −x

>
p Qxp (35)

The last condition stems from the fact that LMIs (25)–(26)
are satisfied. Now, taking into account B>0 Pxp 6= 0, there are
three distinct cases:
• 0 < λ+ < 1: Inserting (27) in (33), applying conditions
LMI (25)–(26), M � P − Q given in the Theorem
statement and assuming that λ+ is not saturated in (33),
yields

lim
Tp→0

1V
Tp

= x>p He(PAλ+ )xp − x
>
p Mxp

< −x>p (Q+M )xp < −x>p Pxp < 0 ∀ξp ∈ Dp\A.

• λ+ = 0: This case takes place when κ(xp) ≤ 0,
being (33) equal to

lim
Tp→0

1V
Tp
= x>p He(PA0)xp + 2B>0 Pxp. (36)

Note that there are two possibilities, either M � 0 or
Q � M � 0. First, let us consider M � 0. Here,
the saturation in λ+ = 0 is reached if 2B>0 Pxp < 0
(necessary for the argument of (27) to be negative or
zero), being (36) negative ∀ξp ∈ Dp\A from the fact
that condition (25) is satisfied. Finally, from applying
P � Q, (36) yields

lim
Tp→0

1V
Tp

< −x>p Qxp < −x
>
p Pxp.

Secondly, if Q � M � 0, then

λe

(
1+

x>p Mxp

2B>0 Pxp

)
≤ 0⇒ −x>p Mxp ≥ 2B>0 Pxp

which implies

lim
Tp→0

1V
Tp
= x>p He(PA0)xp + 2B>0 Pxp

≤ x>p He(PA0)xp − x>p Mxp

< −x>p (Q+M )xp

Consequently, fromM � P− Q the following holds

lim
Tp→0

1V
Tp

< −x>p Pxp < 0 ∀ξp ∈ Dp\A.

• λ+ = 1: In this case, corresponding to the case when
κ(xp) is saturated in its upper bound, (33) yields

lim
Tp→0

1V
Tp
= x>p He(PA1)xp + 2B>1 Pxp. (37)

Once again, two situations are particularized, M � 0 as
well as Q � M � 0. The saturation of the expression
of κ(xp) at λ+ = 1 with M � 0 can only happen
because 2B>0 Pxp > 0, which implies from the equilib-
rium equation (34)

2B>1 Pxp = −2
1− λe
λe

B>0 Pxp < 0. (38)

Therefore, (37) becomes

lim
Tp→0

1V
Tp

< −x>p Qxp < −x
>
p Pxp.

Now, for the case Q � M � 0 and noting that

λe

(
1+

x>p Mxp

2B>0 Pxp

)
≥ 1,

which yields the following condition

x>p Mxp ≤ 2
1− λe
λe

B>0 Pxp = −2B
>

1 Pxp.

Then,

lim
Tp→0

1V
Tp
= x>p He(PA0)xp + 2B>1 Pxp

− < x>p (Q+M )xp < −x>p Pxp.
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Hence, for a givenM � 0 or Q � M � 0, it holds that

lim
Tp→0

1V
Tp

< −x>p Pxp < 0 ∀ξp ∈ Dp\A

The last step is to prove that A is an invariant set,
i.e., g(A∩Dp) ⊂ A (remember thatW does not change when
(xp, λ, τ ) ∈ Cp ∪Dp). To do so, remember that the following
expression has been obtained

W (xp, λ+, 0)−W (xp, λ,Tp) < −x>p Pxp.

Moreover, note that W (xp, λ+, 0) = x>p Pxp. Then, some
manipulations yield

W (xp, λ+, 0) <
1
2
W (xp, λ,Tp).

Therefore, W (xp, λ+, 0) is negative in the jumps for any
(xp, λ, τ ) ∈ A. Hence, if the solution toHp reachesA, it will
remain therein.

Finally, applying the nonsmooth invariance principle given
in [38], and using the well posedness result established at the
beginning of the proof, leads to the conclusion that, for small
enough values of Tp, A is UGAS.
Proof of (ii): We prove here that the particular solutions

included in set Eκ are inA. Remember that the set Eκ consists
of the hybrid arcs that start at the origin xp = 0. Then, for
every point in Eκ

W (ξp) =

(
e0λτ

[
0

1

])>
P(λ, τ )

(
e0λτ

[
0

1

])

=

(
e0λτ

[
0

1

])>
e−0

>
λ τP(λ, 0)e−0λτ

(
e0λτ

[
0

1

])

=

[
0

1

]>
P(λ, 0)

[
0

1

]
= 0 ≤ 1,

which holds for any (λ, τ ) ∈ [0, 1]× [0,Tp].
�

Remark 2: The UGAS property guaranteed for system
Hp implies stability properties for system H, according to
Proposition 1.
Remark 3: It is worth noting that the particular case

M = 0 corresponds to an open-loop control

κ(xp) = λe.

Indeed, Theorem (1) proves the UGAS property of the
attractor even with this particular control law. Nevertheless,
the open-loop character of this case makes this control law
unsuitable for practical applications.

V. CONTROLLER PARAMETER TUNING OF THE SYSTEM
PERFORMANCE
Now, the question is how to provide performance-based crite-
ria for the selection ofM andQ. Thesematrices can be chosen
to improve performance, in terms of current peaks, or even,
the chattering amplitude in steady state. To this goal, first a

chattering estimation is obtained, and then a discussion about
the selection of these matrices is provided.

A. CHATTERING ESTIMATION
It is interesting to have a measure of the amplitude of the
chattering in steady state, i.e., once trajectories have entered
inA. Theorem 1 guarantees the convergence to ‖xp‖ ≤ ε(Tp)
when Tp is small enough, but it is desirable to quantify the size
of the attractor (related to the amplitude of the chattering) as
a function of Tp.
Property 1: Consider Assumption 1 as well as Theorem 1

assumptions are satisfied and a given Tp small enough. Then,

ε̂(Tp) :=
2‖Bλe‖

pM√
pm
Tp

‖He(PAλe )‖pMTp − pm
, (39)

is an approximation of the following upper bound

‖xssp ‖ ≤ ε̂(Tp) ∀x
ss
p ∈ A.

where xssp denotes the steady state of xp of system
(9)–(10),(16)–(17).

Proof: First, it is easy to see thatW (xp, λ, τ ) is decreas-
ing with respect to τ ∈ [0,Tp]. Moreover, consider Tp
small enough and λe satisfying Assumption 1 such that the
following first-order approximation

W (xp, λe,Tp) =
[
xssp
1

]> (
e−0λeTp

)>
P̄e−0λeTp

[
xssp
1

]
≈

[
xssp
1

]> [P− He(PAλe )Tp −PBλeTp
−B>λePTp 1

] [
xssp
1

]
is obtained applying (31) and neglecting T 2

p . Now, if Theo-
rem 1 assumptions are satisfied, it holds that[

xssp
1

]> [P− He(PAλe )Tp −PBλeTp

−B>λePTp 1

][
xssp
1

]
< 1

⇔ 0 < xssp
>(He(PAλe )Tp − P)x

ss
p + 2xss>p PBλeTp

< xssp
>(P− He(PAλe )Tp)x

ss
p + 2xssp

>PBλeTp

< (‖1−He(Aλe )‖
pM
pm

Tp)‖xssp ‖
2
P + 2‖Bλe‖

pM
√
pm
Tp‖xssp ‖P

⇔ ‖xssp ‖P <
2‖Bλe‖

pM√
pm
Tp

‖He(Aλe )‖
pM
pm
Tp − 1

⇔ ‖xssp ‖ <
2‖Bλe‖

pM√
pm
Tp

‖He(Aλe )‖pMTp − pm

where pM and pm are the maximum and minimum eigenval-
ues of P and ‖xssp ‖P = xss>p Px

ss
p . �

It is worth noting, from Property 1, that if Tp decreases,
‖xssp ‖ also decreases.
Property 2: Consider that Assumption 1 is satisfied, and a

given Tp small enough such that Property 1 is valid. Then, for
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a given positive parameter ε > 0, the state x in steady state,
denoted as xss is limited by

‖xss‖ ≤ εe
αTp
2 (40)

where α := 2(aM +
BM
ε
) such that aM := 1

2 max(a0,M , a1,M )
with ai,M the maximum eigenvalue of |He(Ai)| and BM :=
max(‖B0‖, ‖B1‖). Moreover, ε̂ defined in (39) is an
estimation of ε.

Proof: Consider the following variable, χ := ‖xss‖2,
i.e. the squared norm of x in steady state, and note that the
dynamics of this variable is bounded from the definition of
aM and BM ,

χ̇ = 2xss>(Aσ xss + Bσ ) ≤ 2aMχ + 2
√
χBM . (41)

Then, in order to find upper bounds on χ in steady state,
the worst cases bill be analyzed, i.e., the time subintervals
inside the sampling period where ‖xss‖ > ε̂ (assuming that
Property 1 provides a valid ε̂). Along those intervals,

χ̇ ≤ 2αχ with α := aM +
BM
ε̂
. (42)

Now, it must be proved that the upper bound on the right
hand side of the χ dynamics directly implies the upper
boundedness of the solution of (41) by the solution of the
bounding equation (42). For this, let us define χ1(t) =
χ (xss0 )e

2αt as the solution to the bounding equation (42) and
χ2(xss2) as the solution to the actual system (41). Then,
if χ1(xss0 ) = χ2(x

ss
0 ),

d(χ1 − χ2)
dt

=2αχ1 − 2xss2
>(Aσ xss2 + Bσ )≥2α(χ1 − χ2).

This means that χ1 being greater or equal than χ2 at some
time implies that it will remain so in the future. Note that the
inequality comes from (41) and the fact that the focus lies

on ‖x
ss
‖

ε̂
> 1. If this does not hold, then ε̂ is an even stricter

bound than the one that Property 2 suggests. In that case, the
integration time of this proof would start when ‖xss‖ exits
that bounding interval, leaving less time for escaping from it.
Finally, χ1(t) ≥ χ2(t) implies that

χ2(t) ≤ χ (xss0 )e
2αTp ⇒ ‖xss‖ ≤ ε̂e

αTp
2 .

In that expression, the bounding exponential e2αt has only
been allowed to evolve for a time period of Tp/2, as it is the
maximum time distance from the interval edges 0,Tp, where
the ε̂ bound holds. It was also assumed χ (xss0 ) = χ1(xss0 ) =
χ2(xss0 ) ≤ ε̂

2, concluding the proof.
�

B. DISCUSSION
Theorem 1 establishes stability and performance properties
for (4)–(7). Moreover, there are still degrees of freedom in
the selection of matrices M and Q, available for closed–loop
performance tuning.

1) SELECTION OF Q
On the one hand, for a selected matrix Q � 0 ∈ Rn, the
feasibility problem composed of (25)–(26) provides a matrix
P necessary to compute the upper bound of ‖xssp ‖ defined in
Property 1. Hence, the selection of Q can be used to manage
the chattering in steady state.

2) SELECTION OF M
On the other hand, this tuning parameter adjusts the tran-
sient time, modifying the response time, voltage oscillations,
current peak, among others. Indeed, if M � 0, the system
response can be faster and/or can present voltage oscilla-
tions, with tendency to saturate the control signal. Conversely,
ifM ≺ 0, the system time response can increase, diminishing
the current peaks.

VI. SIMULATIONS
Some simulations have been performed to validate the results
proposed here. For this, a boost converter has been selected,
with the topology shown in Fig. 3. Taking the model given
in (1) z = [iL vC ]>, σ = 0 when the switch S is closed and
σ = 1 when this switch is open,

A0 =
[
−R/L 0
0 −1/R0C0

]
, A1 =

[
−R/L −1/L
1/C0 −1/R0C0

]
,

B0 = B1 =

[
Vin/L
0

]
.

The parameters inside these expressions are given in
Table 1.

FIGURE 3. Boost converter.

TABLE 1. Boost converter parameters.

The selected operating point is xe =
[
8.4 100

]T , with its
associated λe = 0.76. The simulations are performed with
Tp = 10µs .
The following matrices Q =

[
8.35 0.01
0.01 8.33

]
· 103 and

P =
[ 416.40 −0.68
−0.68 17.47

]
satisfy the feasibility problem

(25)–(26). Now, it is required to adjust matrix M . For
this, some simulations have been performed with different
choices of M . Fig. 4 compares the state evolutions with
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M = 0.5Q � 0, M = 0 and M = −0.5Q ≺ 0.
As mentioned in item 2, Section V-B, if M � 0 the rise
time is reduced, but the control signal will have a tendency to
saturate, yielding a strong oscillating behaviour in transient
time. In face of this, choosing M ≺ 0 reduces the current
peak and the control input is not saturated, but the system
dynamics become slower. Moreover, note that the particular
case M = 0, provides λ+ = λe, as mentioned in Remark 3.
Fig. 5 shows some evolutions with M ≺ 0. As M is more
negative, the response time of the signal is slightly slower.
Moreover, with M � 0, as M is larger the signal control also
tends to saturate, as shown in Fig. 6. Note that the control
input does not saturate, but the high overshoot generated in
the current signal can harm the converter.

FIGURE 4. State and control input evolutions, choosing M = 0.5Q,
in green, M = 0, in red, and M = −0.5Q, in blue.

VII. EXPERIMENTAL SETUP
A test setup was built to validate the proposed hybrid control
scheme. Fig. 7 shows this experimental set up. It is composed
of:
• A boost converter whose electrical parameters are given
in Table 2.

• An electronic card with a current sensor (model LEM
LTS 15-NP) for the measurements of the inductor cur-
rent, and a voltage sensor for the measurement of the
output voltage.We built the voltage sensor bymeans of a
resistor divider connected with an operational amplifier
in buffer configuration.

• AdSPACE card (DS1103) that includes a PowerPC 604e
at 400 MHz and a fixed-point DSP TMS320F240.

The code of the control algorithm was generated by Matlab
coder R© and it is automatically optimized for running in the
dSPACE card.

FIGURE 5. State and control input evolutions, choosing M = −0.3Q,
in green, M = −0.5Q, in red, and M = −0.7Q, in blue.

FIGURE 6. State and control input evolutions, choosing M = Q, in green,
M = 0.5Q, in red, and M = 0.1Q, in blue.

We selected for these tests M = −0.5Q, after several
simulation trials. Moreover, the switching frequency was the
same than the one taken in the simulation section, 100kHz.

Fig. 8 shows a startup transient from a initial condi-
tion equal to x0 =

[
0 Vin

]
to a reference operating point
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FIGURE 7. Experimental set up.

TABLE 2. Circuit parameters values.

FIGURE 8. Evolutions of the voltage, current and duty cycle in the start up.

computed by imposing an output voltage equal to Vout =
100V. The voltage and current signals present a smooth
behaviour without current peaks, as shown in simulation

FIGURE 9. Evolutions of the voltage, current and duty cycle in the steady
state.

FIGURE 10. Evolutions of the voltage, current and duty cycle for
regulating the voltage output with a perturbation of Vin.

(see Fig. 4). Likewise, the steady-state operation is shown in
Fig. 9. Themeasured errors of the voltage and current provide
‖xss‖ = 3.01, whereas the computed estimated upper bound

of (40) is ε̂ = 3.54 and εe
αTp
2 = 9.77.
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FIGURE 11. Evolutions of the voltage, current and duty cycle without PI
controller (in red) and with PI controller (in blue) for regulating the
voltage output with a perturbation of R0.

FIGURE 12. Evolutions of the voltage, current and duty cycle without PI
controller (in red) and with PI controller (in blue) during a transition from
no load to rated load.

In order to verify robustness of the proposed control system
and to test its dynamic response in some different scenarios,
three tests have been performed. In the first one, the input

voltage is changed from 24V to 20V and the results are given
in Fig. 10. This figure shows the ability of the system of
ensuring an output voltage regulation even when an input
voltage variation occurs. In a second test, the load R0 was
changed from R0 = 50� to R0 = 75� at t = 0.02s
(see Fig. 11). Note that here, differently from the previous
test where the input voltage variation was easily measured
and used in the computation of the new equilibrium point,
the resistance value cannot be measured, and an error in the
voltage output can be exhibited in steady state. This is due
to the fact that the proposed algorithm does not guarantee
an output voltage regulation when a load variation happens.
However, if an external loop is added with a PI controller
as in [39], the output voltage is regulated at its reference
value, maintaining a suited performance as shown in Fig. 11.
Finally, Fig. 12 shows the variable trajectories when the
system suffers a perturbation due to a transition from no-load
to the nominal one. The new test is more challenging because
there is a 100% variation of the nominal load.

VIII. CONCLUSION
A hybrid model of switched power converters composed of
two functioning modes, triangular-carrier PWM inputs and a
sample-and-hold mechanism has been presented here. This
study can be extended to other power converters with more
than two functioning modes. The dynamic equations are then
simplified to an equivalent systemwith trajectories that match
those of the original one at the start of the sampling intervals,
but with fewer jumps than the original one, and a reduced state
vector. Moreover, a rigorous control law to select the value
of the duty cycle at the beginning of each PWM-sampling
interval has been proposed. Stability in closed loop has been
established via hybrid dynamical systems theory. Finally,
an estimation of the chattering peaks reached by the sys-
tem state is provided. Experimental results show satisfactory
closed-loop performance.

PWMswithmore than 2modes will be considered in future
works. Moreover, a stability analysis with an external control
loop that controls the output voltage is also expected.
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