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a b s t r a c t

In this article, we are interested in investigating the nonlocal nonlinear reaction–
diffusion system with final conditions. This problem is called backward in time problem,
or terminal value problem which is understood as redefining the previous distributions
when the distribution data at the terminal observation are known. There are three main
goals presented in this paper. First, we prove that the problem is ill-posed (often called as
unstable property) in the sense of Hadamard. Our next propose is to provide a modified
quasi-reversibility model to stabilize the ill-posed problem. Using some techniques and
tools of Faedo–Galerkin method, we prove the existence of the unique weak solution
of the regularized problem. Further, we investigate error estimates between the sought
solution and the regularized solution in L2(Ω)− and H1(Ω)− norms. The final aim of
this paper is to give some numerical results to demonstrate that our method is useful
and effective.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let T be a positive number and Ω ⊂ Rn, n ≥ 1, be an open bounded domain with a smooth boundary Γ . Denote
QT = Ω × (0, T ),Σ = Γ × (0, T ); Σ is called the lateral boundary of the cylinder QT . In this work, we consider the
ollowing nonlocal nonlinear parabolic coupled system of reaction–diffusion equations{

ut = D1 (a(u)(t), b(v)(t))∆u + F (x, t, u, v), in QT ,

vt = D2 (c(u)(t), d(v)(t))∆v + G(x, t, u, v), in QT ,
(1)

To complete the terminal-boundary value problem, we consider the terminal conditions

u(x, T ) = Ψ (x), v(x, T ) = Φ(x), in Ω, (2)
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and Neumann boundary conditions
∂u(x, t)
∂σ

=
∂v(x, t)
∂σ

= 0, on Σ, (3)

where σ is the outward unit normal to the boundary Γ . u and v are the population densities of two observed species. F
and G are the reaction terms and D1,D2 are the diffusion coefficients, working on the functionals a(u)(t), b(v)(t), c(u)(t)
and d(v)(t). The problem is nonlocal in the sense that the diffusion terms D1 and D2 depend on the entire populations,
hich mean the global quantity, rather than the local density. In this model, the interaction of two species is represented
ot only in the reaction terms, but also in the diffusion terms. The homogeneous Neumann condition in biological models
ean that the boundary of the specimen domain observed is insulated. We can also consider the homogeneous Dirichlet
oundary condition instead, and the method can be straightforwardly applied. In this paper, our main goal is to seek
he initial values u(x, 0) = u0(x) and v(x, 0) = v0(x) when we only know the measurements of the terminal data Ψ
and Φ . We can give one practical application of the model (1) for locating the source of brain tumours. Let u and v be
he normal (healthy) and abnormally growing normal tissue cells in the brain due to genetic and epigenetic events. In
he perspective of (1), we assume that the movements of each kind of cells are dominantly influenced by the whole
opulation of the corresponding type. The nonlinear source terms F and G can be considered as reactions, mortality rates

and proliferation rates. For the last several decades, various types of equations have been employed as mathematical
models describing physical, chemical, biological and ecological systems. Among them, one of the most successful systems
is the reaction–diffusion system{

ut = D1∆u + F (x, t, u, v),
vt = D2∆v + G(x, t, u, v).

(4)

For instance,

• Activator–inhibitor FitzHugh - Nagumo model for propagation of electrical signals in neurons [1,2]

F = au − bv + αu2
− βu3, G = cu − dv + m,

where the constants a, b, c, d, β are positive and m, α ∈ R, u is the activator, v is the inhibitor. This model describes
the control of the electrical potential across a cell membrane by the change of flow of the ionic channels;

• Fisher - Kolmogorov model for delay effects in the response of low-grade gliomas (LGG) to radiotherapy [3]

F = ρ(1 − u − v)u, G = −
ρ

k
(1 − u − v)v,

where the constants ρ, k are positive, u is the tumour cells density, v is the density of cells irreversibly damaged by
radiation;

• Diffusive Lotka–Volterra system [4] describes the relation between population densities u, v of interacting species

F = au + buv, G = cv + duv,

where a, b, c, d are the constants;
• Turing model for biological pattern formation [5,6]. u, v are concentrations of activator, and substrate, respectively.

The Turing model can display a variety of intricate spatial patterns that result from an interplay between local
aggregation of u through autocatalysis, and rapid diffusion of v away from u-rich regions: Dv > Du. Examples:

– The Schnakenberg system

F = k1 − k2u + k3u2v, G = k4 − k3u2v,

where ki, i = 1, 4 are positive constants;
– The Gierer–Meinhardt system

F = k1 − k2u + k3
u2

v
, G = k4u2

− k5v,

where the constants ki > 0, i = 1, 5;
– The Thomas system

F = k1 − k2u −
k5uv

k6 + k7u + k8u2 , G = k3 − k4v −
k5uv

k6 + k7u + k8u2 ,

where ki, i = 1, 8 are positive constants;

• Model for exothermic chemical reaction occurring in a solid [7]

F = Aum exp
(

−E
Rv

)
, G = Bum exp

(
−E
Rv

)
,

where the constants A, B, E,m, R > 0. The rate of the reaction is determined by temperature v, through an Arrhenius
law, and concentration of one key reagent u.
2
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Some other models for reaction cross-diffusion systems have also been studied by J. A. Carrillo et al. [8–12]. Recently,
nonlocal problems have attracted attention of many researchers because nonlocal terms allow to give more accurate
results, (the measurement represents the average in a neighbourhood of a point). For instance, these problems arise in
physics [13], engineering [14], and population dynamics [15]. When we consider the problem , we are not considering
what the behaviour of the population is, if an area is overcrowded or isolated. Therefore, the nonlocal diffusion is imposed
so that these effects are taken into account. In 1997, M. Chipot and B. Lovat [16] studied the nonlocal problem⎧⎨⎩

ut − D(ℓ(u)(t))∆u = f , in QT ,

u = 0, on Σ,
u = u0, in Ω × {0},

here u is the density of population located at x at the time t , f is the external source, D is the diffusion rate. In the case
f a migration of population, for instance of bacteria in a container [17], it is obvious that the environment is of prime
mportance and one will easily imagine that

D(ℓ(u)(t)) = D
(∫

Ω ′

udx
)
(t),

i.e. the velocity of the migration depends on the total population in a subdomainΩ ′. If one wants to model species having
the tendency to leave crowded zones, a natural assumption would be to assume that a is an increasing function. On the
other hand, if we are dealing with species attracted by the growing population in Ω ′, one will suppose a to decrease.
Another justification of such a model lies also in the fact that in reality, for instance in the case of u being temperature
of a conductor, the measurements are not made pointwise, but through some local average. Some similar models for
nonlocal parabolic has been developed by M. Chipot et al. [18,19], T. Caraballo et al. [9,10,20], M. Burger [21–23].

Some authors [24–27] have studied the properties of the solution of a generalized model. In [28], Ferreira et al.
considered a model with nonlocal coupled diffusivity terms⎧⎨⎩

ut − D1(p(u)(t), q(v)(t))∆u = f1(u, v), in QT ,

vt − D2(r(u)(t), s(v)(t))∆v = f2(u, v), in QT ,

u = u0, v = v0, in Ω × {0}.

Although the initial problems have been investigated by many authors, there are not many results for the inverse
problems. Let us emphasize that the property of solution for the terminal value problem is very different to the initial
value problem. Due to the smoothing effects of the parabolic operator, in fact, it is not possible, in general, to guarantee
the existence of the solution for initial data which are not suitably regular. In addition, even when the solution possibly
exists, the uniqueness cannot be ensured without additional assumptions on the operator. In his celebrated paper [29],
John introduced the notion of well-behaved problem, which is now typical in the context of ill-posed problems. According
to John, a problem is well-behaved if ‘‘only a fixed percentage of the significant digits need be lost in determining the
solution from the data’’ [29]. More precisely we may say that a problem is well-behaved if its solutions in a space H
depend Hölder continuously on the data belonging to a space K , provided they satisfy a prescribed bound.

To the best of our knowledge, there have not been any works related to the system (1)–(3). In this paper, we provide
a modified quasi-reversibility (QR) method which was applied to construct the regularized problem. The QR approach
was first introduced by Lattès and Lions [30]. The main idea of the method is stabilizing the ill-posed problem by using a
small regularization parameter. Recently, a modified QR method was applied quite successfully to the following problem
in [31]⎧⎨⎩

ut (x, t) − D(ℓ(u)(t))∆u = F (u, x, t), in QT ,
∂u
∂σ

= 0, on Σ,
u = g, in Ω × {T }.

(5)

he authors [31] considered the backward in time nonlocal nonlinear parabolic equation for the population density u.
In the same spirit, we use this method for the system (1)–(3). However, there are different views in our analysis

ompared to the paper [31]. In [31], the authors used the Banach fixed point theorem for local self-mappings to show
he existence of local regularized solution over the layers [tj+1, tj]. These techniques for are interesting but complicated.
owever, for our models (1)–(3) this technique can hardly be applied. More details, in our case, we consider a coupled
ystem, and this is more challenging since the length of the layers is somewhat difficult to compute. Therefore, we need a
ifferent and new way of thinking when considering the solution for the regularized problem. We thus use Faedo–Galerkin
ethod and Aubin–Lions lemma as the main tools instead, and some techniques are required to modify the QR solution
o that its existence condition holds. In addition, the error estimates are given not only in L2−, but also in H1-norm.
Our work is organized as follows. Section 2 contains some notations and assumptions used throughout the paper. In

ection 3, an example is considered to show the instability of the inverse problem. The main results are in the next two
ections. Section 4 focuses on the construction of approximate problem by a modified QR approach. First, we provide
3
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an approximation of locally Lipschitz reaction. Then, we prove the existence of the unique regularized solution using
Faedo–Galerkin method and the Aubin–Lions lemma. Section 5 is devoted to the error estimates in L2− and H1

− norms.
n Section 6, we illustrate the theoretical results by numerically solving the regularized systems of two biological models.
inally, the conclusion is presented in Section 7.

. Preliminaries

Let us denote by U the space of all functions in H1(Ω), satisfying the Neumann boundary condition, with the H1(Ω) -
orm

U =

{
u ∈ H1(Ω) :

∂u
∂σ

= 0, ∀x ∈ Γ

}
.

Throughout this paper, we denote the inner product in L2(Ω) by ⟨·, ·⟩. H−1(Ω) denotes the dual space of H1(Ω).
For a Banach space X , we denote by Lp(0, T ; X), C([0, T ]; X), C1(0, T ; X) the Banach spaces

∥u∥Lp(0,T ;X) =

(∫ T

0
∥u(·, t)∥p

Xdt
) 1

p

< ∞, 1 ≤ p < ∞,

∥u∥L∞(0,T ;X) = ess sup
t∈(0,T )

∥u(·, t)∥X < ∞,

∥u∥C([0,T ];X) = sup
t∈[0,T ]

∥u(·, t)∥X < ∞,

∥u∥C1(0,T ;X) = ∥u∥C([0,T ];X) + ∥ut∥C([0,T ];X) < ∞.

{λp}
∞

p=0 are eigenvalues of the Laplacian operator −∆ on the bounded domain Ω with Neumann boundary condition, and
satisfy

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λp ≤ · · · ,

with λp → ∞ when p → ∞. {µp}
∞

p=0 ⊂ U are eigenfunctions respectively, forming an orthonormal basis of L2(Ω).
Let us introduce a space of Gevrey type GΥ (Ω) of index Υ > 0, see [31] e.g., defined by

GΥ (Ω) =

⎧⎨⎩u ∈ L2(Ω) :

∞∑
p=0

eΥ λpu2
p < +∞

⎫⎬⎭ ,
ith norm defined by

∥u∥GΥ (Ω) =

⎛⎝ ∞∑
p=0

eΥ λpu2
p

⎞⎠ 1
2

, where up = ⟨u, µp⟩.

A couple (u, v) of functions u(x, t) and v(x, t) : Q T → R, (Q T = Ω × [0, T ]) is called a function of two variables x, t

(u, v) : Q T → R2

(u, v)(x, t) = (u(x, t), v(x, t)).

Here, the norm of (u, v) ∈ X2 (for any space X) is defined as

∥(u, v)∥X2 = ∥u∥X + ∥v∥X.

e state now some assumptions
(A1) The reaction functions F (x, t, u, v) and G(x, t, u, v) are continuous with respect to t;
(A2) There exist positive constants m and M such that

m ≤ Di(ϑ, ν) ≤ M, ∀ (ϑ, ν) ∈ R2, i = 1, 2;

(A3) There exist positive constants LDi such that ∀ ϑ1, ϑ2, ν1, ν2 ∈ R, i = 1, 2

|Di (ϑ1, ν1)− Di (ϑ2, ν2)| ≤ LDi (|ϑ1 − ϑ2| + |ν1 − ν2|);

(A4) There exist La, Lb, Lc, Ld > 0, such that, for all t ∈ [0, T ], (u1, v1), (u2, v2) ∈ [L2(Ω)]2

|(a(u1) − a(u2))(·, t)| ≤ La∥(u1 − u2)(·, t)∥L2(Ω),

|(b(v1) − b(v2))(·, t)| ≤ Lb∥(v1 − v2)(·, t)∥L2(Ω),

|(c(u1) − c(u2))(·, t)| ≤ Lc∥(u1 − u2)(·, t)∥L2(Ω),

|(d(v ) − d(v ))(·, t)| ≤ L ∥(v − v )(·, t)∥ .
1 2 d 1 2 L2(Ω)

4
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Denote Lmax = max{LDi .Lp}, i = 1, 2, p ∈ {a, b, c, d}. Notice that if (A3) and (A4) hold, we have

|D1(a(u1), b(v1))(t) − D1(a(u2), b(v2))(t)| ≤ Lmax∥ ((u1, v1) − (u2, v2)) (·, t)∥[L2(Ω)]2 ,

|D2(c(u1), d(v1))(t) − D2(c(u2), d(v2))(t)| ≤ Lmax∥ ((u1, v1) − (u2, v2)) (·, t)∥[L2(Ω)]2 .

For abbreviation, from now on, denote

D1(a(u)(t), b(v)(t)) = D1(u, v), D2(c(u)(t), d(v)(t)) = D2(u, v).

A5) Ψ and Φ ∈ L2 (Ω) represent the exact data, whilst Ψ ε and Φε
∈ L2 (Ω) represent the measured data with noise

evel ε > 0, such that

∥Ψ ε
− Ψ ∥L2(Ω) + ∥Φε

−Φ∥L2(Ω) ≤ ε.

. Instability of the backward problem

In order to ascertain the need for a regularization method, we take an example to illustrate the instability of the
ackward problem. Let the exact and perturbed final data

Ψ (x) = Φ(x) = 0, Ψ p∗ (x) = Φp∗ (x) =
1√
λp∗

µp∗
(x), for p∗ ∈ N, (6)

from which we observe that when p∗ → ∞, the noise terms disappear
1√
λp∗

µp∗
(x) → 0. Due to the fact that proving

the existence of solution to the inverse system is still an open problem, in this example, we take the reaction functions
of the following special form

F = G =

∞∑
p=1

e−λpTMλ−1
p

(
e−|⟨u(·,t),µp⟩| + e−|⟨v(·,t),µp⟩|

)
µp(x).

The concept of weak solution is given by

Definition 3.1. A couple (u, v) is called a weak solution to the problem (1), (3), if for all ϕ,ψ ∈ U, yield

d
dt

⟨u(·, t), ϕ⟩ + D1 (u, v) (t) ⟨∇u(·, t),∇ϕ⟩ = ⟨F (·, t, u, v), ϕ⟩ , (7)

d
dt

⟨v(·, t), ψ⟩ + D2 (u, v) (t) ⟨∇v(·, t),∇ψ⟩ = ⟨G(·, t, u, v), ψ⟩ . (8)

Then we have the following lemma, which shows that even if the noise level goes to 0, the instability always happens
ackwards in time.

emma 3.2. Suppose that (A1)–(A4) hold, then there exist weak solutions to the backward problem with the exact data
uex, vex), and with perturbed final data (ũp∗ , ṽp∗ ) for p∗ ∈ N. Moreover

∥(ũp∗ , ṽp∗ ) − (uex, vex)∥[C([0,T ];L2(Ω))]2 ≥
2emλp∗ T

λp∗

(
1 + 4T 2Lmax + 2

√
2Tλ−1

1

) → ∞, if p∗ → ∞.

roof. In (7), let ϕ = µp, we multiply both sides with e−λp
∫ T
t D1(uex,vex)(η)dη , and then integrate from t to T , with the final

ondition uex(x, T ) = 0, it yields⟨
uex(·, t), µp

⟩
= −

∫ T

t
eλp

∫ η
t D1(uex,vex)(ξ )dξ e−λpTMλ−1

p

(
e−|uex,p(η)| + e−|vex,p(η)|

)
dη,

here uex,p(t) =
⟨
uex(·, t), µp

⟩
, vex,p(t) =

⟨
vex(·, t), µp

⟩
.

Thus, by similar calculations, we represent the exact solution by the Fourier series

uex(x, t) = −

∞∑
p=1

[∫ T

t
eλp(

∫ η
t D1(uex,vex)(ξ )dξ−TM) e

−|uex,p(η)| + e−|vex,p(η)|

λp
dη
]
µp(x),

vex(x, t) = −

∞∑
p=1

[∫ T

t
eλp(

∫ η
t D2(uex,vex)(ξ )dξ−TM) e

−|uex,p(η)| + e−|vex,p(η)|

λp
dη
]
µp(x).
5
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For the system with noisy data ũp∗ (x, T ) = ṽp∗ (x, T ) =
1
λp∗

µp∗
(x), for any p∗ ∈ N, we have

ũp∗ (x, t) = I1(ũp∗ , ṽp∗ )(x, t) =
eλp∗

∫ T
t D1(ũp∗ ,ṽp∗)(η)dη

λp∗

µp∗
(x)

−

∞∑
p=1

[∫ T

t
eλp(

∫ η
t D1(ũp∗ ,ṽp∗)(ξ )dξ−TM) e

−|ũp∗p (η)|
+ e−|ṽ

p∗
p (η)|

λp
dη
]
µp(x),

ṽp∗ (x, t) = I2(ũp∗ , ṽp∗ )(x, t) =
eλp∗

∫ T
t D2(ũp∗ ,ṽp∗)(η)dη

λp∗

µp∗
(x)

−

∞∑
p=1

[∫ T

t
eλp(

∫ η
t D2(ũp∗ ,ṽp∗)(ξ )dξ−TM) e

−|ũp∗p (η)|
+ e−|ṽ

p∗
p (η)|

λp
dη
]
µp(x),

where we denote w̃p∗

p =
⟨
w̃p∗ , µp

⟩
, with w̃p∗ ∈ L2(Ω).

We now prove the existence of the noisy solution by using the Banach fixed point theorem.
Let us define the operator I(ũp∗ , ṽp∗ ) =

(
I1(ũp∗ , ṽp∗ ), I2(ũp∗ , ṽp∗ )

)
I(ũp∗ , ũp∗ ) :

[
C([0, T ]; L2(Ω))

]2
→
[
C([0, T ]; L2(Ω))

]2
.

First we show that for any couples (u1, v1), (u2, v2), k ∈ N, it holds(Ik(u1, v1) − Ik(u2, v2)
)
(·, t)

2
[L2(Ω)]2 ≤

Ck
0(T − t)k

k!
∥(u1, v1) − (u2, v2)∥2

[C([0,T ];L2(Ω))]2 , (9)

here

C0 = 12T
(
e2λp∗ TML2

max + 4λ−2
1 T 2L2

max + 2λ−2
1

)
.

ndeed, we have

I1(u1, v1) − I1(u2, v2) = A1 − A2 − A3,with (10)

A1 =

(
eλp∗

∫ T
t D1(u1,v1)(η)dη − eλp∗

∫ T
t D1(u2,v2)(η)dη

) µp∗
(x)

λp∗

,

A2 =

∞∑
p=1

∫ T

t

(
eλp(

∫ η
t D1(u1,v1)dξ) − eλp(

∫ η
t D1(u2,v2)dξ)

) e−TMλp
(
e−|u1p(η)| + e−|v1p(η)|

)
λp

dηµp(x),

A3 =

∞∑
p=1

∫ T

t
eλp(

∫ η
t D1(u2,v2)(ξ )dξ−TM) e

−|u1p(η)| − e−|u2p(η)| + e−|v1p(η)| − e−|v2p(η)|

λp
dηµp(x).

irst, A1 is estimated as follows

∥A1∥
2
L2(Ω) =

1
λ2p∗

⏐⏐⏐⏐ exp(λp∗

∫ T

t
D1(u1, v1)(η)dη

)
− exp

(
λp∗

∫ T

t
D1(u2, v2)(η)dη

) ⏐⏐⏐⏐2 (11)

≤
1
λ2p∗

e2λp∗ TMTλ2p∗

∫ T

t

⏐⏐⏐⏐D1(u1, v1)(η) − D1(u2, v2)(η)
⏐⏐⏐⏐2dη

≤ e2λp∗ TMTL2
max

∫ T

t

 ((u1, v1) − (u2, v2)) (·, η)
2

[L2(Ω)]2dη,

here we have used hypotheses (A3), (A4), Parseval’s relation, Hölder’s inequality, and the inequality |ey − ez | ≤

max{ey, ez}|y − z|. In a similar way, we obtain estimation for A2

∥A2∥
2
L2(Ω) ≤

4T 2

λ21

∞∑
p=1

∫ T

t

∫ η

t

(
D1(u1, v1) − D1(u2, v2)

)2

dξdη (12)

≤
4T 3L2

max

λ21

∫ T

t

 ((u1, v1) − (u2, v2)) (·, η)
2

[L2(Ω)]2dη.
6
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For A3, applying Parseval’s relation and Hölder’s inequality we obtain

∥A3∥
2
L2(Ω) ≤

T
λ21

∞∑
p=1

∫ T

t

(
e−|u1p(η)| − e−|u2p(η)| + e−|v1p(η)| − e−|v2p(η)|

)2
dη (13)

≤
2T
λ21

∞∑
p=1

∫ T

t

(
e−|u1p(η)| − e−|u2p(η)|

)2
+
(
e−|v1p(η)| − e−|v2p(η)|

)2
dη

≤
2T
λ21

∞∑
p=1

∫ T

t

(
|u1p(η) − u2p(η)|2 + |v1p(η) − v2p(η)|2

)
dη

≤
2T
λ21

∫ T

t

 ((u1, v1) − (u2, v2)) (·, η)
2

[L2(Ω)]2dη.

Combining (10)–(13), we have (I1(u1, v1) − I1(u2, v2)) (·, t)
2
L2(Ω) ≤ 3∥A1∥

2
L2(Ω) + 3∥A2∥

2
L2(Ω) + 3∥A3∥

2
L2(Ω) (14)

≤
C0
4

∫ T

t

 ((u1, v1) − (u2, v2)) (·, η)
2

[L2(Ω)]2dη.

ith a similar proof for ∥ (I2(u1, v1) − I2(u2, v2)) (·, t)∥2
L2(Ω)

, we can deduce that (I(u1, v1) − I(u2, v2)) (·, t)
2

[L2(Ω)]2

≤ 2
 (I1(u1, v1) − I1(u2, v2)) (·, t)

2
L2(Ω) + 2

 (I2(u1, v1) − I2(u2, v2)) (·, t)
2
L2(Ω)

≤ C0(T − t)
(u1, v1) − (u2, v2)

2
[C[0,T ];L2(Ω)]2 ,

hich means that (9) holds for k = 1.
Suppose that (9) holds for k = N . From (14), one has (IN+1

1 (u1, v1) − IN+1
1 (u2, v2)

)
(·, t)

2
L2(Ω) (15)

≤
C0
4

∫ T

t

 (IN (u1, v1) − IN (u2, v2)
)
(·, η)

2
[L2(Ω)]2dη

≤
CN+1
0

4

∫ T

t

(T − η)N

N!
dη
(u1, v1) − (u2, v2)

2
[C[0,T ];L2(Ω)]2

≤
CN+1
0

4
(T − t)N+1

(N + 1)!

(u1, v1) − (u2, v2)
2

[C[0,T ];L2(Ω)]2 .

By a similar argument, we obtain the estimation for IN+1
2 , combining with induction principle, we deduce that (9) holds

for all k ∈ N. Notice that Ck
0
(T−t)k

k! tends to 0 when k → ∞, we can choose k, such that Ik is a contraction mapping. By
anach fixed point theorem, we conclude that ∃!(u∗, v∗) : Ik(u∗, v∗) = (u∗, v∗). Taking I operator both sides, it gives

Ik+1(u∗, v∗) = I(u∗, v∗) = Ik(I(u∗, v∗)).

Due to the uniqueness of the fixed point of the operator Ik, we have I(u∗, v∗) = (u∗, v∗). Consequently, the problem (1)
with the noisy data Ψ p∗ , Φp∗ has a unique weak solution (ũp∗ , ṽp∗ ). It can be straightforwardly proved that the system
with the exact data also possesses a unique weak solution (uex, vex).

Next, we consider the difference between the exact solution and the perturbed one

ũp∗ − uex = B1 − B2 − B3, with

B1 =
eλp∗

∫ T
t D1(ũp∗ ,ṽp∗ )dη

λp∗

µp∗

B2 =

∞∑
p=1

∫ T

t

(
eλp

∫ η
t D1(ũp∗ ,ṽp∗ )dξ − eλp

∫ η
t D1(uex,vex)dξ

) e−λpTM
(
e−|ũp∗p (η)|

+ e−|ṽ
p∗
p (η)|

)
λp

dηµp(x)

B3 =

∞∑
p=1

∫ T

t
eλp(

∫ η
t D1(uex,vex)dξ−TM) e

−|ũp∗p (η)|
− e−|uex,p(η)| + e−|ṽ

p∗
p (η)|

− e−|vex,p(η)|

λp
dηµp(x)
7
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Using hypothesis (A2), we find that

∥B1∥L2(Ω) ≥
emλp∗ (T−t)

λp∗

. (16)

pplying Parseval’s relation, Hölder’s inequality, and |ey − ez | ≤ max{ey, ez}|y − z|, we get

∥B2∥
2
L2(Ω) ≤ 4T 2

∞∑
p=1

∫ T

t

∫ η

t

(
D1(ũp∗ , ṽp∗ )(ξ ) − D1(uex, vex)(ξ )

)2

dξdη (17)

≤ 4T 4L2
max

(ũp∗ , ṽp∗ ) − (uex, vex)
2

[C([0,T ];L2(Ω))]2 .

ext, we estimate B3 as follows

∥B3∥
2
L2(Ω) ≤

T
λ21

∞∑
p=1

∫ T

t

(
e−|ũp∗p (η)|

− e−|uex,p(η)| + e−|ṽ
p∗
p (η)|

− e−|vex,p(η)|
)2

dη (18)

≤
2T
λ21

∞∑
p=1

∫ T

t

(
|ũp∗

p (η) − uex,p(η)|
2
+ |ṽ

p∗

p (η) − vex,p(η)|
2)

dη

≤
2T 2

λ21

(ũp∗ , ṽp∗ ) − (uex, vex)
2

[C([0,T ];L2(Ω))]2 .

Thus, by combining (16)–(18), we obtain

∥
(
ũp∗ − uex

)
(·, t)∥L2(Ω)

≥ ∥B1∥L2(Ω) − ∥B2∥L2(Ω) − ∥B3∥L2(Ω) (19)

≥
emλp∗ (T−t)

λp∗

−

(
2T 2Lmax +

√
2T
λ1

)
∥(ũp∗ , ṽp∗ ) − (uex, vex)∥[C([0,T ];L2(Ω))]2 .

By the same argument for ∥(ṽp∗ − vex)(·, t)∥L2(Ω), and combination with (19), we deduce that

∥(ũp∗ , ṽp∗ ) − (uex, vex)∥[C([0,T ];L2(Ω))]2

≥
2emλp∗ T

λp∗

−

(
4T 2Lmax + 2

√
2Tλ−1

1

) (ũp∗ , ṽp∗ ) − (uex, vex)


[C([0,T ];L2(Ω))]2
.

his implies that

∥(ũp∗ , ṽp∗ ) − (uex, vex)∥[C([0,T ];L2(Ω))]2 ≥
2emλp∗ T

λp∗

(
1 + 4T 2Lmax + 2

√
2Tλ−1

1

) → ∞,

hen p∗ → ∞. The proof is completed. □

. Quasi-reversibility (QR) regularization

Since the instability of the system (1) has been shown, it is now worth constructing a stable regularized solution. In this
ork, we consider the problem with the assumption (A6) that F and G are locally Lipschitz functions with the coefficients
R
F and K R

G , respectively, i.e.,

|F (x, t, u1, v1) − F (x, t, u2, v2)| ≤ K R
F (|u1 − u2| + |v1 − v2|), (20)

|G(x, t, u1, v1) − F (x, t, u2, v2)| ≤ K R
G (|u1 − u2| + |v1 − v2|), (21)

or all (x, t) ∈ QT , ui, vi ∈ R, i = 1, 2 : |ui| + |vi| ≤ R. Here, K R
F and K R

G only depend on R.
Notice that these Lipschitz coefficients tend to ∞, when R → ∞, we cannot give the error estimate for the solutions

ith noisy data, and standard regularization techniques are thus not applicable. To overcome this issue, instead of the
riginal functions F and G, we deal with the approximate sources FRε ,GRε , which are given in the next section.

.1. Approximation of the locally Lipschitz reaction terms

We employ two sequences of globally Lipschitz functions FRε and GRε to approximate the locally Lipschitz functions F
and G, as follows

FRε (x, t, u, v) =

⎧⎨⎩F (x, t, u, v), if |u| + |v| ≤ Rε,

F
(
x, t,

Rεu
,

Rεv
)
, if |u| + |v| > Rε,

(22)

|u| + |v| |u| + |v|

8
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GRε (x, t, u, v) =

⎧⎨⎩G(x, t, u, v), if |u| + |v| ≤ Rε,

G
(
x, t,

Rεu
|u| + |v|

,
Rεv

|u| + |v|

)
, if |u| + |v| > Rε.

(23)

ere, Rε(ε) → ∞ when ε → 0, and will be chosen later in Section 5 to obtain the convergence of the regularized solution.
he next lemma shows the globally Lipschitz property of FRε and GRε .

emma 4.1. Let FRε and GRε be given in (22), (23). Then, they are globally Lipschitz functions with respect to u and v, i.e., for
ll (x, t) ∈ Q T , ui, vi ∈ R, i = 1, 2, we have

|FRε (x, t, u1, v1) − FRε (x, t, u2, v2)| ≤ 2K Rε
F (|u1 − u2| + |v1 − v2|),

|GRε (x, t, u1, v1) − GRε (x, t, u2, v2)| ≤ 2K Rε
G (|u1 − u2| + |v1 − v2|).

roof of Lemma 4.1. Since the similarity between FRε and GRε , we just consider FRε .
Case 1. |u1| + |v1| ≤ Rε, |u2| + |v2| ≤ Rε . Thanks to (20), we have

|FRε (x, t, u1, v1) − FRε (x, t, u2, v2)| = |F (x, t, u1, v1) − F (x, t, u2, v2)|

≤ K Rε
F (|u1 − u2| + |v1 − v2|).

Case 2. |u1| + |v1| ≤ Rε, |u2| + |v2| > Rε , (the same proof is used for the case
|u1| + |v1| > Rε, |u2| + |v2| ≤ Rε).

|FRε (x, t, u1, v1) − FRε (·, t, u2, v2)| =

⏐⏐⏐⏐F (x, t, u1, v1) − F
(
x, t,

Rεu2

|u2| + |v2|
,

Rεv2
|u2| + |v2|

) ⏐⏐⏐⏐
≤ K Rε

F

(⏐⏐⏐⏐u1 −
Rεu2

|u2| + |v2|

⏐⏐⏐⏐+ ⏐⏐⏐⏐v1 −
Rεv2

|u2| + |v2|

⏐⏐⏐⏐)
≤ K Rε

F

[
|u1 − u2| + |v1 − v2| + (|u2| + |v2|)

(
1 −

Rε

|u2| + |v2|

)]
≤ K Rε

F (|u1 − u2| + |v1 − v2| + |u2| + |v2| − |u1| − |v1|)

≤ 2K Rε
F (|u1 − u2| + |v1 − v2|).

Case 3. |u1| + |v1| > Rε, |u2| + |v2| > Rε

|FRε (x, t, u1, v1) − FRε (·, t, u2, v2)|

=

⏐⏐⏐⏐F (x, t, Rεu1

|u1| + |v1|
,

Rεv1
|u1| + |v1|

)
− F

(
x, t,

Rεu2

|u2| + |v2|
,

Rεv2
|u2| + |v2|

) ⏐⏐⏐⏐
≤ K Rε

F

(⏐⏐⏐⏐ Rεu1

|u1| + |v1|
−

Rεu2

|u2| + |v2|

⏐⏐⏐⏐+ ⏐⏐⏐⏐ Rεv1
|u1| + |v1|

−
Rεv2

|u2| + |v2|

⏐⏐⏐⏐)
≤ K Rε

F

[
Rε(|u1 − u2| + |v1 − v2|)

|u1| + |v1|
+

Rε(|u2| + |v2|)
|u1| + |v1|

− Rε
]

≤ 2K Rε
F (|u1 − u2| + |v1 − v2|).

The proof of the lemma is completed.
It is easy to see that FRε ,GRε satisfy

∥FRε (·, t, u1, v1) − FRε (·, t, u2, v2)∥L2(Ω) ≤
√
8K Rε

F ∥((u1, v1) − (u2, v2))(·, t)∥[L2(Ω)]2 ,

∥GRε (·, t, u1, v1) − GRε (·, t, u2, v2)∥L2(Ω) ≤
√
8K Rε

G ∥((u1, v1) − (u2, v2))(·, t)∥[L2(Ω)]2 .

Throughout this paper, denote

max
{
√
8K Rε

F ,
√
8K Rε

G

}
= KRε .

ext, we establish a well-posed approximate system by using a modified QR method.

.2. The existence and uniqueness of QR regularized solution

Consider the following system

∂tUεreg = D1(Uεreg, V
ε
reg)(t)∆Uεreg + Q̃αε (U

ε
reg) + FRε (x, t,Uεreg, V

ε
reg), (24)

ε ε ε ε α̃ ε
ε

ε ε
∂tVreg = D2(Ureg, Vreg)(t)∆Vreg + Qε (Vreg) + GR (x, t,Ureg, Vreg), (25)

9
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accompanied with the final conditions

Uεreg(x, T ) = Ψ ε(x), V εreg(x, T ) = Φε(x), x ∈ Ω, (26)

and the Neumann boundary condition (3).
Here, α := α(ε) > 0 is the regularization parameter, satisfying α(ε) → 0 when ε → 0, and will be chosen later. Q̃αε is

an operator given by

Q̃αε (w) =

∞∑
p=0

log
(
1 + αeTM0λp

)
T

⟨w,µp⟩µp(x), (27)

here M0 is a positive constant, satisfying M0 > M , with M given in (A2). This operator is also introduced in [31]. The
dea of this method is that by adding an appropriate small term to the system, we transform our unbounded Laplacian
perator into a bounded operator, which guarantees the stability of regularized solution. This operator depends on a
ositive regularization parameter α = α(ε) → 0, and will be chosen later to obtain the convergence of the solution. In
he case that the source terms F and G depend only on x and t , it is quite simple to get a clue, by using the classical QR
ethod. However, when the problem has nonlinear reactions, calculating the eigenvalues are much more complex, as we
an see in the form of Q̃αε . We now establish the existence of the weak solution to the problem (24)–(26) in the following
heorem. As mentioned before, the proof follows the well-known Faedo–Galerkin method and Aubin–Lions lemma. At
his stage, we may see that the globally Lipschitz property of FRε ,GRε is very handy.

Theorem 4.2. Suppose that (A1) − (A4), (A6) hold. Then, the problem (24)–(26) has a solution

(Uεreg,U
ε
reg) ∈

[
C([0, T ]; L2(Ω)) ∩ L2(0, T ;U)

]2
,

in the weak sense, i.e., for all ϕ,ψ ∈ U, yield
d
dt

⟨Uεreg(·, t), ϕ⟩ + D1(Uεreg, V
ε
reg)(t)⟨∇Uεreg(·, t),∇ϕ⟩

=
⟨
Q̃αε (U

ε
reg)(·, t), ϕ

⟩
+
⟨
FRε (·, t,Uεreg, V

ε
reg), ϕ

⟩
, (28)

d
dt

⟨V εreg(·, t), ψ⟩ + D2
(
Uεreg, V

ε
reg

)
(t)
⟨
∇V εreg(·, t),∇ψ

⟩
=
⟨
Q̃αε (V

ε
reg)(·, t), ψ

⟩
+
⟨
GRε (·, t,Uεreg, V

ε
reg), ψ

⟩
. (29)

Proof. Let us define the following operators

P̃αεw = Q̃αεw + M0∆w,

B1(u, v)(t) = M0 − D1(u, v)(t),
B2(u, v)(t) = M0 − D2(u, v)(t).

Notice that from (A2) − (A4), for all t ∈ [0, T ], (u, v), (u1, v1), (u2, v2) ∈ [L2(Ω)]2, we have

0 < M0 − M ≤ B1(u, v)(t) ≤ M0 − m,
0 < M0 − M ≤ B2(u, v)(t) ≤ M0 − m,⏐⏐Bi(u1, v1)(t) − Bi(u2, v2)(t)

⏐⏐ =
⏐⏐Di(u1, v1) − Di(u2, v2)

⏐⏐
≤ Lmax

((u1, v1) − (u2, v2))(·, t)


[L2(Ω)]2 .

he system (28)–(29) can be rewritten as
d
dt

⟨Uεreg(·, t), ϕ⟩ − B1(Uεreg, V
ε
reg)(t)⟨∇Uεreg(·, t),∇ϕ⟩ (30)

=
⟨
P̃αε (U

ε
reg)(·, t), ϕ

⟩
+ ⟨FRε (·, t,Uεreg, V

ε
reg), ϕ⟩,

d
dt

⟨V εreg(·, t), ψ⟩ − B2(Uεreg, V
ε
reg)(t)⟨∇V εreg(·, t),∇ψ⟩ (31)

=
⟨
P̃αε (V

ε
reg)(·, t), ψ

⟩
+
⟨
GRε (·, t,Uεreg, V

ε
reg), ψ

⟩
.

To obtain the boundedness of the regularized operator, the following technical lemma plays the key role.

Lemma 4.3.

1. For any w ∈ GΥ (Ω), Υ ≥ 2M0T , it yieldsQ̃α(w)
 ≤

α
∥w∥G (Ω).
ε L2(Ω) T Υ

10
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F
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2. For any w ∈ L2(Ω), it yieldsP̃αε (w)

L2(Ω) ≤

1
T
log
(
1
α

)
∥w∥L2(Ω).

Proof of Lemma 4.3. Using Parseval’s equality and the inequality log(1 + a) ≤ a,∀a > 0, we haveQ̃αε (w)
2
L2(Ω) =

1
T 2

∞∑
p=0

log2
(
1 + αeTM0λp

)
⟨w,µp⟩

2

≤
α2

T 2

∞∑
p=0

e2TM0λp⟨w,µp⟩
2

≤
α2

T 2 ∥w∥
2
GΥ (Ω).

or the second statement, using Parseval’s equality, we haveP̃αε (w)
2
L2(Ω) =

1
T 2

∞∑
p=0

[
log
(
1 + αeTM0λp

)
− log

(
eTM0λp

)]2
⟨w,µp⟩

2

=
1
T 2

∞∑
p=0

[
log
(
α + e−TM0λp

)]2
⟨w,µp⟩

2
≤

1
T 2 log2

(
1
α

)
∥w∥

2
L2(Ω).

This ends the proof of Lemma 4.3.
Let us now provide the proof of Theorem 4.2. We divide the proof of the theorem into three steps.

Step 1. Existence of the Galerkin approximate solution
We begin with the construction of a sequence of weak approximate solutions by using Galerkin method: solving

the projected problem in a finite dimensional subspace of U. Consider the correspondingly (n + 1)− dimensional space
Un+1 = span ⟨µ0, µ1, . . . , µn⟩. For each n, we search for an approximate solution (Un, V n) in the following form

Un(x, t) =

n∑
p=0

Unp(t)µp(x), V n(x, t) =

n∑
p=0

Vnp(t)µp(x),

where for all ϕ,ψ ∈ Un+1, the solution (Un, V n) satisfies
d
dt

⟨Un(·, t), ϕ⟩ + B1
(
Un, V n) (t)⟨∆Un(·, t), ϕ⟩ (32)

=
⟨
P̃αε (U

n)(·, t), ϕ
⟩
+ ⟨FRε (·, t,Un, V n), ϕ⟩,

d
dt

⟨V n(·, t), ψ⟩ + B2
(
Un, V n) (t)⟨∆V n(·, t), ψ⟩ (33)

=
⟨
P̃αε (V

n)(·, t), ψ
⟩
+ ⟨GRε (·, t,Un, V n), ψ⟩,

and the final conditions

Un(x, T ) =

n∑
p=0

⟨Ψ ε, µp⟩µp(x) = Ψ n(x), V n(x, T ) =

n∑
p=0

⟨Φε, µp⟩µp(x) = Φn(x). (34)

Here, Ψ n
→ Ψ ε, Φn

→ Φε strongly in L2(Ω)-norm. In another way, Unp(t) and Vnp(t) are the solutions of the 2(n + 1)
non-linear ordinary differential equations

dUnp(t)
dt

− λpB1
(
Un, V n)Unp(t) =

⟨
P̃αε (U

n)(·, t), µp
⟩
+
⟨
FRε (·, t,Un, V n), µp

⟩
,

dVnp(t)
dt

− λpB2
(
Un, V n) Vnp(t) =

⟨
P̃αε (V

n)(·, t), µp
⟩
+
⟨
GRε (·, t,Un, V n), µp

⟩
,

for p = 0, n. Attending to the continuity of D1,D2 and of F ,G (assumptions (A1), (A3), (A4)), we can use Peano’s theorem
o have that the system (32)–(34) has a local solution (Un, V n) in some interval [Tm, T ] for 0 ≤ Tm < T . We now give a
priori estimate for (Un, V n), to extend [Tm, T ] to the whole interval [0, T ].

In (32), taking ϕ = Un, and then integrating from t to T , we have

∥Ψ n
∥
2
L2(Ω) − ∥Un(·, t)∥2

L2(Ω) − 2
∫ T

t
B1
(
Un, V n) (η)∥∇Un(·, η)∥2

L2(Ω)dη

= 2
∫ T

t

⟨
P̃αε (U

n)(·, η),Un(·, η)
⟩
dη  +2

∫ T

t

⟨
FRε (·, η,Un, V n),Un(·, η)

⟩
dη   . (35)
J1 J2

11
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F
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J1 is estimated by applying Hölder’s inequality and Lemma 4.3

J1 ≤

∫ T

t

P̃αε (Un)(·, η)

L2(Ω)

Un(·, η)

L2(Ω)dη ≤

log
( 1
α

)
T

∫ T

t

Un(·, η)
2
L2(Ω)dη. (36)

or J2, using Hölder’s inequality and the globally Lipschitz property of FRε , it yields

J2 ≤

∫ T

t

FRε (·, η,Un, V n)

L2(Ω)

Un(·, η)

L2(Ω)dη (37)

≤

∫ T

t

(FRε (·, η, 0, 0)L2(Ω) + KRε
(Un, V n)(·, η)


[L2(Ω)]2

) Un(·, η)

L2(Ω)dη

≤
1
2

∫ T

t

FRε (·, η, 0, 0)2L2(Ω) +
1
2

∫ T

t

Un(·, η)
2
L2(Ω)dη

+ KRε

∫ T

t

(Un, V n)(·, η)


[L2(Ω)]2
Un(·, η)


L2(Ω)dη.

Combining (35)–(37), givesUn(·, t)
2
L2(Ω) + 2(M0 − M)

∫ T

t

∇Un(·, η)
2
L2(Ω)dη (38)

≤ C∗

1 + C∗

2

∫ T

t

(Un, V n)(·, η)
2

[L2(Ω)]2dη.

By a similar argument with V n, adding the resulting inequality to (38), we have(Un, V n)(·, t)
2

[L2(Ω)]2 + 2(M0 − M)
∫ T

t

(∇Un,∇V n)(·, η)
2

[L2(Ω)]2dη (39)

≤ C1 + C2

∫ T

t

(Un, V n)(·, η)
2

[L2(Ω)]2dη.

Therefore, we obtain(Un, V n)(·, t)
2

[L2(Ω)]2 ≤ C1 + C2

∫ T

t

(Un, V n)(·, η)
2

[L2(Ω)]2dη.

Applying Gronwall’s inequality, we arrive at(Un, V n)(·, t)
2

[L2(Ω)]2 ≤ C1e(T−t)C2 ≤ C1eTC2 . (40)

On the other hand, from (39) we have

∫ T

t

(∇Un,∇V n)(·, η)
2

[L2(Ω)]2dη ≤

(
C1 + C2

∫ T

t

(Un, V n)(·, η)
2

[L2(Ω)]2dη
)

2(M0 − M)
≤ C3. (41)

y (40), (41), we deduce that

(Un, V n) are bounded in
[
L∞(0, T ; L2(Ω))

]2
, (42)

(Un, V n) are bounded in
[
L2(0, T ;U)

]2
. (43)

hus, from the Theory of the ODEs, we can extend the local solution to the interval [0, T ].

Remark 4.1. It is worth noting that if we use the operator Q̃αε as in [31], from (35) we are not able to give the estimate
of Un, as well as V n, in H1 -norm, and hence, cannot apply the Aubin–Lions lemma. Therefore, we employ P̃αε , and some
techniques have been used to modify the operator.

Step 2. Convergence of the Galerkin approximate solutions to the QR solution
The next step is to show that the sequence of Galerkin solutions converges to a function, which is the solution of our

constructed QR problem, as n → ∞. From (32) we have that

Un
t = −B1

(
Un, V n) (t)∆Un(x, t) + P̃αε (U

n)(x, t) + FRε (x, t,Un, V n) ∈ H−1.

Note that −B1 (Un, V n) (t)∆Un(x, t) defines an element of H−1, given by

⟨−B
(
Un, V n) (t)∆Un(·, t), ϕ⟩ = B

(
Un, V n) (t)⟨∇Un(·, t),∇ϕ⟩,
1 1

12
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for all ϕ ∈ U. Thanks to (42), (43), Lemma 4.3, the globally Lipschitz property of FRε ,GRε ,Bi, (i = 1, 2), and the similarity
between u, v, we obtain that

(Un
t , V

n
t ) are bounded in

[
L2(0, T ;U′)

]2
. (44)

From (42)–(44), by the Banach–Alouglu theorem, we can extract subsequences Un
k = Un, V n

k = V n (which are denoted by
the same symbols) such that

Un ⇀ Uεreg, V n ⇀ V εreg *-weakly in L∞(0, T ; L2(Ω)), (45)

Un ⇀ Uεreg, V n ⇀ V εreg weakly in L2(0, T ;U), (46)

Un
t ⇀ ∂tUεreg, V n

t ⇀ ∂tUεreg weakly in L2(0, T ;U′). (47)

On the other hand, U
c
↪→ L2(Ω) ↪→ U′. From (46), (47), using the Aubin–Lions compactness lemma, we have

Un
→ Uεreg, V n

→ V εreg strongly in L2(0, T ; L2(Ω)). (48)

Hence, by Riesz–Fischer’s theorem, we can extract subsequences Un
k = Un, V n

k = V n (which we denote by the same
symbols), such that

Un
→ Uεreg, V n

→ V εreg a.e in Q T . (49)

ue to the continuity of Bi, i = 1, 2, we have

B1(Un, V n) → B1(Uεreg, V
ε
reg) strongly in L2(0, T ),

B2(Un, V n) → B2(Uεreg, V
ε
reg) strongly in L2(0, T ).

Using the Riesz–Fischer theorem, we have up to some subsequences,

B1(Un, V n) → B1(Uεreg, V
ε
reg) a.e in Q T , (50)

B2(Un, V n) → B2(Uεreg, V
ε
reg) a.e in Q T . (51)

ue to the linearity and boundedness of P̃αε , we have

P̃αε (U
n) → P̃αε (U

ε
reg) strongly in L2(0, T ; L2(Ω)), (52)

P̃αε (V
n) → P̃αε (V

ε
reg) strongly in L2(0, T ; L2(Ω)). (53)

rom the globally Lipschitz property of FRε ,GRε , it follows

FRε (x, t,Un, V n) → FRε (x, t,Uεreg, V
ε
reg) strongly in L2(0, T ; L2(Ω)), (54)

GRε (x, t,Un, V n) → GRε (x, t,Uεreg, V
ε
reg) strongly in L2(0, T ; L2(Ω)). (55)

ombining (43), (44), (50)–(55), we can pass (32), (33) to the limit n → ∞ to prove that (30), (31) hold in D′(0, T ) for all
, ψ ∈ U. By (46), we have that Uεreg(t), V

ε
reg(t) ∈ U for a.e. t ∈ [0, T ]. Taking ϕ = Uεreg in (30), we obtain

d
dt

Uεreg(·, t)2L2(Ω) − 2B1
(
Uεreg, V

ε
reg

)
(t)
∇Uεreg(·, t)

2
L2(Ω)

= 2
⟨
P̃αε (U

ε
reg)(·, t),U

ε
reg(·, t)

⟩
+

⟨
FRε (·, t,Uεreg, V

ε
reg),U

ε
reg(·, t)

⟩
,

n D′(0, T ). Then by analogous arguments as for (Un, V n), but taking the supremum, we arrive at

Uεreg and V εreg are bounded in C(0, T ; L2(Ω)) ∩ L2(0, T ;U). (56)

herefore,

(Uεreg, V
ε
reg) ∈

[
C(0, T ; L2(Ω)) ∩ L2(0, T ;U)

]2
.

n the other hand, for a.e t ∈ [0, T ], we have⟨
Ψ n, ϕ

⟩
−

⟨
Un(·, t), ϕ

⟩
=

∫ T

t

⟨
∂ηUn(·, η), ϕ

⟩
dη. (57)

rom (47), (48) and the fact that Ψ n
→ Ψ ε strongly in L2(Ω), we can pass (57) to the limit n → ∞ to obtain⟨

Ψ ε, ϕ

⟩
−

⟨
Uεreg(·, t), ϕ

⟩
=

∫ T

t

⟨
∂ηUεreg(·, η), ϕ

⟩
dη =

⟨
Uεreg(·, T ), ϕ

⟩
−

⟨
Uεreg(·, t), ϕ

⟩
,

or a.e. t ∈ [0, T ]. Thus, Uεreg(x, T ) = Ψ ε(x). In a similar way, we have that V εreg(x, T ) = Φε(x). This completes the proof of
tep 2. It only remains to show that this QR solution is unique.
13
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Step 3. Uniqueness of the QR solution.
Suppose that

(ui, vi) ∈
[
C(0, T ; L2(Ω)) ∩ L2(0, T ;U)

]2
,

i = 1, 2, are two weak solutions of the system (30), (31).
Define

U(x, t) = (u1 − u2)(x, t), V(x, t) = (v1 − v2)(x, t).

It yields

U(x, T ) = V(x, T ) = 0.

From (30), we have⟨
Ut (·, t), ϕ

⟩
− B1 (u1, v1)

⟨
∇u1(·, t),∇ϕ

⟩
+ B1 (u2, v2)

⟨
∇u2(·, t),∇ϕ

⟩
=

⟨
P̃αε (u1)(·, t) − P̃αε (u2)(·, t), ϕ

⟩
+

⟨
FRε (·, t, u1, v1) − FRε (·, t, u2, v2), ϕ

⟩
.

Consequently,⟨
Ut (·, t), ϕ

⟩
− B1 (u1, v1)

⟨
∇U(·, t),∇ϕ

⟩
=

(
B1 (u1, v1)− B1 (u2, v2)

)⟨
∇u2(·, t),∇ϕ

⟩
+

⟨
P̃αε (U)(·, t), ϕ

⟩
+

⟨
FRε (·, t, u1, v1) − FRε (·, t, u2, v2), ϕ

⟩
. (58)

aking ϕ = U(x, t), and then integrating from t to T , we obtain

∥U(·, t)∥2
L2(Ω) + 2

∫ T

t
B1 (u1, v1) (η)∥∇U(·, η)∥2

L2(Ω)dη = −(I1 + I2 + I3), (59)

I1 = 2
∫ T

t

(
B1 (u1, v1)− B1 (u2, v2)

)
(η)
⟨
∇u2(·, η),∇U(·, η)

⟩
dη,

I2 = 2
∫ T

t

⟨
P̃αε (U)(·, η),U(·, η)

⟩
dη,

I3 = 2
∫ T

t

⟨
FRε (·, η, u1, v1) − FRε (·, η, u2, v2),U(·, η)

⟩
dη.

e first estimate I1 by using Hölder’s inequality, (A3), (A4), the inequality ∥y∥∥z∥ ≤ c∥y∥2
+

1
c ∥z∥

2, it yields

|I1| ≤ 2
∫ T

t

⏐⏐B1 (u1, v1)− B1 (u2, v2)
⏐⏐∇u2(·, η)


L2(Ω)

∇U(·, η)

L2(Ω)dη (60)

≤
1

2(M0 − M)

∫ T

t

⏐⏐B1 (u1, v1)− B1 (u2, v2)
⏐⏐2∇u2(·, η)

2
L2(Ω)dη

+ 2(M0 − M)
∫ T

t

∇U(·, η)
2
L2(Ω)dη

≤
L2

max

2(M0 − M)

∫ T

t

(U,V)(·, η)2
[L2(Ω)]2

∇u2(·, η)
2
L2(Ω)dη + 2(M0 − M)

∫ T

t

∇U(·, η)
2
L2(Ω)dη.

For I2, using Lemma 4.3, we have

|I2| ≤
2
T
log
(
1
α

)∫ T

t

U(·, η)2L2(Ω)dη. (61)

Next, we deduce estimates for I3

|I3| ≤ 2
∫ T

t

FRε (·, η, u1, v1) − FRε (·, η, u2, v2)

L2(Ω)

U(·, η)L2(Ω)dη (62)

≤ 2KRε

∫ T

t

(U,V)(·, η)
[L2(Ω)]2

U(·, η)L2(Ω)dη.
14
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Combining (59)–(62), we obtainU(·, t)2L2(Ω) ≤
L2

max

2(M0 − M)

∫ T

t

(U,V)(·, η)2
[L2(Ω)]2

∇u2(·, η)
2
L2(Ω)dη

+
2 log( 1

α
)

T

∫ T

t
∥U(·, η)∥2

L2(Ω)dη + 2KRε

∫ T

t

(U,V)(·, η)
[L2(Ω)]2

U(·, η)L2(Ω)dη.

In a similar way with V , we arrive at(U,V)(·, t)2
[L2(Ω)]2 ≤ 2

U(·, t)2L2(Ω) + 2
V(·, t)2L2(Ω) ≤ C4

∫ T

t

(U,V)(·, η)2
[L2(Ω)]2dη.

Using Gronwall’s inequality, we have(U,V)(·, t)2
[L2(Ω)]2 ≤ 0,

which implies that U = V = 0, or (u1, v1) = (u2, v2). The proof of the theorem is completed. □

5. Error analysis

So far, in the previous section, we have constructed a modified QR problem and proved the existence and uniqueness
of weak regularized solution. Hence, we are now in position to establish some error estimations in L2 and H1 norms. To
omplete the theoretical part, it is essential to show that these errors reach 0, as the noise level tends to 0.

.1. L2-estimate

heorem 5.1. Suppose that (A1) − (A6) hold. The solution of the system (1) satisfies

(uex, vex) ∈
[(
L2(0, T ;GΥ (Ω)) ∩ L∞(0, T ;H1

0 (Ω)) ∩ C1(0, T ; L2(Ω))
)
∩ L∞(QT )

]2
,

ith Υ ≥ 2M0T . Denote

E = max
{
∥(uex, vex)∥[L2(0,T ;GΥ (Ω))]2 , ∥(uex, vex)∥[C1(0,T ;L2(Ω))]2 , ∥(uex, vex)∥[L∞(0,T ;H1

0 (Ω))]2

}
.

Let us choose Rε such that

KRε ≤
1
4T

log
(
logγ

(
1
α

))
, (63)

or some γ > 0. Then there exist A0 = A0(uex, vex), B0 = B0(uex, vex), for which the following estimation holds

 ((Uεreg, V εreg) − (uex, vex)
)
(·, t)


[L2(Ω)]2 ≤

√
A0
ε2

α2 + B0α
t
T

√
logγ

(
1
α

)
. (64)

emark 5.1. Let us choose the regularization parameter α(ε) = ε. From (64) we imply the stability for t ∈ (0, T ].
oreover, there exists tε ∈ (0, T ) : limε→0 tε = 0, such that

(Uεreg, V εreg)(·, tε) − (uex, vex)(·, 0)


[L2(Ω)]2 ≤

(
C0

√
logγ

(
1
ε

)
+ 2E

)√
T

log( 1
ε
)
, (65)

here C0 =
√
A0 + B0. Notice that if we take 0 < γ < 1, then the right hand side of (65) tends to 0, we have the stability

at t = 0.

Remark 5.2. In the previous theorem, it is assumed that u and v belong to L2(0, T ;GΥ (Ω)), where the Gevrey space
f functions GΥ (Ω) has been defined in (11). At this stage, there are unknown to us sufficient conditions on the data
ntering the problem given by Eqs. (4), (7) and (9) to ensure that the solution (u, v) ∈

[
L2(0, T ;GΥ (Ω))

]2, but we point
ut to Refs. [31,32] for some useful results on Gevrey regularity for parabolic equations.

roof. Let us define

X ε(x, t) = eqα (t−T )(Uε − u )(x, t), Yε(x, t) = eqα (t−T )(V ε − v )(x, t),
reg ex reg ex

15
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T

where qα > 0 is a positive constant, which will be chosen later. From (7), (28), with some computations, we have⟨
X ε

t (·, t), ϕ
⟩
− B1

(
Uεreg, V

ε
reg

)
(t)
⟨
∇X ε(·, t),∇ϕ

⟩
− eqα (t−T )

⟨
Q̃αε (uex)(·, t), ϕ

⟩
(66)

+ eqα (t−T )
(
D1
(
Uεreg, V

ε
reg

)
− D1 (uex, vex)

)⟨
∇uex(·, t),∇ϕ

⟩
− qα

⟨
X ε(·, t), ϕ

⟩
=

⟨
P̃αε (X

ε)(·, t), ϕ
⟩
+ eqα (t−T )

⟨
FRε (·, t,Uεreg, V

ε
reg) − F (·, t, uex, vex), ϕ

⟩
.

aking ϕ = X ε , and integrating from t to T , it yields

∥X ε(·, T )∥2
L2(Ω) − ∥X ε(·, t)∥2

L2(Ω) − 2
∫ T

t
qα∥X ε(·, η)∥2

L2(Ω)dη (67)

− 2
∫ T

t
B1
(
Uεreg, V

ε
reg

)
∥∇X ε(·, η)∥2

L2(Ω)dη

= 2
∫ T

t
eqα (η−T )

⟨
Q̃αε (uex)(·, η),X ε(·, η)

⟩
dη  

K1

+ 2
∫ T

t

⟨
P̃αε (X

ε)(·, η),X ε(·, η)
⟩
dη  

K2

+ 2
∫ T

t
eqα (η−T )

⟨
FRε (·, η,Uεreg, V

ε
reg) − F (·, η, uex, vex),X ε(·, η)

⟩
dη  

K3

− 2
∫ T

t
eqα (η−T )

(
D1
(
Uεreg, V

ε
reg

)
− D1 (uex, vex)

)⟨
∇uex(·, η),∇X ε(·, η)

⟩
dη  

K4

.

Applying Hölder’s inequality and Lemma 4.3

|K1| ≤ 2
∫ T

t

Q̃αε (uex)(·, η)

L2(Ω)

X ε(·, η)

L2(Ω)dη (68)

≤
2α
T

∫ T

t

uex(·, η)

GΥ (Ω)

X ε(·, η)

L2(Ω)dη

≤
α2

T 2

∫ T

t

uex(·, η)
2
GΥ (Ω)dη +

∫ T

t

X ε(·, η)
2
L2(Ω)dη.

For K2, using Lemma 4.3

|K2| ≤ 2
∫ T

t

P̃αε (X ε)(·, t)

L2(Ω)

X ε(·, η)

L2(Ω)dη (69)

≤
2
T
log
(
1
α

)∫ T

t

X ε(·, η)
2
L2(Ω)dη.

Next, we estimate K3. Notice that Rε → ∞, when ε → 0, since uex, vex ∈ L∞(QT ), we can choose a sufficiently small ε,
such that for a.e. (x, t) ∈ Q T : |uex(x, t)| + |vex(x, t)| < Rε , or F (x, t, uex, vex) = FRε (x, t, uex, vex) a.e. (x, t) ∈ QT . Thus, we
obtain

|K3| ≤ 2
∫ T

t
eqα (η−T )

⏐⏐⏐⏐⟨FRε (·, η,Uεreg, V εreg) − FRε (·, η, uex, vex),X ε(·, η)
⟩⏐⏐⏐⏐dη (70)

≤ 2KRε

∫ T

t
eqα (η−T )

 ((Uεreg, V εreg) − (uex, vex)
)
(·, η)


[L2(Ω)]2

X ε(·, η)

L2(Ω)dη

= 2KRε

∫ T

t

(X ε,Yε)(·, η)


[L2(Ω)]2
X ε(·, η)


L2(Ω)dη.

Using (A3), (A4), Hölder’s inequality and Cauchy’s inequality

|K4| ≤ 2Lmax

∫ T

t

(X ε,Yε)(·, η)


[L2(Ω)]2
∇uex(·, η)


L2(Ω)

∇X ε(·, η)

L2(Ω)dη (71)

≤
L2

maxE
2 ∫ T (X ε,Yε)(·, η)

2
2 2dη + 2(M0 − M)

∫ T ∇X ε(·, η)
2

2 dη.

2(M0 − M) t

[L (Ω)]
t

L (Ω)

16
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Combining (67)–(71), and choosing qα =
1
T log( 1

α
), we haveX ε(·, t)

2
L2(Ω) ≤ ε2 +

α2

T 2

∫ T

t

uex(·, η)
2
GΥ (Ω)dη +

∫ T

t

X ε(·, η)
2
L2(Ω)dη (72)

+ 2KRε

∫ T

t

(X ε,Yε)(·, η)


[L2(Ω)]2
X ε(·, η)


L2(Ω)dη

+
L2

maxE
2

2(M0 − M)

∫ T

t

(X ε,Yε)(·, η)
2

[L2(Ω)]2dη.

In a similar manner, we obtain the estimate for Yε , summing with (72), we deduce(X ε,Yε)(·, t)
2

[L2(Ω)]2 ≤ 2
X ε(·, t)

2
L2(Ω) + 2

Yε(·, t)2L2(Ω) (73)

≤ 4ε2 + C5α
2
+ (C6 + 4KRε )

∫ T

t

(X ε,Yε)(·, η)
2

[L2(Ω)]2dη.

pplying Gronwall’s inequality, we arrive at(X ε,Yε)(·, t)
2

[L2(Ω)]2 ≤
(
4ε2 + C5α

2) exp [(C6 + 4KRε ) (T − t)] ,

hich leads to ((Uεreg, V εreg) − (uex, vex)
)
(·, t)

2
[L2(Ω)]2 = e2qα (T−t)

(X ε,Yε)(·, t)
2

[L2(Ω)]2

≤ C7

(
4
ε2

α2 + C5

)
α

2t
T logγ

(
1
ε

)
,

here we recalled qα =
1
T log

( 1
α

)
, KRε ≤

1
4T log

(
logγ

( 1
ε

))
. From this, we can easily imply (64).

Now, for every small ε > 0, let us take the unique solution tε in (0, T ) of the equation t = ε
t
T . Notice that limε→0 tε = 0

nd tε ≤

√
T

log( 1ε )
. Thus, from (64), we obtain(Uεreg, V εreg)(·, tε) − (uex, vex)(·, 0)


[L2(Ω)]2

≤
(Uεreg, V εreg)(·, tε) − (uex, vex)(·, tε)


[L2(Ω)]2 +

(uex, vex)(·, tε) − (uex, vex)(·, 0)


[L2(Ω)]2

≤ C0ε
tε
T

√
logγ

(
1
ε

)
+ tε

(
∥∂tuex∥C([0,T ];L2(Ω)) + ∥∂tvex∥C([0,T ];L2(Ω))

)
≤

√
T

log( 1
ε
)

(
C0

√
logγ

(
1
ε

)
+ 2E

)
.

The proof of the theorem is completed. □

5.2. H1(Ω)-estimate

Theorem 5.2. Suppose that (A1) − (A4)and(A6) hold. The exact solution of the system (1) satisfies

(uex, vex) ∈
[(
L2(0, T ;GΥ (Ω)) ∩ L∞(0, T ;H2(Ω)) ∩ C1(0, T ;H1

0 (Ω))
)
∩ L∞(QT )

]2
,

with Υ ≥ 2M0T . Denote

E∗
= max

{
∥(uex, vex)∥[L2(0,T ;GΥ (Ω))]2 , ∥(uex, vex)∥[C1(0,T ;H1

0 (Ω))]2 , ∥(uex, vex)∥[L∞(0,T ;H2(Ω))]2

}
.

Let us assume that

Ψ ε, Φε, Ψ ,Φ ∈ H1(Ω),
∥Ψ ε

− Ψ ∥H1(Ω) + ∥Φε
−Φ∥H1(Ω) ≤ ε.

Choose Rε such that

8KRε +
12K 2

Rε
≤

1
log
(
logγ

(
1
))

, (74)

M0 − M T α

17
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for 0 < γ < 1. Then there exist A∗

0 = A∗

0(uex, vex), B∗

0 = B∗

0(uex, vex), for which the following estimation holds

 ((Uεreg, V εreg) − (uex, vex)
)
(·, t)


[H1(Ω)]2 ≤

√
A∗

0
ε2

α2 + B∗

0α
t
T

√
logγ

(
1
α

)
. (75)

e choose the regularization parameter α(ε) = ε. From this we imply the stability for t ∈ (0, T ]. Furthermore, there
exists tε ∈ (0, T ) : limε→0 tε = 0, C∗

0 =
√
A∗

0 + B∗

0, such that

(Uεreg, V εreg)(·, tε) − (uex, vex)(·, 0)


[H1(Ω)]2 ≤

(
C∗

0

√
logγ

(
1
ε

)
+ 2E∗

)√
T

log
( 1
ε

) , (76)

r we have the stability at t = 0.

roof. We first prove that the solution ∆Uεreg and ∆V εreg to the problem (30)–(31) belong to ∈ L2([0, T ]; L2(Ω)). Since the
asis {µp}

∞

p=0 ⊂ U, we have that

∆Un
= −

n∑
p=0

λpUnp(t)µp(x)and ∆V n
= −

n∑
p=0

λpVnp(t)µp(x)

lso lie in U for a.e. t ∈ [0, T ], where (Un, V n) is the Galerkin approximate solution. In (32), taking ϕ = ∆Un, and
ntegrating from t to T , we obtain

∥∇Un(·, t)∥2
L2(Ω) + 2

∫ T

t
B1(Un, V n)(η)∥∆Un(·, η)∥2

L2(Ω)dη

= ∥∇Ψ n
∥
2
L2(Ω) + 2

∫ T

t

⟨
P̃αε (U

n)(·, η),∆Un(·, η)
⟩
dη + 2

∫ T

t
⟨FRε (·, η,Un, V n),∆Un(·, η)⟩dη

≤ ∥Ψ n
∥
2
H1
0 (Ω)

+ 2
∫ T

t

(
∥P̃αε (U

n)(·, η)∥L2(Ω) + ∥FRε (·, η,Un, V n)∥L2(Ω)
)
∥∆Un(·, η)∥L2(Ω)dη

≤ C8 + C9

∫ T

t
∥(Un, V n)(·, η)∥2

[L2(Ω)]2dη + (M0 − M)
∫ T

t
∥∆Un(·, η)∥2

L2(Ω)dη,

here we have used Hölder’s inequality, Cauchy’s inequality, Lemma 4.3 and Lipschitz property of FRε .
Hence, using (43), we arrive at ∥∆Un

∥L2(0,T ;L2(Ω)) ≤ C10. Then the limit function Uεreg also satisfies this estimate. Using
he same arguments for V εreg, we have ∆Uεreg,∆V εreg ∈ L2(0, T ; L2(Ω)). As in the previous section, we define

X ε(x, t) = eqα (t−T )(Uεreg − uex)(x, t), Yε(x, t) = eqα (t−T )(V εreg − vex)(x, t).

Since the hypothesis uex, vex ∈ L∞(0, T ;H2(Ω)), it yields ∆X ε,∆Yε ∈ L2(0, T ; L2(Ω)).
From (66), taking ϕ = λp⟨X ε(·, t), µp⟩µp(x), summing from p = 0 to ∞, and then integrating from t to T . By some

simple calculations, we have that∇X ε(·, T )
2
L2(Ω) −

∇X ε(·, t)
2
L2(Ω) − 2qα

∫ T

t

∇X ε(·, η)
2
L2(Ω)dη (77)

− 2
∫ T

t
B1
(
Uεreg, V

ε
reg

)
(η)
∆X ε(·, η)

2
L2(Ω)dη

= − 2
∫ T

t
eqα (η−T )

(
D1
(
Uεreg, V

ε
reg

)
− D1 (uex, vex)

)
(η)
⟨
∆uex(·, η),∆X ε(·, η)

⟩
dη  

G1

− 2
∫ T

t
eqα (t−T )

⟨
Q̃αε (uex)(·, η),∆X ε(·, η)

⟩
dη  

G2

+ 2
∫ T

t

⟨
P̃αε (∇X ε)(·, η),∇X ε(·, η)

⟩
dη  

G3

− 2
∫ T

t
eqα (t−T )

⟨
FRε (·, η,Uεreg, V

ε
reg) − F (·, η, uex, vex),∆X ε(·, η)

⟩
dη.  

G4

he above terms make sense since the linearity of P̃αε , Q̃αε , Lipschitz property of FRε , and the fact that∆X ε,∆Yε,∆uex,∆vex
L2(0, T ; L2(Ω)).
18
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Using Hölder’s inequality and hypotheses (A3), (A4)

|G1| ≤ 2Lmax

∫ T

t

(X ε,Yε)(·, η)


[L2(Ω)]2
∆uex(·, η)


L2(Ω)

∆X ε(·, η)

L2(Ω)dη (78)

≤
3L2

max(E
∗)2

2(M0 − M)

∫ T

t

(X ε,Yε)(·, η)
2

[L2(Ω)]2dη

+
2(M0 − M)

3

∫ T

t

∆X ε(·, η)
2
L2(Ω)dη.

Using Hölder’s inequality, Cauchy’s inequality and Lemma 4.3, it gives

|G2| ≤ 2
∫ T

t

Q̃αε (uex)(·, η)

L2(Ω)

∆X ε(·, η)

L2(Ω)dη (79)

≤
3

2(M0 − M)

∫ T

t

Q̃αε (uex)(·, η)
2
L2(Ω)dη +

2(M0 − M)
3

∫ T

t

∆X ε(·, η)
2
L2(Ω)dη

≤
3α2

2(M0 − M)T 2

∫ T

t

uex(·, η)
2
GΥ (Ω)dη +

2(M0 − M)
3

∫ T

t

∆X ε(·, η)
2
L2(Ω)dη

≤
3α2(E∗)2

2(M0 − M)T 2 +
2(M0 − M)

3

∫ T

t

∆X ε(·, η)
2
L2(Ω)dη.

Thanks to Lemma 4.3, we have

|G3| ≤ 2
∫ T

t

P̃αε (∇X ε)(·, η)

L2(Ω)

∇X ε(·, η)

L2(Ω)dη (80)

≤
2
T
log
(
1
α

)∫ T

t

∇X ε(·, η)
2
L2(Ω)dη.

With an analogous argument as in Section 5.1, we can choose a sufficiently small ε, such that F (x, t, uex, vex) =

FRε (x, t, uex, vex) for a.e. (x, t) ∈ QT , where KRε satisfies (74). Therefore

|G4| = 2
∫ T

t
eqα (η−T )

⏐⏐⏐⏐⟨FRε (·, η,Uεreg, V εreg) − FRε (·, η, uex, vex),∆X ε(·, η)
⟩⏐⏐⏐⏐dη (81)

≤ 2
∫ T

t
eqα (η−T )

FRε (·, η,Uεreg, V εreg) − FRε (·, η, uex, vex)

L2(Ω)

∆X ε(·, η)

L2(Ω)dη

≤ 2KRε

∫ T

t

(X ε,Yε)(·, η)


[L2(Ω)]2
∆X ε(·, η)


L2(Ω)dη

≤
3K 2

Rε

2(M0 − M)

∫ T

t

(X ε,Yε)(·, η)
2

[L2(Ω)]2dη +
2(M0 − M)

3

∫ T

t

∆X ε(·, η)
2
L2(Ω)dη.

hoosing qα =
1
T log

( 1
α

)
. From (77)–(81), we deduce∇X ε(·, t)

2
L2(Ω) ≤ ε2 + C10α

2
+

(
C11 +

3K 2
Rε

2(M0 − M)

)∫ T

t

(X ε,Yε)(·, η)
2

[L2(Ω)]2dη.

In a similar manner, we obtain estimate for Yε . Therefore(∇X ε,∇Yε)(·, t)
2

[L2(Ω)]2 (82)

≤ 4ε2 + 4C10α
2
+

(
4C11 +

6K 2
Rε

(M0 − M)

)∫ T

t

(X ε,Yε)(·, η)
2

[L2(Ω)]2dη.

ombining (73) and (82), yields(X ε,Yε)(·, t)
2

[H1(Ω)]2 ≤ 2
(X ε,Yε)(·, t)

2
[L2(Ω)]2 + 2

(∇X ε,∇Yε)(·, t)
2

[L2(Ω)]2

≤ 16ε2 + C12α
2
+

(
C13 + 8KRε +

12K 2
Rε

(M0 − M)

)∫ T

t

(X ε,Yε)(·, η)
2

[H1(Ω)]2dη

Applying Gronwall’s inequality, we arrive at(X ε,Yε)(·, t)
2

[H1(Ω)]2 ≤
(
16ε2 + C12α

2) exp[(C13 + 8KRε +
12K 2

Rε

(M0 − M)

)
(T − t)

]
.

hus, by choosing K ε which satisfies (74), we can deduce (75).
R
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Moreover, with α = ε, as in Section 5.1, we choose t = tε the unique solution of the equation ε
t
T = t , yields(Uεreg, V εreg)(·, tε) − (uex, vex)(·, 0)


[H1(Ω)]2

≤
(Uεreg, V εreg)(·, tε) − (uex, vex)(·, tε)


[H1(Ω)]2 +

(uex, vex)(·, tε) − (uex, vex)(·, 0)


[H1(Ω)]2

≤ C∗

0 ε
tε
T

√
logγ

(
1
ε

)
+ tε

(
∥∂tuex∥C([0,T ];H1(Ω)) + ∥∂tvex∥C([0,T ];H1(Ω))

)
≤ tε

(
C∗

0

√
logγ

(
1
ε

)
+ 2E∗

)
,

which implies (76). This completes the proof of the theorem. □

Remark 5.3. In Theorems 5.1 and 5.2, to ensure the convergence of regularized solution, it is sufficient to choose α such
hat limε→0 α = 0, limε→0

ε
α

= const . In order to obtain the optimal rate of convergence, we chose α = ε. With this

choice, the convergence speed of regularized solution in both L2 and H1-norms is of order O(ε
t
T

√
logγ 1

ε
) for t > 0.

emark 5.4. In Section 4, instead of the locally Lipschitz condition (A6) of F and G, we can impose the locally Lipschitz
roperty in L2 − norm

∀R > 0, ∃K R
F , K

R
G : 0 < K R

F , K
R
G < ∞,∀(ui, vi) ∈ BR, i = 1, 2,∀t ∈ [0, T ], yield

∥F (·, t, u1, v1) − F (·, t, u2, v2)∥L2(Ω) ≤ K R
F ∥ ((u1, v1) − (u2, v2)) (·, t)∥[L2(Ω)]2 ,

∥G(·, t, u1, v1) − G(·, t, u2, v2)∥L2(Ω) ≤ K R
G∥ ((u1, v1) − (u2, v2)) (·, t)∥[L2(Ω)]2 ,

where BR is the closed ball in [L2(Ω)]2 of centre 0 and radius R. Then we can use the following sequences of globally
Lipschitz functions

FRε (x, t, u, v) =

⎧⎪⎪⎨⎪⎪⎩
F (x, t, u, v), if ∥(u, v)(·, t)∥[L2(Ω)]2 ≤ Rε,

F
(
x, t,

Rεu
∥(u, v)(·, t)∥[L2(Ω)]2

,
Rεv

∥(u, v)(·, t)∥[L2(Ω)]2

)
,

if ∥(u, v)(·, t)∥[L2(Ω)]2 > Rε,

GRε (x, t, u, v) =

⎧⎪⎪⎨⎪⎪⎩
G(x, t, u, v), if ∥(u, v)(·, t)∥[L2(Ω)]2 ≤ Rε,

G
(
x, t,

Rεu
∥(u, v)(·, t)∥[L2(Ω)]2

,
Rεv

∥(u, v)(·, t)∥[L2(Ω)]2

)
,

if ∥(u, v)(·, t)∥[L2(Ω)]2 > Rε

to approximate F ,G and our QR method can be straightforwardly applied. We can easily prove that the reaction function
onsidered in Section 3 satisfies the globally Lipschitz condition in L2- norm and the regularized solution for this unstable
roblem can be found.

. Numerical results

This section concentrates on establishing some numerical tests in 1-D and 2-D regions Ω to illustrate our numerical
trategy and verify the error estimates given in the theoretical parts. Let us start with the 1-D case.

.1. Generalized Fisher–Kolmogorov model for the response of low-grade gliomas to radiotherapy

We first generalize the model expressing the response of the tumour cells to radiation [3]
∂

∂t
u(x, t) = D1(u, vd)(t)∆u + ρ(1 − u − vd)u + F1(x, t),

∂

∂t
vd(x, t) = D2(u, vd)(t)∆vd −

ρ

k
(1 − u − vd)vd + F2(x, t),

where u is the density of functionally alive tumour cells, vd is the density of irreversibly damaged cells after irradiation.
τ = 1/ρ is the tumour population doubling time. The parameter k has the meaning of the average number of mitosis
cycles that damaged cells are able to complete before dying.

By simple computations, one can easily check that reaction terms F ,G are locally Lipschitz functions w.r.t u, vd, and
with the Lipschitz constant

KRε =
√
8max{ρ,

ρ
}(2Rε + 1).
k
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We implement the model with the domain Ω = [0, π]. The Laplacian operator has eigenfunctions, satisfying Neumann
boundary condition: µp(x) =

√
2
π
cos(px), with corresponding eigenvalues, λp = p2, p ∈ N. This sequence {µp(x)}∞0 forms

an orthonormal basis of L2(Ω).
A uniform grid of mesh-points (xi, tk) is used to discretize the space and time intervals

∆x =
π

Nx
, xi = (i − 1)∆x, i = 1,Nx + 1,

∆t =
T
Nt
, tk = (k − 1)∆t, k = 1,Nt + 1.

The inner product in L2(0, π ) can be approximated by 1-D composite Simpson rule of numerical integration∫ π

0
f (x)dx ≈

∆x
3

Nx+1∑
i=1

cif (xi),

where ci =

⎧⎨⎩
1, if (i = 1) ∨ (i = Nx + 1),
2, if i = 2l + 1,
4, if i = 2l.

As a consequence, discrete norm in L2(Ω): ℓ2- norm can be defined by

∥w∥ℓ2(Ω) =

√∆x
3

Nx+1∑
i=1

ciw2(xi).

The input data is perturbed as:

Ψ ε(x) = Ψ (x)
(
1 +

ε

∥Ψ ∥ℓ2(Ω) + ∥Φd∥ℓ2(Ω)
(2 rand(size(x)) − 1)

)
,

Φε(x) = Φ(x)
(
1 +

ε

∥Ψ ∥ℓ2(Ω) + ∥Φd∥ℓ2(Ω)
(2 rand(size(x)) − 1)

)
,

here rand(size(x)) is a random array with the same size with x, having values in [0, 1].
Denote by (̃u, ṽ) our numerical regularized solution, and by (uex, vex) the exact solution.
The absolute errors are evaluated by

ϵu = ∥̃u − uex∥ℓ2(Ω), rϵu =
ϵu

∥uex∥ℓ2(Ω)
,

ϵv = ∥̃v − vex∥ℓ2(Ω), rϵv =
ϵv

∥vex∥ℓ2(Ω)
.

.1.1. Case 1
We investigate the model in the first case with

T =
1
3
, ρ = 0.01, k = 1,D1 = 0.2 + 0.1 sin(b(vd)),D2 = 0.2 + 0.1 sin(c(u)),

a(u)(t) = 0, b(vd)(t) =

∫
Ω

x · vd(x, t)dx, c(u)(t) =

∫
Ω

x · u(x, t)dx, d(vd)(t) = 0.

One can easily see that 0.1 ≤ D(ϑ, ν) ≤ 0.3. Thus, we can choose M0 = 0.31.
Taking the external sources

F1 = e−5t cos 2x(0.01 cos x − 0.4 sin(2e−2t )) + 0.01e−6t cos2 2x − 2.21e−3t cos 2x,

F2 = −1.79e−2t cos x − 0.01(e−4t cos2 x + e−5t cos 2x cos x),

and the final data

Ψ (x) = e−1 cos 2x, Φ(x) = e−2/3 cos x

the problem admits uex(x, t) = e−3t cos 2x, vex(x, t) = e−2t cos x as the exact solution. Then the radius chosen here Rε ≥ 2.
Consequently, we have KRε ≥ 0.05

√
8. In order to guarantee the condition (63) with γ =

1
2 , we must have ε ≤ 0.2327.

inite difference numerical solution.
In this example, we first try to use the traditional backward Euler method to take into account the numerical

egularized solution to the system (24)–(25) with the regularization parameter chosen here α(ε) = ε as follows

Uk+1
i − Uk

i
− D1(Uk+1, V k+1)

Uk
i+1 − 2Uk

i + Uk
i−1

= F k+1
+ Q̃α(Uk+1), (83)
∆t ∆x2 i ε i

21
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Table 1
The errors of finite difference solution at t ∈ {

1
4 ,

1
6 ,

1
12 }, for various amounts of noise ε ∈

{10−1, 10−2, 10−3, 10−4, 10−5, } for Ex. 1, case 1.
ε ϵu( 14 ) ϵv( 14 ) ϵu( 16 ) ϵv( 16 ) ϵu( 1

12 ) ϵv( 1
12 )

10−1 0.2539 0.5119 1.6491 1.7270 37.6326 8.3029
10−2 0.2070 0.0801 0.5151 0.2093 1.1453 0.1852
10−3 0.0685 0.0326 0.1046 0.0607 0.1616 0.1038
10−4 0.0664 0.0221 0.0831 0.0258 0.1064 0.0317
10−5 0.0674 0.0219 0.0841 0.0250 0.1062 0.0301

V k+1
i − V k

i

∆t
− D2(Uk+1, V k+1)

V k
i+1 − 2V k

i + V k
i−1

∆x2
= Gk+1

i + Q̃αε (V
k+1
i ), (84)

where Uk
i = Uεreg(xi, tk), V

k
i = V εreg(xi, tk), F

k+1
i = FRε

(
xk+1, ti,Uεreg(xk+1, ti), V εreg(xk+1, ti)

)
and Gk+1

i = GRε
(
xk+1, ti,Uεreg(xk+1,

ti), V εreg(xk+1, ti)
)
.

The term Q̃αε (V
k+1
i ) is defined as

Q̃αε
(
V k+1
i

)
=

P∑
p=0

log(1 + εeTM0λp )
T

⟨
V k+1, µp

⟩
µp(xi).

Furthermore, to find the Fourier coefficient
⟨
V k+1, µp

⟩
we imply the Filon numerical integration method (see [32]). The

Neumann boundary condition (3) is implemented at x = 0 and x = π as follows:

Uk
1 = Uk

2 , V k
1 = V k

2 , Uk
Nx

= Uk
Nx+1, V k

Nx
= V k

Nx+1, for k = 1,Nt + 1.

Then, we will find the solution vector Xk
= [Uk

2 Uk
3 . . . Uk

Nx
V k
2 V k

3 . . . V k
Nx

]
T by solving the linear system

A(Uk+1, V k+1)Xk
= B(Uk+1, V k+1),

where

B
(
Uk+1, V k+1)

=

⎡⎢⎢⎢⎢⎢⎢⎣

Uk+1
2 −∆tF k+1

2 −∆tQ̃αε
(
Uk+1
2

)
· · ·

Uk+1
Nx

−∆tF k+1
Nx

−∆tQ̃αε
(
Uk+1
Nx

)
V k+1
2 −∆tGk+1

2 −∆tQ̃αε
(
V k+1
2

)
· · ·

V k+1
Nx

−∆tGk+1
Nx

−∆tQ̃αε
(
V k+1
Nx

)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

A
(
Uk+1, V k+1)

=

[
A1 0
0 A2

]
,

with

Ai =

⎡⎢⎢⎢⎢⎢⎣
1 − Dih Dih 0 0 0 · · · 0
Dih 1 − 2Dih Dih 0 0 · · · 0
0 Dih 1 − 2Dih Dih 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 0 Dih 1 − 2Dih Dih
0 0 0 · · · 0 Dih 1 − Dih

⎤⎥⎥⎥⎥⎥⎦ ,

where h =
∆t
∆x2

, Di = Di
(
Uk+1, V k+1

)
.

Choosing Nx = 8,Nt = 100, P = 10, we present the relative errors between the regularized and the true solutions at
t ∈ {

1
4 ,

1
6 ,

1
12 } for various amounts of noise ε ∈ {10−2, 10−3, 10−4, 10−5

} in Table 1. .
From them, we can observe that the errors at t =

1
6 are greater than those at t =

1
4 and smaller than those at t =

1
12 .

urthermore, with the smaller errors of input data, the results obtained are more accurate, which verifies the theoretical
esult in Theorem 5.1.

One more thing to remark is that using this method, if we choose the number of intervals for x : Nx > 10, then the
umerical solution quickly looses its stability and tends to infinity. Hence, we choose N = 8 only.
x
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w

Table 2
The errors of Fourier-mode solution at t ∈ {

1
4 ,

1
6 ,

1
12 }, for various amounts of noise ε ∈ {10−1, 10−2, 10−3, 10−4, 10−5

},

with Nx = 8 for Ex. 1, case 1.
ε ϵu( 14 ) ϵv( 14 ) ϵu( 16 ) ϵv( 16 ) ϵu( 1

12 ) ϵv( 1
12 )

10−1 0.1291 0.0979 0.2033 0.1754 0.3873 0.3787
10−2 0.1159 0.0843 0.2184 0.1952 0.4066 0.4022
10−3 0.1175 0.0924 0.2233 0.2134 0.4170 0.4360
10−4 0.1176 0.0962 0.2250 0.2231 0.4258 0.4530
10−5 0.1178 0.0973 0.2271 0.2259 0.4322 0.4573

Table 3
The errors at t =

1
4 , t =

1
6 , t =

1
12 , for various amounts of noise ε ∈ {10−1, 10−2, 10−3, 10−4, 10−5

} with Nx = 100 for
Ex. 1, case 1.
ε ϵu( 14 ) ϵv( 14 ) ϵu( 16 ) ϵv( 16 ) ϵu( 1

12 ) ϵv( 1
12 )

10−1 0.0515 0.1984 0.2977 1.2888 4.2858 157.2620
10−2 0.0037 0.0039 0.0156 0.0700 0.2743 4.6714
10−3 0.0012 0.0005 0.0066 0.0042 0.0176 0.0156
10−4 0.0012 0.0004 0.0065 0.0027 0.0174 0.0072
10−5 0.0012 0.0004 0.0066 0.0027 0.0173 0.0072

Fourier-mode numerical solution
Next, we construct a new numerical regularized solution to the system (24)–(25), which is of the following form

Uεreg =

∞∑
p=0

[
exp

(
λp

∫ T

t
D1(Uεreg, V

ε
reg)dη

) (
1 + εeM0Tλp

) t−T
T Ψ ε

p

]
µp(x) (85)

−

∞∑
p=0

[∫ T

t
exp

(
λp

∫ η

t
D1(Uεreg, V

ε
reg)dξ

) (
1 + εeM0Tλp

) t−η
T ⟨F (·, η,Uεreg, V

ε
reg), µp⟩dη

]
µp(x),

V εreg =

∞∑
p=0

[
exp

(
λp

∫ T

t
D2(Uεreg, V

ε
reg)dη

) (
1 + εeM0Tλp

) t−T
T Φε

p

]
µp(x) (86)

−

∞∑
p=0

[∫ T

t
exp

(
λp

∫ η

t
D2(Uεreg, V

ε
reg)dξ

) (
1 + εeM0Tλp

) t−η
T ⟨G(·, η,Uεreg, V

ε
reg), µp⟩dη

]
µp(x),

where we have used some similar calculations as in the proof of Lemma 3.2.
We herein use the Picard-like procedure [32] to approximate the Volterra-type integral Eq. (85) as follows (the same

way is applied for v)

Uk
reg,p = ⟨Uεreg(·, tk), µp⟩ = eλp∆t

∑Nt
l=k D1(U

l+1
reg ,V

l+1
reg ) (1 + εeM0Tλp

) tk−T
T Ψ ε

p

−

Nt∑
l=k

∫ tl+1

tl

eλp(η−tl)D1(U
l+1
reg ,V

l+1
reg ) (1 + εeM0Tλp

) tl−η
T ⟨F (·, η,U l+1

reg , V
l+1
reg ), µp⟩dη, (87)

ith U l
reg = Uεreg(x, tl), V

l
reg = V εreg(x, tl). We will find these Fourier coefficients up to p = P .

With the choice that Nx = 8,Nt = 100 and P = 10, the errors at t ∈ {
1
4 ,

1
6 ,

1
12 }, for various amounts of noise

ε ∈ {10−1, 10−2, 10−3, 10−4, 10−5
} are presented in Table 2. We can easily see that the numerical solution is not stable,

and the errors are greater than those of the finite difference numerical solution.
However, when we increase the parameter Nx to 100, the stability of the numerical solution has been much improved.

Table 3 and Fig. 1 show the ℓ2-errors between (̃u, ṽ) and (uex, vex) at various times t ∈ {
1
4 ,

1
6 ,

1
12 } (with Nx = Nt = 100, P =

10) for various amounts of noise ε ∈ {10−1, 10−2, 10−3, 10−4, 10−5, }, and the graphs of the approximate solutions at
t =

1
6 for ε ∈ {10−1, 10−2, 10−3, } (with Nx = Nt = 50, P = 10).

6.1.2. Case 2
We now consider the model with

T = 1, ρ = 0.001, k = 1, D1 = D2 = 0.1 +
0.4

1 + a2(u)
+

0.5
1 + b2(vd)

,

a(u)(t) = c(u)(t) =

∫
Ω

u(x, t)dx, b(vd)(t) = d(vd)(t) =

∫
Ω

vd(x, t)dx.

Notice that 0.1 ≤ D ,D ≤ 1. We then choose M = 1 + 2.10−13.
1 2 0
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Fig. 1. The regularized solutions in Ex. 1, case 1, at t =
1
6 , with ε = 10−1, ε = 10−2, ε = 10−3 .

Fig. 2. The noisy data in Ex. 1, case 2, with ε = 0.1.

Let the external sources

F1(x, t) = 0.999e−3t cos 2x + 0.001(e−5t cos 2x cos x + e−6t cos2 2x),

F2(x, t) = −0.999e−2t cos x − 0.001(e−4t cos2 x + e−5t cos x cos 2x),

and the final data

Ψ (x) = e−3 cos 2x, Φ(x) = e−2 cos x

such that uex(x, t) = e−3t cos 2x, vex(x, t) = e−2t cos x are also the exact solution. Here Rε ≥ 2, KRε ≥ 0.005
√
8, ε must

satisfy ε ≤ 0.3263.
Choosing Nx = Nt = 50, P = 10. Fig. 2 gives us a picture of noise of level ε = 0.1 in input data. Figs. 3 and 4 compare

the numerical exact solution with noisy data and the regularized one at t = 0.8, with ε = 0.1. The error shown in the
case of unregularized solution is extremely large, compared with the exact solution. This reflects the instability of the
exact solution, which has been proved in Lemma 3.2 for an example.

Table 4 shows us that as t reaches 0, the numerical regularized solution tends to lose its stability.

6.2. Turing pattern

We now consider an example of pattern formation in a Turing-type reaction–diffusion system [6]

u (x, y, t) = D ∆u + k u2v − k u + F (x, y, t),
t u 1 2 1
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c
k

Fig. 3. The unregularized solution in Ex. 1, case 2, at t = 0.8, with ε = 0.1.

Fig. 4. The regularized solution in Ex. 1, case 2, at t = 0.8, with ε = 0.1.

Table 4
The relative errors at various times t ∈ {0.8, 0.6, 0.4, 0.2}, for various amounts of noise ε ∈

{10−1, 10−2, 10−3, 10−5, 10−5, 10−6, 10−7
} for Ex. 1, case 2.

ε rϵu(0.8) rϵv(0.8) rϵu(0.6) rϵv(0.6) rϵu(0.4) rϵv(0.4) rϵu(0.2) rϵv(0.2)

10−1 0.3508 0.0860 0.5472 0.1704 0.6854 0.1971 0.8374 0.2763
10−2 0.0448 0.0207 0.0196 0.0587 0.0941 0.1113 0.2337 0.1770
10−3 0.0413 0.0102 0.2014 0.0443 0.4542 0.0884 0.7961 0.1458
10−4 0.0522 0.0098 0.2285 0.0432 0.5057 0.0879 0.8776 0.1359
10−5 0.0534 0.0097 0.2315 0.0432 0.5109 0.0876 0.8862 0.1361
10−6 0.0535 0.0097 0.2318 0.0431 0.5115 0.0876 0.8870 0.1363
10−7 0.0535 0.0097 0.2318 0.0431 0.5115 0.0876 0.8870 0.1363

vt (x, y, t) = Dv∆v + k2u2v + F2(x, y, t),

where u, v are concentrations of activator, and substrate, respectively. Du,Dv are the diffusion coefficients of u, v and Dv
is significantly faster than that of the activating species, i.e Dv ≫ Du. k1, k2 are reaction rate constants. This model is
observed in several biological systems including zebra (stripes), minor worker termites (concentric circles), aggregation
of slime moulds (spirals) and leopards (randomly distributed dots).

The reaction terms F = k1u2v−k2u+F1(x, y, t) and G = k2u2v+F2(x, y, t) are locally Lipschitz functions with Lipschitz
onstant KRε =

√
8max{k1, k2}(2(Rε)2+1). We shall implement the model in 2-D regionΩ = [0, π]

2 with the parameters
= k = 0.01, T = 1,D = 0.01,D = 0.2, and choose M = 0.2 + 10−10.
1 2 u v 0
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A
t

Table 5
The relative errors at various times t ∈ {0.9, 0.5, 0.3, 0.1}, for various amounts of noise ε ∈ {10−2, 10−3, 10−4, } for Ex.
2.
ε rϵu(0.9) rϵv(0.9) rϵu(0.5) rϵv(0.5) rϵu(0.3) rϵv(0.3) rϵu(0.1) rϵv(0.1)

10−2 0.0358 0.0158 0.0346 0.0221 0.0358 0.0536 0.0403 0.1002
10−3 0.0221 0.0095 0.0106 0.0384 0.0185 0.0981 0.0328 0.2557
10−4 0.0095 0.0072 0.0531 0.1136 0.0679 0.4506 0.0997 1.8405

Fig. 5. The exact solution in Ex. 2 at t = 0.5.

At the discretization level, a uniform grid of mesh-points (xi, yj, tk) is used

∆x =
π

Nx
, xi = (i − 1)∆x, i = 1,Nx + 1,

∆y =
π

Ny
, yj = (j − 1)∆x, j = 1,Ny + 1,

∆t =
T
Nt
, tk = (k − 1)∆t, k = 1,Nt + 1.

n orthonormal basis in [L2(Ω)]2, consisting eigenfunctions of Laplacian, satisfying Neumann boundary condition, with
he corresponding eigenvalues

µmn(x, y) =
2
π

cos(mx) cos(ny), λmn = m2
+ n2, m, n ∈ N.

Denote the number of terms of truncated Fourier series by (M+1)(N+1) : 0 ≤ m ≤ M, 0 ≤ n ≤ N . We use aforementioned
Picard iteration method, as in (87) to find the Fourier coefficients

ũmn = ⟨̃u, µmn⟩, ṽmn = ⟨̃v, µmn⟩.

The composite Simpson rule for 2-D integration is represented as follows∫ π

0

∫ π

0
f (x, y)dxdy ≈

∆x∆y
9

Nx+1∑
i=1

Ny+1∑
j=1

cijf (xi, yj),

where cij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4, if ((i = 1 ∨ i = Nx + 1) ∧ j = 2l) ∨ ((j = 1 ∨ j = Ny + 1) ∧ i = 2l),
2, if ((i = 1 ∨ i = Nx + 1) ∧ j = 2l + 1) ∨ ((j = 1 ∨ j = Ny + 1) ∧ i = 2l + 1),
8, if (i ̸= 1,Nx + 1) ∧ (j ̸= 1,Ny + 1) ∧ (i + j = 2l + 1),
16, if (i = 2l, j = 2k),

for some integers k, l.
4, if (i ̸= 1,Nx + 1) ∧ (j ̸= 1,Ny + 1) ∧ (i = 2l + 1, j = 2k + 1),
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Fig. 6. The unregularized solution in Ex. 2 at t = 0.5, with ε = 10−3 .

Fig. 7. The regularized solution in Ex. 2 at t = 0.5, with ε = 10−3 .

Taking the external sources

F1(x, y, t) = −2.98e−3t cos 2y cos x − 0.01e−8t cos 2x cos2 2y cos2 x cos y,

F2(x, y, t) = −1.2e−2t cos 2x cos y − 0.01e−8t cos 2x cos2 2y cos2 x cos y,

such that our exact solution is

uex(x, y, t) = e−3t cos x cos 2y, vex(x, y, t) = e−2t cos 2x cos y.

The final data are given by

Ψ (x, y) = e−3 cos x cos 2y, Φ(x, y) = e−2 cos 2x cos y.

The radius chosen here Rε ≥ 2. Consequently, we have KRε ≥ 0.2546. The condition (63) with γ =
2
3 holds true when

ε ≤ 0.01 Let Nx = Ny = Nt = 50, and the truncation levels: M = N = 10. The exact solution, numerical unregularized
solution and the solution after regularization are presented in Figs. 5, 6, 7. Table 5 gives the relative error comparison at
various times t ∈ {0.9, 0.5, 0.3, 0.1} for various noise levels ε ∈ {10−2, 10−3, 10−4

}, and shows the similar phenomenon as
in the previous subsection: when t reaches 0, the relative errors increases rapidly and the numerical regularized solution
tends to lose its stability, the smaller the noise level, the greater the magnitude of approximation errors.
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Remark 6.1. In case that we cannot find the analytical true solution, first, we can solve the forward problem to numerically
simulate the terminal data, perturb them, and then use the perturbed final data for the backward problem.

7. Conclusion

In this study, we solved the unstable backward problem (1) with nonlocal diffusions and locally Lipschitz nonlinear
reactions by suggesting a modified QR method. In the theoretical results, we obtained the error estimates in both L2−
nd H1

−norms. We implemented 2 biological models in simple cases to verify the result in L2−norm only. From the
umerical tests, it shows that the regularized solutions are convergent to the true solutions and the convergence speed
ecreases rapidly as t tends to 0.
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