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goals presented in this paper. First, we prove that the problem is ill-posed (often called as

Keywords: unstable property) in the sense of Hadamard. Our next propose is to provide a modified
Inverse problem quasi-reversibility model to stabilize the ill-posed problem. Using some techniques and
Nonlocal diffusion tools of Faedo-Galerkin method, we prove the existence of the unique weak solution
Nonlinear reaction of the regularized problem. Further, we investigate error estimates between the sought
lll-posed problem solution and the regularized solution in [%(£2)— and H'(£2)— norms. The final aim of
Population density this paper is to give some numerical results to demonstrate that our method is useful

Quasi-reversibility method

Faedo-Galerkin and effective.
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1. Introduction

Let T be a positive number and 2 C R",n > 1, be an open bounded domain with a smooth boundary I". Denote
Qr = 2 x(0,T),Y =T x(0,T); X is called the lateral boundary of the cylinder Qr. In this work, we consider the
following nonlocal nonlinear parabolic coupled system of reaction-diffusion equations

ur = Dq (@u)(t), b(v)(t)) Au+F(x,t,u,v), inQr, (1)
vy = Dy (c(u)(t), d(v)(t)) Av + G(x, t, u, v), in Qr,
To complete the terminal-boundary value problem, we consider the terminal conditions
ux, T)=¥(x), v T)=o(kx), ing, (2)
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and Neumann boundary conditions
du(x,t)  dv(x,t)
doc  do

where o is the outward unit normal to the boundary I'. u and v are the population densities of two observed species. F
and G are the reaction terms and D7, D, are the diffusion coefficients, working on the functionals a(u)(t), b(v)(t), c(u)(t)
and d(v)(t). The problem is nonlocal in the sense that the diffusion terms D; and D, depend on the entire populations,
which mean the global quantity, rather than the local density. In this model, the interaction of two species is represented
not only in the reaction terms, but also in the diffusion terms. The homogeneous Neumann condition in biological models
mean that the boundary of the specimen domain observed is insulated. We can also consider the homogeneous Dirichlet
boundary condition instead, and the method can be straightforwardly applied. In this paper, our main goal is to seek
the initial values u(x, 0) = ug(x) and v(x,0) = vg(x) when we only know the measurements of the terminal data ¥
and @. We can give one practical application of the model (1) for locating the source of brain tumours. Let u and v be
the normal (healthy) and abnormally growing normal tissue cells in the brain due to genetic and epigenetic events. In
the perspective of (1), we assume that the movements of each kind of cells are dominantly influenced by the whole
population of the corresponding type. The nonlinear source terms F and G can be considered as reactions, mortality rates
and proliferation rates. For the last several decades, various types of equations have been employed as mathematical
models describing physical, chemical, biological and ecological systems. Among them, one of the most successful systems
is the reaction-diffusion system

Uy = D1Au+ F(x, t,u, v),
ve = Dy Av + G(x, t, u, v).

=0, onX, (3)

(4)

For instance,
e Activator-inhibitor FitzHugh - Nagumo model for propagation of electrical signals in neurons [1,2]
F=au—bv+aou’*—pud, G=cu—dv+m,

where the constants a, b, ¢, d, 8 are positive and m, « € R, u is the activator, v is the inhibitor. This model describes
the control of the electrical potential across a cell membrane by the change of flow of the ionic channels;
e Fisher - Kolmogorov model for delay effects in the response of low-grade gliomas (LGG) to radiotherapy [3]

F=p(1—u-—vu, G=—%(l—u—v)v,

where the constants p, k are positive, u is the tumour cells density, v is the density of cells irreversibly damaged by
radiation;
o Diffusive Lotka-Volterra system [4] describes the relation between population densities u, v of interacting species

F = au+ buv, G=cv+duv,

where a, b, c, d are the constants;

e Turing model for biological pattern formation [5,6]. u, v are concentrations of activator, and substrate, respectively.
The Turing model can display a variety of intricate spatial patterns that result from an interplay between local
aggregation of u through autocatalysis, and rapid diffusion of v away from u-rich regions: D, > D,. Examples:

- The Schnakenberg system
F:k] —k2u+l<3u2v, G:k4—k3U2U,

where k;, i = 1, 4 are positive constants;
- The Gierer-Meinhardt system
2
u 2
F=k] —k2U+’<3f, G=k4u —ksv,
v

where the constants k; > 0,i=1,5;
- The Thomas system
ksuv ksuv
F=ki-ku——-—————— G=ks—kyv— ——m—-——,
! 2 ks + kyu + kgu? 2T ks + kyu + kgu?
where k;, i = 1, 8 are positive constants;

e Model for exothermic chemical reaction occurring in a solid [7]

_ m —E _ m —E
F=Au"exp{— ), G=Bu"exp|— ],
Rv Rv

where the constants A, B, E, m, R > 0. The rate of the reaction is determined by temperature v, through an Arrhenius
law, and concentration of one key reagent u.
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Some other models for reaction cross-diffusion systems have also been studied by ]. A. Carrillo et al. [8-12]. Recently,
nonlocal problems have attracted attention of many researchers because nonlocal terms allow to give more accurate
results, (the measurement represents the average in a neighbourhood of a point). For instance, these problems arise in
physics [13], engineering [14], and population dynamics [15]. When we consider the problem , we are not considering
what the behaviour of the population is, if an area is overcrowded or isolated. Therefore, the nonlocal diffusion is imposed
so that these effects are taken into account. In 1997, M. Chipot and B. Lovat [16] studied the nonlocal problem

ur — D(u)t)Au=f, inQr,
u=0, on X,
u = ug, in £2 x {0},

where u is the density of population located at x at the time t, f is the external source, D is the diffusion rate. In the case
of a migration of population, for instance of bacteria in a container [17], it is obvious that the environment is of prime
importance and one will easily imagine that

Dlu)(E)) = D ( / udx) (0,

i.e. the velocity of the migration depends on the total population in a subdomain £2’. If one wants to model species having
the tendency to leave crowded zones, a natural assumption would be to assume that a is an increasing function. On the
other hand, if we are dealing with species attracted by the growing population in £2’, one will suppose a to decrease.
Another justification of such a model lies also in the fact that in reality, for instance in the case of u being temperature
of a conductor, the measurements are not made pointwise, but through some local average. Some similar models for
nonlocal parabolic has been developed by M. Chipot et al. [18,19], T. Caraballo et al. [9,10,20], M. Burger [21-23].

Some authors [24-27] have studied the properties of the solution of a generalized model. In [28], Ferreira et al.
considered a model with nonlocal coupled diffusivity terms

ur — Di(p(u)(t), g(v)(t))Au = fi(u, v),  inQr,
vy — Do(r(u)(t), s(v)(t))Av = fH(u, v), in Qr,
u=1uy, vV=up, in 2 x {0}.

Although the initial problems have been investigated by many authors, there are not many results for the inverse
problems. Let us emphasize that the property of solution for the terminal value problem is very different to the initial
value problem. Due to the smoothing effects of the parabolic operator, in fact, it is not possible, in general, to guarantee
the existence of the solution for initial data which are not suitably regular. In addition, even when the solution possibly
exists, the uniqueness cannot be ensured without additional assumptions on the operator. In his celebrated paper [29],
John introduced the notion of well-behaved problem, which is now typical in the context of ill-posed problems. According
to John, a problem is well-behaved if “only a fixed percentage of the significant digits need be lost in determining the
solution from the data” [29]. More precisely we may say that a problem is well-behaved if its solutions in a space H
depend Holder continuously on the data belonging to a space K, provided they satisfy a prescribed bound.

To the best of our knowledge, there have not been any works related to the system (1)-(3). In this paper, we provide
a modified quasi-reversibility (QR) method which was applied to construct the regularized problem. The QR approach
was first introduced by Lattés and Lions [30]. The main idea of the method is stabilizing the ill-posed problem by using a
small regularization parameter. Recently, a modified QR method was applied quite successfully to the following problem
in [31]

ui(x, t) — D(L(u)(t))Au = F(u, x, t), in Qr,

=0, on ¥, (5)
u=g, in 2 x {T}.

The authors [31] considered the backward in time nonlocal nonlinear parabolic equation for the population density u.
In the same spirit, we use this method for the system (1)-(3). However, there are different views in our analysis
compared to the paper [31]. In [31], the authors used the Banach fixed point theorem for local self-mappings to show
the existence of local regularized solution over the layers [tj,1, tj]. These techniques for are interesting but complicated.
However, for our models (1)-(3) this technique can hardly be applied. More details, in our case, we consider a coupled
system, and this is more challenging since the length of the layers is somewhat difficult to compute. Therefore, we need a
different and new way of thinking when considering the solution for the regularized problem. We thus use Faedo-Galerkin
method and Aubin-Lions lemma as the main tools instead, and some techniques are required to modify the QR solution
so that its existence condition holds. In addition, the error estimates are given not only in L?>—, but also in H'-norm.
Our work is organized as follows. Section 2 contains some notations and assumptions used throughout the paper. In
Section 3, an example is considered to show the instability of the inverse problem. The main results are in the next two
sections. Section 4 focuses on the construction of approximate problem by a modified QR approach. First, we provide

3
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an approximation of locally Lipschitz reaction. Then, we prove the existence of the unique regularized solution using
Faedo-Galerkin method and the Aubin-Lions lemma. Section 5 is devoted to the error estimates in L>— and H'— norms.
In Section 6, we illustrate the theoretical results by numerically solving the regularized systems of two biological models.
Finally, the conclusion is presented in Section 7.

2. Preliminaries

Let us denote by U the space of all functions in H!(£2), satisfying the Neumann boundary condition, with the H'(£2) -
norm

d
U:{ueHl(.Q):u:O, VxeF}.
do

Throughout this paper, we denote the inner product in L?(£2) by (-, -). H~'(£2) denotes the dual space of H'(£2).
For a Banach space X, we denote by L”(0, T; X), C([0, T]; X), C'(0, T; X) the Banach spaces

1
T P
lulleo,r;x) = </ llu(-, f)||;df> <00, 1=<p<oo,
0

lullzoeo,:x) = €sssup flu(-, t)llx < oo,
te(0,T)

lullcqo.rixy = sup |lu(-, t)llx < oo,
te[0,T]

lullcro,r;xy = lulleqomiixy + e llco.mix) < o0.

{)‘p}gio are eigenvalues of the Laplacian operator —A on the bounded domain §2 with Neumann boundary condition, and
satisfy

O=X <A A <A3< - <A <---,

with A, — oo when p — 0. {/L,,} o C U are eigenfunctions respectively, forming an orthonormal basis of L2(£2).
Let us introduce a space of Gevrey type Gy(£2) of index T > 0, see [31] e.g., defined by

o0
Gr(R)={uel’(2): ) el < toot,
p=0

with norm defined by

Thp, 2
lully ) = Ze Puy . where u, = (u, up).

A couple (u, v) of functions u(x, t) and v(x, t): Qr — R, (Qr = £ x [0, T]) is called a function of two variables x, t
(u,v):Qr - R?
(u, v)(x, £) = (u(x, t), v(x, t)).

Here, the norm of (u, v) € X? (for any space X) is defined as
I, Vllx2 = llullx + vl

We state now some assumptions
(A1) The reaction functions F(x, t, u, v) and G(x, t, u, v) are continuous with respect to t;
(Ay) There exist positive constants m and M such that

m<D(d,v)<M, V(@ v)eR:i=1,2;
(A3) There exist positive constants Lp, such that V ¢, 95, v, 1, € R,i=1,2
[Di (B4, v1) — Di (2, v2)| < Lp, (1 — D] + |vg — v2l);
(A4) There exist Ly, Lp, Lc, Lg > 0, such that, for all t € [0, T], (u1, v1), (U2, v2) € [L2(§2)]?
I(a(ur) — a(u2))(-, )] = Lall(ur — u2)(-, )20y,
) = b(v2))(-, )] < Lpll(v1 — v2)(-, Oll2(2)s
|(c(ur) — c(u2))(, )] = Lell(ur — u2)(-, )l 20y,
) — d(v2)) ), t)

= d(v2))(-, £)] < Lall(v1 — v2)(s Dlliz(g)
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Denote Limax = max{Lp,.Lp},i=1,2,p € {a, b, ¢, d}. Notice that if (A3) and (A4) hold, we have

[D1(a(ur), b(v1))(£) — Di(a(uz), b(v2))(E)] < Liaxll (U1, v1) — (U2, v2)) -, Oll )2,
IDa(c(ur), d(v1))(t) — Da(c(uz), d(v2))(E)] < Lmaxll (U1, v1) — (U2, v2)) (-, Oll2(eyp2-

For abbreviation, from now on, denote
Di(a(u)(t), b(v)(t)) = Di(u, v), Da(c(u)t), d(v)(t)) = Da(u, v).

(As) ¥ and @ € [? (2) represent the exact data, whilst ¥¢ and ®° € [? (£2) represent the measured data with noise
level ¢ > 0, such that

”lI/E — WHLZ(_Q) + ||®8 — ¢”L2(.Q) <e&.
3. Instability of the backward problem

In order to ascertain the need for a regularization method, we take an example to illustrate the instability of the
backward problem. Let the exact and perturbed final data

X)) = D) =0, WP(x)= dP*(x) = for p, € N, (6)

1
\/TIMP*(X)’

1
from which we observe that when p, — oo, the noise terms disappear ——p,,(x) — 0. Due to the fact that proving

Px
the existence of solution to the inverse system is still an open problem, in this example, we take the reaction functions
of the following special form

o0
F=GC= Z eprTngl (ef|<u<A,r),up>| + ef|<v(<,r>,up>\) 1p(X).
p=1

The concept of weak solution is given by

Definition 3.1. A couple (u, v) is called a weak solution to the problem (1), (3), if for all ¢, ¥ € U, yield

d
a <u('a t)7 (P> + D] (uv U) (t) <VU(', t)! VQD) = (F(7 t? u, U), (p> ) (7)
d
a (-, ), ¥) 4+ Do (u, v) () (Vu(-, 1), V) = (G(-, £, u, v), ¥) . (8)

Then we have the following lemma, which shows that even if the noise level goes to 0, the instability always happens
backwards in time.

Lemma 3.2. Suppose that (A1)-(A4) hold, then there exist weak solutions to the backward problem with the exact data
(Uex, Vex), and with perturbed final data (lﬁ;*, JF*)for D« € N. Moreover
_ - zemkp*T
[l (uP+, vP+) — (Uex, Uex)||[c([0,r];l_2(g))]2 = — 00, if py — 0.
Xp, (1 AT L + 2f2m;1)

Proof. In (7), let ¢ = u,, we multiply both sides with e~ I Dittex,vex)0dn and then integrate from ¢ to T, with the final
condition uex(x, T) = 0, it yields

T
<uex('7 f), H’p) — _/ eAp ft" ’D](uex,vex)(g)dge—ApTM}\‘;l (e—|uex.p(77)| + e—\Uex.p(nﬂ) dn’
t

where tey p(t) = (Uex(- 1), ip) . Vexp(t) = (vex(-, 1), p).
Thus, by similar calculations, we represent the exact solution by the Fourier series

° T *\Uex,p(’])\ *|vex,p(fl)\
Uex(x, t) = — Z[/ e)»p(ft” D1 (Uex, vex)(§ )AE—TM) e +e dnj|ﬂp(x),
p=1-7t Ap
o T y —|uex,p(n)l —|vex,p(n)l
Vex(X, t) = — Z[ / o (! D2 tex vex)(€)ds ~TM) € +e dn]up(x).
A
p=17¢ P
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~ ~ 1
For the system with noisy data uP+(x, T) = vP*(x, T) = — u,,(x), for any p, € N, we have

Px
~ ~ ~ o J{ D1 (P 0P ) ()
uP+(x, t) = Iy (uP+, vP+)(x, t) = - Hp, (X)
Dx
oo T Vo (e el 0l 4 p=Iop* ()l
- Z / o (Ji' D1 (uP 0P )(§)d —TM) dn [ mp(x),
t )‘P
p=1
_ — s S D2 (WP 0P ) (n)dy
vPx(x, t) = To(uPx, vP)(x, t) = . Mp, (X)
D
% oT _ —WBE Ol . = loB ()]
e _ e P + e P
_Z / exp(ftnpz(up WP ) (§)dE—TM) dn Mp(X),
t )‘P
p=1

where we denote wh* = (wP*, [ip), With wh € [3(R2).

We now prove the existence of the noisy solution by using the Banach fixed point theorem.
Let us define the operator I(uP+, vP+) = (Il(up*, vP+), T(uP+, vP+ ))

~ o~ 2 2
I(uP+, uP) : [C([0, T]; L*(£2))]” — [C([0, T]; L*(2))]" .
First we show that for any couples (uq, v1), (uz, v2), k € N, it holds

CHT —t)k

(1, v1) = F(ua, v2)) -, Hwﬂmsg—If—wwbm)—wme@mmmmm, (9)

where
Co = 12T (e¥»+™ L2 +4r*T2Ch, +2077).
Indeed, we have

Ti(uy, v1) — Ti(uz, v2) = Ay — Ay — Az, with (10)

’

A = (exp* S Do )ndn _ gip f) Dﬂuz,vz)(n)dn) Hp, (X)
)\P*

o0 T ) i —TMap (p—Iu1p(n)l —lvip()l
t

Ap

[ gl _ g—luap(ml 4 gl _ g luzp(n)
: e [ e e~ lv2p
As = § e (! Diluz,v2)(§)dg~TM) J N
’ / )"p ﬂﬂp( )

First, A; is estimated as follows

T T
exp (Xp* / Dy(uy, U1)(7l)dﬂ) —exp (Ap* / Dy(uy, Uz)(ﬂ)dﬂ)

2
dn

2
“Al ”LZ(Q) =

)\2 (11)

IA

T
e MTR2 / ‘D1(u1, v1)(17) — Da(uz, v2)(n)
Dx t

IA

T
eZAp*TMTcgnax/ H ((U], U]) (u2a UZ)) ||[L2(.Q ]sz}
t

where we have used hypotheses (A3), (A4), Parseval's relation, Holder’s inequality, and the inequality |¢¥ —¢?| <
max{e’, e}|y — z|. In a similar way, we obtain estimation for A,

||A2||,_z(9) kz Z/ / <D1 uq, v1) D1(U2,v2)> dédn (12)

4T3 2
< )\Zmax / || ( ui, 1)]) — (UZ, UZ ||[L2 .Q)]Zdn
1

t
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For As, applying Parseval’s relation and Hélder’s inequality we obtain

”A3”L2(Q) < = Z/ et _ o=luzp(ml | o=lv1p(ml _ o \vzp(n)l) dn (13)
1 p=1
2T 2/ (Gl ef|uzp<n>|)2 + (el — ef\uzp(nn)zdn
=3 ),
2T o [T
= 2% [ (g = w0 + fogln) = w300 i
1 po1 vt
2T (T 2
< P/ | (s v1) = (2, v2)) G )01
1 Jt
Combining (10)-(13), we have
|| (I](U1, U]) Il(”Za UZ)) ”LZ(.Q) 3||A1 ”32(9) + 3”A2”52 ) + 3||A3”52(Q) (14)
<& / [ @t o) = (2, 02)) )|y
With a similar proof for || (Zx(uy, v1) — Za(uz, v2)) (-, t)”LZ(Q)' we can deduce that
| At v1) = X2, 02)) ¢ O] 2o
<2| @i(uy, v1) = Ta(uz, v2)) (- ”Lz + 2| @a(ur, v1) = To(uz, v2)) (- HL2

< Co(T — t)||(u1, vy) — (U2, v2 ”[C[O,T];LZ(Q)]Z’

which means that (9) holds for k = 1.
Suppose that (9) holds for k = N. From (14), one has

” ( N (g, v Zq\’“(uz, Uz)) (- f)”fzm) ”
C

< ZO ” (IN(Lh, v1) — Muy, UZ)) ”[L2 -Q)]zdn
CN+{

T N
0 (T—n) 2
P ./r N dn ”(Uh v1) — (2, Uz)”[c[o,n;Lz(Qﬂz

C{)\H—] (T _ t)N+
4 (N+1)

=

H(Uh v1) — (U2, vz)”[zC[O,TJ;LZ(Q)JZ'

By a similar argument, we obtain the estimation for IN +1 combining with induction principle, we deduce that (9) holds
for all k € N. Notice that C(’]‘ (ka) tends to 0 when k — oo, we can choose k, such that I¥ is a contraction mapping. By
Banach fixed point theorem, we conclude that 3!(u*, v*) : I*(u*, v*) = (u*, v*). Taking I operator both sides, it gives

I, v*) = I(u*, v*) = A*, v*).

Due to the uniqueness of the fixed point of the operator I¥, we have I(u*, v*) = (u*, v*). Consequently, the problem (1)
with the noisy data WP+, @P+ has a unique weak solution (Lﬁ’;, 1;;’1). It can be straightforwardly proved that the system
with the exact data also possesses a unique weak solution (Uey, Vex).

Next, we consider the difference between the exact solution and the perturbed one

WP+ — Upy = By — B, — B3, with

i Ji D1(UP* 0P )dn

Bil=—————up,
Ap. N N
. o e~ (e—\ug*(nn 4 el
n n
B, — (expft Dyl 0P s _ php f; D1(uex,vex)d§> dn(x
2 Z ft * nip(x)
0 T 1B _ o ltexp (| 1 o1 _ o—lvex,p(n)]
e '"p e P + e '"p e p
B3 - Z/ e)‘p(ftn Dl(ueXsUex)dg_TM) . anp(X)
— Ji P
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Using hypothesis (A;), we find that

em)\p*(T—t)
1Bl 22y = — (16)
Dx
Applying Parseval’s relation, Holder's inequality, and |e¥ — e*| < max{e’, e*}|y — z|, we get
o] T n ~ 2
IBalg <42y [ f (vl(um, T )E) — Dt vex)(s)> déd (7)
p=1

452 Br Pe) 2
<4T [:max”(up , UP*) — (Uexs UEX)H[C([O,T];LZ(Q))]Z'

Next, we estimate B3 as follows

[ee] T —_— —~ 2
||B3||f2(9) < 12 Z/ (E_WII;*(??)\ _ e—|uex,p('7)| + e—\vg*(n)\ _ e—|Uex,p(77)\) dn (18)
=)
2T o [T % 2 2
=52 [ (00— tenglnt” + 1) = vyl
1 p=1 t
2T? | ~ ~ 2
S T% ||(up*a vp*) - (u6X7 veX)“[C([O,T];LZ(Q))]Z'

Thus, by combining (16)-(18), we obtain

I (P — ttex) (-, Ol 20

> [1B1ll2eg) — I1B2lli2() — 11B3lliz(g) (19)
empe(T=0) V2T~ ~
> X — | 2T%Lmax + Y [l (uP+, vP) — (Uex, Vex)llicqro. ) 122012 -
Dx 1

By the same argument for [|(vP* — vex)(-, t)lli2(e) and combination with (19), we deduce that

[l(uP=, vP*) — (Uex, Vex)llicqpo.11:12(2))2
zem)»p*T

— (4T Lmae + 2V2T07") H(u? 0P) = (tlex, Ve

Ap, [C(0,THL2 (2N

This implies that
— - zemkp*T
[l (uP=, vP*) — (Uex, Vex)llicqro. 1112212 = ; — 00,
Ao, (1 + AT Loy + 2V/2TA7 )

when p, — oo. The proof is completed. O
4. Quasi-reversibility (QR) regularization

Since the instability of the system (1) has been shown, it is now worth constructing a stable regularized solution. In this
work, we consider the problem with the assumption (Ag) that F and G are locally Lipschitz functions with the coefficients
K and K¢, respectively, ie.,

IF(x, t, ur, v1) — F(x, t, Uz, v2)] < Kf(Jug — uz] + |vg — v2l), (20)
G(x, t, uy, v1) = F(x, t, tz, v)| < K§(Juy — tia] + |vg — v2l), (21)

for all (x,t) € Qr, uj, v; € R,i=1,2: [uj| + |v;] <R. Here, K} and K¢ only depend on R.
Notice that these Lipschitz coefficients tend to co, when R — o0, we cannot give the error estimate for the solutions

with noisy data, and standard regularization techniques are thus not applicable. To overcome this issue, instead of the
original functions F and G, we deal with the approximate sources Fge, Gge, Which are given in the next section.

4.1. Approximation of the locally Lipschitz reaction terms

We employ two sequences of globally Lipschitz functions Fge and Gge to approximate the locally Lipschitz functions F
and G, as follows

F(x,t,u,v), if |ul + v] <R,

Fre ,t,u, = Réu R? .
e(x. .1 0) ( v ) if ul+ o] > R,

wp _Ru o Rv (22)
T ul (ol ful + vl

8
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G(Xs tv u, v)v lf |u| + |U| f RS,

Gre(x, t,u,v) = Réu R® .
e v) G(x t77v> if ul 4 [v] > R°.
[ul + vl ul + |v|

Here, R°(¢) — oo when ¢ — 0, and will be chosen later in Section 5 to obtain the convergence of the regularized solution.
The next lemma shows the globally Lipschitz property of Fre and Gge.

(23)

Lemma 4.1. Let Fge and Gge be given in (22), (23). Then, they are globally Lipschitz functions with respect to u and v, i.e., for
all (x,t) € Qr,u;, v; € R,i =1, 2, we have

Fre (X, t, Uy, v1) — Fre(X, £, g, 02)] < 2KR (Juy — ] + |1 — va)),
|Gre (x, £, Uy, v1) — Gre(X, ¢, Up, v2)| < 2KE (Juy — up| + [v1 — v2).
Proof of Lemma 4.1. Since the similarity between Fge and Gge, we just consider Fge.
Case 1. |uq| + |v1| < R®, |uz| + |v2| < R®. Thanks to (20), we have
|Fre(x, t, uy, v1) — Fre(x, t, U, v2)| = [F(x, t, uy, v1) — F(x, £, uz, v2)]
< KE (11 — o] + [v1 = va).

Case 2. |uq| + |vq| < R?, |uy| + |vz| > R, (the same proof is used for the case
[ur] + [v1] > R®, [ua] + |v2| < R?).

RSUZ RSUZ
|Fre(x, £, uy, v1) — Fre (-, £, up, v2)| = |F(x, t,ug, v1) = F | x, ¢,

[uz] + |v2| " Jua] + |va|

e Réu R¢
< Kt <u1_72 ‘ _Uz)
[uz] + vz [uz] + vz
e R¢
<Kf [lul—uz|+|vl—U2|+(|U2|+|Uz|)<1—>:|
[uz| + [v2|
< KF (Jur — uz] + [v1 — va| + [uz| + 2| — [ug] — [va])

< 2KF (Juy — up| + [v1 — va).
Case 3. |uj| + |vq| > R?, |up| + |v2] > R®

|Fre(x, t, U1, v1) — Fge (-, £, U, v2)]|

Rglh RSU] RSUZ Rsvz
= |F | x,¢t, s —F|(x,t, s
[uq| + |v1| - ug] + |vq] [uza] + 2| uz| + [v2f

RE R'Slh RSUZ RSU] RSUZ
<K - -
[ug] + Jv1|  uz] + 2] [ug] + vl uz| + |v2]
£ _ _ £
< KF [R(Wl uz| + vy — vzl) R(|U2|+|U2|)_R5:|
[uq] + |v1] [uq] + |v1]

< 2KF (Jug — ua| + o1 — va]).

The proof of the lemma is completed.
It is easy to see that Fge, Gge satisfy

lFre (-, £, uy, v1) — Fre(+, £, U2, v2)ll12() < VBKE [1((ur, v1) — (uz, v2)), Ollzeyes
Gre (-, £, ur, v1) — Gre(+, £, Uz, V2)llj2(2) < VBKE [1((ur, v1) = (uz, v2))s Oll2@ye-

Throughout this paper, denote

max{ VBKF, V8KE } = Kge.
Next, we establish a well-posed approximate system by using a modified QR method.
4.2. The existence and uniqueness of QR regularized solution

Consider the following system

at reg — (Ufeg’ Vrseg) AUrseg"i_Qg reg )+ Fre(x, t, Ureg’ Vrgeg) (24)
o Ve reg = Dz(Ufeg, erg) Aerg + Qg‘ reg )+ Gge(x, t, Ufeg, erg) (25)

9
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accompanied with the final conditions
fx, T)=Wwx), Vi (x,T)=®(x), x¢€1, (26)

reg reg

and the Neumann boundary condition (3).
Here, @ := «a(g) > 0 is the regularization parameter, satisfying «(¢) — 0 when ¢ — 0, and will be chosen later. Qg‘ is
an operator given by

~ . log (14 ae™o?»
Qw)=) %w 1) p(x), (27)
p=0

where My is a positive constant, satisfying My > M, with M given in (A;). This operator is also introduced in [31]. The
idea of this method is that by adding an appropriate small term to the system, we transform our unbounded Laplacian
operator into a bounded operator, which guarantees the stability of regularized solution. This operator depends on a
positive regularization parameter « = «(e) — 0, and will be chosen later to obtain the convergence of the solution. In
the case that the source terms F and G depend only on x and ¢, it is quite simple to get a clue, by using the classical QR
method. However, when the problem has nonlinear reactions, calculating the eigenvalues are much more complex, as we
can see in the form on‘g We now establish the existence of the weak solution to the problem (24)-(26) in the following
theorem. As mentioned before, the proof follows the well-known Faedo-Galerkin method and Aubin-Lions lemma. At
this stage, we may see that the globally Lipschitz property of Fge, Gge is very handy.

Theorem 4.2. Suppose that (A1) — (As), (Ag) hold. Then, the problem (24)-(26) has a solution
(Usyg. Usg) € [CULO. TT: X(2)) N 120, T: )]

reg’> -reg

in the weak sense, i.e., for all ¢, ¢ € U, yield

d
5 Ures(> D @) + P1lUrg, Vi VUR(-, 1), Vo)
(Qg reg ¢>+(FRS( t, Urgeg’ Vrseg) (P> (28)
d
ap Vres( t), %) + D (Usy. reg)(r)(vvrzg( t), Vi)
= (QE(VEC ), ¥) + (Gre(-, £, Uy, Viag) 7). (29)

Proof. Let us define the following operators
I%w = @‘w + MyAw,
Bi(u, v)(t) = Mo — D1(u, v)(t),
By(u, v)(t) = Mo — Da(u, v)(t).
Notice that from (Ay) — (As), for all t € [0, T], (u, v), (uy, v1), (U, v2) € [L?(£2)]%, we have
0 <My —M < By(u, v)(t) §Mo—m
0 < Mo —M < By(u, v)(t) < Mo —
|Bi(u, v1)(t) = Bi(ua, v2)(t)| = |Dy(us, Ul) Di(uz, v2)|
< Lomax||((u1, v1) — (U2, v2))(-, 1) ||[Lz(9

The system (28)-(29) can be rewritten as

d

dt <U:Eg( ) Ql)) (U:‘eg’ reg)( )(vufeg( )7 V§0> (30)
= (P2(ULL)C £), @) + (Fre(-, £, Ufag, Ving). 9).

d & £ £

aWreg(nt),w} By(Uregs Vieg (E)(VVig(+, 1), V) (31)

= (PH(VE)( ), ) + (Gre(ey £, Usg, Vi), ).

To obtain the boundedness of the regularized operator, the following technical lemma plays the key role.

Lemma 4.3.

1. Forany w € Gy(82), ¥ > 2MyT, it yields

[E )] 20 = FI0lcria-
10
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2. For any w € L*(R2), it yields
~ 1 1
”I“g‘(w)”Lz(m = T log o lwll2e)-

Proof of Lemma 4.3. Using Parseval’s equality and the inequality log(1 + a) < a, Va > 0, we have

—_ 1 &
@0y = 75 D108 (1-+ ™) (. oy
p=0

062 ad 062
2TMpA 2 2
<55 2 M ) < Sl o)

p=0
For the second statement, using Parseval’s equality, we have

o0

~ 1
B gy = D [108 (1 + ™) —tog (€T (. 12

p=0
1 2 1 1
— —TMpA, 2 2 2
T2 > [log (e +e7™o)]" (w, p1y)? < 72 %% <&> lwlliz o)
p=0

This ends the proof of Lemma 4.3.
Let us now provide the proof of Theorem 4.2. We divide the proof of the theorem into three steps.

Step 1. Existence of the Galerkin approximate solution

We begin with the construction of a sequence of weak approximate solutions by using Galerkin method: solving
the projected problem in a finite dimensional subspace of U. Consider the correspondingly (n + 1)— dimensional space
Upe1 = span (g, (1, - - ., Un). For each n, we search for an approximate solution (U", V") in the following form

U(x, ) = D Unp(O)ip(x), V(X ) = D Vip()pp(x),
p=0 p=0

where for all ¢, ¢ € Uy,,1, the solution (U", V") satisfies

d

a(Un(', t)a (P> + Bl (Un7 Vn) (t)(AUn(7 t)! (/7) (32)
= (P2(U")(-. 1), @) + (Fre (-, £, U™, V™), ),

d

E(V"(w £), %) + By (U", V) (£){AVT(-, £), ) (33)

= (PE(V™)(-, £), ¥) + (Gre(-, £, U, V™), ),

and the final conditions
n n

UM%, T) = ) (0, mp)ip(®) = ¥"(x), V(6 T) = D (D°, 1p) pp(x) = @"(). (34)
p=0 p=0

Here, ¥" — W&, &" — @° strongly in L*(£2)-norm. In another way, Unp(t) and V;p(t) are the solutions of the 2(n 4 1)
non-linear ordinary differential equations

du, ~

d‘;m — 2B (U™, V) Unp(t) = (PX(UM, £), ) + (Fre (-, £, U™, V™), pap)
dv, ~
% — ApBB2 (Un, Vn) Vnp(t) = (pg(v")(,, t), Mp) + (GRS(', t,un, Vn)’ Mp) ,

for p = 0, n. Attending to the continuity of D, D, and of F, G (assumptions (A1), (A3), (A4)), we can use Peano’s theorem
to have that the system (32)-(34) has a local solution (U", V") in some interval [Ty, T] for 0 < T,;, < T. We now give a
priori estimate for (U", V"), to extend [T;,, T] to the whole interval [0, T].

In (32), taking ¢ = U™, and then integrating from t to T, we have

T
19" 12y — IUMC Ol ) — 2 / By (U™, V") (MIVUC, )72 gydn
t

T T
—2 f <Pgw")(-,n), U"<-,n)>dn 12 / <FRE(-,n, TR U"<-,n)>dn. (35)

h b2
11
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J1 is estimated by applying Hoélder’s inequality and Lemma 4.3

log (1) [T
= [ 1B 0 gtn = 5 [ Ul on

For J,, using Hoélder’s inequality and the globally Lipschitz property of Fge, it yields

T
o= [ 1 U V) g U g

5/ (HFRS :1,0,0) ”LZ(Q + Kee [|(UT, VI ”[LZ(Q]Z) ”U( n)HLZ ()

1 1
5[ ”FR*’(W n,0, O)HLZ(Q) + ift Hun('v ’7)||i2(9)d77

T
+ KR‘g / ”(Una Vn)('7 7])”[,}((_))]2 || Un(" 77)”,_2(Q)d77
t

IA

Combining (35)-(37), gives

UG 03] g+ 2(Mo - / [ VU)o
S N TR ) e
By a similar argument with V", adding the resulting inequality to (38), we have
[ V") )z gy + 2(0Mo M)ftT [(vU™. FVC )z gy
<G +C2/tT [ v e pdn-

Therefore, we obtain

r
”(U,1 VY H[L2 PR = <G+ CZ/ H(Un Vi ”[LZ(Q ]Zdn
Applying Gronwall’s inequality, we arrive at

|| UH Vn C]@T )G < C eTCz

T
T . . (Cl + Cz/; ”(Un VY ”“_2(9 ]zdn>
/t [(vu™, vV ) aypdn < 2(Mo — M)

By (40), (41), we deduce that

H[LZ )2 —
On the other hand, from (39) we have

<Gs.

(U", V") are bounded in [L(0, T; 1*(2))]°,
(U™, V") are bounded in [L*(0, T; [U)]z.

Thus, from the Theory of the ODEs, we can extend the local solution to the interval [0, T].

(36)

(37)

(38)

(39)

(40)

(41)

(42)
(43)

Remark 4.1. It is worth noting that if we use the operator QE‘ as in [31], from (35) we are not able to give the estimate
of U", as well as V", in H' -norm, and hence, cannot apply the Aubin-Lions lemma. Therefore, we employ P?, and some

techniques have been used to modify the operator.

Step 2. Convergence of the Galerkin approximate solutions to the QR solution

The next step is to show that the sequence of Galerkin solutions converges to a function, which is the solution of our

constructed QR problem, as n — oo. From (32) we have that
UP' = —B1 (U, V") (DAU"(x, £) + PE(U(X, ©) + Fie(x, £, U™, V") € H,
Note that —B; (U™, V") (t)AU"™(x, t) defines an element of H~!, given by

(=B1 (U™, V) ()AU"(-, t), @) = By (U™, V") (£)(VU"(-, 1), Vo),
12



N.H. Tuan, T. Caraballo, P.T.K. Van et al. Communications in Nonlinear Science and Numerical Simulation 108 (2022) 106248
for all ¢ € U. Thanks to (42), (43), Lemma 4.3, the globally Lipschitz property of Fge, Gge, Bi, (i = 1, 2), and the similarity
between u, v, we obtain that

(U, V") are bounded in [L*(0, T; [U’)]z. (44)

From (42)-(44), by the Banach-Alouglu theorem, we can extract subsequences U] = U", V! = V" (which are denoted by
the same symbols) such that

U" = UL, V"=V, *weaklyin L*(0,T;I*(£)), (45)
U' = Uy, V'— erg weakly in L%(0, T; U), (46)
— 03U — 0:Uf,, weakly in L*(0, T; U"). (47)
On the other hand, U 5N LZ(Q) < U'. From (46), (47), using the Aubin-Lions compactness lemma, we have
U" > U, V" — Vi, strongly in L*(0, T; L*(£2)). (48)

Hence, by Riesz-Fischer’s theorem, we can extract subsequences U} = U", V] = V" (which we denote by the same
symbols), such that

U" > U, V"— Vi, aein Qr. (49)

reg’

Due to the continuity of B;,i = 1, 2, we have
B1(U™, V") — By(US,, VE.) strongly in [%(0, T),

reg’ Vre
By(U", V") — Bz(Ufei, erZ) strongly in L%(0, T).

Using the Riesz-Fischer theorem, we have up to some subsequences,
By(U", V") = By(Up,. Vi) aein Qr, (50)
By(U", V") = By(Uf,. Vi) aein Qr. (51)

Due to the linearity and boundedness of ITg‘ we have

PY(U") — P"‘(Ufeg) strongly in [2(0, T; [*(2)), (52)

P(V") — P(Vs,) strongly in [%(0, T; L2(£2)). (53)
From the globally Lipschitz property of Fge, Gge, it follows

Fre(x, t,U", V") — Fre(x, t, Uf,, Vi,) strongly in L*(0,T; I*(£2)), (54)

Gre(X, £, U™, V") = Ge(X, t, Ul Viog) strongly in L*(0, T; L*(£2)). (55)

Combining (43), (44), (50)-(55), we can pass (32), (33) to the limit n — oo to prove that (30), (31) hold in D'(0, T) for all
¢, ¥ € U. By (46), we have that U, (t), V&, (t) € U for ae. t € [0, T]. Taking ¢ = n (30), we obtain

reg reg reg
d
a ”Ufeg H 2(2 — 2B (U:eg’ Vrgeg) ”V reg ”LZ(Q

—2<P“( Ureg (-5 £), Ureq (- t)> <FR€( £, Ureg: Vieg)s Ureg( )>,

in D’(0, T). Then by analogous arguments as for (U", V"), but taking the supremum, we arrive at

Ui, and V&, are bounded in C(0,T;1*(£2))NL*(0,T; ). (56)
Therefore,
& & 2 2 2
(Ubg: Viag) € [C(0. T; L*(2)) N L*(0, T; V)]

On the other hand, for a.e t € [0, T], we have

T
<W", ¢> - <U"(~, 0). <p> _ / <a,,U“<~, n),w>dn. (57)

From (47), (48) and the fact that ¥" — ¢ strongly in L*(£2), we can pass (57) to the limit n — co to obtain

T
<‘1’8,<ﬂ> <reg( t), <p> /<8nUreg( ),<p>dn=<Ufeg(-,T),<p> <Ufeg( )<p>,

for a.e. t € [0, T]. Thus, Ufeg(x, T) = W*(x). In a similar way, we have that V£, (x, T) = &°(x). This completes the proof of
Step 2. It only remains to show that this QR solution is unique.

13
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Step 3. Uniqueness of the QR solution.
Suppose that

(us, vi) € [C(0, T; 13(2)) N L2(0, T; V)],

i =1, 2, are two weak solutions of the system (30), (31).
Define

M(X! t) = (U] - le)(x, t)! V(X, t) = (U] - UZ)(Xa t)
It yields
Ux, T)=v(x,T)=0.

From (30), we have
<ut('7 t)v ¢> - B] (U], U]) <VU](', t)s V‘/’> + Bl (u27 UZ) <VU2(', t)? V(p>

= <I;;(U1)(', t) - l’;g(uz)(n t)s (P> + <FR8('7 t, uy, 'U]) - FRE('7 t, u, v2)3 ¢>

Consequently,
<ut(’7 t)7 §0> - B] (U], U]) <VM(! t)v V‘P> = (Bl (U], U]) - B] (u27 U2)><VU2(', t), V(p>

+ <l;;(u)(7 t)7 (/7> + <FR€('5 t7 Uy, v]) - FRS('v t, up, Uz), §0> (58)

Taking ¢ = U(x, t), and then integrating from t to T, we obtain
T
”Z/[(? t)”ZZ(Q) + 2[ B] (ula 1)1) (n)”vu(! 7])“%2(9)(177 = _(11 + 12 + 13)7 (59)
T
L = 2/ <Bl (U1, v1) — By (U, U2)>(’7)<VU2(', n), vu(-, '7)>d77,
t
T ~
L= 2/ <P§‘(u)(-, n), U, n)>dn,
t
T
I = 2/ <FR5('» 1, U1, v1) — Fre (-, 1, Uz, v2), U(-, 77)>d77-
t
We first estimate I; by using Holder’s inequality, (As3), (A4), the inequality ||y|lllz]| < cllyll® + %Ilzllz, it yields
T
Il < 2/[ |B1 (11, v1) — By (U2, va) ||| Vua(-, 77)||Lz(m||vu(', U)HLz(mdﬂ (60)
< TyB (U1, v1) = By (2, v2) ||| Vita (e )| 2y
=2Mo —M) J, 1 (U1, V1 1 (U2, V2 205 M| 28N
T
2
+ 2(Mo — M) / Vet m)|[ 5 qdn
t

[:2 T ) 5 T ,
— Z(Momj(M) ./; ”(ua V)(, 77)” [LZ(Q)]Z ||VU2(, 77)||L2(Q)d77 + Z(M() - M)[ HVZ/I(, 7])“’_2(9)(]77

For I, using Lemma 4.3, we have

Il < 2 log ( /THM(- )|/ gy dn (61)
=1\ ) ) Gl

Next, we deduce estimates for I5
T
I3 < 2/ |Fre (- m, un, v1) = Fre (e iz, 02) | o g UG ) 20 (62)
t

T
= 2KRE / ”(us V)(v 77)”[,_2(9”2 ||Z/f(, 7])”,_2(md77
t

14
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Combining (59)-(62), we obtain

r2 T
”u("t)HfZ(:z) = m/; [ZRY H[L2 )2 | V(- )”zz(md”

2log(L) (T 5 T
t t

In a similar way with V, we arrive at

T
||(Z/{ V ||[L2(Q)]2 — Hl/{ “ZZ(Q) +2||V(" t)”fZ(.Q) = C4[ ||(L{ V ||[L2(Q ]Zdn'
Using Gronwall’s inequality, we have

[, vX <0,

” [L2(2)2 —

which implies that &/ = V = 0, or (uy, v1) = (U3, v2). The proof of the theorem is completed. O

5. Error analysis

So far, in the previous section, we have constructed a modified QR problem and proved the existence and uniqueness
of weak regularized solution. Hence, we are now in position to establish some error estimations in L? and H' norms. To
complete the theoretical part, it is essential to show that these errors reach 0, as the noise level tends to 0.

5.1. [*-estimate

Theorem 5.1. Suppose that (A1) — (Ag) hold. The solution of the system (1) satisfies
(Uex, vex) € [(L3(0, T; Gy (£2)) N LX(0, T; HY(£2)) N €1(0, T 13($2))) N LX(Qr)]”,

with T > 2MyT. Denote

E= max{ [l (uex, Uex)”[LZ(o,T;cT(Q))]L I(ex, vex)llic1(0,1:12¢2)72 5 I1(Uex; UeX)”[LOO(O,T;H(}(Q))]Z }
Let us choose R® such that

1 1
Kge < T log (logy <&>> , (63)

for some y > 0. Then there exist Ag = Ao(Uex, Vex), Bo = Bo(Uex, Vex), for which the following estimation holds

| (Uegs Vieg) — (exs vex) (- O 2o < \/Ao— +Boar,/logy (64)

Remark 5.1. Let us choose the regularization parameter «(e) = . From (64) we imply the stability for t € (0, T].
Moreover, there exists t, € (0, T) : lim,_ot, = 0, such that

1 T
|V Vi £ = Gt 1) Oz (co o' (1) + zs) T (63
where Cy = /Ag + Bo. Notice that if we take 0 < y < 1, then the right hand side of (65) tends to 0, we have the stability
att = 0.

Remark 5.2. In the previous theorem, it is assumed that u and v belong to L*(0, T; Gy(£2)), where the Gevrey space
of functions Gy(£2) has been defined in (11). At this stage, there are unknown to us sufficient conditions on the data
entering the problem given by Eqs. (4), (7) and (9) to ensure that the solution (u, v) € [LZ(O, T; Gr(.Q))]z, but we point
out to Refs. [31,32] for some useful results on Gevrey regularity for parabolic equations.

Proof. Let us define

X0 (x, 1) = e DU, — e )(x, 1), V(% £) = eIV — vex)(x, ),

reg
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where g, > 0 is a positive constant, which will be chosen later. From (7), (28), with some computations, we have
<Xi(-, t), <p> — By (Ul VE,) (t)(w (1), w> eqa“”<@<uex)(-, ), <p> (66)
+ ele(t=1) ( (Ufegv Vreg) D1 (Uex, UEX)><VHEX('! t), V<.0> - qoc<Xg('a t), ‘P>

= <I;‘;"(XS)(', t), (,0> + elot=T) <FR€( t, Ureg7 Vrgeg) F(-, t, Uex, Vex), (/7>-

Taking ¢ = X¢, and integrating from t to T, it yields

T
1A Tl ) — 147G Ol — 2 / Gl C )l (67)
t
T
_2/ (Urseg’ reg) IVXe(, 77)”32(9)(:177
t

T T
P f e%“—”<Qg(uex)(-, . X n)>dn 42 / <Pg(x£)(-, . X n)>dn

Ky K>

T
+ 2/ eq“("”<FRs( s Utegs Vieg) — F(un,uex,vex),Xs(-,n)>dn
t

K3

T
- 2/ eqa(ﬂ—T)< (Urseg’ reg) D1 (Uex, Uex)><vuex(', n), Vxe(., 77)>d77
t

Ky

Applying Hélder's inequality and Lemma 4.3

ol <2 / ||Qg o) 1) gy |27 ) O (68)
2
ST i ””eX("”)”cy(rz)HXs("'7)”L2(.Q)d”
Ol2

=

T T
5 [ el i+ [ 1] gn

For K3, using Lemma 4.3

ot =2 [ P 0 g g (69)

1 T
< ?log (a)/: ”XS("”)||ZZ(9)d'7'

Next, we estimate K3. Notice that R® — oo, when ¢ — 0, since uex, vex € L°°(Qr), we can choose a sufficiently small ¢,
such that for a.e. (x,t) € Qr : |uex(X, )| + |vex(x, t)] < R®, or F(X, t, Uex, Vex) = Fre(X, L, Uex, Vex) a.€. (x, t) € Qr. Thus, we

obtain
T
K3 < 2/ ela(n=T)
t

T
< 2Kge / eqa(n—T)H ((Ufeg, Vrig) (Uex, Uex)) ”[Lz(g)]z H x°(., 77)||,_2(md77
t

<FR5( Ureg’ VlEg) FR"(', 1, Uex, vEX)v Xg('s n)>‘d7) (70)

T
= 2KR*‘"’ f ||(X83 ys)(., ’7)” [12(2)1? ”Xs('a 77)||L2(9)d’7
t

Using (As3), (A4), Holder’s inequality and Cauchy’s inequality

T
|I<4| = ZEmAX/ H(XE, ys)('! U)H[Lz(m]z ”vuex ”LZ(Q HVXS(v n)HLZ _Q)d’? (71)
t

E2 (T
< m/ 6, 3 )z et + 20Mo — M) / 926l
t
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Combining (67)-(71), and choosing q, = % log(%), we have
f 2 T . 2
E4@ “L2 @) = + 72 ), uex-. m”cﬂmd" + /[ EC 77)||L2(:2)d’7 (72)

T
T 2 / ([ERTS ) I s

maxE” ! £ e 2
+ m/; H(X , Y )(-,77)||[Lz(9)]zd17-

In a similar manner, we obtain the estimate for )°, summing with (72), we deduce
6 5 Ol gy < 202 O, + 205 0 ) (73)
< 4% + Csa® + (G + 4Ke) /tT e, ), m g 4
Applying Gronwall’s inequality, we arrive at
[, 29X 0] g < (487 + Cso?) exp (G + 4Ke) (T — 1))
which leads to

— p20a(T—1) ||(XS ) t)H [L2(2)12

&2 2t 1
<G 47+C5 O{TlOgy -1,
o &

where we recalled q, = 7 log (1), Kg < ;- log(log” (1)). From this, we can easily imply (64).
Now, for every small ¢ > 0, let us take the unique solution t, in (0, T) of the equation t = eT. Notice that lim;ot. =0
and t, < . Thus, from (64), we obtain

|| reg’ reg — (Uex, ve")) “ [L2(£2))2

lo (‘
||(Ur€egv reg)( te) — (Uex, Vex)(- ”“_2(912

”( reg? reg ) te) — (Uexs Vex)(- te)” [12(2)12 + ”(uex, Vex )(+ te) — (Uex» Vex)(- O)”[Lz(g)]z

te 1
< GoeT ,[log” <g> +te (||8tuex||c([o,r];L2((z)) + ||8tvex||c([o,r];L2(Q)))

_r Co, [log” <1>+ZE .
log(}) €

The proof of the theorem is completed. O

5.2. H'(£2)-estimate

Theorem 5.2. Suppose that (A1) — (A4)and(Ag) hold. The exact solution of the system (1) satisfies
(Uex» vex) € [(L3(0, T; Gy (£2)) NL™(0, T; H(£2)) N C'(0, T; HY(2))) N L¥(Qr)]

with T > 2MyT. Denote

E* = max{ Il (texs vex)ll2(0,7:6y (225 (Uexs UeX)”[Cl(O,T;H(}(Q))]Z’ [l (exs Vex)llzoo(0,7:H2(2))12 }

Let us assume that

we @ W P e H(R2),
”lpg — lI/“Hl(Q) + ”QDF — ¢||H1(Q) <e.

Choose R such that

12K2 1 1
8Kpge R _ < _Jog(log” (-], 74
R oM ST g<g<a>> (74)
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for 0 < y < 1. Then there exist Aj = Aj(Uex, Vex), B = Bjj(uex, Vex), for which the following estimation holds

” ((Ufeg7 Vl‘seg) (Uex, vex)) ”[H1 ]z = + B*OlT v/ lOgy (75)

We choose the regularization parameter a(e) = ¢. From this we 1mply the stability for t € (0, T]. Furthermore, there
exists t, € (0, T) : limy_,o t; = 0, Cj = /Aj + Bg, such that

”( reg? reg)( te) = (Uex, Vex)( ”[H1 o = (Co log” (8) +2E ) @7 (76)

or we have the stability at t = 0.

Proof. We first prove that the solution AU,
basis {Mp}pzo C U, we have that

«g and AV, to the problem (30)-(31) belong to € L([0, T]; L?(£2)). Since the

r reg

n n
AU™ = =) dpUn(D)pp(x)and AV" = = " 2, Vo (£)1p(x)
p=0

also lie in U for a.e. t € [0, T], where (U", V") is the Galerkin approximate solution. In (32), taking ¢ = AU", and
integrating from t to T, we obtain

T
VU 0I5 ) +2 / Bi(U". VI AU )2 g, dn
T - T
= ||W"||im>+2f (U™, ), Au"(-,n))dn+2f (Fre (-, n, U™, V), AU™C-, )dy
t t
T
< 19"y gy +2 f (IBEUMC, Mz + IFe (o 1, U™ VY 2gy) 1AUPC, )2y

T T
<G+ G / IV VI IR pdn + (Mo — M) / 1 AU"C )% g dn,
t t

where we have used Holder’s inequality, Cauchy’s inequality, Lemma 4.3 and Lipschitz property of Fge.
Hence, using (43), we arrive at [[AU" |l ;2¢0.7.12(2)) < Cio. Then the limit function U, reg also satisfies this estimate. Using

the same arguments for V., we have AUf,, AV, € [(0, T; L*(£2)). As in the previous section, we define

x, £) = %I (VE — vy )(x, ©).

reg

X (X t) = eQLv (=D (UE UEX)(Xv t)a

reg

Yi(
Since the hypothesis uey, vex € L%(0, T; H?(£2)), it yields Ax?, AY® € [2(0, T; L*(£2)).
From (66), taking ¢ = Ap(X°(-, t), ip) p(x), summing from p = 0 to oo, and then integrating from ¢ to T. By some
simple calculations, we have that

92Dy~ 19 O~ 200 [ 19l 0 77
T
2/ B (Ufeg’vrig) )| axe(., ”LZ(Q)dn
(n

t
T
=-2 f el *T( (Uregs Vieg) — D1 (uex,vex>>(n)<Auex(-,n), M(-m))dn
t

Gq

T T
—2 / e%“—”<Qg(uex)(-,n), A/’VE(-,n)>dn+2 / <P?(VX€)(-,77), VXS(-,U)>dn

Gy G3

T
— 2/ eq"‘(tT)<FRs( Ureg! Vrgeg) F(-, 1, Uex, Vex), AX(-, 77)>d77-
t

Gy

The above terms make sense since the linearity ofPNg‘, @‘ Lipschitz property of Fie, and the fact that AX?, AY?, Auey, Avex
€ (0, T; [*(£2)).
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Using Holder’s inequality and hypotheses (A3), (A4)

o1 = 2 [ 1G5 g s | A7 ) 8
= % ffT ”(Xg’ YL n)”fﬂ(szuzdn
+ 2000 M) ) g
Using Holder's mequahty, Cauchy’s inequality and Lemma 4.3, it gives
ol =2 [ 1@ Dl |47 ) 79)
< s | 1@ gt + XM [ el g an
sl I I L L PR
< o 2 [ s i
Thanks to Lemma 4.3, we have
Gsl <2 / BT )] g | V7 1)y (80)

2 1
< ~log <&>/[ ||VX8(-,n)Hfz(mdn-

With an analogous argument as in Section 5.1, we can choose a sufficiently small ¢, such that F(x, t, Uex, Vex) =
Fre (X, t, Uex, Vex) for a.e. (x, t) € Qr, where Kge satisfies (74). Therefore

T
|Ga| = 2[ ea(n=T) <FR5( N, Ubgs Ving) — Fre (-1 11, Uex, Ve ), AXC(, 7])>‘d77 (81)
t
T
= 2/ ede(1=1) ”FR‘g n, Ureg’ Vreg) Fre (-, 17, Uex, Vex ||,_2(Q ||AX ”L2 @) dn
t
T
< 2Kz, / [, 23 M| 2 142G ) 2y
3Ky ! 2 2(Mg — M)
N m/t ||(X£’y8)(" n)H[LZ(Q)]Zd77 + f/ ”AX ”LZ(Q) n.

Choosing g, = 7 log (1). From (77)-(81), we deduce

& 2 2 2 31(139 ! & & 2
||VX ('9 t)HLZ(_Q) <&+ Cloa + Cl] + ) H(X » Y )(7 77)||[L2(Q)]2d77
t

2(Mo — M
In a similar manner, we obtain estimate for }*. Therefore
” (Vs vy*X ||[L2(Q)]2 (82)
< 46 4 4Cyo0” + | 4Cy1 + Sk ) [ e, 25X, m)|| 22y e
= 10 11 My —M) ) J, ) s M 2y 97-
Combining (73) and (82), yields
2 2
||(X87 yé‘)(.’ t)“[Hl(Q)]Z S 2||(X87 y&‘)(., t)“[LZ(Q ]2 + 2“ VXS Vy ||[L2(.Q)]2

<1662 + Cppa? + ((Cos + 8K + 2K TII(XS V)10
=< 12 13 R My —M) ) . ’ >l ey @

Applying Gronwall’s inequality, we arrive at

o 2 2 2 121(,35
||(XF’ :yg)(.7 t)||[H1(Q)]2 < (168 + C]ZO[ )EXP [<C13 + 81<R€ + m (T — t) .

Thus, by choosing Kz which satisfies (74), we can deduce (75).
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Moreover, with o = ¢, as in Section 5.1, we choose t = t, the unique solution of the equation el = t, yields
”(Urgeg, Vrgeg)('» te) — (Uex, Vex)(+s 0)”[,.,1(9)]2
=< (Urse s Vree )G, te) = (Uex, Vex)(e t) | 1,02 + || (Uexs Vex)(es te) — (Uexs Vex)(+, O)|| 1, o2
g g [H1(£2)] [HY(£2)]

* 1 *
<t (Co log” (f) + 2E ) ,
&
which implies (76). This completes the proof of the theorem. O

Remark 5.3. In Theorems 5.1 and 5.2, to ensure the convergence of regularized solution, it is sufficient to choose « such
that lim, .o = 0, lim,,o £ = const. In order to obtain the optimal rate of convergence, we chose @ = e. With this

choice, the convergence speed of regularized solution in both L? and H'-norms is of order O(e%, /log” %) for t > 0.

Remark 5.4. In Section 4, instead of the locally Lipschitz condition (Ag) of F and G, we can impose the locally Lipschitz
property in L?> — norm
YR > 0, 3K, K& : 0 < KR, Kf < oo, Y(ui, vi) € Br,i=1,2,Vt € [0, T}, yield

IFC, £ ug, v1) — F( £, g, UZ)”LZ(Q) = Kﬁ” ((ug, v1) — (uz, v2)) (-, t)”[LZ(Q)]L
1G(-, ¢, ur, v1) — G(-, £, U, v2)llj2¢0) < KEI ((ur, v1) = (u2, v2)) (-, Ollizeoy2s

where By is the closed ball in [L2(£2)]? of centre 0 and radius R. Then we can use the following sequences of globally
Lipschitz functions

F(x, t,u,v), if [I(u, v)(-, Ol < R,

Fre(x,t,u,v)={F (x, t, Ru ) Rv ) 7
l(w, v)C Ollpzeeyz - 1, v)C Ollizie)R

if ”(u’ U)(-, t)”[}_Z(Q)]Z > RS,

Gx, t,u,v), if |(u,v), t)||[Lz(Q)Jz < RE,

Gre(x, t,u,v)=1G (x, t, Ru , Rv ) ’
I, 0I5 Ollzgeyz 1w, V)G, Ollze)e

ift [|(u, v)(-, t)”[)_Z(g)]z > Rf
to approximate F, G and our QR method can be straightforwardly applied. We can easily prove that the reaction function

considered in Section 3 satisfies the globally Lipschitz condition in L2- norm and the regularized solution for this unstable
problem can be found.

6. Numerical results

This section concentrates on establishing some numerical tests in 1-D and 2-D regions 2 to illustrate our numerical
strategy and verify the error estimates given in the theoretical parts. Let us start with the 1-D case.

6.1. Generalized Fisher-Kolmogorov model for the response of low-grade gliomas to radiotherapy
We first generalize the model expressing the response of the tumour cells to radiation [3]

9
gu(x, t) = D1(u, vg)(t)Au + p(1 — u — vg)u + Fy(x, t),

0
&Ud(xv t) = Dy(u, vg)(t)Avg — %(1 —u—vg)vg + Fa(x, t),

where u is the density of functionally alive tumour cells, vq4 is the density of irreversibly damaged cells after irradiation.
t = 1/p is the tumour population doubling time. The parameter k has the meaning of the average number of mitosis
cycles that damaged cells are able to complete before dying.

By simple computations, one can easily check that reaction terms F, G are locally Lipschitz functions w.r.t u, vg, and
with the Lipschitz constant

Kee = +/8 max{p, %}(2128 1)
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We implement the model with the domain £2 = [0, 7]. The Laplacian operator has eigenfunctions, satisfying Neumann
boundary condition: pu,(x) = \/gcos(px), with corresponding eigenvalues, A, = p?, p € N. This sequence {1p(x)}5° forms

an orthonormal basis of L?(£2).
A uniform grid of mesh-points (x;, t) is used to discretize the space and time intervals

Ax= 2 xi=(i—1)Axi=T N, +1,
Ny

; -

At= o te=(k=1AtLk=1,N+1.
t

The inner product in L?(0, 7r) can be approximated by 1-D composite Simpson rule of numerical integration

Nx+1

/ oo 20 et

i=1
1, if(i=1)v(i=Ny+1),
where¢; =142, ifi=214+1,
4, ifi=2L
As a consequence, discrete norm in L*(£2): ¢2- norm can be defined by

Ny+1

Ax
? Z ciwz(xi).
i=1

The input data is perturbed as:

lwlleze) =

&
+
||‘I’||z2(_q) + ||‘pd||z2(g)

ve(x) = ¥(x) (1 (2 rand(size(x)) — 1)) ,

D°(x) = P(x) (1 + (2 rand(size(x)) — l)) ,

1¥ 1l 22y + 1 Pall 2y

where rand(size(x)) is a random array with the same size with x, having values in [0, 1].
Denote by (1, 7) our numerical regularized solution, and by (uex, vex) the exact solution.
The absolute errors are evaluated by

~ €u
€ = |lu— ueX||[2(Q)s rey = W,
ex11e2(2)
~ €y
€ =|v— Uex”ez(:z)» re, = W
exle2(2)
6.1.1. Case 1

We investigate the model in the first case with

1
T= 3’ p=0.01,k=1,D1 =0.2 + 0.1sin(b(vg)), D = 0.2 4+ 0.1 sin(c(u)),

a(u)(t):O,b(vd)(t)=/x-vd(x, t)dx, c(u)(t):/ x-u(x, t)dx, d(vg)(t)=0.
2

2

One can easily see that 0.1 < D(#, v) < 0.3. Thus, we can choose My = 0.31.
Taking the external sources

F; = e cos 2x(0.01 cos x — 0.4 sin(2e2!)) 4+ 0.01e% cos? 2x — 2.21e 73 cos 2x,
F, = —1.79¢ % cosx — 0.01(e™* cos?® x + e > cos 2x cos x),
and the final data

w(x)=elcos2x, ®(x)=e ?cosx

—3t —2t

the problem admits uex(x, t) = e7>" cos 2x, vex(x, t) = e~ ' cos x as the exact solution. Then the radius chosen here R® > 2.
Consequently, we have Kz > 0.05+/8. In order to guarantee the condition (63) with y = % we must have ¢ < 0.2327.

Finite difference numerical solution.

In this example, we first try to use the traditional backward Euler method to take into account the numerical
regularized solution to the system (24)-(25) with the regularization parameter chosen here a(e) = ¢ as follows

Ut — Uk B Uk | — 20Uk + UK ~

— Dy (UK ykry T i 1 pkl L Qu(ukt, 83

- i ) s 4 Qa(Uk) (83)
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Table 1
The errors of finite difference solution at t € {
{1071,1072,1073,1074,1073, } for Ex. 1, case 1.

. 2. ) for various amounts of noise & €

Al

& eul(y) €(3) ulg) e(3) eulg) e
10! 0.2539 05119 1.6491 17270 37.6326 8.3029
1072 0.2070 0.0801 05151 0.2093 1.1453 0.1852
1073 0.0685 0.0326 0.1046 0.0607 0.1616 0.1038
104 0.0664 0.0221 0.0831 0.0258 0.1064 0.0317
107° 0.0674 0.0219 0.0841 0.0250 0.1062 0.0301
Vit — vk VL —2vf 4+ vE ~
i i k+1 k+1y i1 i i—1 k+1 k+1
— — DU,V —_——— = G; " +Q¥(V: s 84
Y ( ) 2 ; Qx (V™) (84)
k+1 k+1
where UF = Ureg (%1, ti), vk = Vieg(Xis i) F 7 = Fpe (%es1, i, Ubeg(Xie415 ti)s Vigg(Xee15 t;)) and G = Gge (Xit1, 8, Ufeg(Xk+1.

ti)’ erg(xk+l s E))
The term Q¥(V/") is defined as

P
~ log(1 + ge™o*»)
Q (Vi) = Z —— (V" ().

T
p=0
Furthermore, to find the Fourier coefficient <V"+1, /Lp> we imply the Filon numerical integration method (see [32]). The
Neumann boundary condition (3) is implemented at x = 0 and x = 7 as follows:
Ur=U5, Vi=Vy, Uy =Uy . W =V§, fork=1N+1.
Then, we will find the solution vector X* = [U} U§ ... U§ V5 V¥ ... V{ ]" by solving the linear system

A(Uk+1 Vk+l)xk — B(uk+1 Vk+1)

where
U — AtFST — AtQe (UXH)
k+1 k+1 Ao (17k+1
B (Uk—H Vk+1) _ UNX - AtFNx - At% (UNx )
’ V2k+1 _ AtGgH _ Ath (V2I<+1) ’
LV — AG — AeQe (Vi)
(A, O
k+1 k1) _ | A1
AU VET) =17 Az] ,
with
1—D;h D;h 0 0 0 0
D;h 1—2D;h D;h 0 0 0
A — 0 D;h 1-2Dih Dh O 0
T DEEEY DECEEY DR DR DR e DY ’
0 0 cen 0 D/ 1-2Dih D;h
0 0 0 0 D;h 1—D;h

where h = %, D; = D; (UK, VKT,

Choosing N, = 8, N, = 100, P = 10, we present the relative errors between the regularized and the true solutions at
t € {1, &, 5} for various amounts of noise ¢ € {1072, 102, 1074, 10~%} in Table 1..

From them, we can observe that the errors at t = % are greater than those at t = % and smaller than those at t = %
Furthermore, with the smaller errors of input data, the results obtained are more accurate, which verifies the theoretical
result in Theorem 5.1.

One more thing to remark is that using this method, if we choose the number of intervals for x : Ny, > 10, then the

numerical solution quickly looses its stability and tends to infinity. Hence, we choose Ny = 8 only.
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Table 2
The errors of Fourier-mode solution at t € {4,
with Ny = 8 for Ex. 1, case 1.

1, L}, for various amounts of noise ¢ € {107', 1072, 1073, 1074, 107°},

& eul3) €(3) eulg) e(3) eul3) e

107! 0.1291 0.0979 0.2033 0.1754 0.3873 0.3787

102 0.1159 0.0843 0.2184 0.1952 0.4066 0.4022

1073 0.1175 0.0924 0.2233 02134 0.4170 0.4360

104 0.1176 0.0962 0.2250 0.2231 0.4258 0.4530

105 0.1178 0.0973 0.2271 0.2259 0.4322 0.4573
Table 3

The errors at t = ;,t = g, t = 75, for various amounts of noise & € {10!, 1072, 1073, 107, 10~°} with N, = 100 for

Ex. 1, case 1.

1
6’ 12'

& al(d) (1) () e(2) alS) a(5)
10! 0.0515 0.1984 02977 1.2888 42858 157.2620
102 0.0037 0.0039 0.0156 0.0700 02743 46714
1073 0.0012 0.0005 0.0066 0.0042 0.0176 0.0156
104 0.0012 0.0004 0.0065 0.0027 0.0174 0.0072
10°5 0.0012 0.0004 0.0066 0.0027 0.0173 0.0072

Fourier-mode numerical solution
Next, we construct a new numerical regularized solution to the system (24)-(25), which is of the following form

U= [exp (xp / (uleg,v;eg)dn> (1+ €M) T w;] (%) (85)
p=0 ¢
s ! ! MoThp) T
- Z [/ exp <kpf D( reg’ 1eg)ds> (1 +Ee 0 p) T ( ( U:‘egﬁ 1eg) Mp)dn:| :up( )
p—o LIt t
- ! MoThp\ ST
erg Z [exp (Ap/ Do(US reg’ reg)dn) (1 + geMo p) T (D;] Hp(x) (86)
p=0 ¢

o T n t—n
- Z [\/t EXp <)“P‘/t‘ D ( reg’ reg)ds) (1 + geMOTAp)T (G( U;‘egﬂ reg) Mp)dn] /J'p( )
p=0

where we have used some similar calculations as in the proof of Lemma 3.2.
We herein use the Picard-like procedure [32] to approximate the Volterra-type integral Eq. (85) as follows (the same
way is applied for v)

UL = (Uy(e ). ) = €94 SR PUOEED (1 4 ghom) T e
Nt iy 1 i 4-n
= / WPV V) (1 4 geMoTio) T (F(., o, UK, VIED), 1) d, (87)
=k 1t
with Ur‘eg = Ug,(x, 1), Vreg = Vioe(x, ;). We will find these Fourier coefficients up to p = P.
With the choice that Ny = 8, N; = 100 and P = 10, the errors at t € {%, é 12} for various amounts of noise

e € {1071,1072, 1073, 1074, 107>} are presented in Table 2. We can easily see that the numerical solution is not stable,
and the errors are greater than those of the finite difference numerical solution.

However, when we increase the parameter N, to 100, the stability of the numerical solution has been much improved.
Table 3 and Fig. 1 show the £,-errors between (U, V) and (uex, vex) at various times t € {4, & 12} (with Ny = N; = 100, P =
10) for various amounts of noise ¢ € {1071, 1072, 1073, 1074, 1073, }, and the graphs of the approximate solutions at
t =4 fore e {107,107, 1073, } (with Ny = N; = 50, P = 10).

6.1.2. Case 2
We now consider the model with
04 0.5
T=1,0=0.001,k=1 D1=D2=0.1+ +

1+a%u) 1+ b%(vg)’
a(u)(t) = c(u)(t) = f u(x, t)dx, b(vg)(t) = d(vg)(t) = vg(x, t)dx.
2

2
Notice that 0.1 < D;, D, < 1. We then choose My = 1+ 2.10~13.
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Fig. 1. The regularized solutions in Ex. 1, case 1, at t = 1, with 6 = 107!, 6 = 1072, 6 = 107>
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Fig. 2. The noisy data in Ex. 1, case 2, with ¢ =0.1.

Let the external sources
Fi(x, t) = 0.999e 3 cos 2x + 0.001(e > cos 2x cos x + e~ cos? 2x),
F(x, t) = —0.999e % cos x — 0.001(e™* cos® x + e~ cos x cos 2x),
and the final data
w(x)=e 3cos2x, @(x)=e 2cosx

such that ue(x, t) = €73 cos 2x, vex(X, t) = e 2! cosx are also the exact solution. Here R® > 2, Kze > 0.005+/8, ¢ must
satisfy ¢ < 0.3263.

Choosing Ny = N; = 50, P = 10. Fig. 2 gives us a picture of noise of level ¢ = 0.1 in input data. Figs. 3 and 4 compare
the numerical exact solution with noisy data and the regularized one at t = 0.8, with ¢ = 0.1. The error shown in the
case of unregularized solution is extremely large, compared with the exact solution. This reflects the instability of the
exact solution, which has been proved in Lemma 3.2 for an example.

Table 4 shows us that as t reaches 0, the numerical regularized solution tends to lose its stability.

6.2. Turing pattern

We now consider an example of pattern formation in a Turing-type reaction-diffusion system [6]
u(x,y, t) = DyAu + kqu?v — kou + Fi(x, y, t),
24



N.H. Tuan, T. Caraballo, P.T.K. Van et al. Communications in Nonlinear Science and Numerical Simulation 108 (2022) 106248
5 6
10 =10 i . v . 1 =10
¢ ® 't i It /
O Y LS L
8h IR M [ ‘ g
N Y ! P D
et (| 1| || [| | o5k A NV [V [y ]
‘\ ] ‘\ ; ‘1 |1 ] )\ A %‘“ 't \l |
- T’ \ I 5 | |
atb 44ty T AN AURARE AN,
[ [ ] ] s bl e
N T O I I 0 H———— ———
e, 1L | J | || l‘ [ o I T B | ? 1
=S 1 I U L O A 5 L+ L VDL
Y I O A T A O > L A I O
0 T T l | 1 L ) | (| | | % | |
4 I T O O 2 [ 0.54 | | ' | I
I A U R T B | | \ 4 |1 A A N B W
201 It | | I &1 | ¢ | ¢ | T
1Y A O S I B | | ¥ & 2
| | || | | | Vo & \/ & | |
4t | | || g L) y &/ | f |
WMo 1 R NY
6 | V y J ! ¢ \
¢ —s—Unreg. Sol. u ——Unreg. Sol. v
Ex. Sol. u Ex. Sol. v
-8 -1.5
0 1 2 3 4 0 1 2 3 4
X X
Fig. 3. The unregularized solution in Ex. 1, case 2, at t = 0.8, with ¢ = 0.1.
01 0.25
2 + Eg“u D + gsavve
008 N 02b— e,
ooste, fee a1s EN
+. A -+-I +. \
004 N [+ i 01 +¥+f+
++ ‘\ + N
- \ A 005 X
A f EN
0 " # o N
\ J P
-0.02 ‘f +/ -0.05 b 5,
\E Y, N
-0.04 ‘\+ +,f‘ a1 N
\ |+ + N
\ Bt A
-0.06 ++++ i/ 0.15 ‘*“‘\*‘JCHH
N
-0.08 02 »
.
o ] 05 1 15 2 2‘5 3 35 N 250 0‘5 1 15 2 25 3 35
Fig. 4. The regularized solution in Ex. 1, case 2, at t = 0.8, with ¢ = 0.1.
Table 4
The relative errors at various times t € {0.8,0.6,0.4,0.2}, for various amounts of noise & S
{1071,1072,1073, 107>, 107>, 1075, 1077} for Ex. 1, case 2.
& rey(0.8) r€,(0.8) rey(0.6) r€,(0.6) rey(0.4) re,(0.4) rey(0.2) re,(0.2)
107! 0.3508 0.0860 0.5472 0.1704 0.6854 0.1971 0.8374 0.2763
1072 0.0448 0.0207 0.0196 0.0587 0.0941 0.1113 0.2337 0.1770
103 0.0413 0.0102 0.2014 0.0443 0.4542 0.0884 0.7961 0.1458
10~* 0.0522 0.0098 0.2285 0.0432 0.5057 0.0879 0.8776 0.1359
10-° 0.0534 0.0097 0.2315 0.0432 0.5109 0.0876 0.8862 0.1361
10°¢ 0.0535 0.0097 0.2318 0.0431 0.5115 0.0876 0.8870 0.1363
1077 0.0535 0.0097 0.2318 0.0431 0.5115 0.0876 0.8870 0.1363

ve(x, ¥, £) = Dy Av + kot®v + Fa(x, y, t),

where u, v are concentrations of activator, and substrate, respectively. D,, D, are the diffusion coefficients of u, v and D,
is significantly faster than that of the activating species, i.e D, > D,. kq, k, are reaction rate constants. This model is
observed in several biological systems including zebra (stripes), minor worker termites (concentric circles), aggregation
of slime moulds (spirals) and leopards (randomly distributed dots).

The reaction terms F = k;u?v —kyu+F;(x, y, t) and G = kyu®v +F,(x, y, t) are locally Lipschitz functions with Lipschitz
constant Kge = ~/8 max{ky, k}(2(R¢)2 +1). We shall implement the model in 2-D region 2 = [0, ]* with the parameters
ki =k, =0.01,T = 1, D, = 0.01, D, = 0.2, and choose My = 0.2 + 10~1°.
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Table 5
The relative errors at various times t € {0.9, 0.5, 0.3, 0.1}, for various amounts of noise ¢ € {1072, 1073, 1074, } for Ex.
2.
£ rey(0.9) r€,(0.9) rey(0.5) re,(0.5) rey(0.3) re,(0.3) rey(0.1) re,(0.1)
102 0.0358 0.0158 0.0346 0.0221 0.0358 0.0536 0.0403 0.1002
103 0.0221 0.0095 0.0106 0.0384 0.0185 0.0981 0.0328 0.2557
104 0.0095 0.0072 0.0531 0.1136 0.0679 0.4506 0.0997 1.8405
EEEx. Sol. u ElEx. Sol. v
0.3
0.3 0.2
0.2
‘;} 0.1 0.1
x
= 0
0.1 g
-0.2
03 -0.1
-0.4
3 -0.2
-0.3

Fig. 5. The exact solution in Ex. 2 at t = 0.5.

At the discretization level, a uniform grid of mesh-points (x;, y;, t;) is used

Ax:l’xi:(i—l)AX,izlaNx+17
Ny

T . ,  —
Ay = N—,yj=(1— 1)Ax,j=1,Ny + 1,
y

T -
At = — ty = (k— DAt k=1, N, + 1.
N;

An orthonormal basis in [L?(£2)]?, consisting eigenfunctions of Laplacian, satisfying Neumann boundary condition, with
the corresponding eigenvalues

2
(X, ¥) = = cos(mx) cos(ny), Amn =m?+n?, m,neN.
T

Denote the number of terms of truncated Fourier series by (M+1)(N+1): 0 <m < M, 0 < n < N. We use aforementioned
Picard iteration method, as in (87) to find the Fourier coefficients

amn = (ﬁ7 Mmn)s 3mn = (Bla Mmn)-

The composite Simpson rule for 2-D integration is represented as follows

Nx+1Ny+1

[ rcenasay~ Z2ST Y e,

i=1 j=1

(i=1vi=N+DAj=2D)v((i=1Vj=N+1)Ai=2l),

(i=1vi=N+DAj=21+1)V({([(=1Vj=N+1)Ai=21+1),

wherecj =18, f({i#1,Nx+1DAGELN+DA(+j=214+1), for some integers k, L.
(
(
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Fig. 7. The regularized solution in Ex. 2 at t = 0.5, with & = 1073,

Taking the external sources

Fi(x,y, t) = —2.98e 73! cos 2y cos x — 0.01e%¢ cos 2x cos? 2y cos® x cos y,

Fo(x,y,t) = —1.2e7% cos 2x cos y — 0.01e~® cos 2x cos? 2y cos® x cos y,
such that our exact solution is

Uex(x, ¥, t) = e cosxcos 2y, vex(X, ¥, t) = e 2 cos 2x cos y.

The final data are given by

w(x,y) =e >cosxcos2y, ®(x,y)=e 2cos2xcosy.

The radius chosen here R® > 2. Consequently, we have Kge > 0.2546. The condition (63) with y = % holds true when
& < 0.01 Let Ny = Ny, = N; = 50, and the truncation levels: M = N = 10. The exact solution, numerical unregularized
solution and the solution after regularization are presented in Figs. 5, 6, 7. Table 5 gives the relative error comparison at
various times t € {0.9, 0.5, 0.3, 0.1} for various noise levels ¢ € {1072, 10~3, 107%}, and shows the similar phenomenon as
in the previous subsection: when t reaches 0, the relative errors increases rapidly and the numerical regularized solution
tends to lose its stability, the smaller the noise level, the greater the magnitude of approximation errors.
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Remark 6.1. In case that we cannot find the analytical true solution, first, we can solve the forward problem to numerically
simulate the terminal data, perturb them, and then use the perturbed final data for the backward problem.

7. Conclusion

In this study, we solved the unstable backward problem (1) with nonlocal diffusions and locally Lipschitz nonlinear
reactions by suggesting a modified QR method. In the theoretical results, we obtained the error estimates in both L?—
and H'—norms. We implemented 2 biological models in simple cases to verify the result in L>—norm only. From the
numerical tests, it shows that the regularized solutions are convergent to the true solutions and the convergence speed
decreases rapidly as t tends to 0.
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