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Abstract

In this paper we develop a fractional integro-differential operator calculus for Clifford-algebra valued

functions. To do that we introduce fractional analogues of the Teodorescu and Cauchy-Bitsadze operators

and we investigate some of their mapping properties. As a main result we prove a fractional Borel-Pompeiu

formula based on a fractional Stokes formula. This tool in hand allows us to present a Hodge-type decom-

position for the fractional Dirac operator. Our results exhibit an amazing duality relation between left and

right operators and between Caputo and Riemann-Liouville fractional derivatives. We round off this paper

by presenting a direct application to the resolution of boundary value problems related to Laplace operators

of fractional order.
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1 Introduction

Clifford analysis offers a higher dimensional generalization of the classical theory of complex holomorphic func-

tions. Its tools can be applied to several different areas, for instance to quantum mechanics, quantum field

theory [15], projective geometry, computer graphics [30], neural network theory [3] and to many other areas

of physics and engineering [17]. The corresponding analogy of the class of complex holomorphic functions is

that of monogenic functions. These are the null solutions to the Dirac operator. The latter operator factorizes

the Laplace operator and provides a first order generalization of the well-known Cauchy-Riemann operator in

complex analysis (see [5, 8]).

A main tool that Clifford holomorphic function theory uses in the treatment of boundary value problems

is the Teodorescu operator, which is the right inverse of the Dirac operator. Properties and applications of

∗The final version is published in Mathematical Methods in the Applied Science, in press. It as available via the website: ???.
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the hypercomplex Teodorescu operator have been studied by many authors (see for instance [29] for a list of

references). In the context of quaternionic and Clifford analysis, K. Gürlebeck and W. Sprößig studied among

many others particular mapping and regularity properties of this integral operator. Furthermore, they studied

its connections to elliptic boundary value problems (see [17]). Additionally, in [4] the authors also investigated

some interesting connections between the Teodorescu operator and Hermitian regular functions. An extension

to the time-dependent case addressing the heat and the Schrödinger operator has been presented subsequentially

in [6].

Another central aspect that appears in the classical vector calculus and in generalized Clifford holomorphic

function theories is the Helmholtz decomposition of L2-spaces. Actually, in classical three-dimensional vector

analysis it is nothing else than the decomposition of an arbitrary sufficiently regular vector field into the sum

of a divergence free field (having a vector potential) and a curl free vector field (having a scalar potential).

This particular space decomposition together with the Teodorescu operator calculus provides a very elegant

resolution toolkit for boundary value problems in the corresponding scales of Hilbert-Sobolev spaces. For more

details we also refer to the survey paper [27]. For the time-dependent case, see for instance [7, 22,23].

A parallel development over the last years consists of a rapidly increasing interest in the theory of derivatives

and integrals of non-integer order. Apart from several applications of fractional order models, as for example,

to kinetic theories, statistical mechanics, to the dynamics in complex media, and to many other fields (see [28]

and the references indicated therein), those methods provide an important counterpart and extension of the

classical integer order models. The advantage of fractional models consists in the possibility of using fractional

derivatives to describe the memory and hereditary properties of various materials and processes. Another field

of application consists in addressing differential equations related to flows with permeable boundaries, such

as for instance dam-fill problems which provides a further important motivation to develop three-dimensional

generalizations of harmonic and Clifford analysis tools for the fractional setting. Preceding work pointing in

this direction can be found in [18,19] where the fractional p-Laplace equation has been treated.

Behind this background, the development of links between Clifford analysis and fractional differential calcu-

lus represents a very recent topic of research. In particular, some first steps in the direction of an introduction

of a fractional Clifford analytic function theory have been made in [10–12, 14]. In these papers, the authors

determined series representations for the fundamental solution related to some stationary and non-stationary

fractional Dirac-type operators. The knowledge of explicit representation formulas of these fundamental so-

lutions represents a corner stone in the development of a fractional version of Clifford analysis. The latter

functions serve as kernels for fractional integral operators, such as the fractional Teodorescu operator that we

are going to introduce and to investigate in this paper.

The aim of this paper is to apply the fundamental solutions obtained in [10, 12] in order to develop the

fundamentals of a fractional operator calculus related to the fractional Dirac operator that depends on a vector

of fractional parameters α = (α1, . . . , αn) with αi ∈ ]0, 1], i = 1, . . . , n. We introduce fractional analogues of

the Teodorescu operator and of the Cauchy-Bitsadze operator, and we investigate some important mapping

properties. Moreover, we present a Hodge-type decomposition for the fractional Dirac operator defined via

left Caputo fractional derivatives. The results that we obtain exhibit an amazingly interesting “double duality”

between left and right operators and between Caputo and Riemann-Liouville fractional derivatives. This double

duality appears in a non-trivial generalization of the Stokes formula as well as in the fractional Borel-Pompeiu

formula and in the Hodge-type decomposition that we are going to present subsequentially. Throughout the

paper we show that we can always re-obtain the results of the classical function theory for the Dirac operator

when switching to the limit case when α = (1, . . . , 1). The analogous of the results presented in this paper for

the case of the time-fractional parabolic Dirac operator can be found in [13].

The structure of the paper reads as follows. In the Preliminaries section we recall some basic definitions

from the fractional calculus, special functions, and Clifford analysis. In Section 3, we present the fundamental

solutions of the fractional Laplace and Dirac operators in Rn, defined by left Riemann-Liouville and Caputo

fractional derivatives. Moreover, we prove that these functions belong to the function space L1(Ω) under certain

conditions. Throughout the whole paper we assume that Ω is a bounded open rectangular domain. In Section

4, we introduce and study the main properties of the fractional analogues of the Teodorescu operator and of the

Cauchy-Bitsadze operator. Finally, in Section 5 we present a Hodge-type decomposition for the Lq-space, where

one of the components is the kernel of the fractional Dirac operator defined in terms of left Caputo fractional
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derivatives. This decomposition represents a main result in the paper apart from proving the generalizations of

the Borel-Pompeiu formulae in the context of Caputo derivatives. In the analysis of the mapping properties and

the regularity properties there still appear some further peculiarities that require special attention. We round

off this paper by giving an immediate application to the resolution of boundary value problems involving the

fractional Laplace operators.

2 Preliminaries

2.1 Fractional calculus and special functions

Let a, b ∈ R with a < b let α > 0. The left and right Riemann-Liouville fractional integrals Iαa+ and Iαb− of order

α are given by (see [21])

(Iαa+f) (x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α dt, x > a (1)

(Iαb−f) (x) =
1

Γ(α)

∫ b

x

f(t)

(t− x)1−α dt, x < b. (2)

By RLDα
a+ and RLDα

b− we denote the left and right Riemann-Liouville fractional derivatives of order α > 0 on

[a, b] ⊂ R, which are defined by (see [21])

(
RLDα

a+f
)

(x) =
(
DmIm−αa+ f

)
(x) =

1

Γ(m− α)

dm

dxm

∫ x

a

f(t)

(x− t)α−m+1
dt, x > a (3)

(
RLDα

b−f
)

(x) = (−1)m
(
DmIm−αb− f

)
(x) =

(−1)m

Γ(m− α)

dm

dxm

∫ b

x

f(t)

(t− x)α−m+1
dt, x < b. (4)

Here, m = [α] + 1 and [α] means the integer part of α. Let CDα
a+ and CDα

b− denote, respectively, the left and

right Caputo fractional derivative of order α > 0 on [a, b] ⊂ R, which are defined by (see [21])

(
CDα

a+f
)

(x) =
(
Im−αa+ Dmf

)
(x) =

1

Γ(m− α)

∫ x

a

f (m)(t)

(x− t)α−m+1
dt, x > a (5)

(
CDα

b−f
)

(x) = (−1)m
(
Im−αb− Dmf

)
(x) =

(−1)m

Γ(m− α)

∫ b

x

f (m)(t)

(t− x)α−m+1
dt, x < b. (6)

We denote by Iαa+(L1) the class of functions f that are represented by the fractional integral (1) of a summable

function, that is f = Iαa+ϕ, with ϕ ∈ L1(a, b). A description of this class of functions is given in [26].

Theorem 2.1 (cf. [26]) A function f belongs to Iαa+(L1), α > 0, if and only if Im−αa+ f belongs to ACm([a, b]),

m = [α] + 1 and (Im−αa+ f)(k)(a) = 0, k = 0, . . . ,m− 1.

In Theorem 2.1, ACm([a, b]) denotes the class of functions f which are continuously differentiable on the segment

[a, b] up to the order m − 1 and f (m−1) is supposed to be absolutely continuous on [a, b]. We note that the

conditions (Im−αa+ f)(k)(a) = 0, k = 0, . . . ,m−1, imply that f (k)(a) = 0, k = 0, . . . ,m−1 (see [25,26]). Removing

the last condition in Theorem 2.1 we obtain the class of functions that admit a summable fractional derivative.

Definition 2.2 (see [26]) A function f ∈ L1(a, b) has a summable fractional derivative
(
Dα
a+f

)
(x) if

(
Im−αa+ f

)
(x)

belongs to ACm([a, b]), where m = [α] + 1.

If a function f admits a summable fractional derivative, then we have the following composition rules (see [26]

and [25], respectively)

(
Iαa+

RLDα
a+f

)
(x) = f(x)−

m−1∑
k=0

(x− a)α−k−1

Γ(α− k)

(
Im−αa+ f

)(m−k−1)
(a), m = [α] + 1 (7)

(
Iαa+

CDα
a+f

)
(x) = f(x)−

m−1∑
k=0

f (k)(a)

k!
(x− a)k, m = [α] + 1. (8)
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We remark that if f ∈ Iαa+(L1) then (7) and (8) reduce to
(
Iαa+

RLDα
a+f

)
(x) =

(
Iαa+

CDα
a+f

)
(x) = f(x). Nev-

ertheless we note that Dα
a+ Iαa+f = f in both cases. This is a particular case of a more general property

(cf. [25, (2.114)])

Dα
a+

(
Iγa+f

)
= Dα−γ

a+ f, α ≥ γ > 0. (9)

One important function used in this paper is the two-parameter Mittag-Leffler function Eµ,ν(z) (see [16]),

which is defined in terms of the power series by

Eµ,ν(z) =

∞∑
n=0

zn

Γ(µn+ ν)
, µ > 0, ν > 0, z ∈ C. (10)

In particular, the function Eµ,ν(z) is entire of order ρ = 1
µ and type σ = 1. From the power series (10) and the

operators (1), (3) and (5), we can obtain by straightforward calculations the following fractional integral and

differential formulae involving Eµ,ν(z) (see [16, pp. 87-88]):

Iαa+
(
(x− a)ν−1Eµ,ν (k(x− a)µ)

)
= (x− a)α+ν−1Eµ,ν+α (k(x− a)µ) (11)

for all α > 0, k ∈ C, x > a, µ > 0, ν > 0,

RLDα
a+

(
(x− a)ν−1Eµ,ν (k(x− a)µ)

)
= (x− a)ν−α−1Eµ,ν−α (k(x− a)µ) (12)

for all α > 0, k ∈ C, x > a, µ > 0, ν > 0, ν 6= α− p, where p = 0, . . . ,m− 1 with m = [α] + 1, and

CDα
a+

(
(x− a)ν−1Eµ,ν (k(x− a)µ)

)
= (x− a)ν−α−1Eµ,ν−α (k(x− a)µ) (13)

for all α > 0, k ∈ C, x > a, µ > 0, ν > 0, ν 6= p, where p = 1, . . . ,m with m = [α] + 1.

Remark 2.3 For ν = α− p with p = 0, . . . ,m− 1, we have that RLDα
a+((x− a)α−p−1) = 0 which implies that

the first term in the series expansion of (x−a)ν−1Eµ,ν (k(x− a)µ) vanishes. Therefore, the derivation rule (12)

must be replaced in these cases by the following derivation rule:

RLDα
a+

(
(x− a)α−p−1Eµ,α−p (k(x− a)µ)

)
= (x− a)µ−p−1k Eµ,µ−p (k(x− a)µ) , p = 0, . . . ,m− 1. (14)

Remark 2.4 For ν = p with p = 1, . . . ,m, we have that CDα
a+((x − a)p−1) = 0 which implies that the first

term in the series expansion of (x − a)ν−1Eµ,ν (k(x− a)µ) vanishes. Therefore, the derivation rule (13) must

be replaced in these cases by the following derivation rule:

CDα
a+

(
(x− a)p−1Eµ,p (k(x− a)µ)

)
= (x− a)µ+p−α−1k Eµ,µ+p−α (k(x− a)µ) , p = 1, . . . ,m. (15)

The approach presented in this paper is based on the Laplace transform and leads to the solution of a linear

Abel integral equation of the second kind.

Theorem 2.5 ( [16, Thm. 4.2]) Let f ∈ L1[a, b], α > 0 and λ ∈ C. Then the integral equation

u(x) = f(x) +
λ

Γ(α)

∫ x

a

(x− t)α−1u(t) dt, x ∈ [a, b]

has a unique solution

u(x) = f(x) + λ

∫ x

a

(x− t)α−1Eα,α(λ(x− t)α)f(t) dt. (16)

Now we recall the formula for fractional integration by parts for 0 < α < 1 and x ∈ [a, b] (see [1])∫ b

a

g(x)
(
CDα

a+f
)

(x) dx =

∫ b

a

f(x)
(
RLDα

b−g
)

(x) dx+ [f(x) (Iαb−g) (x)]
b
a ,∫ b

a

g(x)
(
CDα

b−f
)

(x) dx =

∫ b

a

f(x)
(
RLDα

a+g
)

(x) dx− [f(x) Iαa+g(x)]
b
a .

We end this section by recalling an important result about the boundedness of the fractional integrals Iαa+ and

Iαb− (see Theorem 3.5 in [26]).

Theorem 2.6 If 0 < α < 1 and 1 < p < 1
α then the operators Iαa+ and Iαb− are bounded from Lp(a, b) into

Lq(a, b), where q = p
1−αp and [a, b] ⊂ R.
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2.2 Clifford analysis

Let {e1, · · · , en} be the standard basis of the Euclidean vector space in Rn. The associated Clifford algebra

R0,n is the free algebra generated by Rn modulo x2 = −||x||2 e0, where x ∈ Rn and e0 is the neutral element

with respect to the multiplication operation in the Clifford algebra R0,n. The defining relation induces the

multiplication rules

eiej + ejei = −2δij , (17)

where δij denotes the Kronecker’s delta. In particular, e2
i = −1 for all i = 1, . . . , n. The standard basis vectors

thus operate as imaginary units. A vector space basis for R0,n is given by the set {eA : A ⊆ {1, . . . , n}} with

eA = el1el2 . . . elr , where 1 ≤ l1 < . . . < lr ≤ n, 0 ≤ r ≤ n, e∅ := e0 := 1. Each a ∈ R0,n can be written in the

form a =
∑
A aA eA, with aA ∈ R. The conjugation in the Clifford algebra R0,n is defined by a =

∑
A aA eA,

where eA = elr elr−1
. . . el1 , and ej = −ej for j = 1, . . . , n, e0 = e0 = 1. Each non-zero vector a ∈ Rn has a

multiplicative inverse given by a
||a||2 .

An R0,n−valued function f over Ω ⊆ Rn has the representation f =
∑
A eAfA with components fA : Ω →

R0,n. Properties such as continuity or differentiability have to be understood componentwise. Next, we recall

the Euclidean Dirac operator D =
∑n
j=1 ej∂xj . This operator satisfies D2 = −∆, where ∆ is the n-dimensional

Euclidean Laplacian. An R0,n-valued function f is called left-monogenic if it satisfies Du = 0 on Ω (resp.

right-monogenic if it satisfies uD = 0 on Ω).

For more details about Clifford algebras and basic concepts of its associated function theory we refer the

interested reader for example to [8].

3 Fundamental solutions revisited

In [10] and [12] the authors considered the so-called three-parameter fractional Laplace and Dirac operators

defined in terms of the left Riemann-Liouville and Caputo fractional derivatives, and obtained families of

eigenfunctions and fundamental solutions for both operators. In this section we present the generalization of

these results for Rn. Let Ω =
∏n
i=1]ai, bi[ be any bounded open rectangular domain, let α = (α1, . . . , αn), with

αi ∈ ]0, 1], i = 1, . . . , n, and let us consider the n-parameter fractional Laplace operators RL∆α
a+ and C∆α

a+

defined over Ω by means of the left Riemann-Liouville and left Caputo fractional derivatives, respectively, given

by

RL∆α
a+ =

n∑
i=1

RL
a+i
∂1+αi
xi , C∆α

a+ =

n∑
i=1

C
a+i
∂1+αi
xi . (18)

Associated to them there are the corresponding fractional Dirac operators RLDαa+ and CDαa+ defined by

RLDαa+ =

n∑
i=1

ei
RL
a+i
∂

1+αi
2

xi , CDαa+ =

n∑
i=1

ei
C
a+i
∂

1+αi
2

xi . (19)

For i = 1, . . . , n the partial derivatives RL
a+i
∂1+αi
xi , RL

a+i
∂

1+αi
2

xi , C
a+i
∂1+αi
xi and C

a+i
∂

1+αi
2

xi are the left Riemann-Liouville

and Caputo fractional derivatives (3) and (5) of orders 1 +αi and 1+αi
2 , with respect to the variable xi ∈]ai, bi[.

Under certain conditions we have that RL∆α
a+ = −RLDαa+

RLDαa+ (see [10]), and C∆α
a+ = − CDαa+

CDαa+ (see

[12]). Due to the nature of the eigenfunctions and the fundamental solution of these operators we additionally

need to consider the variable x̂ = (x2, . . . , xn) ∈ Ω̂ =
∏n
i=2]ai, bi[, and the fractional Laplace and Dirac operators

acting on x̂ defined by

RL∆̂α
a+ =

n∑
i=2

RL
a+i
∂1+αi
xi , C∆̂α

a+ =

n∑
i=2

C
a+i
∂1+αi
xi ,

RLD̂αa+ =

n∑
i=2

ei
RL
a+i
∂

1+αi
2

xi , CD̂αa+ =

n∑
i=2

ei
C
a+i
∂

1+αi
2

xi . (20)

We start by addressing the Caputo case. Consider the eigenfunction problem

C∆α
a+v(x) = λv(x), (21)
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where λ ∈ C, and where we suppose that v(x) = v(x1, . . . , xn) admits a summable fractional derivative(
C
a+1
∂1+α1
x1

v
)

(x) in the variable x1, and belongs to I1+αi
a+i

(L1) in the variables xi, with i = 2, . . . , n. Apply-

ing the fractional integral I1+α1

a+1
to both sides of the previous equation and taking into account (8) we get

v(x)− v(a1, x̂)− (x1 − a1) v′x1
(a1, x̂) +

n∑
k=2

(
I1+α1

a+1

C
a+k
∂1+αk
xk

v
)

(x) = λ
(
I1+α1

a+1
v
)

(x).

Now, applying successively the fractional integrals I
1+αj

a+j
, with j = 2, . . . , n, to both sides of the previous

equation, applying Fubini’s theorem, and rearranging the terms, we getI1+α1

a+1

n∑
k=2

n∏
j=2
j 6=k

I
1+αj

a+j
v

 (x) +

 n∏
j=2

I
1+αj

a+j
v

 (x)− λ

 n∏
j=1

I
1+αj

a+j
v

 (x)

=

 n∏
j=2

I
1+αj

a+j
g0

 (x̂) + (x1 − a1)

 n∏
j=2

I
1+αj

a+j
g1

 (x̂), (22)

where g0 and g1 are the Cauchy initial conditions given by

g0(x̂) = v(a1, x̂) and g1(x̂) = v′x1
(a1, x̂). (23)

We observe that the fractional integrals in (22) are Laplace-transformable functions. Therefore, we may apply

the (n− 1)-dimensional Laplace transform with respect to x2, . . . , xn:

F(ŝ) = F(s2, . . . , sn) = L{f}(s2, . . . , sn) =

∫ +∞

a2

. . .

∫ +∞

an

exp

(
−

n∑
p=2

spxp

)
f(x2, . . . , xn) dxn · · · dx2.

Taking into account its convolution and operational properties (see [9,21]), we obtain the following relations for

each term in (22):

L

I1+α1

a+1

n∑
k=2

n∏
j=2
j 6=k

I
1+αj

a+j
v

 (x1, ŝ) =

n∑
k=2

n∏
p=2
p 6=k

s−1−αp
p

(
I1+α1

a+1
V
)

(x1, ŝ), k = 2, . . . , n, (24)

L


n∏
j=2

I
1+αj

a+j
v

 (x1, ŝ) =

n∏
p=2

s−1−αp
p V(x1, ŝ), (25)

L


n∏
j=1

I
1+αj

a+j
v

 (x1, ŝ) =

n∏
p=2

s−1−αp
p

(
I1+α1

a+1
V
)

(x1, ŝ), (26)

L


n∏
j=2

I
1+αj

a+j
g0

 (x1, ŝ) =

n∏
p=2

s−1−αp
p G0(ŝ), (27)

L

(x1 − a1)

 n∏
j=2

I
1+αj

a+j
g1

 (x1, ŝ) = (x1 − a1)

n∏
p=2

s−1−αp
p G1(ŝ). (28)

Combining all the resulting terms and multiplying by
∏n
p=2 s

1+αp
p we obtain the following second kind homo-

geneous integral equation of Volterra type:

V(x1, ŝ) +

∑n
p=2 s

1+αp
p − λ

Γ(1 + α1)

∫ x1

a1

(x1 − t)α1 V(t, ŝ) dt = G(x1, ŝ), (29)

6



where G(x1, ŝ) = G0(ŝ) + (x1 − a1)G1(ŝ) and Gk(ŝ) = L {gk} (s) with k = 0, 1. Using (16), we have that the

unique solution of (29) in the class of summable functions is:

V(x1, ŝ) = G(x1, ŝ)−
∑n
p=2 s

1+αp
p − λ

Γ(1 + α1)

∫ x1

a1

(x1 − t)α1E1+α1,1+α1

(
−(x1 − t)1+α1

(
n∑
p=2

s1+αp
p − λ

))
G(t, ŝ) dt,

(30)

which involves the two-parameter Mittag-Leffler function. Due the convergence of the integrals and the series

that appear in (30), we can interchange them and rewrite (30) in the following way:

V(x1, ŝ) =

1 +

+∞∑
k=0

(−1)k+1

(∑n
p=2 s

1+αp
p − λ

)k+1

Γ((1 + α1)k + 2 + α1)
(x1 − a1)(1+α1)k+1+α1

G0(ŝ)

+

(x1 − a1) +

+∞∑
k=0

(−1)k+1

(∑n
p=2 s

1+αp
p − λ

)k+1

Γ((1 + α1)(k + 1) + 2)
(x1 − a1)(1+α1)(k+1)+1

G1(ŝ)

=

1 +

+∞∑
m=1

(−1)m

(∑n
p=2 s

1+αp
p − λ

)m
Γ((1 + α1)m+ 1)

(x1 − a1)(1+α1)m

G0(ŝ)

+

(x1 − a1) +

+∞∑
m=1

(−1)m

(∑n
p=2 s

1+αp
p − λ

)m
Γ((1 + α1)m+ 2)

(x1 − a1)(1+α1)m+1

G1(ŝ)

=

+∞∑
m=0

(−1)m

(∑n
p=2 s

1+αp
p − λ

)m
Γ((1 + α1)m+ 1)

(x1 − a1)(1+α1)mG0(ŝ)

+

+∞∑
m=0

(−1)m

(∑n
p=2 s

1+αp
p − λ

)m
Γ((1 + α1)m+ 2)

(x1 − a1)(1+α1)m+1 G1(ŝ). (31)

In order to cancel the Laplace transform, we need to take into account its distributional form in Zemanian’s

space (for more details about generalized integral transforms see [31]) and the following relation:

lim
r2,...,rn→+∞

∫ σ1+ir2

σ1−ir2
. . .

∫ σn+irn

σn−irn

n∏
p=2

sn(1+αp)
p Gk(ŝ) exp

(
n∑
p=2

spxp

)
dsn . . . ds2 =

 n∏
j=2

∂
n(1+αj)

x+
j

gk

 (x̂), (32)

where k = 0, 1. Therefore, applying the multinomial theorem and after straightforward calculations we get the

following solution of (21):

v(x) =

∞∑
m=0

(−1)m
(x1 − a1)(1+α1)m

Γ((1 + α1)m+ 1)

(
C∆̂α

a+ − λ
)m

g0(x̂)

+

∞∑
m=0

(−1)m
(x1 − a1)(1+α1)m+1

Γ((1 + α1)m+ 2)

(
C∆̂α

a+ − λ
)m

g1(x̂). (33)

From the previous calculations we obtain the following results in Rn, which generalize Theorem 3.1 and Theorem

4.1 in [12].

Theorem 3.1 A family of eigenfunctions of the fractional Laplace operator C∆α
a+ is given by

vλ(x) = E1+α1,1

(
−(x1 − a1)1+α1

(
C∆̂α

a+ − λ
))

g0(x̂)

+ (x1 − a1) E1+α1,2

(
−(x1 − a1)1+α1

(
C∆̂α

a+ − λ
))

g1(x̂), (34)

where g0(x̂) = v(a1, x̂) and g1(x̂) = v′x1
(a1, x̂).
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We give a direct proof of the theorem in order to confirm that (34) is indeed the solution of (21). The proof uses

the fact that C
a+1
∂1+α1
x1

1 = 0 and C
a+1
∂1+α1
x1

(x1−a1) = 0, and the analogous fractional formula for differentiation of

integrals depending on a parameter where the upper limit also depends on the same parameter (see [25, Section

2.7.4]). Proof: Applying the operator C∆α
a+ = C

a+1
∂1+α1
x1

+ C∆̂α
a+ to (34) and using the series expansion of the

Mittag-Leffler function (10), we get

C∆α
a+vλ(x) =

∞∑
k=1

(−1)k
(x1 − a1)(k−1)(1+α1)

Γ((1 + α1)k − α1)

(
C∆̂α

a+ − λ
)k
g0(x̂)

+

∞∑
k=1

(−1)k
(x1 − a1)(1+α1)k−α1

Γ((1 + α1)k + 1− α1)

(
C∆̂α

a+ − λ
)k
g1(x̂) +

(
C∆̂α

a+

)
vλ(x).

Rearranging the terms of the series we obtain

C∆α
a+vλ(x) = −

(
C∆̂α

a+ − λ
)
vλ(x) +

(
C∆̂α

a+

)
vλ(x) = λ vλ(x).

�

Corollary 3.2 A family of fundamental solutions for the fractional Laplace operator C∆α
a+ is obtained by

considering λ = 0 in (34):

CGα+(x) = v0(x)

= E1+α1,1

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g0(x̂) + (x1 − a1) E1+α1,2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g1(x̂), (35)

where g0(x̂) = v(a1, x̂) and g1(x̂) = v′x1
(a1, x̂).

For the fractional Dirac operator CDαa+ we can obtain a family of fundamental solutions by applying the operator
CDαa+ to the family of fundamental solutions of the operator C∆α

a+ .

Theorem 3.3 A family of fundamental solutions of the fractional Dirac operator CDαa+ (acting on the left or

on the right) is given by

CGα+(x) =

n∑
i=1

ei
(
CGα+

)
i
(x), (36)

where (
CGα+

)
1

(x) = (x1 − a1)−
1+α1

2 E
1+α1,

1−α1
2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g0(x̂)

+ (x1 − a1)
1−α1

2 E
1+α1,

3−α1
2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g1(x̂), (37)

and for i = 2, . . . , n(
CGα+

)
i
(x) =

(
E1+α1,1

(
−(x1 − a1)1+α1 C∆̂α

a+

)
C
a+i
∂

1+αi
2

xi

)
g0(x̂)

+ (x1 − a1)

(
E1+α1,2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
C
a+i
∂

1+αi
2

xi

)
g1(x̂) (38)

with g0(x̂) = v(a1, x̂) and g1(x̂) = v′x1
(a1, x̂).

Now we present the corresponding results for the Riemann-Liouville case. First we obtain the eigenfunctions

associated to the operator RL∆α
a+ satisfying RL∆α

a+v(x) = λv(x), where λ ∈ C, and v(x) = v(x1, . . . , xn) admits

a summable fractional derivative

(
RL
a+1
∂

1+α1
2

x1 v

)
(x) in the variable x1, and belongs to I1+αi

a+i
(L1) in the variables

xi, with i = 2, . . . , n. The following results generalize Theorem 3.1 and Theorem 3.4 in [10].

Theorem 3.4 A family of eigenfunctions of the fractional Laplace operator RL∆α
a+ is given by

uλ(x) = (x1 − a1)α1−1 E1+α1,α1

(
−(x1 − a1)1+α1

(
RL∆̂α

a+ − λ
))

f0(x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1

(
RL∆̂α

a+ − λ
))

f1(x̂), (39)

where f0(x̂) =
(
I1−α1

a+1
u
)

(a1, x̂) and f1(x̂) =
(
∂α1

x+
1

u
)

(a1, x̂).
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The proof of Theorem 3.4 is similar to the proof of Theorem 3.1, however, it takes into account the composition

rule (7). For the case n = 3, see [10].

Corollary 3.5 A family of fundamental solutions for the fractional Laplace operator RL∆α
a+ is obtained by

considering λ = 0 in (39):

RLGα+(x) = u0(x)

= (x1 − a1)α1−1 E1+α1,α1

(
−(x1 − a1)1+α1 RL∆̂α

a+

)
f0(x̂)

+ (x1 − a1)α1 E1+α1,1+α1

(
−(x1 − a1)1+α1 RL∆̂α

a+

)
f1(x̂), (40)

where f0(x̂) =
(
I1−α1

a+1
u
)

(a1, x̂) and f1(x̂) =
(
∂α1

x+
1

u
)

(a1, x̂).

For the fractional Dirac operator RLDαa+ we can obtain a family of fundamental solutions by applying the

operator RLDαa+ to the family of fundamental solutions of the operator RL∆α
a+ .

Theorem 3.6 A family of fundamental solutions of the fractional Dirac operator RLDαa+ (acting on the left or

on the right) is given by

RLGα+(x) =

n∑
i=1

ei
(
RLGα+

)
i
(x), (41)

where (
RLGα+

)
1

(x) = (x1 − a1)
α1−3

2 E
1+α1,

α1−1
2

(
−(x1 − a1)1+α1 RL∆̂α

a+

)
f0(x̂)

+ (x1 − a1)
α1−1

2 E
1+α1,

1+α1
2

(
−(x1 − a1)1+α1 RL∆̂α

a+

)
f1(x̂), (42)

and for i = 2, . . . , n

(
RLGα+

)
i
(x) = (x1 − a1)α1−1

(
E1+α1,α1

(
−(x1 − a1)1+α1 RL∆̂α

a+

)
RL
a+i
∂

1+αi
2

xi

)
f0(x̂)

+ (x1 − a1)α1

(
E1+α1,1+α1

(
−(x1 − a1)1+α1 RL∆̂α

a+

)
RL
a+i
∂

1+αi
2

xi

)
f1(x̂) (43)

with f0(x̂) =
(
I1−α1

a+1
u
)

(a1, x̂) and f1(x̂) =
(
∂α1

x+
1

u
)

(a1, x̂).

Remark 3.7 From (40) or (35) it is possible to obtain the fundamental solution of the Euclidean Laplace

operator in Rn when α = (1, . . . , 1). Let us consider only the Riemann-Liouville case (the Caputo case can be

treated similarly). We know that the fundamental solution of the Euclidean Laplace operator in Rn, n ≥ 3, is

given (up to a constant) by ||x− a||−(n−2). The case n = 2 can also be treated but we restrict ourselves to only

present the case n ≥ 3 in detail. First we need to obtain the power series expansion of the fundamental solution

of the Laplace operator in Rn. Considering the binomial series

(1− x)−s =

+∞∑
p=0

(
s+ p− 1

p

)
xp, |x| < 1

we obtain

‖x− a‖−(n−2) =
(
(x1 − a1)2 + ‖x̂− â‖2

)−n−2
2

= ‖x̂− â‖−(n−2)

(
1 +

(x1 − a1)2

‖x̂− â‖2

)−n−2
2

=

+∞∑
p=0

(−1)p
(

n−2
2 + p− 1

p

)
(x1 − a1)2p

‖x̂− â‖2p+n−2
(44)
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with ‖x̂ − â‖2 =
∑n
i=2(xi − ai)2, and

(x1 − a1)2

‖x̂− â‖2
< 1. Now, putting α = (1, . . . , 1) and f1 the null function in

(40) we obtain

u0(x) =

+∞∑
p=0

(−1)p (x1 − a1)2p

Γ(2p+ 1)
∆̂pf0(x̂). (45)

From a comparison of (44) and (45) we observe that we have to find a function f0(x̂) such that

∆̂pf0(x̂) =

(
n−2

2 + p− 1

p

)
(2p)!

(‖x̂− â‖)2p+n−2 . (46)

We observe that the function f0(x̂) = ‖x̂ − â‖−(n−2) satisfies (46). First we recall that the p-th powers of the

m-dimensional Euclidean Laplace satisfy (see [2, (1.5)])

∆prk =
22p Γ

(
k
2 + 1

)
Γ
(
k+m

2

)
Γ
(
k
2 − p+ 1

)
Γ
(
k+m

2 − p
) rk−2p

with r = ‖x‖, x ∈ Rm, p ∈ N and k ∈ Z. Therefore, for m = n− 1 and k = 2− n we obtain

∆pr2−n =
22p Γ

(
2−n

2 + 1
) √

π

Γ
(

2−n
2 − p+ 1

)
Γ
(

1
2 − p

) r2−n−2p. (47)

Comparing (46) and (47) we conclude that we have to show that(
n−2

2 + p− 1

p

)
(2p)! =

22p Γ
(

2−n
2 + 1

) √
π

Γ
(

2−n
2 − p+ 1

)
Γ
(

1
2 − p

) . (48)

This equality is true and can be proved by using well-know relations for the Gamma function and taking into

account that (
ν

k

)
=

Γ(1 + ν)

Γ(1 + k) Γ(1 + ν − k)
.

Therefore, we conclude that the equality (46) is satisfied when f0(x̂) = ‖x̂− â‖−(n−2). As expected, on the basis

of considering this same function, together with f1 being the null function, we may obtain from (41) and (36)

the fundamental solution for the Euclidean Dirac operator in Rn, n ≥ 3, when α = (1, . . . , 1).

In the following section we introduce fractional versions of the Teodorescu and Cauchy-Bitsadze operators where

the kernel of these operators is the fundamental solution CGα+. Before we proceed to the development of the

operator calculus we present the following auxiliar results.

Theorem 3.8 For functions g0 and g1 such that∫
Ω̂

∣∣∣∣( C∆̂α
a+

)i
g0(x̂)

∣∣∣∣ dx̂ <∞, ∫
Ω̂

∣∣∣∣( C∆̂α
a+

)i
g1(x̂)

∣∣∣∣ dx̂ <∞, ∀i ∈ N0,

the fundamental solution CGα+ belongs to L1(Ω).

Proof: From (35) we have∥∥CGα+∥∥L1(Ω)
≤
∥∥∥E1+α1,1

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g0(x̂)

∥∥∥
L1(Ω)

+
∥∥∥(x1 − a1) E1+α1,2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g1(x̂)

∥∥∥
L1(Ω)

≤
∫

Ω

∣∣∣E1+α1,1

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g0(x̂)

∣∣∣ dx
+

∫
Ω

∣∣∣(x1 − a1) E1+α1,2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g1(x̂)

∣∣∣ dx.
10



Relying on the series expansion of the Mittag-Leffler function (10), and the fact that the series and integrals

that are involved are absolutely convergent, we derive that

∥∥CGα+∥∥L1(Ω)
≤
∞∑
i=0

1

Γ((1 + α1)i+ 1)

∫ b1

a1

(x1 − a1)(1+α1)i dx1

∫
Ω̂

∣∣∣∣( C∆̂α
a+

)i
g0(x̂)

∣∣∣∣ dx̂
+

∞∑
i=0

1

Γ((1 + α1)i+ 2)

∫ b1

a1

(x1 − a1)(1+α1)i+1 dx1

∫
Ω̂

∣∣∣∣( C∆̂α
a+

)i
g1(x̂)

∣∣∣∣ dx̂,
where Ω̂ =

∏n
j=2]aj , bj [, and where g0, g1, are chosen such that the integrals over Ω̂ are finite for each i = 1, . . . , n.

Let us denote by C0 and C1 the corresponding maximum values over i. Moreover, computing the integrals with

respect to x1 leads to the following inequality

∥∥CGα+∥∥L1(Ω)
≤ C0 (b1 − a1)

∞∑
i=0

(b1 − a1)(1+α1)i

Γ((1 + α1)i+ 2)
+ C1 (b1 − a1)2

∞∑
i=0

(b1 − a1)(1+α1)i

Γ((1 + α1)i+ 3)
.

Moreover, since 0 < α1 ≤ 1, we get the final estimate

∥∥CGα+∥∥L1(Ω)
≤ C0 (b1 − a1)

∞∑
i=0

(b1 − a1)2i

Γ(i+ 2)
+ C1 (b1 − a1)2

∞∑
i=0

(b1 − a1)2i

Γ(i+ 3)

= C0
e(b1−a1)2 − 1

b1 − a1
+ C1

e(b1−a1)2 − (b1 − a1)2 − 1

(b1 − a1)2
.

The last expression is a finite quantity in view of a1 < b1.

�

In a very similar way we can prove the following result for the fundamental solution of CDαa+ .

Theorem 3.9 For functions g0 and g1 such that∫
Ω̂

∣∣∣∣( C∆̂α
a+

)i
g0(x̂)

∣∣∣∣ dx̂ <∞, ∫
Ω̂

∣∣∣∣( C∆̂α
a+

)i
g1(x̂)

∣∣∣∣ dx̂ <∞, ∀i ∈ N0,

and ∫
Ω̂

∣∣∣∣( C∆̂α
a+

)i
C
a+i
∂

1+αi
2

xi g0(x̂)

∣∣∣∣ dx̂ <∞, ∫
Ω̂

∣∣∣∣( C∆̂α
a+

)i
C
a+i
∂

1+αi
2

xi g1(x̂)

∣∣∣∣ dx̂ <∞, ∀i ∈ N0,

the fundamental solution CGα+ belongs to L1(Ω).

4 Fractional Teodorescu and Cauchy-Bitsadze operators

In this section we introduce and study the main properties of the fractional analogues of the classical Teodorescu

and Cauchy-Bitsadze operators described in [17]. We start by proving fractional analogues of the Stokes formula

and the Borel-Pompeiu formula in a rectangular open rectangular domain of the form Ω =
∏n
i=1]ai, bi[. From

now on CDαb− denotes the right Caputo fractional Dirac operator, which is given by

CDαb− =

n∑
i=1

ei
C
b−i
∂

1+αi
2

xi , (49)

where, for i = 1, . . . , n, the partial derivative C
b−i
∂

1+αi
2

xi is the right Caputo fractional derivative (6) of order 1+αi
2

with respect to the variable xi ∈]ai, bi[.

Theorem 4.1 Let f, g ∈ AC1(Ω) ∩ AC(Ω). Then the following fractional Stokes formula holds∫
Ω

[
−
(
f CDαb−

)
(x) g(x) + f(x)

(
RLDαa+g

)
(x)
]
dx =

∫
∂Ω

f(x) dσ(x) (Iαa+g) (x), (50)

where dσ(x) = n(x) dΩ, with n(x) being the outward pointing unit normal vector at x ∈ ∂Ω, where dΩ is the

classical surface element, and dx represents the n-dimensional volume element.
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Before we give a proof of theorem we observe that in (50) the operator CDαb− acts on the right and the operator
RLDαa+ acts on the left, which is specific of the Clifford analysis setting because of the lack of commutativity.

Proof: Suppose that f and g satisfy the above mentioned conditions. From (49) and (6) we obtain that∫
Ω

−
(
f CDαb−

)
(x) g(x) dx =

n∑
i=1

∫
Ω

(
f I

1−αi
2

b−i
∂xi

)
(x) ei g(x) dx

=

n∑
i=1

∑
A

∫
Ω

(
fA I

1−αi
2

b−i
∂xi

)
(x) eA ei g(x) dx. (51)

Concerning the integral appearing in (51) we have∫
Ω

(
fA I

1−αi
2

b−i
∂xi

)
(x) eA ei g(x) dx =

1

Γ
(

1−αi
2

) ∫
Ω∗

∫ bi

ai

∫ bi

xi

(w − xi)−
1+αi

2 (∂xifA) (x∗i , w) eA ei dw g(x) dxi dx
∗
i ,

(52)

where Ω∗ =
∏n
k=1,k 6=i]ai, bi[, x

∗
i = (x1, . . . , xi−1, xi+1, . . . , xn) and where (∂xifA) (x∗i , w) means that after dif-

ferentiation, the variable xi is replaced by w, while the remaining variables remain unchanged. Changing the

order of integration in the two inner integrals and relying on (1), we obtain that the right-hand side of (52)

equals to

1

Γ
(

1−αi
2

) ∫
Ω∗

∫ bi

ai

(∂xifA) (x∗i , w) eA ei

∫ w

ai

(w − xi)−
1+αi

2 g(x) dxi dw dx
∗
i

=

∫
Ω

(∂xifA) (x) eA ei

(
I

1−αi
2

a+i
g

)
(x) dx. (53)

Hence, inserting (53) into (51) we conclude that∫
Ω

−
(
f CDαb−

)
(x) g(x) dx =

n∑
i=1

∑
A

∫
Ω

(∂xifA) (x) eA ei

(
I

1−αi
2

a+i
g

)
(x) dx. (54)

Applying now the classical Stokes formula (see [8]) to the right-hand side of (54) and applying (3), we get∫
Ω

−
(
f CDαb−

)
(x) g(x) dx =

n∑
i=1

∑
A

[∫
∂Ω

fA(x) eA dσ(x)

(
I

1−αi
2

a+i
g

)
(x)−

∫
Ω

fA(x) eA ei

(
∂xiI

1−αi
2

a+i
g

)
(x) dx

]

=

n∑
i=1

∫
∂Ω

f(x) dσ(x)

(
I

1−αi
2

a+i
g

)
(x) −

n∑
i=1

∫
Ω

f(x) ei

(
RL
a+i
∂

1+αi
2

xi g

)
(x) dx.

Therefore, from (49) we obtain the following fractional Stokes formula∫
Ω

[
−
(
f CDαb−

)
(x) g(x) + f(x)

(
RLDαa+g

)
(x)
]
dx =

∫
∂Ω

f(x) dσ(x) (Iαa+g) (x),

where (Iαa+g) (x) =

n∑
i=1

(
I

1−αi
2

a+i
g
)

(x).

�

We notice that the Stokes’s formula in the classical Clifford analysis setting has the form∫
Ω

[(f D) (x) g(x) + f(x) (D g) (x)] dx =

∫
∂Ω

f(x) dσ(x) g(x) , (55)

where D is the Euclidean Dirac operator. However, in the fractional Clifford analysis setting we obtain a more

complicatedly kind of “double duality” relation. On the one hand the formula involves both the Caputo and

Riemann-Liouville derivatives, and on the other hand it also involves left and right derivatives. It is also possible

to obtain other versions of the fractional Stokes’s formula. For example, if we consider in (51) the operator
RLDαa+ then we obtain the following alternative version of the Stokes’s formula:∫

Ω

[(
f RLDαa+

)
(x) g(x)− f(x)

(
CDαb−g

)
(x)
]
dx =

∫
∂Ω

(Iαa+f) (x) dσ(x) g(x).
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Before we deduce our fractional Borel-Pompeiu formula, we need to understand the behaviour of the fractional

Dirac operator CDαb− when the argument of the function f in (50) is translated and reflected. Denoting the

translation operator by Tθ f(y) := f(θ + y) and the reflection operator by Ry f(y) := f(−y), and applying

the definitions of the right and left Caputo fractional derivatives presented in (6) and (5) we can deduce the

following relation (where the derivative is with respect to the variable y):

(f(θ − y))CDα(θ−a)− = (TθRy f(y))CDα(θ−a)− = −TθRy
(
f(y)CDαa+

)
= −

(
f CDαa+

)
(θ − y). (56)

Replacing f by CGα+(x + a − y) in (50) and integrating with respect to the variable y, we obtain the following

fractional Borel-Pompeiu formula and fractional Cauchy’s integral formula.

Corollary 4.2 Let g ∈ AC1(Ω) ∩ AC(Ω). Then the following fractional Borel-Pompeiu formula holds

−
∫

Ω

CGα+(x+ a− y)
(
RLDαa+g

)
(y) dy +

∫
∂Ω

CGα+(x+ a− y) dσ(y) (Iαa+g) (y) = g(x). (57)

Moreover, if g ∈ ker
(
RLDαa+

)
, then we obtain the fractional Cauchy’s integral formula∫

∂Ω

CGα+(x+ a− y) dσ(y) (Iαa+g) (y) = g(x). (58)

Proof: Note that CGα+(y) is the fundamental solution of CDαa+ defined only for yi > ai, i = 1, . . . , n and satisfies(
CDαa+

CGα+
)

(y) = δ(y−a). First we replace f by CGα+(x+a−y) = Tx+aRy CGα+(y) in (50). Since CGα+(x+a−y)

is defined only for yi < xi, i = 1, . . . , n, due to translations and reflections, the operator CDαb− in (50) is replaced

by CDαx− . Thus, we have

−
∫

Ω

CGα+(x+ a− y) CDαx− g(y) dy +

∫
Ω

CGα+(x+ a− y)
(
RLDαa+g

)
(y) dy =

∫
∂Ω

CGα+(x+ a− y) dσ(y) (Iαa+g) (y).

Applying (56) with θ = x+ a, leads to∫
Ω

δ(x− y) g(y) dy +

∫
Ω

CGα+(x+ a− y)
(
RLDαa+g

)
(y) dy =

∫
∂Ω

CGα+(x+ a− y) dσ(y) (Iαa+g) (y).

The previous expression leads to the fractional Borel-Pompeiu formula

g(x) = −
∫

Ω

CGα+(x+ a− y)
(
RLDαa+g

)
(y) dy +

∫
∂Ω

CGα+(x+ a− y) dσ(y) (Iαa+g) (y).

Additionally, if g ∈ ker
(
RLDαa+

)
then the first integral of the right-hand side of the preceding expression is equal

to zero. Therefore, we arrive at the fractional version of Cauchy’s integral formula stated in (58).

�

As a consequence of the “double duality” mentioned previously it is possible to deduce alternative versions of

the previous Borel-Pompeiu formula.

Remark 4.3 In the case α = (1, . . . , 1), a = (0, . . . , 0), g1 ≡ 0, g0(x̂) = ‖x̂‖−(n−2) in (50), (57), and (58),

and taking into account that
(
CD1

b−g
)

(x) = − (Dg) (x),
(
RLD1

a+g
)

(x) = (Dg) (x), and
(
I0
b−g
)

(x) = g(x) we

obtain the classical Stokes formula (55), the Borel-Pompeiu formula, and Cauchy’s integral formula presented

in [8, Sect. 2.1] and [17, Sect. 3.2].

From (57) we may introduce the following definition.

Definition 4.4 Let g ∈ AC1(Ω). Then the linear integral operators(
CTαg

)
(x) = −

∫
Ω

CGα+(x+ a− y) g(y) dy (59)

and (
CFαg

)
(x) =

∫
∂Ω

CGα+(x+ a− y) dσ(y) (Iαa+g) (y) (60)

are called the fractional Teodorescu and Cauchy-Bitsadze operator, respectively.
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Remark 4.5 In the case α = (1, . . . , 1), a = (0, . . . , 0), g1 ≡ 0, and g0(x̂) = ‖x̂‖−(n−2), the operators CTα and
CFα coincide with the usual and well-known classical operators defined in [17, Def. 3.1, 3.25].

The previous definition allows us to rewrite (57) in the alternative form(
CTα RLDαa+g

)
(x) +

(
CFαg

)
(x) = g(x), x ∈ Ω.

Now we study some properties of the fractional integral operators CTα and CFα. We point out that in all

the forthcoming results the parameter p referring to the Lp-space belongs to the interval
]
1, 2

1−α∗

[
, with

α∗ = min1≤i≤n{αi}. This specific range of p results from the application of Theorem 2.6 to the fractional

integrals of order 1−αi
2 , with i = 1, . . . , n, that appear in the definition of the fractional differential operators.

Moreover, the parameter q of the Lq-space must be chosen such that q = 2p
2−(1−α∗)p , according to Theorem 2.6.

If α = (1, . . . , 1), then we conclude that p ∈]1,∞[ and q = p, as it occurs in the classical setting (see [17, Ch.3]).

Before we deduce two properties of the fractional integral operators (59) and (60), we need to understand the

behaviour of our fractional derivatives when the argument of the function over which we apply the derivatives

is only translated. Denoting the translation by Tθ f(x) := f(x+ θ), and using the definition of the left Caputo

fractional derivative presented in (5), we can deduce the following relation (where the derivative is with respect

to the variable x):(
CDα(−θ+a)+ f(x+ θ)

)
=
(
CDα(−θ+a)+ Tθ f(x)

)
= Tθ

(
CDαa+ f(x)

)
=
(
CDαa+ f

)
(x+ θ). (61)

Theorem 4.6 The fractional operator CTα is the right inverse of CDαa+ , i.e., for g ∈ Lp(Ω), with p ∈
]
1, 2

1−α∗

[
and

α∗ = min1≤i≤n{αi}, we have (
CDαa+

CTαg
)

(x) = g(x).

Proof: Note that CGα+(x) is the fundamental solution of CDαa+ defined only for xi > ai, i = 1, . . . , n and

satisfies
(
CDαa+

CGα+
)

(x) = δ(x− a). With respect to the variable x, the function CGα+(x+ a− y) is defined only

for xi > yi, i = 1, . . . , n, therefore, the operator CDαa+ is replaced by CDαy+ . Taking into account the definition

of CTα given in (59) and the relation (61) with θ = a− y, we obtain

(
CDαa+

CTαg
)

(x) = −
∫

Ω

CDαy+
CGα+(x+ a− y) g(y) dy

= −
∫

Ω

CDαy+
(
Ta−y CGα+(x)

)
g(y) dy

= −
∫

Ω

Ta−y
(
CDαa+

CGα+(x)
)
g(y) dy

= −
∫

Ω

Ta−y δ(x− a) g(y) dy

= −
∫

Ω

δ(x− y) g(y) dy

= g(x).

�

In a similar way as in [18], we introduce the fractional Sobolev space Wα,p
a+ (Ω), specifically adapted to our

problem, with the norm ‖·‖Wα,p

a+
(Ω) given by

‖f‖pWα,p

a+
(Ω) := ‖f‖pLp(Ω) +

n∑
k=1

∥∥∥∥ C
a+k
∂

1+αk
2

xk f

∥∥∥∥p
Lp(Ω)

,

where ‖ · ‖Lp(Ω) is the usual Lp-norm in Ω, and α = (α1, . . . , αn), with αk ∈ ]0, 1], k = 1, . . . , n.
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Theorem 4.7 The fractional operator CFα maps W
α− 1

p ,p

a+ (∂Ω)−functions to functions belonging to the kernel

of CDαa+ , i.e., the fractional operator CFα satisfies
(
CDαa+

CFαg
)

(x) = 0, for every g ∈ W
α− 1

p ,p

a+ (∂Ω), with

p ∈
]
1, 2

1−α∗

[
and α∗ = min1≤i≤n{αi}.

Proof: By the same reasonings used Theorem 4.6, we have from (60) that

(
CDαa+

CFαg
)

(x) =

∫
∂Ω

CDαy+
CGα+(x+ a− y) dσ(y) (Iαa+g) (y)

=

∫
∂Ω

CDαy+
(
Ta−y CGα+(x)

)
dσ(y) (Iαa+g) (y)

=

∫
∂Ω

Ta−y
(
CDαa+

CGα+(x)
)
dσ(y) (Iαa+g) (y)

=

∫
∂Ω

Ta−y δ(x− a) dσ(y) (Iαa+g) (y)

=

∫
∂Ω

δ(x− y) dσ(y) (Iαa+g) (y)

= 0.

Note that the validity of the last equality is due to the fact that x ∈ Ω and y ∈ ∂Ω, i.e., the difference x− y is

always non-zero.

�

Now we present some mapping properties of the fractional operators CTα and CFα.

Theorem 4.8 The operator CTα is bounded from Lp(Ω) to Lp(Ω), with p ∈
]
1, 2

1−α∗

[
and α∗ = min1≤i≤n{αi}.

Proof: Under the previous conditions, and in view of the Young’s inequality for convolutions (see Theorem

1.4 in [26]) and Theorem 3.9, we obtain∥∥CTαg∥∥
Lp(Ω)

=
∥∥CGα+ ∗ g∥∥Lp(Ω)

≤
∥∥CGα+∥∥L1(Ω)

‖g‖Lp(Ω) ,

which leads to our result.

�

Remark 4.9 Considering α = (1, . . . , 1), a = (0, . . . , 0), g1 ≡ 0, and g0(x̂) = ‖x̂‖−(n−2) we obtain Theorem

3.9 in [17].

Now we want to study the derivatives of CTα. Before we do that we present an auxiliar result where we calculate

the partial fractional derivatives of CGα+.

Theorem 4.10 The partial fractional derivatives of the fundamental solution CDαa+ are given by(
C
a+1
∂

1+α1
2

x1

CGα+
)

(x) = e1

[
(x1 − a1)−(1+α1)E1+α1,−α1

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g0(x̂)

+(x1 − a1)−α1 E1+α1,1−α1

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g1(x̂)

]
+

n∑
i=2

ei

[
(x1 − a1)−

1+α1
2 E

1+α1,
1−α1

2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
C
a+i
∂

1+αi
2

xi g0(x̂)

+(x1 − a1)
1−α1

2 E
1+α1,

3−α1
2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
C
a+i
∂

1+αi
2

xi g1(x̂)

]
, (62)
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and for k = 2, . . . , n(
C
a+k
∂

1+αk
2

xk
CGα+

)
(x) = e1

[
(x1 − a1)−

1+α1
2 E

1+α1,
1−α1

2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
C
a+k
∂

1+αk
2

xk g0(x̂)

+ (x1 − a1)
1−α1

2 E
1+α1,

3−α1
2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
C
a+k
∂

1+αk
2

xk g1(x̂)

]

+

n∑
i=2

ei

[
E1+α1,1

(
−(x1 − a1)1+α1 C∆̂α

a+

)
C
a+k
∂

1+αk
2

xk
C
a+i
∂

1+αi
2

xi g0(x̂)

+ (x1 − a1)E1+α1,2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
C
a+k
∂

1+αk
2

xk
C
a+i
∂

1+αi
2

xi g1(x̂)

]
. (63)

Proof: Let us start with the proof of (62). Applying the operator C
a+1
∂

1+α1
2

x1 to CGα+ and relying on (13) we

obtain the expression (62). Concerning (63) the deduction is even more direct because the operator C
a+k
∂

1+αk
2

xk

only acts on the functions g0 and g1.

�

Let us now study the derivatives of CTα.

Theorem 4.11 Let g ∈ Lq(Ω), with q = 2p
2−(1−α∗)p , p ∈

]
1, 2

1−α∗

[
, and α∗ = min1≤i≤n{αi}. The fractional

partial derivatives of CTα with respect to xk satisfy the mapping property

C
a+k
∂

1+αk
2

xk

(
CTαg

)
: Lq(Ω) −→ Lq(Ω), k = 1, 2, . . . , n.

Proof: Since for k = 1, . . . , n we have(
C
a+k
∂

1+αk
2

xk
CTαg

)
(x) = −

∫
Ω

C
y+k
∂

1+αk
2

xk
CGα+(x+ a− y) g(y) dy

= −
∫

Ω

C
y+k
∂

1+αk
2

xk

(
Ta−y CGα+(x)

)
g(y) dy

= −
∫

Ω

Ta−y
(

C
a+k
∂

1+αk
2

xk
CGα+(x)

)
g(y) dy, (64)

then to study the derivatives of the operator CTα it suffices to study the convolution terms (64) (see [24]). The

expression for the kernel of this convolution corresponds to the expressions (62) and (63). These kernels can be

proved to be L1-functions in a similar way as it was done in the proof of Theorem 3.8, with g0 and g1 like in

Theorem 3.8. This fact, combined with Young’s inequality for convolutions (see Theorem 1.4 in [26]), leads to∥∥∥∥ C
a+k
∂

1+αk
2

xk

(
CTαg

)∥∥∥∥
Lq(Ω)

=

∥∥∥∥( C
a+k
∂

1+αk
2

xk
CGα+

)
∗ g
∥∥∥∥
Lq(Ω)

≤
∥∥∥∥ C
a+k
∂

1+αk
2

xk
CGα+

∥∥∥∥
L1(Ω)

‖g‖Lq(Ω)

which in turn implies our result.

�

Remark 4.12 Considering α = (1, . . . , 1), a = (0, . . . , 0), g1 ≡ 0, and g0(x̂) = ‖x̂‖−(n−2) the previous theorem

reduces to Theorem 3.8 in [17].

Theorems 4.8 and 4.11 allow us to prove the continuity of CTα.

Theorem 4.13 Let q = 2p
2−(1−α∗)p , p ∈

]
1, 2

1−α∗

[
, and α∗ = min1≤i≤n{αi}. The operator CTα : Lq(Ω) →

Wα,q
a+ (Ω) is continuous.

This result can be obtained as direct consequence of Theorem 4.8 and Theorem 4.11 and, therefore, we omit a

detailed proof. Now we study the mapping properties of CFα.

16



Theorem 4.14 Let q = 2p
2−(1−α∗)p , p ∈

]
1, 2

1−α∗

[
, and α∗ = min1≤i≤n{αi}. The operator CFα acts continu-

ously on W
α− 1

p ,p

a+ (∂Ω), more precisely, the operator

CFα : W
α− 1

p ,p

a+ (∂Ω)→Wα,q
a+ (Ω) ∩ ker

(
CDαa+

)
is continuous.

Proof: For a function f ∈ W
α− 1

p ,p

a+ (∂Ω) we can find a function g ∈ Wα,q
a+ (Ω) such that g = CFαf . Next,

by the Borel-Pompeiu formula (57) we may infer that CFαf =
(
I − CTα RLDαa+

)
g. In view of the continu-

ity of CTα and the fact that for a function g ∈ Wα,q
a+ (Ω) we have RLDαa+g ∈ Wα,q

a+ (Ω), and hence we con-

clude that (I − CTαRLDαa+)g ∈ Wα,q
a+ (Ω). By Theorem 4.6 and Theorem 4.7 we have 0 = CDαa+

CFαf =(
CDαa+(I − CTαRLDαa+)

)
g. This in turn implies that g = CFαf ∈ Wα,q

a+ (Ω) ∩ ker( CDαa+) for a function

g ∈Wα,q
a+ (Ω).

�

Remark 4.15 Considering α = (1, . . . , 1), a = (0, . . . , 0), g1 ≡ 0, and g0(x̂) = ‖x̂‖−(n−2) we have that

ker
(
CDαa+

)
reduces to ker (D) as it happens in [17].

5 Hodge-type decomposition

The aim of this section is to obtain a Hodge-type decomposition and to present an immediate application of

this decomposition for the resolution of boundary value problems involving the fractional Laplace operator. To

realize this we need first the following lemma.

Lemma 5.1 Let u be in L1(Ω), and v has a summable fractional derivative
(
C
a+1
∂1+α1
x1

v
)

(x) in the variable x1,

and belongs to I1+αi
a+i

(L1) in the variables xi, with i = 2, . . . , n. The solution v(x) of the Poisson equation

C∆α
a+v(x) = u(x) (65)

is given in the operator form by

v(x) = E1+α1,1

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g0(x̂) + (x1 − a1)E1+α1,2

(
−(x1 − a1)1+α1 C∆̂α

a+

)
g1(x̂)

+

∞∑
m=0

(
− C∆̂α

a+

)m (
I

(1+α1)(m+1)

a+1
u
)

(x), (66)

where the functions g0 and g1 are the Cauchy initial conditions given by

g0(x̂) = v(a1, x̂) and g1(x̂) = v′x1
(a1, x̂). (67)

Proof: The proof follows the same reasoning of the deduction of (33). Applying successively the fractional

integrals I
1+αj

a+j
, with j = 1, . . . , n, to both sides of (65), applying Fubini’s theorem, and rearranging the terms,

we get I1+α1

a+1

n∑
k=2

n∏
j=2
j 6=k

I
1+αj

a+j
v

 (x) +

 n∏
j=2

I
1+αj

a+j
v

 (x)

=

 n∏
j=2

I
1+αj

a+j
g0

 (x̂) + (x1 − a1)

 n∏
j=2

I
1+αj

a+j
g1

 (x̂) +

 n∏
j=1

I
1+αj

a+j
u

 (x), (68)

where g0 and g1 are the Cauchy initial conditions given in (67). Applying the (n − 1)-dimensional Laplace

transform with respect to x̂ = (x2, . . . , xn) to (68), taking into account the relations (24)-(28), and multiplying

by
∏n
p=2 s

1+αp
p we obtain the following second kind homogeneous integral equation of Volterra type:

V(x1, ŝ) +

∑n
p=2 s

1+αp
p

Γ(1 + α1)

∫ x1

a1

(x1 − t)α1 V(t, ŝ) dt = G(x1, ŝ) +
(
I1+α1

a+1
U
)

(x1, ŝ), (69)
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where G(x1, ŝ) = G0(ŝ) + (x1 − a1)G1(ŝ) and Gk(ŝ) = L {gk} (s) with k = 0, 1. Using (16), we have that the

unique solution of (69) in the class of summable functions is:

V(x1, ŝ) = G(x1, ŝ)−
∑n
p=2 s

1+αp
p

Γ(1 + α1)

∫ x1

a1

(x1 − t)α1E1+α1,1+α1

(
−(x1 − t)1+α1

n∑
p=2

s1+αp
p

)
G(t, ŝ) dt

+
(
I1+α1

a+1
U
)

(x1, ŝ)−
∑n
p=2 s

1+αp
p

Γ(1 + α1)

∫ x1

a1

(x1 − t)α1E1+α1,1+α1

(
−(x1 − t)1+α1

n∑
p=2

s1+αp
p

) (
I1+α1

a+1
U
)

(x1, ŝ) dt.

(70)

The first two terms in (70) coincide with (30) and are equal to (31) with λ = 0. Concerning the last two terms

in (70), due the convergence of the integrals and the series, we can interchange them and rewrite them in the

following way (in the calculations we make a change of the order of integration):

(
I1+α1

a+1
U
)

(x1, ŝ) +

+∞∑
k=0

(
−
∑n
p=2 s

1+αp
p

)k+1

Γ((1 + α1)k + 1 + α1)

∫ x1

a1

U(w, ŝ)

∫ x1

w

(x1 − t)(1+α1)k+α1 (t− w)α1 dt dw

=
(
I1+α1

a+1
U
)

(x1, ŝ) +

+∞∑
k=0

(
−
∑n
p=2 s

1+αp
p

)k+1

Γ((1 + α1)k + 2(1 + α1))

∫ x1

a1

(x− w)(1+α1)k+2α1+1 U(w, ŝ) dw

=
(
I1+α1

a+1
U
)

(x1, ŝ) +

+∞∑
k=0

(
−

n∑
p=2

s1+αp
p

)k+1 (
I

(1+α1)(k+2)

a+1
U
)

(x1, ŝ)

=
(
I1+α1

a+1
U
)

(x1, ŝ) +

+∞∑
m=1

(
−

n∑
p=2

s1+αp
p

)m (
I

(1+α1)(m+1)

a+1
U
)

(x1, ŝ)

=

+∞∑
m=0

(
−

n∑
p=2

s1+αp
p

)m (
I

(1+α1)(m+1)

a+1
U
)

(x1, ŝ). (71)

Hence, from (71) and (31) (with λ = 0) we can rewrite (70) as

V(x1, ŝ) =

+∞∑
m=0

(−1)m

(∑n
p=2 s

1+αp
p

)m
Γ((1 + α1)m+ 1)

(x1 − a1)(1+α1)mG0(ŝ)

+

+∞∑
m=0

(−1)m

(∑n
p=2 s

1+αp
p

)m
Γ((1 + α1)m+ 2)

(x1 − a1)(1+α1)m+1 G1(ŝ)

+

+∞∑
m=0

(
−

n∑
p=2

s1+αp
p

)m (
I

(1+α1)(m+1)

a+1
U
)

(x1, ŝ). (72)

It remains to invert the Laplace transform. Using (32) and after straightforward calculations, we obtain,

V(x1, ŝ) =

∞∑
k=0

(−1)k
(x1 − a1)k(1+α1)

Γ((1 + α1)k + 1)

(
C∆̂α

a+

)k
g0(x̂) +

∞∑
k=0

(−1)k
(x1 − a1)(1+α1)k+1

Γ((1 + α1)k + 2)

(
C∆̂α

a+

)k
g1(x̂)

+

+∞∑
m=0

(
−

n∑
p=2

s1+αp
p

)m
I

(1+α1)(m+1)

a+1
u(x) (73)

which corresponds to our result.

�

Theorem 5.2 Let q = 2p
2−(1−α∗)p , p ∈

]
1, 2

1−α∗

[
, and α∗ = min1≤i≤n{αi}. The space Lq(Ω) admits the

following direct decomposition

Lq(Ω) = Lq(Ω) ∩ ker
(
CDαa+

)
⊕ CDαa+

( ◦
Wα,p
a+ (Ω)

)
, (74)
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where
◦

Wα,p
a+ (Ω) is the space of functions g ∈Wα,p

a+ (Ω) such that tr(g) = 0. Moreover, we can define the following

projectors

CPα : Lq(Ω)→ Lq(Ω) ∩ ker
(
CDαa+

)
, CQα : Lq(Ω)→ CDαa+

( ◦
Wα,p
a+ (Ω)

)
.

Proof: By (− C∆α
a+)−1

0 we denote the unique operator solution for the problem (cf. Lemma 5.1){
− C∆α

a+f = u, in Ω

f = 0, on ∂Ω
(75)

which is given by (66) with v(x) = f(x) and g0(x̂) = 0.

As a first step we take a look at the intersection of the two spaces that appear in the decomposition. Let

f ∈
[
Lq(Ω) ∩ ker( CDαa+)

]
∩ CDαa+

( ◦
Wα,p
a+ (Ω)

)
. We directly see that CDαa+f = 0, in Ω. Moreover, since

f ∈ CDαa+
( ◦
Wα,p
a+ (Ω)

)
, there exists a function g ∈

◦
Wα,p
a+ (Ω) with CDαa+ g = f and C∆α

a+ g = 0. From the

uniqueness of (− C∆α
a+)−1

0 we obtain that g = 0. Consequently, f = 0 in Ω. Hence, the intersection of these

subspaces only contains the zero function, which implies that the sum is direct.

Now, let f ∈ Lq(Ω) and f2 such that

f2 := CDαa+ (− C∆α
a+)−1

0
CDαa+f ∈

CDαa+
( ◦
Wα,p
a+ (Ω)

)
.

Applying CDαa+ to the function f1 := f − f2, we get

CDαa+f1 = CDαa+f −
CDαa+f2

= CDαa+f −
CDαa+

CDαa+
(
− C∆α

a+

)−1

0
CDαa+f

= CDαa+f −
(
− C∆α

a+

) (
− C∆α

a+

)−1

0
CDαa+f

= CDαa+f −
CDαa+f = 0,

i.e., f1 ∈ ker
(
CDαa+

)
. Since f ∈ Lq(Ω) was arbitrarily chosen our decomposition is a direct decomposition of

the space Lq(Ω).

�

Remark 5.3 When α = (1, . . . , 1) we have that q = p and p ∈]1,+∞[. For the particular case of p = 2 the

decomposition is orthogonal (see Theorem 3.75 in [17]).

We end this section by presenting an immediate application of our results.

Theorem 5.4 Let p ∈
]
1, 2

1−α∗

[
, and α∗ = min1≤i≤n{αi}. Consider g ∈ W 2+α,p

a+ (Ω). The unique solution of

the problem {
C∆α

a+f = g, in Ω

f = 0, on ∂Ω

is given by f = −CTα CQα CTαg.

Proof: The proof is based on applying the properties of the operator CTα and of the projector CQα. Since
CTα is the right inverse of CDαa+ , we get

C∆α
a+ f = CDαa+

CDαa+
CTα CQα CTα g = CDαa+

CQα CTα g = CDαa+
CTα g = g.

�
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6 Conclusion

In this work we presented a generalization of several results of the classical continuous Clifford function theory

developed in [17] in the context of fractional Clifford analysis. Our results can be regarded as a starting point for

future works. Due to the “double duality” indicated previously, some of the previous results admit alternative

versions, for instance, for the operator RLDαa+ . Moreover, it is desirable to obtain an explicit expression for the

fundamental solutions finding appropriate functions g0 and g1. This can be done considering adequate series

expansions in the neighbourhood of a. This will be subject for future work.
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