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Abstract—Automated test case generation for web APIs is a thriving research topic, where test cases are frequently derived from the
API specification. However, this process is only partially automated since testers are usually obliged to manually set meaningful valid
test inputs for each input parameter. In this article, we present ARTE, an approach for the automated extraction of realistic test data for
web APIs from knowledge bases like DBpedia. Specifically, ARTE leverages the specification of the API parameters to automatically
search for realistic test inputs using natural language processing, search-based, and knowledge extraction techniques. ARTE has been
integrated into RESTest, an open-source testing framework for RESTful APIs, fully automating the test case generation process.
Evaluation results on 140 operations from 48 real-world web APIs show that ARTE can efficiently generate realistic test inputs for
64.9% of the target parameters, outperforming the state-of-the-art approach SAIGEN (31.8%). More importantly, ARTE supported the
generation of over twice as many valid API calls (57.3%) as random generation (20%) and SAIGEN (26%), leading to a higher failure
detection capability and uncovering several real-world bugs. These results show the potential of ARTE for enhancing existing web API
testing tools, achieving an unprecedented level of automation.
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F
1 INTRODUCTION

1 W EB Application Programming Interfaces (APIs) allow2

heterogeneous software systems to talk to each other3

over the network [1], [2]. Modern web APIs typically adhere4

to the REpresentational State Transfer (REST) architectural5

style, being referred to as RESTful web APIs [3]. RESTful6

web APIs typically allow applications to interact by ex-7

changing JSON messages sent over HTTP. In practice, this8

allows, for example, checking the result of a football match9

(BeSoccer API [4]), posting a tweet (Twitter API [5]), booking10

a hotel room (Amadeus API [6]), translating a text (DeepL11

API [7]), or finding a route between two locations (Open-12

route API [8]). RESTful APIs are commonly described using13

languages such as the OpenAPI Specification (OAS) [9].14

An OAS document provides a structured specification of a15

RESTful web API that allows both humans and computers16

to discover and understand the capabilities of a service17

without requiring access to the source code or additional18

documentation. In what follows, we will use the terms19

RESTful web API, web API, or just API interchangeably.20

Testing web APIs adequately requires using realistic21

test inputs such as country names, codes, coordinates, or22

addresses. As an example, the hotel search operation in23

the Amadeus API [6] requires users to provide valid ho-24

tel names (e.g., “Hotel California”), hotel chains (e.g.,25

“Hilton”), IATA airport codes (e.g., “BUE” for Buenos Aires),26

ISO currency codes (e.g., “EUR” for Euro), and ISO language27

codes (e.g., “FR” for French), among others. Generating28

meaningful values for these types of parameters randomly29
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is rarely feasible. Even if a test data generator could bypass 30

the syntactic validation generating values with the right 31

format, the chances of constructing API requests that return 32

some results—and therefore exercise the core functionality 33

of the API—would be remote. To address this issue, most 34

test case generation approaches resort to data dictionaries: 35

sets of input values collected by the testers, either manu- 36

ally [10] or, when possible, automatically [11]. This means 37

a major obstacle for automation since data dictionaries 38

must be created and maintained for each non-trivial input 39

parameter, on each API under test. Other authors propose 40

using the default or sample values included in the API 41

specification as test inputs, if any, but those are solely 42

intended to explain the behavior of the API, and they are 43

insufficient to test it thoroughly [12]. 44

Several authors have addressed the problem of generat- 45

ing realistic test inputs for desktop, web, and mobile apps 46

using semantic knowledge discovery techniques [13], [14]. 47

Specifically, they propose to query knowledge bases like 48

DBpedia [15] to discover realistic test input values for the 49

graphical user interface (GUI) elements of the application 50

under test. For example, if the GUI includes a text field with 51

the label “DOI”, their approaches would search for “DOI” 52

identifiers in DBpedia. To the best of our knowledge, this 53

strategy—based on querying knowledge bases for realistic 54

test inputs—has not been applied to the context of web APIs 55

yet, despite its potential. 56

Automatically generating realistic test data for web APIs 57

requires facing some unique challenges since, unlike GUIs, 58

APIs are intended for developers, rather than for users. 59

To start with, unlike GUI labels, API parameters may fol- 60

low many different naming conventions. Hence, for exam- 61

ple, different APIs could refer to the concept country code 62

using very different parameters’ names such as country 63
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(Asos API [16]), countryCode (DHL API [17]), country_code64

(Numverify API [18]), cc (Foursquare API [19]), c, or65

even a less explanatory term, such as location (Domainr66

API [20]) or excludedCountryIds (GeoDBCities API [21]).67

This may make it necessary to resort to the description of68

each parameter in the search for further information that69

helps to identify the key concept. However, descriptions70

are given in natural language and, as names, they can be71

very heterogeneous both in style and length. Finally, API72

specifications occasionally include further information such73

as expected patterns (i.e., regular expressions) and sample74

values. Exploiting all these aspects for the generation of75

realistic test data is the key challenge addressed in our work.76

In this article, we present an approach for the Automated77

generation of Realistic TEst inputs (ARTE) for web APIs.78

Specifically, our approach focuses on RESTful APIs as the79

de facto standard, but it could be applied to any web API80

provided that there is an API specification. ARTE leverages81

semantic knowledge discovery for the generation of realistic82

test inputs. In particular, ARTE exploits the specification83

of the various elements of the API under test, such as the84

name and description of its parameters, by querying knowl-85

edge bases to automatically generate realistic test inputs.86

In contrast to related approaches, ARTE includes a novel87

step for the automated inference of regular expressions88

from previously generated inputs, increasing the accuracy89

of the semantic queries and the overall performance of90

the approach. Furthermore, ARTE has been integrated into91

RESTest [22], a state-of-the-art tool for black-box test case92

generation for RESTful APIs, making our approach fully93

automated and publicly available.94

We evaluated the effectiveness of ARTE by comparing95

its performance with existing random techniques and the96

related tool SAIGEN—recently proposed in the context of97

automated testing of mobile apps [14]—in two scenarios:98

(1) on the generation of realistic test inputs for 48 web APIs;99

and (2) on the generation of valid API calls, API coverage,100

and the detection of failures in 6 industrial web APIs. Ex-101

perimental results show that ARTE can generate meaningful102

valid inputs for 64.9% of the target API parameters (137 out103

of 211), outperforming SAIGEN (31.8%). More importantly,104

ARTE supported the generation of over twice as many valid105

API calls (57.3%) as random generation (20%) and SAIGEN106

(26%). As a result, ARTE achieved higher coverage and107

revealed more failures in more APIs, detecting confirmed108

bugs in the web APIs of Amadeus [6] and DHL [17] not109

detected by related techniques. These results show the po-110

tential of ARTE to enhance current specification-driven web111

API testing tools.112

To summarize, after introducing the background on113

RESTful APIs and the Web of Data (Section 2), this paper114

provides the following original research and engineering115

contributions:116

• ARTE, a novel approach for the automated extraction of117

realistic test inputs for web APIs from knowledge bases118

like DBPedia (Section 3).119

• Integration of ARTE into the open-source testing frame-120

work RESTest, making our approach readily applicable121

in practice (Section 4).122

• An empirical comparison of ARTE with random data123

generation techniques and the state-of-the-art approach124

SAIGEN [14] on the generation of realistic test inputs 125

and its impact on testing real-world APIs (Section 5). 126

• A publicly available replication package [23] containing 127

the source code and datasets discussed in the article. We 128

trust that this will also serve as a benchmark for future 129

contributions in the topic. 130

We discuss the threats to validity in Section 6, related 131

work in Section 7, and conclude the paper in Section 8. 132

2 BACKGROUND 133

This section introduces key concepts to contextualize our 134

proposal, namely, RESTful APIs and the Web of Data. 135

2.1 RESTful APIs 136

Modern web APIs typically follow the REpresentational 137

State Transfer (REST) [3] architectural style, being referred 138

to as RESTful web APIs [1]. RESTful web APIs are usually 139

decomposed into multiple RESTful web services [2], each of 140

which implements one or more create, read, update, and 141

delete (CRUD) operations on a resource (e.g., a playlist 142

in the Spotify API [24]). These operations can be invoked 143

by sending specific HTTP requests to specific API end- 144

points. For example, a POST HTTP request to the URI 145

https://api.spotify.com/v1/users/42/playlists would 146

create a playlist for the user with ID 42 in the Spotify API. 147

RESTful APIs can be described in the OAS language [9], 148

arguably the current industry standard. Listing 1 depicts 149

an excerpt of the OAS specification of the DHL API [17]. 150

As illustrated, an OAS document describes the API mainly 151

in terms of the operations supported, as well as their in- 152

put parameters and the possible responses. The operation 153

shown in Listing 1 allows to search for DHL service point 154

locations (lines 1-5) in JSON format (lines 6-7). The opera- 155

tion receives nine input parameters (lines 8-43). Successful 156

responses should include a 200 status code and the set of 157

results matching the input filters (lines 44-48). Note that it 158

is possible to specify constraints such as regular expressions 159

for strings and min/max values for numbers (line 27). 160

Motivated by their critical role in software integration, 161

many researchers have addressed the challenge of auto- 162

matically generating test cases for RESTful web APIs [11], 163

[12], [22], [25], [26], [27], [28]. Most approaches in this 164

domain follow a black-box strategy, where test cases are 165

automatically derived from the API specification, typically 166

in OAS format [11], [12], [22], [25], [27]. Roughly speaking, 167

these approaches generate (pseudo-)random API calls by 168

assigning values to the API input parameters, and then 169

checking whether the API responses conform to the API 170

specification. For the generation of test inputs, some authors 171

resort to random values (fuzzing) [27] or default values [12], 172

but these are rarely enough to test the APIs thoroughly. 173

Hence, most approaches resort to data dictionaries: sets of 174

predefined input values [10]. For example, we could create 175

a list of valid postal codes from which to select test inputs 176

for the parameter postalCode in DHL (Listing 1). However, 177

creating and maintaining data dictionaries for each non- 178

trivial input parameter is a costly manual endeavour—this 179

is the problem that motivates our work. 180
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1 paths:
2 ’/find-by-address’:
3 get:
4 operationId: findByAddress
5 description: Find DHL locations based on an address.
6 produces:
7 - application/json
8 parameters:
9 - name: countryCode

10 in: query
11 description: ’A two-letter ISO 3166-1 alpha-2 code.’
12 required: true
13 type: string
14 x-example: ’DE’
15 - name: postalCode
16 in: query
17 description: ’Postal code for an address.’
18 required: false
19 type: string
20 x-example: ’53113’
21 - name: limit
22 in: query
23 description: ’Maximum of results to return.’
24 required: false
25 type: number
26 default: 15
27 maximum: 50
28 x-example: 20
29 - name: locationType
30 in: query
31 description: ’Type of the DHL Service Point location.’
32 required: false
33 type: string
34 enum:
35 - servicepoint
36 - locker
37 - postoffice
38 - postbank
39 - name: streetAddress ...
40 - name: serviceType ...
41 - name: radius ...
42 - name: addressLocality ...
43 - name: providerType ...
44 responses:
45 ’200’:
46 description: ’List of DHL Service Point locations.’
47 schema:
48 $ref: ’#/definitions/supermodelIoLogisticsPUDOLocations’

Listing 1. OAS excerpt of the DHL API.

2.2 Web of Data181

The Web of Data is a global data space in continu-182

ous growth that contains billions of interlinked queryable183

data published following the Linked Data principles [29].184

According to these principles, resources are identified185

using Uniform Resource Identifiers (URIs) [30] and re-186

source relationships are specified using the Resource De-187

scription Framework (RDF) [31]. RDF is a standard that188

specifies how to identify relationships between resources189

in the form of triples composed by a subject, a pred-190

icate, and an object, denoted as <subject, predicate, ob-191

ject>. The predicate specifies the relationship (or link) that192

holds between the subject and object entities. For exam-193

ple, the triple <http://dbpedia.org/resource/George_R._R.194

_Martin, http://dbpedia.org/ontology/author, http://dbpedia.195

org/resource/A_Game_of_Thrones> indicates that George196

R.R. Martin (subject) is the author (predicate) of “A Game197

of Thrones” (object). Subjects and predicates are URIs repre-198

senting the entities and link types, respectively. Objects can199

be either resource URIs or literals, i.e., data values.200

SPARQL [32] is a query language aimed at performing201

queries to datasets represented as RDF triples. Knowledge202

bases [33] like DBpedia [15] and Wikidata [34] consist of203

RDF graphs where triples generated from various sources204

are interlinked and can be explored using SPARQL queries. 205

Listing 2 shows a sample SPARQL query to search for 206

book titles with their corresponding ISBN and number of 207

pages. The clause FILTER(condition) is used to restrict 208

the results to those satisfying the given Boolean condition. 209

This clause can be used, for example, to obtain values that 210

match a regular expression or arithmetic conditions (such as 211

minimum or maximum values). In the example, only data 212

belonging to entities that contain the target predicates (title, 213

ISBN, and number pages) matching the regular expression 214

(codes consisting of 5 groups of an undefined number of 215

digits separated by ‘-’) and with 100 or more pages will be 216

returned. 217
218

1 SELECT DISTINCT ?title ?pages ?isbn WHERE { 219

2 ?subject <http://dbpedia.org/property/title> ?title ; 220

3 <http://dbpedia.org/ontology/numberOfPages> ?pages ; 221

4 <http://dbpedia.org/ontology/isbn> ?isbn . 222

5 FILTER (?pages >= 100) 223

6 FILTER regex(str(?isbn), ’^([0-9]*[-| ]){4}[0-9]*$’) 224

7 } 225226

Listing 2. SPARQL query to search for book titles with their ISBN
and number of pages.

227

228

3 ARTE 229

In this section, we present ARTE, an approach for the 230

Automated generation of Realistic TEst inputs for web APIs. 231

Specifically, ARTE leverages the information in the API 232

specification to search for syntactically and semantically 233

valid test data in knowledge bases like DBpedia. We define 234

syntactically and semantically valid inputs as follows: 235

Definition 1 (Syntactically valid input). An input value 236

is syntactically valid if it satisfies the syntactic constraints 237

defined in the API specification and it is accepted by the 238

API under test without returning an error. For example, 239

“Germany” is not a syntactically valid value for the param- 240

eter countryCode in the API of DHL (Listing 1) because, 241

although it conforms to the specification (string value), the 242

API only accepts two-letter ISO 3166-1 alpha-2 codes, as 243

explained in the description of the parameter. Conversely, 244

the value “DE” (ISO 3166-1 alpha-2 code for Germany) is 245

syntactically valid. 246

Definition 2 (Semantically valid input). An input value 247

is semantically valid if it is coherent with the API domain. 248

For example, “Berlin” is a semantically valid test input 249

value for the parameter addressLocality in the API of DHL 250

(Listing 1), whereas “dog” is not. 251

A value can be syntactically valid, but semantically 252

invalid, and vice versa. For example, “dog” is a syntactically 253

valid value for the parameter addressLocality in the API of 254

DHL—it conforms to the specification (string value) and is 255

processed by the API without errors—but it is not coherent 256

with the semantics of the parameter. Conversely, “DEU” 257

(ISO 3166-1 alpha-3 code for Germany) is a semantically 258

valid value for the parameter countryCode, but it is not 259

syntactically valid, since the API expects two-letter codes, 260

i.e., “DE” for Germany. 261

In what follows, we describe the main steps of ARTE, 262

highlighted in Figure 1. A more formal description of our 263

approach using pseudocode is provided as supplemental 264

material. 265

http://dbpedia.org/resource/George_R._R._Martin
http://dbpedia.org/resource/George_R._R._Martin
http://dbpedia.org/resource/George_R._R._Martin
http://dbpedia.org/ontology/author
http://dbpedia.org/resource/A_Game_of_Thrones
http://dbpedia.org/resource/A_Game_of_Thrones
http://dbpedia.org/resource/A_Game_of_Thrones
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Fig. 1. Workflow of ARTE.

3.1 Processing test parameters266

In this first step, the information of the test parameters is col-267

lected from the input API specification including their name,268

description and, if available, extra syntactic constraints like269

regular expressions and min/max values. As an additional270

input, the user must specify the list of parameters for which271

ARTE should generate meaningful data. This is helpful to272

exclude trivial parameters like dates, or domain-specific273

identifiers (e.g., a YouTube video ID), unlikely to be found274

in general-purpose knowledge bases like DBpedia. For such275

parameters, a different test data generation strategy may be276

used (e.g., data dictionaries).277

Some popular APIs include parameters with a single278

character in their names. This is the case, for example, of279

the Open Movie Database (OMDb) API [35] and the dblp280

computer science bibliography API [36]. When this happens,281

it is very common that this single character is the first282

letter of the full name of the parameter, e.g., ‘t’ for the283

movie title in the OMDb API. Based on this idea, ARTE284

tries to infer the full parameter name from its description285

using natural language processing (NLP) techniques [37],286

[38]. After using part-of-speech tagging [39], stop words287

removal [40], and lemmatization [41], we are left with only288

the nouns included in the description. We observed that289

the full parameter name often matches the shortest noun290

from the list that begins with the same letter as the one-291

character original name of the parameter e.g., ‘q’ for search292

query in the DBLP search API [36] given the description “The293

query string to search for”. Thus, we used this as the default294

heuristic for selecting the full parameter name from the list295

of nouns. When multiple candidate words have the same296

length, ARTE selects the first one in alphabetical order, and297

if no candidate word is found, the letter is used as keyword.298

Implementing other heuristics would be straightforward.299

3.2 Search for predicates 300

In this step, a user-defined knowledge database (e.g., DBpe- 301

dia) is queried to obtain predicates that are representative 302

of the target input parameters. For each target parameter, 303

the search for predicates is performed in two iterative steps. 304

First, a representative keyword of the target parameter is 305

generated from the name and the description of the pa- 306

rameter, by applying the matching rules presented later 307

on in this section. Second, for each candidate keyword, a 308

SPARQL query is constructed as shown in Listing 3, where 309

the string keyword is replaced by the selected keyword. This 310

query conducts a search for predicates (line 2) that contain 311

the provided keyword (filter by regular expression, line 3, 312

where the flag ’i’ means “case-insensitive”) and ordered 313

by length in ascending order (line 4). 314

315
1 SELECT DISTINCT ?predicate WHERE { 316

2 ?predicate a rdf:Property 317

3 FILTER regex(str(?predicate), ’keyword’, ’i’) 318

4 } ORDER BY strlen(str(?predicate)) 319320

Listing 3. SPARQL query used to search for predicates.

After executing the query, if successful, a list of predi- 321

cates containing the keyword is returned. As an example, 322

the following are a subset of the predicates found in DBpe- 323

dia when using the keyword “currency”: 324

• http://dbpedia.org/property/currency 325

• http://dbpedia.org/ontology/currency 326

• http://dbpedia.org/property/currencyIso 327

• http://dbpedia.org/ontology/currencyCode 328

Predicates are ordered by length in ascending order, with 329

all of them containing the exact keyword. ARTE selects the 330

first n predicates returned by the query (5 in our experi- 331

ments), computing the support of each of them. Similarly 332

to Mariani et al. [13], we define the support of a predicate 333

as the number of unique RDF triples that contain it. The 334

support of a predicate is obtained by running a SPARQL 335

query as the one shown in Listing 2 including the COUNT 336

set function (see supplemental material for an example). 337

This query will include filters with the syntactic constraints 338

of the API specification (regex and min/max values), if any, 339

to exclude invalid values. A predicate is accepted only if its 340

support is greater than a user-defined threshold (20 in our 341

evaluation). 342

To identify relevant keywords, several matching rules are 343

applied to the name and description of the parameters. 344

These rules are ordered by priority, meaning that, as soon 345

as a keyword is found with a rule, it is used to search 346

for predicates. If a predicate is accepted (i.e., its support 347

is greater than the configured threshold), the search for 348

predicates for that parameter terminates, and the process 349

starts over again for the next parameter, otherwise ARTE 350

tries to identify new keywords with the remaining rules. In 351

our preliminary experiments, we found that the description 352

of the parameter, and not only its name, often includes key 353

information for the generation of meaningful test inputs. 354

Therefore, the matching rules implemented in ARTE exploit 355

the description of the parameter first (rules 1-3 below) and 356

then its name (rules 4-6). 357

In what follows, we describe the matching rules cur- 358

rently used in ARTE, ordered from highest to lowest pri- 359

ority: 360
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1) If the name of the parameter appears in its description361

followed by the words “code” or “id”, both words are362

used concatenated. For example, if the parameter name363

is country and its description is “A valid country code”,364

this rule will be matched and the keyword countryCode365

will be used for the search for predicates.366

2) If a wordK with the same initial characters as the name367

of the parameter appears in the description followed by368

the words “code” or “id”, both the name of the param-369

eter and K are concatenated with “code” or “id” and370

used for the search of predicates. For example, if the371

parameter name is lang and its description is “A lan-372

guage code”, the keywords langCode and languageCode373

will be used in the search for predicates.374

3) If a noun or an unknown word (e.g., an acronym or375

a non-English word) is found in the description of376

the parameter, followed by the words “code” or “id”,377

both words are concatenated and used for the search of378

predicates. If multiple matches are found, the keywords379

are considered in order of appearance. For example,380

if the parameter name is origin and its description is381

“A valid country code or airport code”, the keywords382

countryCode and airportCode will be used for the383

search for predicates.384

4) This rule has no condition. Whenever it is reached, the385

unmodified parameter name is used for the search for386

predicates, e.g., streetAddress (Listing 1).387

5) If the name of the parameter is in snake case format388

(i.e., word1_word2) or in kebab case format (i.e., word1-389

word2), the parameter name is converted to camel case390

format (i.e., word1Word2) and used in the search for391

predicates. For example, the operation for matching392

businesses in the Yelp API [42] contains a parameter393

called zip_code; using this as a keyword (rule 4) re-394

turns 0 candidate predicates in DBpedia, whereas using395

zipCode returns a list of 5 predicates.396

6) If the parameter name is in snake case, kebab case or397

camel case format, it is split into multiple words, and398

each one is used as a keyword to search for predicates.399

For example, several operations of the Great Circle400

Mapper API [43] contain a parameter called icao_iata,401

which accepts both IATA and ICAO codes. Using the402

unmodified parameter name (rule 4) produces 0 results,403

and so does converting it to camel case format (rule 5).404

However, when searching for predicates with the key-405

words icao and iata, multiple predicates are obtained.406

Matching rules 4 to 6 are based on the common naming407

convention for web API parameters, whereas rules 1 to 3408

are based on collocations we found during our preliminary409

work with 10 randomly selected APIs from different do-410

mains [23] (not included in our evaluation dataset to avoid411

overfitting). We remark that the list of matching rules is not412

exhaustive and new patterns could be readily targeted in413

the future by adding new rules. If no predicates are found414

for any of the matching rules, the parameter is ignored and415

no input values will be generated for it.416

3.3 Search for test inputs417

At this stage, the predicates obtained during the previous418

phase are used to drive the search for meaningful test419
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Fig. 2. Graphical representation of the search for test inputs.

inputs. When searching test inputs for a specific parame- 420

ter, it is important to consider it in the context of all the 421

parameters supported by the API operation. For example, 422

a search for title may return hundreds or even thou- 423

sands of title-type inputs belonging to very diverse entities 424

(e.g., movies, people, videogames, books, etc.). However, if 425

we accompany such predicate with another semantically 426

related one such as director, the search is significantly 427

narrowed, increasing the chances of generating semantically 428

valid test inputs, e.g., movie titles. For this reason, instead 429

of evaluating the predicates in isolation, our approach starts 430

by looking for entities that contain all the predicates simul- 431

taneously and, if not enough inputs are obtained, then the 432

predicates are progressively discarded. 433

As an example, Listing 4 shows the SPARQL query 434

constructed for the search of test inputs (i.e., objects in RDF 435

triples) for the parameters title, director and langCode. 436

This query returned 23 matches in DBpedia. Each match 437

contains three values, one for each parameter (i.e., title, 438

director and langCode). However, some values may be 439

repeated, therefore less than 23 unique values could be 440

obtained for each parameter. A threshold is established to 441

define the minimum number of unique values that should 442

be obtained (100 in our experiments). Suppose that, for a 443

subset of parameters, the threshold is not reached (e.g., 444

there are enough values for langCode, but not for director 445

and title). Then, ARTE would repeat the query depicted 446

in Listing 4 considering only the predicates related to the 447

parameters for which the threshold has not been achieved 448

(i.e., director and title), thus widening the search. 449

450
1 SELECT DISTINCT ?title, ?director, ?langCode WHERE { 451

2 ?subject <http://dbpedia.org/property/title> ?title ; 452

3 <http://dbpedia.org/property/director> ?director ; 453

4 <http://dbpedia.org/property/langcode> ?langCode . 454

5 } 455456

Listing 4. SPARQL query for searching test inputs.

Figure 2 (left-hand side) depicts an example for the query 457

in Listing 4. A search is performed for entities including 458

the predicates director, title, and langCode, obtaining 23 459

results. Suppose that such search does not return the mini- 460

mum threshold for any of the three parameters. This being 461

the case, ARTE would execute a number of queries equal 462

to the number of parameters, each containing all predicates 463

but one (right-hand side of Figure 2). As illustrated, if title 464

or director are discarded, 65 and 392 results are returned, 465

respectively, but if langCode is discarded, the resulting 466

query would return 170,271 results. Values for the title 467
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TABLE 1
Example of automatically generated regular expression.

Valid values Invalid values Regex

CN ITA

^\w[^\d]$
ES DOM
IT BGR
JP 92

AD HUN

and director parameters would be extracted from this last468

query (since it is the one returning the highest number of469

results), while values for the langCode parameter would be470

obtained as a result of using its predicate in isolation.471

This query-decomposition process continues until all pa-472

rameters acquire the established threshold of input values,473

or until all predicates are executed in isolation.474

3.4 Automated generation of regular expressions475

Finally, ARTE can optionally generate regular expressions476

for each target parameter based on the input values obtained477

in the previous phases, by integrating the tool RegexGener-478

ator++ [44], [45], [46] (details in Section 4). This allows to479

refine the search for syntactically valid inputs, improving480

the effectiveness of the approach. Table 1 depicts an example481

of this process for the parameter market in the Spotify API482

[24]. Specifically, the regular expression in Table 1 matches483

strings that are two-characters long, where the second char-484

acter is not a digit; this pattern conforms to the format of485

ISO alpha-2 country codes, and allows to filter out values486

of different length (e.g., “ITA”) and numerical values (e.g.,487

“92”). The basic steps of the process are as follows:488

1) A set of input values is generated as described in the489

previous sections, and classified as syntactically valid490

or invalid (first and second columns in Table 1). Inputs491

can be classified as valid or invalid either manually492

or, as in our work, automatically based on the API re-493

sponses (see Section 4 for details). The number of valid494

and invalid values must reach a minimum threshold495

defined by the user (5 in our experiments).496

2) Based on the generated valid and invalid inputs, a497

regular expression is generated (column “Regex” in498

Table 1). This regular expression should match and not499

match as many valid and invalid inputs as possible,500

respectively.501

3) If the percentage of valid values matching the regular502

expression (i.e., recall) exceeds a minimum threshold503

(90% in our evaluation), the generation of the expres-504

sion is considered successful. In that case, the list of505

input values generated until that moment is filtered506

such that only those values matching the regular ex-507

pression are kept. Invalid values matching the regular508

expression (i.e., false positives) may still be helpful509

to identify potential bugs. For instance, the regular510

expression generated for the parameter countryCode in511

the DHL API matched both “UK” and “FR”, however,512

the former was rejected by the API (i.e., classified as513

invalid). This may reveal unintended behavior, e.g.,514

codes that should be supported by the API but are not.515

If a regular expression is successfully generated, ARTE516

extracts more input values by using the predicates that have517

TABLE 2
ARTE configuration parameters and default values.

# Parameter Value

1 Number of predicates selected when searching for predicates 5
2 Min predicate support 20
3 Min number of unique parameter values 100
4 Min recall for accepting a regex 90%
5 Min number of valid and invalid values for generating a regex 5
6 Max number of extra predicates to leverage using regex 3
7 Max number of consecutive attempts to generate a regex 2

not been leveraged yet (obtained as described in Section 3.2) 518

adding the generated regular expression as a filter clause 519

in the SPARQL query (Listing 4). These inputs will match 520

the regular expression and therefore they should be more 521

likely to be syntactically valid. On the contrary, if a regular 522

expression cannot be inferred, the process restarts in step 523

1, i.e., ARTE will try to generate a regular expression with 524

more input values classified as valid or invalid. 525

The process ends once the maximum number of consec- 526

utive attempts to generate regular expressions is reached (2 527

in our evaluation), or after ARTE has extracted input values 528

from a maximum number of extra predicates leveraging the 529

generated regular expressions (set to 3 in our experiments). 530

4 TOOLING 531

We implemented ARTE in Java, leveraging existing libraries 532

for specific tasks, namely: (1) Jena [47], for the creation 533

of SPARQL queries; (2) Stanford CoreNLP [48], for NLP 534

related tasks; and (3) RegexGenerator++ [44], [45], [46], for 535

the generation of regular expressions. RegexGenerator++ 536

uses search-based techniques for automatically generating 537

context-aware regular expressions based on strings tagged 538

as valid or invalid (i.e., matching or not matching the regular 539

expression, respectively) within a corpus, namely, a text 540

that provides some context. We slightly modified Regex- 541

Generator++ to make it not context-aware, by adding the 542

anchors ‘ˆ’ and ‘$’ at the start and end of the generated regu- 543

lar expressions, respectively. This modification significantly 544

improves the performance of ARTE for the generation of 545

regular expressions. 546

Table 2 summarizes the configuration parameters of 547

ARTE, described in the previous section, and the default 548

values used in our evaluation. These values were selected 549

based on our preliminary work with the tool. They provide 550

a balance between performance and effectiveness. Hence, 551

for example, setting low values for parameters 1-3 would 552

result in faster execution, but lower probabilities of finding 553

good values. Analogously, setting low values for parameters 554

4 and 5 would make it easier for ARTE to generate a regular 555

expression, with the risk of it not being sufficiently accurate. 556

On the contrary, setting a high value for parameters 6 and 7 557

would result in a slower execution with the risk of obtaining 558

overfitted regular expressions. We refer the reader to the 559

documentation of the project in GitHub [49] for more details 560

about the parameters and their impact on the performance 561

of ARTE. 562

We integrated ARTE into RESTest [22], a state-of-the- 563

art black-box test case generation framework for RESTful 564

APIs. More precisely, ARTE automatically generates data 565
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dictionaries (i.e., sets of valid and invalid values) for the566

selected API parameters, releasing testers from that burden.567

This makes ARTE easily applicable to any of the test case568

generation algorithms implemented in RESTest.569

For the generation of regular expressions, input values570

must be labeled as valid or invalid. By integrating ARTE571

into RESTest, we automate this step as follows:572

• An input parameter value is classified as valid if it was573

present in an API call for which a successful response574

(2XX status code) was obtained.575

• An input parameter value is classified as invalid if it576

was present in an API call for which a “client error”577

response (4XX status code) was obtained and either: (1)578

it was the only parameter used in the API call; or (2)579

it was accompanied by other parameters whose values580

were already classified as valid.581

• Input values not meeting any of the previous con-582

straints are labeled as unclassified and ignored when583

inferring regular expressions.584

RESTest generates and executes a fixed number of test585

cases by iterations. After each iteration, ARTE automatically586

classifies the generated values as described above and tries587

to infer a regular expression (Section 3.4).588

5 EVALUATION589

We aim to answer the following research questions:590

• RQ1: How effective is ARTE in generating realistic test591

inputs for web APIs? We aim to measure the effectiveness592

of ARTE in generating syntactically and semantically593

valid test inputs for real-world web APIs.594

• RQ2: What is the impact of ARTE on the automated gen-595

eration of test cases for web APIs? The final goal of our596

approach is to improve current state-of-the-art methods597

for test case generation of web APIs. Therefore, we wish598

to compare the effectiveness of existing methods and599

ARTE in terms of valid API requests generated and test600

coverage achieved.601

• RQ3: Does ARTE improve the failure-detection capability602

of existing test case generation techniques? We aim to603

investigate whether input values generated by ARTE604

reveal more failures than those generated by related605

techniques.606

In the next sections, we explain the two experiments607

performed for answering the research questions. In both608

cases, we used the default configuration of ARTE, and we609

relied on DBpedia as the selected knowledge base, more610

specifically, the 2016-10 core dataset.1611

The experiments were performed in a desktop machine612

equipped with Intel i7-6700 CPU@3.40GHz, 16GB RAM, and613

125GB SSD running Windows 10 Pro 64 bit and Java 8.614

5.1 Baselines615

We compared ARTE against four baselines, three (pseudo)-616

random test data generation strategies (experiment 2) and617

SAIGEN [14] (experiments 1 and 2), described below.618

1. http://downloads.dbpedia.org/2016-10/

5.1.1 Random test data generation techniques 619

We implemented three related, but different random test 620

data generation approaches recently used in the context of 621

automated test case generation for web APIs. All the gen- 622

erators were implemented using RESTest. Next, we present 623

them, from the most naive to the most sophisticated one. 624

5.1.1.1 Fuzzing: This technique aims at finding im- 625

plementation bugs (especially security-related) by using 626

random, malformed or unexpected input data [50]. In our 627

experiments, we use the fuzzing test case generator imple- 628

mented in RESTest [22], which generates random values 629

including out-of-range numerical values, long strings with 630

unusual characters, empty strings, and null values. 631

5.1.1.2 Data dictionaries: This approach proposes to 632

use a small set of predefined values for each parameter type. 633

Specifically, we used the small data dictionaries proposed by 634

Atlidakis et al. [27], namely: “sampleString” and “” (empty 635

string) for string parameters, “0” and “1” for integers, and 636

“1.23” for doubles. 637

5.1.1.3 Data generators: This approach uses specific 638

test data generators for each parameter type [22], [25]. 639

We used the default test data generators integrated into 640

RESTest, which also leverage the regular expressions and 641

min/max constraints included in the API specification, if 642

any. Basically, we generated random English words for 643

string parameters, numbers between 1 and 100 for integers, 644

and floating numbers between 1 and 100 for doubles. 645

5.1.2 SAIGEN 646

To the best of our knowledge, our work is the first to lever- 647

age the Web of Data for driving test data generation for web 648

APIs. However, semantic information retrieval techniques 649

have already been successfully applied in the context of GUI 650

testing of desktop, web, and mobile applications [13], [14]. 651

In this article, we compare ARTE against the most recent of 652

these contributions, SAIGEN (Semantic Aware Input GEN- 653

erator) [14], a related tool for the automated generation of 654

realistic test inputs for mobile apps. 655

Both approaches, ARTE and SAIGEN, exploit knowl- 656

edge bases for the generation of realistic test inputs, but 657

with significant differences. First, SAIGEN searches for test 658

inputs based on the GUI labels and potential synonyms, 659

whereas ARTE exploits the API specification, applying NLP 660

techniques to the names and descriptions of the parameters. 661

This means that ARTE can leverage further information 662

than SAIGEN, but in practice this also imposes new chal- 663

lenges since, as explained in Section 3, parameters can 664

use different naming conventions (e.g., parameters with a 665

single letter) and very heterogeneous descriptions in nat- 666

ural language. Second, SAIGEN searches for predicates by 667

adding the selected keyword to the namespace prefix of the 668

knowledge base, whereas ARTE constructs specific SPARQL 669

queries. In practice, this means that searches in SAIGEN 670

are restricted to predicates containing exactly the specified 671

keyword (e.g., currency), whereas ARTE widens the search 672

space by looking for predicates containing the keyword 673

(e.g., currencyIso). Lastly, ARTE integrates a novel step for 674

the refinement of the test inputs extracted with automati- 675

cally generated regular expressions (Section 3.4). 676

Since SAIGEN targets GUI elements only, in our experi- 677

ments we ran the tool using the name of the API parameters 678

http://downloads.dbpedia.org/2016-10/
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as if they were GUI labels. We used the default settings of679

SAIGEN, configuring it to work with the selected version of680

the knowledge base.681

5.2 Experiment 1: Generation of realistic test inputs682

In this experiment, we aim to answer RQ1 by evaluating the683

effectiveness of ARTE in generating realistic test inputs for684

real-world web APIs. In what follows, we describe the setup685

and the results of the experiment.686

5.2.1 Experimental setup687

For this experiment, we resorted to RapidAPI [51], a pop-688

ular online repository containing more than 35K web APIs,689

classified in 46 different categories. Specifically, we created a690

dataset of 40 APIs as follows. We selected the first 10 APIs of691

each category, i.e., 46 × 10 = 460 APIs. APIs and categories692

were sorted in the same order as they were displayed on693

the platform at the time of performing the search on May,694

2021. Then, we selected the first 40 APIs of the list, filtering695

out those meeting any of the following exclusion criteria:696

(1) APIs containing exclusively domain-specific parameters697

(e.g., database IDs) or trivial parameters (such as limit,698

offset or enumerated values), for which random generation699

would suffice, (2) APIs for which there was no validation for700

any of the parameters (i.e., any value would be considered701

valid), (3) APIs containing only confidential parameters702

(e.g., username, password, email, or credit card number), (4)703

APIs not returning any response, (5) APIs without param-704

eters, (6) paid APIs (so-called premium in RapidAPI), and705

(7) APIs whose documentation was not written in English.706

The resulting dataset contains 40 APIs from 11 different707

categories. Table 3 shows, for each API, its name, category,708

number of operations, and number of parameters used in709

our evaluation. Parameters used in more than one operation710

within the same API are considered only once, e.g., iso_a2711

in the Referential API [52]. In total, the dataset includes712

173 different parameters from 122 API operations. These713

parameters span multiple concepts such as website URLs,714

city names, ingredient names, and currency codes, among715

many others.716

RapidAPI does not provide a publicly available OAS717

specification for the APIs in the repository. To address this718

issue, we generated the OAS specification of each API using719

the web scraping libraries Selenium [53] and Beautiful-720

Soup [54] on the web user interface of RapidAPI, which721

displays, among others, the name and type of each input722

parameter for every API operation.723

To further evaluate our approach, we used a second724

dataset of 8 industrial popular RESTful APIs from differ-725

ent domains, depicted in Table 4. The dataset includes 38726

parameters from 18 API operations. The OAS specification727

of Spotify [24] was downloaded from the APIs.guru repos-728

itory [55]. The specifications of Yelp Fusion [42] and REST-729

Countries [56] were manually created from the documenta-730

tion available on the official website. The OAS specification731

of the remaining APIs were downloaded from their official732

websites. The specification of the Amadeus Hotel API [6]733

was the only one including regular expressions for some of734

its parameters.735

We compared ARTE against SAIGEN, since it is the 736

only baseline specifically tailored for the automated gen- 737

eration of realistic test inputs. Additionally, we measured 738

the performance of ARTE before applying the refinement 739

with automatically generated regular expressions, denoted 740

as ARTE NR (ARTE No Regex). 741

ARTE and SAIGEN may generate hundreds or even 742

thousands of values for each parameter, making it infea- 743

sible to manually test all of them. To evaluate whether 744

syntactically and semantically valid values were generated, 745

we tested the APIs with 10 randomly selected values per 746

parameter, manually checking whether at least one of them 747

was valid. A similar approach was followed by the authors 748

of SAIGEN [14]. We refer the reader to Section 3 for the 749

definition of syntactically and semantically valid test inputs. 750

5.2.2 Experimental results 751

The results of ARTE and SAIGEN in the RapidAPI dataset 752

are shown in the last nine columns of Table 3. On aver- 753

age, ARTE found syntactically valid inputs for 78% of the 754

parameters (135 out of 173), whereas SAIGEN generated 755

syntactically valid inputs for 42.8% of them (74 out of 173). 756

Analogously, ARTE generated semantically valid inputs for 757

64.2% of the parameters (111 out of 173), while SAIGEN 758

generated semantically valid inputs for 31.8% (55 out of 759

173). Regarding realistic values (both syntactically and se- 760

mantically valid), ARTE generated realistic values for 63% 761

of the parameters (109 out of 173), whereas SAIGEN only 762

generated realistic values for 30.6% of them (53 out of 173). 763

ARTE generated realistic inputs for 100% of the parameters 764

in 9 out of 40 APIs (4 with SAIGEN), and 50% or more 765

in 23 of them (13 with SAIGEN). It is noteworthy that the 766

generation of regular expressions allowed to increase the 767

percentage of realistic test inputs in 11 out of the 25 APIs for 768

which ARTE did not initially obtain 100% of syntactically 769

valid parameters. Among others, ARTE automatically gen- 770

erated regular expressions for parameters such as season 771

(API-FOOTBALL and API-BASKETBALL APIs), currency 772

(Skyscanner and Alpha Vantage APIs) and state (RedLine 773

and Realty Mole APIs). 774

Table 4 shows the results for the set of industrial APIs, 775

where the results of ARTE are even better than those ob- 776

tained with the RapidAPI dataset. As illustrated, ARTE 777

generated syntactically and semantically valid inputs for 778

73.7% of the parameters (28 out of 38), in contrast with 779

SAIGEN, which generated realistic inputs for only 36.8% of 780

the parameters (14 out of 38). Furthermore, ARTE generated 781

realistic inputs for 100% of the target parameters in 3 out 782

of 8 APIs (DHL, OMDb and RESTcountries), and over 50% 783

in 6 of them, whereas SAIGEN did not manage to generate 784

realistic inputs for all the parameters in any of the APIs, 785

generating 50% or more in 3 of them (DHL, RESTCountries 786

and Yelp). The automated generation of regular expres- 787

sions yielded an improvement for the parameter currency 788

of the RESTCountries API. Additionally, it improved the 789

automated generation of valid test cases in the APIs of 790

RESTCountries, Spotify and DHL, as explained in Section 791

5.3 792

In total, considering both the RapidAPI dataset and 793

the industrial APIs, ARTE and SAIGEN generated realistic 794

inputs for 64.9% (137 out of 211) and 31.8% (67 out of 211) 795
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TABLE 3
Per API breakdown of input values generation for the RapidAPI dataset. O = Operations, P = Parameters.

API Category O P Syntactically valid (%) Semantically valid (%) Syntactically and
semantically valid (%)

SAIGEN ARTE NR ARTE SAIGEN ARTE NR ARTE SAIGEN ARTE NR ARTE

AeroDataBox Transportation 6 8 37.5 62.5 75 37.5 62.5 75 37.5 62.5 75
Airport info Transportation 1 2 50 100 100 50 100 100 50 100 100
AirportIX Transportation 6 6 33.3 16.7 50 16.7 0 33.3 16.7 0 33.3
Alpha Vantage Finance 3 5 0 0 40 0 0 40 0 0 40
API-BASKETBALL Sports 5 6 83.3 83.3 100 33.3 16.7 33.3 33.3 16.7 33.3
API-FOOTBALL Sports 5 4 50 75 100 50 50 75 50 50 75
Astronomy Science 1 2 100 100 100 100 100 100 100 100 100
Aviation Reference Data Transportation 5 6 66.7 66.7 83.3 66.7 66.7 83.3 66.7 66.7 83.3
CarbonFootprint Science 1 3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
Countries Cities Location 4 4 75 100 100 75 100 100 75 100 100
Currency Converter Finance 2 4 50 75 75 0 50 50 0 50 50
Domainr Business 2 3 66.7 66.7 66.7 0 33.3 33.3 0 33.3 33.3
Face Detection Visual Recognition 1 1 0 0 0 0 0 0 0 0 0
Fixer Currency Finance 3 4 0 100 100 0 100 100 0 100 100
Football Prediction Sports 1 1 0 0 0 0 0 0 0 0 0
GeoDB Cities Data 4 8 0 62.5 75 0 62.5 75 0 62.5 75
Google Maps Geocoding Location 2 3 66.7 66.7 66.7 33.3 33.3 33.3 33.3 33.3 33.3
Great Circle Mapper Travel 3 3 0 33.3 33.3 0 33.3 33.3 0 33.3 33.3
Hotels Travel 3 3 66.7 100 100 0 33.3 33.3 0 33.3 33.3
Hotels Com Provider Travel 1 2 100 100 100 100 100 100 100 100 100
Movie Database (Imdb alt.) Entertainment 2 2 50 100 100 0 50 50 0 50 50
NAVITIME Route (car) Transportation 2 3 0 0 0 0 0 0 0 0 0
NAVITIME Route (totalnavi) Transportation 1 2 0 0 0 0 0 0 0 0 0
Periodic Table of Elements Science 1 1 0 0 0 0 0 0 0 0 0
Priceline com Provider Travel 2 4 50 100 100 50 100 100 50 100 100
Realty in US Business 4 8 62.5 87.5 100 50 75 87.5 50 75 87.5
Realty Mole Property Business 3 7 57.1 71.4 85.7 85.7 85.7 100 57.1 71.4 85.7
Recipe - Food - Nutrition Food 8 7 14.3 71.4 71.4 14.3 85.7 85.7 14.3 71.4 71.4
RedLine Zipcode Location 6 8 25 75 87.5 25 75 87.5 25 75 87.5
Referential Data 8 18 27.8 72.2 72.2 27.8 44.4 44.4 27.8 44.4 44.4
Rent Estimate Data 1 3 100 100 100 100 100 100 100 100 100
Restb.ai Watermark Detection Visual Recognition 1 1 0 100 100 0 100 100 0 100 100
Skyscanner Flight Search Transportation 8 5 40 40 80 0 0 40 0 0 40
Spott Location 1 4 100 100 100 50 50 50 50 50 50
Subtitles for YouTube Data 1 1 100 100 100 100 100 100 100 100 100
TrailAPI Travel 2 5 40 100 100 40 80 80 40 80 80
Travel Advisor Transportation 3 8 50 100 100 25 87.5 87.5 25 87.5 87.5
UPHERE.SPACE Science 2 2 50 50 50 0 0 0 0 0 0
US Restaurant Menus Food 6 5 80 100 100 60 80 80 60 80 80
Yahoo Finance Finance 1 1 0 0 0 0 0 0 0 0 0

Total 122 173 42.8 69.9 78 31.8 56.1 64.2 30.6 54.9 63

TABLE 4
Per API breakdown of input values generation for the industrial APIs. O = Operations, P = Parameters.

API O P Syntactically valid (%) Semantically valid (%) Syntactically and semantically valid (%)

SAIGEN ARTE NR ARTE SAIGEN ARTE NR ARTE SAIGEN ARTE NR ARTE

Amadeus Hotel 2 7 42.9 85.7 85.7 42.9 85.7 85.7 42.9 85.7 85.7
Deutschebahn StaDa 1 4 0 25 25 0 25 25 0 25 25
DHL Location Finder 2 6 50 100 100 50 100 100 50 100 100
Marvel 1 5 60 100 100 40 40 40 40 40 40
OMDb 1 3 33.3 100 100 0 100 100 0 100 100
RESTCountries 4 4 75 75 100 100 100 100 75 75 100
Spotify 5 4 25 75 75 25 75 75 0 50 50
Yelp Fusion 2 5 60 80 80 80 80 80 60 80 80

Total 18 38 44.7 81.6 84.2 44.7 76.3 76.3 36.8 71.1 73.7

of the parameters, respectively. It is worth recalling that796

SAIGEN was specifically designed for mobile apps, and797

therefore its poor performance on web APIs was expected.798

This supports the ability of ARTE to address the specific799

characteristics of web APIs.800

Regarding performance, ARTE took on average 21.3801

seconds (standard deviation σ = 30.6 seconds) to generate802

the set of input values for all the parameters of each API,803

whereas SAIGEN required 11.8 seconds on average per API804

(σ = 11.2 seconds).805

In view of these results, we can answer RQ1 as follows:806

RQ1: ARTE is effective in generating realistic test
inputs for real-world web APIs. With a sample of
10 values per parameter, ARTE generated syntacti-
cally and semantically valid inputs for 64.9% of the
parameters (137 out of 211), approximately twice as
many as the baseline, SAIGEN, 31.8% (67 out of 211).

807

5.3 Experiment 2: Automated testing 808

In this experiment, we aim to answer RQ2 and RQ3 by 809

evaluating how ARTE can contribute to the automated 810

generation of valid API calls, API coverage, and detection 811

of failures. Next, we describe the setup and the results of 812

the experiment. 813
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TABLE 5
Per API breakdown of valid calls, coverage, and failures detected. P = “Parameters”, VC = “Valid calls”, C = “Coverage”, F = “Failures”.

Fuzzing Data dictionaries Data generators SAIGEN ARTE NR ARTE

API - Operation P VC (%) C (%) F VC (%) C (%) F VC (%) C (%) F VC (%) C (%) F VC (%) C (%) F VC (%) C (%) F

Amadeus Hotel - Find hotels 7 0 3.3 0 1.6 68.4 0 8.1 72.2 0 3.7 73.6 0 8.6 75 7 9.6 75.5 9
Amadeus Hotel - View hotel rooms 2 0 3.6 0 17.5 65.1 0 43.4 64.1 0 30.8 66.1 0 51.5 65.6 0 62.2 65.1 0
Deutschebahn StaDa - Get stations 4 0.3 96.3 3 9.4 97 0 15.5 97 0 10.9 97 0 17.2 97 0 19.2 97 0
DHL - Find by address 4 0 3.8 0 0 3.8 0 0.1 24.1 0 0 3.8 0 13.7 81 138 59.8 81 140
DHL - Find by geo 2 0 3.9 0 0 3.9 0 0 3.9 0 94.1 80.5 0 98.9 80.5 0 97.7 80.5 0
RESTCountries - Capital 1 0 25 0 0 25 0 0.5 100 0 19.9 100 0 4.5 100 0 4.6 100 0
RESTCountries - Code 1 11.4 100 0 0 22.2 0 1.8 88.9 1 41.4 100 0 91.1 100 0 99.2 100 0
RESTCountries - Currency 1 0 22.2 0 0 22.2 0 0.7 88.9 0 0 22.2 0 3 100 1 67.3 88.9 0
RESTCountries - Language 1 0 22.2 0 0 22.2 0 0.2 88.9 0 16.5 88.9 0 18.3 100 2 48.1 88.9 0
Spotify - Get album 1 0 3.7 0 49.4 76.8 0 50.4 76.8 0 50.6 81.7 0 56.5 89 0 92 89 0
Spotify - Get category 2 0 20 0 47.5 80 0 49.3 85 0 53.4 80 0 53.6 85 0 86.9 90 0
Spotify - Get featured playlists 3 5.4 86.3 0 24.4 86.3 0 26.6 86.3 0 26.3 86.3 0 28 88.2 0 42.6 88.2 0
Yelp Fusion - Search business 5 0 8.8 0 18.3 94.1 0 37.9 94.1 0 16.9 94.1 0 48.9 97.1 0 44.8 94.1 0
Yelp Fusion - Search transactions 3 0 16.7 0 0 16.7 0 45.8 72.2 0 0 16.7 0 65.1 72.2 0 67.7 72.2 0

TOTAL 37 1.2 29.7 3 12 48.8 0 20 74.5 1 26 70.8 0 39.9 87.9 148 57.3 86.5 149

5.3.1 Experimental setup814

For this experiment, we used 14 operations from 6 indus-815

trial APIs, depicted in the first column of Table 5.2 For816

each operation, we generated and executed 1K API calls817

(20 iterations of 50 test cases) with each data generation818

strategy, leading to 14 (operations) × 6 (strategies) × 1K819

= 84K calls in total. Then, we computed the percentage of820

valid API calls generated, the API coverage achieved and821

the number of failures detected by each approach. For the822

computation of valid API calls generated, we resorted to the823

REST best practices [2], which dictate that valid API calls824

should obtain 2XX HTTP status codes, whereas invalid calls825

should obtain 4XX status codes.For computing the API cov-826

erage, we considered the test coverage criteria for RESTful827

web APIs defined in [57]. These criteria are classified into828

input criteria— elements covered by the API requests (e.g.,829

operations and parameter values)—and output criteria—830

elements covered by the API responses (e.g., status codes831

and response body properties). Input elements (e.g., a pa-832

rameter) are considered covered if they are included in at833

least one API request obtaining a successful response (i.e.,834

2XX status codes).835

We used RESTest [22] for the generation and execution836

of test cases. In this experiment, each test case comprises837

a single API call. Web APIs often impose inter-parameter838

dependencies that restrict the way in which parameters839

can be combined to form valid API requests. For instance,840

the use of a parameter may require the inclusion of some841

other parameter. To handle these dependencies, we used842

the constraint-based test case generator integrated into843

RESTest [10], which supports the generation of API calls844

satisfying all the inter-parameter dependencies of the API845

operation under test [58], [59]. Therefore, when obtaining an846

error response, we are confident that it is due to individual847

input values, and not due to violation of the dependencies.848

The only exception is fuzzing, where dependencies are849

intentionally ignored to test the API with any potential input850

combination. Failures were automatically detected using the851

built-in test oracles in RESTest, mostly based on the detec-852

tion of server errors (5XX status codes) and the identification853

of inconsistencies between the API specification and the API854

responses.855

2. We excluded the Marvel API and the OMDb API from this experi-
ment because the Marvel API always returns successful responses and
the OMDb API does not use 4XX status codes for error responses.

Test data was generated in six fashions: using the four 856

baselines (Section 5.1), ARTE without automated generation 857

of regular expressions (again denoted as ARTE NR), and 858

ARTE. Exceptionally, we used small data dictionaries (15- 859

20 values) for domain-dependent parameters (e.g., album 860

identifier in Spotify) in all the test data generation strategies 861

excluding fuzzing. 862

Whenever ARTE or SAIGEN could not generate values 863

for a parameter, it was assigned a random value using the 864

data generators integrated into RESTest for a fair compar- 865

ison among all the techniques under study. In practice, 866

however, it may be sensible omitting the parameter from 867

the API call, assuming it is optional, to increase the chances 868

of generating a valid API request. Overall, ARTE could not 869

generate values for 3 out of 37 parameters, whereas SAIGEN 870

could not generate values for 9 of them. 871

5.3.2 Experimental results 872

We next describe the experimental results related to the 873

automated test case generation (RQ2) and the detection of 874

failures (RQ3). 875

5.3.2.1 Automated test case generation: Table 5 shows 876

the percentage of valid calls generated and the coverage 877

achieved by each test data generation strategy (columns 878

“VC (%)” and “C (%)”, respectively). The highest values of 879

each row are highlighted in boldface. On average, fuzzing 880

achieved 1.2% of valid API calls, data dictionaries achieved 881

12%, data generators achieved 20%, SAIGEN achieved 26%, 882

ARTE NR achieved 39.9%, and ARTE achieved 57.3%. ARTE 883

obtained better results in 13 out of 14 API operations. The 884

results obtained for the DHL API are especially significant: 885

ARTE obtained between 59.8% and 98.9% of valid API 886

calls, whereas the random approaches got 0%. This is be- 887

cause its latitude and longitude parameters are defined as 888

string instead of float, making random generation useless. 889

SAIGEN was able to generate valid values for latitude and 890

longitude, but it did not generate valid values for country 891

codes, which explains the 0% of valid calls generated for 892

the operation “Find by address”. The automated generation 893

of regular expressions played a key role in the generation 894

of valid API calls in 6 out of 14 API operations under test, 895

with a difference of up to 64.3% in the RESTCountries API. 896

Regular expressions showed to be effective in generating 897

test inputs for parameters such as country codes, markets, 898

currency codes and language names. 899
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In terms of API coverage, ARTE achieved an average900

coverage of 86.5% and 87.9% with and without the use of901

regular expressions, respectively, outperforming all other902

approaches by a margin of up to 58.2% (compared to903

fuzzing), 32% on average. This difference is mainly due904

to two reasons: (1) the poor performance of the related905

techniques in generating valid requests (e.g., fuzzing), a pre-906

requisite to cover most API elements; and (2) the less varied907

data used in API requests, which results insufficient to cover908

some output elements. This was the case, for example, of909

the Spotify API, where ARTE covered between 8% and 12%910

more response body properties than data dictionaries, data911

generators, and SAIGEN.912

Test case generation and execution using data dictionar-913

ies and fuzzing took, on average, about 11 minutes per API914

operation, data generators 19 minutes, SAIGEN 14 minutes,915

ARTE NR 18 minutes, and ARTE 17 minutes. These times916

are mainly influenced by the response time of the APIs917

under test, usually longer in valid calls. Thus, approaches918

generating more valid calls typically took longer to execute.919

In view of these results, RQ2 can be answered as follows:920

RQ2: ARTE improved the automated generation of
test cases for 13 out of the 14 web API operations
under test. Specifically, ARTE generated over twice
as many valid requests (57.3%) as SAIGEN (26%)
and about three times as many as the best of the
random approaches (20%). The superiority of ARTE
was also reflected in the API coverage (86.5%).

921

5.3.2.2 Failure detection: Table 5 shows the number922

of failures detected by each approach. Data dictionaries and923

SAIGEN uncovered no failures, data generators uncovered924

1 failure, fuzzing uncovered 3 failures, and ARTE uncov-925

ered a total of 149 failures (one less without using regular926

expressions). Failures can occur due to multiple reasons,927

for example, 5XX status codes (server errors), inconsisten-928

cies between the API responses and the API specification,929

or client error responses (i.e., 4XX status codes) obtained930

after valid API calls, or vice versa, when an invalid input931

value results in a 2XX response code. Data generators and932

fuzzing only uncovered failures in the form of 5XX status933

codes, whereas ARTE also uncovered failures in the form of934

inconsistencies in the API and unexpected API responses.935

ARTE uncovered two issues not detected by any of the936

other approaches. In the “Find hotel rooms” operation of the937

Amadeus API, the documentation states that the hotelName938

parameter should contain 4 keywords maximum. However,939

there were 16 API calls violating this condition which ob-940

tained successful responses, revealing a fault. This bug was941

reported and confirmed by the API providers. Also, in the942

“Find by address” operation of the DHL API, we found943

that the documentation was not exhaustive, since the API944

accepted 27 country codes not listed in the API documen-945

tation. Additionally, the API returns a 400 code when using946

the country code UK, despite this being a valid ISO 3166-1947

alpha-2 code, as indicated in the API documentation. After948

reporting these issues to DHL, they confirmed that it was949

the intended behavior and updated the documentation to950

reflect it. This shows the potential of ARTE to reveal discon-951

formities between the API specification (or documentation) 952

and its behavior. 953

In view of these results, we can answer RQ3 as follows: 954

RQ3: ARTE revealed more failures in more APIs
than related approaches. In particular, it uncovered
149 failures in 2 API operations, unveiling issues not
detected by SAIGEN and random approaches.

955

5.4 Discussion 956

In what follows, we further explore the results and what 957

they tell us about the research questions. 958

5.4.1 RQ1: Generation of realistic test inputs 959

The results of the first experiment show that, with just 960

a sample of 10 values per parameter, ARTE managed to 961

generate syntactically and semantically valid values for 962

64.9% of them, outperforming SAIGEN (33.1%). We may 963

remark that the results obtained in this experiment are a 964

pessimistic approximation, since we are only considering 965

10 input values per parameter, out of the hundreds or 966

thousands of values generated by ARTE. Had we considered 967

a larger sample (e.g., 100 values), we would have probably 968

obtained better results. It is noteworthy that in all APIs, 969

except for those of Recipe - Food - Nutrition and Realty Mole 970

Property, the number of syntactically valid values is greater 971

than or equal to the number of semantically valid values. 972

This confirms that the main difficulty in test data generation 973

lies in the generation of semantically valid inputs. 974

One of the distinctive features of ARTE compared to 975

previous approaches is the automated generation of regular 976

expressions (Section 3.4). Regular expressions did have a 977

positive impact in the generation of test inputs for 11 out of 978

25 APIs from the RapidAPI dataset in which ARTE did not 979

achieve 100% of syntactically valid values. In fact, automat- 980

ically generated regular expressions were key to equal or 981

outperform the results of SAIGEN in the APIs of AirportIX 982

and API-BASKETBALL. Regular expressions worked well 983

for parameters with unambiguous names, whose values 984

follow a specific format (e.g., countryCode). However, they 985

were not so effective for parameters with a more generic 986

name (e.g., code) or not following any particular format 987

(e.g., hotelName in the Amadeus API), therefore more re- 988

search will be required for improving the generation of 989

realistic inputs in those cases. 990

There are two main reasons why ARTE failed to generate 991

valid inputs for some parameters: (1) the name and the 992

description of the parameter are not descriptive enough; 993

and (2) the parameter is too specific. The first reason 994

mostly applied to the APIs from the RapidAPI dataset. 995

We noticed that, in many cases, the parameters expect- 996

ing a code do not explicitly state it (e.g., textually in the 997

description or by using a name such as countryCode). In 998

this scenario, ARTE may generate both names and codes, 999

but these may not follow the correct format or simply 1000

be invalid. Industrial APIs, on the other hand, generally 1001

provide a more exhaustive documentation, but they tend 1002

to have very specific parameters such as Ril-100 (identifier 1003

of German train stations in the Deutschebahn StaDa API) 1004
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or ean (European Article Number in the Marvel API), hard1005

to find in general-purpose knowledge bases like DBpedia.1006

Despite this limitation, it is worth highlighting that ARTE1007

successfully generated realistic inputs for German federal1008

state names, ingredients names, website URLs, addresses,1009

postal codes, country codes, currency codes, and language1010

codes, among others.1011

Domain-specific parameters (e.g., database identifiers)1012

are unlikely to be found in general-purpose knowledge1013

bases. For such parameters, we resorted to manually-created1014

data dictionaries, and therefore we could not achieve full1015

automation. This limitation is shared by related techniques1016

[10], [25], [60]. We see potential in combining ARTE with1017

learning input values from previous responses [11], [61].1018

Regarding performance, ARTE took about 10 seconds1019

more than SAIGEN (21.3 vs. 11.9) to generate test inputs1020

for all parameters of each API, on average. This is because1021

ARTE applies NLP techniques not only to the name of the1022

parameter but also to its description. In addition, ARTE1023

searches for predicates in DBpedia once for each matching1024

rule (Section 3.2). However, we deem this as a negligible toll1025

considering the gain in effectiveness, i.e., ARTE generated1026

input values for 205 out of 211 parameters, as opposed to1027

SAIGEN, which generated values for 144 of them.1028

5.4.2 RQ2: Automated generation of test cases1029

ARTE generated between 2 and 48 times more valid calls1030

than the baselines. However, the improvement in the1031

Amadeus Hotel API and the Deutschebahn StaDa API was1032

not as significant. There were several reasons behind these1033

results worth mentioning, since they could be extrapolated1034

to other APIs, namely:1035

1) Regular expressions in the specification. The OAS specifica-1036

tion of the Amadeus API contains regular expressions1037

describing the format of some parameters (e.g., an1038

ISO code for parameter lang). Therefore, the approach1039

using data generators can also leverage these regular1040

expressions, thus obtaining similar results.1041

2) REST bad practices. When an API call uses invalid1042

input data, it should obtain a “client error” response.1043

Conversely, when it uses valid data, it should obtain a1044

successful response. This is not the case in the Amadeus1045

API. Some parameters require inputs such as language1046

codes, but the API returns successful responses as long1047

as the value used conforms to the expected format (e.g.,1048

two capital letters).1049

3) Semantic inter-parameter dependencies. These are depen-1050

dencies that constrain the values that different param-1051

eters can take based on their meaning. For instance,1052

even if ARTE generates valid values for the parameters1053

cityCode and hotelName, the API will return an error1054

if there is no hotel with the specified name in the1055

provided city and vice versa. These errors may also1056

arise for trivial parameters, not targeted by ARTE. For1057

example, if the number of rooms provided as input (an1058

integer parameter) is greater than those available at the1059

specified hotel.1060

ARTE outperformed all the baseline approaches in 13 out1061

of 14 API operations under test. SAIGEN obtained better1062

results in the operation “Capital” of the RESTCountries1063

API because it leveraged a predicate that yielded mainly 1064

country capitals (those accepted by the API), whereas ARTE 1065

leveraged one that yielded capitals of both countries and 1066

regions. ARTE also outperformed the related approaches in 1067

terms of coverage, by a margin that ranged between 13.4% 1068

and 58.2%. 1069

5.4.3 RQ3: Failure detection 1070

The increase in the number of valid API calls generated 1071

by ARTE translates into more diverse tests that exercise 1072

different parts of the API under test and, consequently, 1073

uncover more failures. However, different test data gener- 1074

ation strategies may uncover different types of failures, and 1075

therefore they are complementary, rather than exclusive. As 1076

an example, fuzzing uncovered a 500 status code in the 1077

Deutschebahn StaDa API, caused when using parameter 1078

values containing unexpected characters such as ‘%’. This 1079

bug could not have been uncovered by techniques leverag- 1080

ing realistic input data exclusively. 1081

The integration of ARTE into RESTest enables leverag- 1082

ing not only valid test inputs but also invalid ones, since 1083

RESTest can automatically classify the values generated by 1084

ARTE into valid or invalid, according to the API responses. 1085

For instance, in the Spotify API, ARTE detected that the API 1086

returned a successful response for 6 markets that were not 1087

present in the documentation. Conversely, the value “LY” 1088

(Libya) for parameter country was classified as invalid, 1089

since it was rejected by the API. The same happened with 24 1090

language names in the RESTCountries API. Are these values 1091

really not supported by the API, or may these responses be 1092

caused by a bug in their implementation? ARTE can reveal 1093

unexpected behaviors like these. 1094

6 THREATS TO VALIDITY 1095

In this section, we discuss the possible internal and external 1096

validity threats that may have influenced our work, and 1097

how these were mitigated. 1098

Internal validity. Are there factors that might affect the results 1099

of our evaluation? For the experiments, we used the OAS 1100

specifications of the APIs under test. When possible, we re- 1101

sorted to the API specifications publicly available. However, 1102

for the RapidAPI dataset and the Yelp and RESTCountries 1103

APIs such specifications were missing. We generated them 1104

manually (Yelp and RESTCountries) and using web scrap- 1105

ing (RapidAPI), based on the information provided in the 1106

online documentation of each API. It is therefore possible 1107

that some of the OAS specifications have errors and deviate 1108

from the API documentation. To mitigate this threat, each 1109

of the OAS specification files was carefully reviewed by at 1110

least two authors. 1111

The results obtained for the first experiment—ability of 1112

ARTE to generate realistic inputs—are based on a sample 1113

of 10 values per parameter. Given the random nature of this 1114

experiment, it should have been repeated several times (e.g., 1115

10-30) and analyze the results with statistical tests. However, 1116

this was a manual process involving 211 (parameters) × 10 1117

(values) × 2 (approaches) = 4,220 API calls, and so repeating 1118

it would be an extremely costly endeavor. Furthermore, we 1119

emphasize that the results obtained are simply a pessimistic 1120
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approximation of what could be achieved with ARTE when1121

considering all the inputs generated per parameter (instead1122

of simply 10 values). The same threat applies to the sec-1123

ond experiment. Industrial APIs impose restrictive quota1124

limitations [10], [62], thus making it infeasible to execute1125

thousands of requests without exceeding the quota and rate1126

limits of the services under test. In spite of this, the high1127

number of test cases generated and executed (84K) make us1128

confident about the validity of the results.1129

Faults in the implementation of the tools used used—1130

RESTest and SAIGEN—could compromise the validity of1131

the results. To mitigate this threat, we carefully checked and1132

tested the implementation of each test data generator and1133

their results leveraging the existing regression test suites of1134

RESTest and SAIGEN.1135

External validity. To what extent can we generalize the findings1136

of our investigation? We evaluated our approach on a subset1137

of APIs and therefore our conclusions could not generalize1138

beyond that. To mitigate this threat, we evaluated ARTE on1139

a set of 140 operations from 48 real-world RESTful APIs,1140

including popular industrial APIs with millions of users1141

worldwide. Additionally, we selected APIs belonging to1142

different application domains and various sizes in terms of1143

number of operations and parameters.1144

ARTE applies several heuristics to infer realistic values1145

based on the name and description of API parameters.1146

In particular, we proposed six matching rules to generate1147

predicates that are likely to return semantically valid test1148

inputs (Section 3.2). These rules are based on common1149

naming conventions for API parameters and our work with1150

a subset of APIs, and therefore could not generalize further.1151

However, we may remark that this does not invalidate our1152

results and that new matching rules could be readily added1153

in the future.1154

7 RELATED WORK1155

To the best of our knowledge, our work is the first to1156

leverage the Web of Data for improving test data generation1157

in web APIs. Nevertheless, semantic information retrieval1158

techniques have already been applied in the context of GUI1159

testing. Mariani et al. [13] presented Link, an approach to1160

retrieve realistic test inputs for web, desktop, and mobile ap-1161

plications from DBPedia. Wanwarang et al. [14] introduced1162

SAIGEN, which follows the same principles of Link, but1163

is specifically tailored for mobile apps. Evaluation results1164

on 12 mobile applications showed that SAIGEN was able1165

to find inputs for 50% of the GUI labels on average. Out1166

of these, 94% of inputs were semantically valid [14]. Our1167

work shares similarities with both papers, but also clear1168

differences, as detailed in Section 5.1.2. Link and SAIGEN1169

exploit GUI labels, whereas ARTE exploits the API speci-1170

fication, including the name and the description of input1171

parameters. In theory, this gives an advantage to ARTE since1172

it can exploit further information. However, in practice, we1173

found that this also implies new challenges since parameter1174

names and descriptions tend to be very heterogeneous. This1175

explains why ARTE resorts to NLP techniques, for instance,1176

when the name of a parameter does not provide sufficient1177

information (e.g., parameter t in the OMDb API [35]) and1178

the most helpful information is contained in its description 1179

(e.g., “a movie title”). On the other hand, we proposed a 1180

novel approach to iteratively refine test inputs by automat- 1181

ically generating regular expressions conforming to them 1182

(Section 3.4), and we integrated ARTE into RESTest (Section 1183

4), providing a fully automated semantic-aware testing tool 1184

for RESTful APIs. The results of our evaluation show that 1185

ARTE represents a significant improvement over related 1186

approaches in the context of web API testing. 1187

Besides semantic-enabled approaches, other authors ad- 1188

vocate for extracting realistic test inputs from other sources. 1189

Shahbaz et al. [63], [64] proposed generating valid and in- 1190

valid string test data based on Web searches and predefined 1191

regular expressions (e.g., following the format of an email 1192

address). Bozkurt and Harman [65] relied on web service 1193

composition [66] to generate realistic test data, i.e., by find- 1194

ing a web service that returns as output the data required 1195

by a different service. Clerissi et al. [67] presented DBInputs, 1196

an approach to testing web applications by reusing data 1197

stored in the system database (e.g., a resource identifier). 1198

Compared to these techniques, ARTE is specifically tailored 1199

for web APIs, and it does not require access to the source 1200

code or the database of the system under test [63], [64], [67], 1201

nor to other web services [65], just its specification. 1202

Our work is very much related to RESTful API testing, 1203

a thriving research field nowadays. Approaches can be 1204

divided into black-box and white-box. In black-box testing, 1205

the API specification—generally an OAS document [9]— 1206

drives the generation of test inputs. Several strategies with 1207

varied degrees of thoroughness and automation have been 1208

proposed in the literature: (1) Ed-douibi et al. [12] proposed 1209

extracting default and example values from the OAS spec- 1210

ification of the API under test; (2) Atlidakis et al. [27] used 1211

fuzzing dictionaries for each data type (e.g., 0 and 1 for 1212

integer parameters); (3) other authors [10], [25] advocate for 1213

using customizable test data generators for each parame- 1214

ter under test (e.g., a generator of real coordinates for a 1215

mapping API); (4) lastly, it may be possible, in some cases, 1216

to extract input values from previous API responses [11], 1217

[61], e.g., when some API operation returns data required 1218

as input by a different API operation. Approaches (1) and 1219

(2) are automated, but fall short for generating realistic test 1220

inputs and testing web APIs thoroughly. Approach (3) can 1221

generate varied and realistic values, but it requires manual 1222

work for the development of test data generators. Approach 1223

(4) offers the best tradeoff but may not always be appli- 1224

cable. Compared to prior work, ARTE generates realistic 1225

test inputs in a highly automated fashion, solely based 1226

on the API specification. More importantly, as a test data 1227

generation approach, ARTE is complementary to existing 1228

test case generation techniques for RESTful APIs. 1229

White-box techniques for RESTful API testing are less 1230

common than black-box, since the source code of the system 1231

is required. Arcuri [28] is the only author who advocates for 1232

white-box testing. He proposed an evolutionary approach 1233

where test inputs are randomly sampled at the beginning of 1234

the search and subsequently mutated, aiming to maximize 1235

code coverage and fault finding. In this sense, our contribu- 1236

tions may be complementary: the test inputs generated by 1237

ARTE could be used as a seed and subsequently evolved, 1238

thus providing a bootstrap for the search [68]. 1239
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8 CONCLUSIONS1240

This article presented ARTE, an approach for the automated1241

generation of realistic test inputs for web APIs. ARTE an-1242

alyzes the specification of the API under test to extract se-1243

mantically related concepts for every API parameter. Then,1244

those concepts are used to query a knowledge base from1245

which to extract test inputs. As a distinctive feature, ARTE1246

implements an iterative process for the refinement of test1247

inputs through the automatic generation of regular expres-1248

sions. Valid and invalid parameter values—those accepted1249

and rejected by the API, respectively—are used to create1250

regular expressions according to them. This allows ARTE1251

to filter undesired values in subsequent queries to the1252

knowledge base. ARTE has been integrated into RESTest, a1253

black-box testing framework for RESTful APIs. In practice,1254

this allows to automate the whole testing process: test1255

data generation using ARTE, test case generation, test case1256

execution, and assertion of test outputs. Evaluation results1257

on 140 operations from 48 web APIs show the effectiveness1258

of ARTE to generate realistic test inputs and its potential to1259

boost the fault detection capability of test case generation1260

tools for web APIs.1261

There are several potential lines of future work. It would1262

be interesting to explore new heuristics for the search of1263

more effective predicates, for example, by applying more1264

advanced NLP techniques to the name and description of1265

input parameters. Refining the feedback loop for generating1266

regular expressions from previous responses would also be1267

a natural extension. Finally, we plan to develop a web API1268

to ease the integration of ARTE into third party tools.1269

VERIFIABILITY1270

For the sake of replicability, we provide a supplementary1271

package containing the source code of the tools, the datasets1272

used, and the results generated [23].1273
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[34] D. Vrandečić and M. Krötzsch, “Wikidata: A Free Collaborative 1366

Knowledge base,” Commun. ACM, vol. 57, no. 10, p. 78–85, 2014. 1367

[35] “OMDb API,” http://www.omdbapi.com, accessed May 2021. 1368

[36] “dblp API,” https://dblp.org/faq/13501473.html, accessed April 1369

2021. 1370

[37] S. Bird, E. Klein, and E. Loper, Natural language processing with 1371

Python: analyzing text with the natural language toolkit. " O’Reilly 1372

Media, Inc.", 2009. 1373

https://www.besoccer.com/api/
https://developer.twitter.com/en/docs
https://developers.amadeus.com/
https://www.deepl.com/docs-api/
https://openrouteservice.org/dev/#/api-docs
https://openrouteservice.org/dev/#/api-docs
https://openrouteservice.org/dev/#/api-docs
https://www.openapis.org
https://rapidapi.com/apidojo/api/asos2
https://developer.dhl.com/api-reference/location-finder
https://developer.dhl.com/api-reference/location-finder
https://developer.dhl.com/api-reference/location-finder
https://numverify.com/documentation
https://numverify.com/documentation
https://numverify.com/documentation
https://developer.foursquare.com/places-api
https://rapidapi.com/domainr/api/domainr
https://rapidapi.com/wirefreethought/api/geodb-cities
https://rapidapi.com/wirefreethought/api/geodb-cities
https://rapidapi.com/wirefreethought/api/geodb-cities
http://doi.org/10.5281/zenodo.5792081
https://developer.spotify.com/web-api/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.omdbapi.com
https://dblp.org/faq/13501473.html


15

[38] C. Manning and H. Schutze, Foundations of statistical natural lan-1374

guage processing. MIT press, 1999.1375

[39] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-1376

rich part-of-speech tagging with a cyclic dependency network,”1377

in Proceedings of the 2003 Conference of the North American Chapter1378

of the Association for Computational Linguistics on Human Language1379

Technology - Volume 1, 2003, pp. 173–180.1380

[40] S. Vijayarani, M. J. Ilamathi, and M. Nithya, “Preprocessing1381

techniques for text mining-an overview,” International Journal of1382

Computer Science & Communication Networks, vol. 5, no. 1, pp. 7–16,1383

2015.1384

[41] V. Balakrishnan and E. Lloyd-Yemoh, “Stemming and lemmati-1385

zation: a comparison of retrieval performances,” Lecture Notes on1386

Software Engineering, pp. 262–267, 2014.1387

[42] “Yelp Fusion API,” https://www.yelp.com/developers/1388

documentation/v3, accessed May 2021.1389

[43] “Great Circle Mapper,” https://www.greatcirclemapper.net/en/1390

api.html, accessed May 2021.1391

[44] A. Bartoli, A. D. Lorenzo, E. Medvet, and F. Tarlao, “Inference1392

of regular expressions for text extraction from examples,” IEEE1393

Transactions on Knowledge and Data Engineering, vol. 28, no. 5, pp.1394

1217–1230, 2016.1395

[45] A. Bartoli, A. De Lorenzo, E. Medvet, F. Tarlao, and M. Virgolin,1396

“Evolutionary learning of syntax patterns for genic interaction1397

extraction,” in Proceedings of the 2015 on Genetic and Evolutionary1398

Computation Conference. ACM, 2015, pp. 1183–1190.1399

[46] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Can a1400

machine replace humans in building regular expressions? a case1401

study,” IEEE Intelligent Systems, vol. 31, no. 6, pp. 15–21, 2016.1402

[47] “Apache Jena,” https://jena.apache.org/index.html, accessed1403

April 2021.1404

[48] “Stanford CoreNLP,” https://stanfordnlp.github.io/CoreNLP/,1405

accessed April 2021.1406

[49] “ARTE documentation,” https://github.com/isa-group/1407

RESTest/wiki/Test-configuration-files#semanticgenerator-arte.1408

[50] P. Godefroid, “Fuzzing: Hack, Art, and Science,” Commun. ACM,1409

vol. 63, no. 2, p. 70–76, 2020.1410

[51] “RapidAPI API directory,” https://rapidapi.com/marketplace,1411

accessed May 2021.1412

[52] “Referential API,” https://rapidapi.com/referential/api/1413

referential, accessed May 2021.1414

[53] “Selenium with Python,” https://selenium-python.readthedocs.1415

io/, accessed May 2021.1416

[54] “Beautiful Soup,” https://www.crummy.com/software/1417

BeautifulSoup/, accessed May 2021.1418

[55] “APIs.guru,” https://apis.guru, accessed May 2021.1419

[56] “RESTCountries API,” https://restcountries.com, accessed1420

November 2021.1421

[57] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test Coverage1422

Criteria for RESTful Web APIs,” in A-TEST, 2019, pp. 15–21.1423

[58] ——, “A Catalogue of Inter-Parameter Dependencies in RESTful1424

Web APIs,” in International Conference on Service-Oriented Comput-1425

ing, 2019, pp. 399–414.1426

[59] A. Martin-Lopez, S. Segura, C. Müller, and A. Ruiz-Cortés, “Spec-1427

ification and Automated Analysis of Inter-Parameter Dependen-1428

cies in Web APIs,” IEEE Transactions on Services Computing, 2021.1429

[60] O. Banias, , D. Florea, R. Gyalai, and D.-I. Curiac, “Automated1430

Specification-Based Testing of REST APIs,” Sensors, vol. 21, no. 16,1431

2021.1432

[61] P. Godefroid, B.-Y. Huang, and M. Polishchuk, “Intelligent REST1433

API Data Fuzzing,” in Proceedings of the 28th ACM Joint Meeting1434

on European Software Engineering Conference and Symposium on the1435

Foundations of Software Engineering, 2020, p. 725–736.1436

[62] A. Gamez-Diaz, P. Fernandez, A. Ruiz-Cortés, P. J. Molina,1437

N. Kolekar, P. Bhogill, M. Mohaan, and F. Méndez, “The Role1438

of Limitations and SLAs in the API Industry,” in Proceedings of1439

the 2019 27th ACM Joint Meeting on European Software Engineering1440

Conference and Symposium on the Foundations of Software Engineering,1441

2019, pp. 1006–1014.1442

[63] M. Shahbaz, P. McMinn, and M. Stevenson, “Automated Discov-1443

ery of Valid Test Strings from the Web Using Dynamic Regular1444

Expressions Collation and Natural Language Processing,” in 20121445

12th International Conference on Quality Software, 2012, pp. 79–88.1446

[64] ——, “Automatic Generation of Valid and Invalid Test Data for1447

String Validation Routines Using Web Searches and Regular Ex-1448

pressions,” Science of Computer Programming, vol. 97, pp. 405–425,1449

2015.1450

[65] M. Bozkurt and M. Harman, “Automatically Generating Realistic 1451

Test Input from Web Services,” in Proceedings of 2011 IEEE 6th 1452

International Symposium on Service Oriented System (SOSE). IEEE, 1453

2011, pp. 13–24. 1454

[66] S. Dustdar and W. Schreiner, “A Survey on Web Services Compo- 1455

sition,” International journal of web and grid services, vol. 1, no. 1, pp. 1456

1–30, 2005. 1457

[67] D. Clerissi, G. Denaro, M. Mobilio, and L. Mariani, “Plug the 1458

Database & Play With Automatic Testing: Improving System 1459

Testing by Exploiting Persistent Data,” in 2020 35th IEEE/ACM 1460

International Conference on Automated Software Engineering (ASE), 1461

2020, pp. 66–77. 1462

[68] A. Martin-Lopez, A. Arcuri, S. Segura, and A. Ruiz-Cortés, “Black- 1463

Box and White-Box Test Case Generation for RESTful APIs: Ene- 1464

mies or Allies?” in International Symposium on Software Reliability 1465

Engineering, 2021. 1466

Juan C. Alonso is a PhD candidate at the 1467

SCORE Lab, University of Seville, Spain. His 1468

current research interests lie in the areas of 1469

software testing, natural language processing, 1470

repository mining and deep learning. Contact 1471

him at javalenzuela@us.es. 1472

1473

Alberto Martin-Lopez is a PhD candidate at 1474

the SCORE Lab, University of Seville, Spain. He 1475

received his MsC from this university. His current 1476

research interests focus on automated software 1477

testing and service-oriented architectures. He is 1478

a Fulbright fellow at the University of California, 1479

Berkeley, and the winner of the ACM Student Re- 1480

search Competition held at ICSE 2020. Contact 1481

him at alberto.martin@us.es. 1482

1483

Sergio Segura is an Associate Professor of 1484

software engineering at the University of Seville, 1485

Spain. He is a member of the SCORE Lab, 1486

where he leads the research lines on software 1487

testing and search-based software engineering. 1488

His current research interests include test au- 1489

tomation and AI-driven software engineering. 1490

Contact him at sergiosegura@us.es. 1491

1492

José María García is an Associate Professor of 1493

software engineering at the University of Seville, 1494

Spain. He is a member of the SCORE Lab. His 1495

research focus is on blockchain, semantic web 1496

technologies, service-oriented architectures and 1497

linked data. Contact him at josemgarcia@us.es. 1498

1499

Antonio Ruiz-Cortés is a Full Professor of soft- 1500

ware and service engineering and elected mem- 1501

ber of the Academy of Europe. He heads the 1502

SCORE Lab at the University of Seville. His cur- 1503

rent research focuses on service-oriented com- 1504

puting, business process management, testing 1505

and software product lines. He is an associate 1506

editor of Springer Computing. Contact him at 1507

aruiz@us.es. 1508

1509

https://www.yelp.com/developers/documentation/v3
https://www.yelp.com/developers/documentation/v3
https://www.yelp.com/developers/documentation/v3
https://www.greatcirclemapper.net/en/api.html
https://www.greatcirclemapper.net/en/api.html
https://www.greatcirclemapper.net/en/api.html
https://jena.apache.org/index.html
https://stanfordnlp.github.io/CoreNLP/
https://github.com/isa-group/RESTest/wiki/Test-configuration-files#semanticgenerator-arte
https://github.com/isa-group/RESTest/wiki/Test-configuration-files#semanticgenerator-arte
https://github.com/isa-group/RESTest/wiki/Test-configuration-files#semanticgenerator-arte
https://rapidapi.com/marketplace
https://rapidapi.com/referential/api/referential
https://rapidapi.com/referential/api/referential
https://rapidapi.com/referential/api/referential
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://apis.guru
https://restcountries.com



