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Summary 

This document proposes two scalable point cloud (PC) geometry codecs, submitted to the JPEG Call for 

Evidence on Point Cloud Coding (PCC) [1], notably targeting two different types of scalability:  

1) Resolution Scalable Deep Learning-based Point Cloud Geometry Coding (RS-DLPCC) [2]: This 

codec provides scalability on the number of points, called here resolution scalability; since the 

scalable layers are independently coded, this codec also offers multiple description coding, i.e. all 

layers by themselves offer useful PC reconstructions, which is a very interesting feature for error 

resilience, e.g. limiting the effect of packet losses in specific layers, etc.  

2) Quality Scalable Deep Learning-based Point Cloud Geometry Coding (QS-DLPCC) [3]: This 

codec provides quality scalability using layer dependent coding, meaning that decoding a layer 

requires decoding the previous layers as well, thus not offering multiple description coding.  

The proposed scalable codecs are based on recent developments in deep learning-based PC geometry coding 

(ADL-PCC) [4], and offer the key functionalities targeted by the JPEG Call for Evidence, notably number of 

points or resolution scalability, quality scalability, and spatial random access.  

The proposed RS-DLPCC and QS-DLPCC coding solutions offer a compression efficiency that is rather 

competitive with the MPEG G-PCC standard [5], whereas the non-scalable version (ADL-PCC) of the 

proposed codecs is able to achieve significant RD performance gains over the G-PCC standard. Nevertheless, 

since these are some of the first (if not the first) deep learning-based scalable geometry coding solutions in 

the literature, the proposed scalable codecs shall be regarded more as a proof of concept as it is clear that 

substantial performance improvements may be expected in the future. 

The proposed RS-DLPCC solution has been recently published at the IEEE International Workshop on 

Multimedia Signal Processing (MMSP’2020) and should be referenced as: 

A. F. R. Guarda, N. M. M. Rodrigues, F. Pereira, “Deep Learning-based Point Cloud Geometry Coding with 

Resolution Scalability”, IEEE International Workshop on Multimedia Signal Processing (MMSP’2020), 

Tampere, Finland, September 2020.  

As for the proposed QS-DLPCC solution, it has been recently published at the IEEE International Conference 

on Image Processing (ICIP’2020) and should be referenced as: 

A. F. R. Guarda, N. M. M. Rodrigues, F. Pereira, “Point Cloud Geometry Scalable Coding With a Single 

End-to-End Deep Learning Model”, IEEE International Conference on Image Processing (ICIP’2020), Abu 

Dhabi, United Arab Emirates, October 2020.  

The non-scalable ADL-PCC solution has been recently submitted to the IEEE Journal of Selected Topics in 

Signal Processing (J-STSP) as: 

A. F. R. Guarda, N. M. M. Rodrigues, F. Pereira, “Adaptive Deep Learning-based Point Cloud Geometry 

Coding”, submitted to IEEE Journal of Selected Topics in Signal Processing (J-STSP).  

This proposal is focused on geometry coding only. However, for the purpose of subjective evaluation as 
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defined in the JPEG Call for Evidence, G-PCC coded color has been added to the RS-DLPCC decoded 

geometry after appropriate recoloring.  
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PART I – Non-Scalable PC Geometry Codecs 

To better understand the proposed scalable codecs, this first part of the document provides a description of 

the non-scalable deep learning PC geometry coding solution which serves as the basis for RS-DLPCC and 

QS-DLPCC. A brief description of the current state-of-the-art, non-scalable coded (Adaptive DL-PCC, or 

ADL-PCC) will also be presented and used later as a performance benchmark. 

1. DL-based PC Geometry Coding 

This first section describes the basic non-scalable deep learning-based point cloud geometry coding (DL-

PCC) solution which will be the core of the following DL-based codecs. The proposed scalable codecs (RS-

DLPCC and QS-DLPCC), described in detail in later sections, are extensions of this solution, in particular 

by using different variations of the DL coding model in order to provide scalability.  

1.1 High-level Description 

The overall architecture of the DL-PCC codec is presented in Fig. 1, with the various modules briefly 

described as follows: 

• Encoder: 

o PC Block Partitioning: The PC is divided into disjoint 3D blocks of the target size, which are 

coded separately for random access; 

o Deep Learning (DL)-based Block Encoding: Each block is encoded with an end-to-end DL 

coding model, which uses the architecture presented in Fig. 2. It can be compared to a typical 

transform coding approach, using in this case a convolutional autoencoder to learn a non-linear 

transform. The transform generates a set of coefficients, referred to as the latent representation, 

which are then quantized in the form of a simple rounding, and finally entropy coded. A learned 

adaptive entropy model is used, estimated via a variational autoencoder [6]; 

• Decoder: 

o DL-based Block Decoding: Blocks are decoded using the decoder counterpart of the DL-based 

block encoder mentioned before (see Fig. 2); 

o PC Block Merging: The decoded blocks are merged to reconstruct the full PC. 
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Fig. 1. Overall architecture of the non-scalable DL-PCC codec. 

 

Fig. 2. End-to-end deep DL-based coding model architecture. Green blocks are encoder-only, blue blocks are 

decoder-only, and orange blocks are both encoder and decoder [2]. 

1.2 Detailed Description of each Architecture Module 

Each of the modules presented in Fig. 1 is described here in more detail. 

1.2.1 PC Block Partitioning/Merging 

Before encoding, the PC geometry (3D coordinates) is converted into a binary, voxel-based 3D block 

representation, where voxels may be occupied or not; in practice, a ‘1’ signals a filled voxel while a ‘0’ 

signals an empty voxel. This voxel-based representation defines a regular structure that allows the use of 

convolutional neural networks (CNNs), similarly to image and video data; an example is shown in Fig. 3.  
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Fig. 3. Example of conversion from 3D PC coordinates to a 3D block of binary voxels. 

Considering this new representation, a straightforward way to organize a PC is to divide it into disjoint blocks 

of a specific size, in this case 64×64×64, which can then be coded separately with a DL coding model. The 

position of each single 3D block is transmitted to the decoder. 

At the decoder side, given the decoded blocks and their position, the full PC is reconstructed by merging the 

blocks accordingly. 

1.2.2 DL-based Block Encoding and Decoding 

This section presents the adopted DL-based PC geometry coding solution acting at block-level. Based on 

successful CNN architectures for image coding [6], the adopted end-to-end DL coding model is presented in 

Fig. 2. The full architecture can be divided into four main coding stages as follows: 

1. Autoencoder – The convolutional autoencoder (AE) transforms the input block into a latent 

representation with lower dimensionality, in a way comparable to the transform coding stage in traditional 

image coding. This latent representation can be considered the transform coefficients, and consists of 

multiple feature maps, which number depends on the chosen number of filters for the convolutional layers 

to learn. The AE consists of six 3D convolutional layers: the first three layers, corresponding to the 

encoder side, apply the so-called direct transform; likewise, the last three layers, corresponding to the 

decoder side, apply the so-called inverse transform. Each convolutional layer consists of 32 filters with 

5×5×5 support, resulting in 520000 weights plus 129 biases, totaling 520129 trainable parameters. 

2. Conditional Entropy Bottleneck – A conditional entropy bottleneck layer from the Tensorflow 

compression library [6] is used to quantize (using a simple rounding operation) and then entropy code the 

block latent representation. This bottleneck uses a Gaussian scale mixture conditioned on a hyperprior as 

the entropy coding model. During training, this layer estimates the entropy of the latent representation 

according to the entropy coding model, which is used for the rate-distortion (RD) optimization process. 

At coding time, a range encoder is used to create the block bitstream.  

1 

0 
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3. Variational Autoencoder – A variational autoencoder (VAE) is used to capture possible structure 

information still present in the block latent representation, which is then used as a hyperprior for the 

conditional entropy bottleneck. This way, the entropy coding model parameters can be more accurately 

estimated and adapted for each coded block. In this process, the VAE generates its own latent 

representation, which also has to be coded and transmitted in the bitstream as additional side information 

to the decoder, so that the entropy coding model parameters can be replicated at the decoder. The VAE 

has a similar design to the AE, with each convolutional layer consisting of 32 filters with 3×3×3 support, 

resulting in 165888 weights plus 160 biases, totaling 166048 trainable parameters. 

4. Entropy Bottleneck – Similar to the conditional entropy bottleneck, this entropy bottleneck quantizes 

and entropy codes the VAE latent representation. However, it uses a fixed entropy coding model for all 

blocks instead of an adaptive one, which is learned during training. To learn this entropy coding model, 

1472 trainable parameters are used. As all the components of the end-to-end DL coding model are jointly 

trained, the additional side information rate is compensated by reducing the rate associated with the 

latents, thus optimizing the overall RD performance.  

The total number of trainable parameters in the full DL coding model is 687649.  

At the decoder side, each block is decoded with the DL coding model shown in Fig. 2. The “Side Info 

Bitstream” is decoded to generate the entropy coding model parameters used for the current block, so that its 

“Bitstream” can finally be decoded. 

1.3 DL Coding Model Training 

In order to achieve efficient compression performance, the DL coding model from Fig. 2 was trained by 

minimizing a loss function that considers both the distortion of each decoded block as well as its estimated 

coding rate. For this purpose, the loss function follows a traditional formulation involving a Lagrangian 

multiplier, λ, given by: 

𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 +  𝜆 × 𝐶𝑜𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒. (1) 

DL-based codecs typically require training a different DL coding model for each target RD point, which is 

accomplished by varying the 𝜆 parameter in Equation (1). 

As described in Section 1.2.1, a voxel-based representation was adopted to process the PCs. Thus, for the DL 

coding model, the input data is a block of binary voxels, and the decoded data represents a probability score 

between ‘0’ and ‘1’ for each voxel, i.e. the probability of each voxel being filled. With this in mind, the block 

distortion is measured at voxel level as a binary classification error using the so-called Focal Loss (FL) [7], 

defined as follows: 

𝐹𝐿(𝑣, 𝑢) = {
−𝛼(1 − 𝑣)𝛾 log 𝑣 , 𝑢 = 1

−(1 − 𝛼)𝑣𝛾 log(1 − 𝑣) , 𝑢 = 0
 , (2) 

where 𝑢 is the original voxel binary value and 𝑣 is the corresponding decoded voxel probability score. A 

weight parameter, α, is used to control the class imbalance effect since the number of ‘0’ valued voxels in a 

block is vastly superior to the number of ‘1’ valued voxels. The parameter γ allows increasing the importance 
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of correcting misclassified voxels in relation to improving the classification score of already correct voxels; 

γ=2 was found to be appropriate. 

The DL coding model is trained using a selection of static PCs from the MPEG Point Cloud Compression 

(PCC) dataset [8] (naturally, always different from the test PCs). The selected PCs were down-sampled to a 

precision of 9 or 10 bit, according to the MPEG PCC Common Test Conditions (CTC) [8], and then 

partitioned into blocks of size 64×64×64, as described in Section 1.2.13.2.1. The blocks with less than 500 

‘filled’ voxels have been removed in order to avoid the blocks with such low point count which could 

negatively affect the training, due to the increased class imbalance. Overall, 6000 blocks were used in the 

training process. 

Implementation and training are done in Tensorflow version 1.14, using the Tensorflow Compression library 

[6] version 1.2. For training, the Adam algorithm [9] is used with a learning rate of 10-4 and minibatches of 

8 blocks during 106 steps. 

2. Adaptive DL-based PC Geometry Coding 

The basic DL-PCC solution has been further improved by introducing a DL coding model selection 

mechanism allowing the codec to adapt to different PC characteristics by using multiple trained DL coding 

models. This solution, named adaptive DL-PCC (ADL-PCC), will serve as benchmark to assess the current 

cost of scalability for the proposed scalable codecs, thus demonstrating the potential of DL-based coding. 

2.1 High-level Description 

In this non-scalable ADL-PCC solution, multiple DL coding models have been trained using the same 

architecture of Fig. 2, but with training parameters suited for different PC characteristics, e.g. density. At 

coding time, each block is encoded and decoded with each DL coding model, so that the best model can be 

chosen for each block. The overall ADL-PCC architecture is presented in Fig. 4, with the various modules 

briefly described as follows: 

• Encoder: 

o PC Block Partitioning: The PC is divided into disjoint 3D blocks of the target size, which are 

coded separately for random access; 

o DL-based Block Encoding and Reconstruction: Each block is encoded with several available 

DL coding models; 

o DL Coding Model Selection: After encoding and decoding the block for each DL coding model, 

the reconstructions are evaluated to select the model which produces the best compression 

performance, i.e. adapts better to the specific block characteristics; the selected model is signaled 

in the bitstream to the decoder; 

• Decoder: 
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o DL-based Block Decoding/Reconstruction: Blocks are decoded using the 

corresponding/signaled DL coding models, with the decoder counterpart of the DL-based block 

encoder mentioned before; 

o PC Block Merging: The decoded blocks are merged to reconstruct the PC. 

 

Fig. 4. Overall architecture of the non-scalable ADL-PCC codec [4]. 

The main ADL-PCC novelty when compared to DL-PCC is the module DL Coding Model Selection, which 

is described in the following subsection. 

2.2 DL Coding Model Selection 

Considering a given number of trained DL coding models Nmodels, the characteristics of each PC block are 

addressed in an adaptive way, by selecting the best from the available DL coding models, with the following 

procedure: 

• Block Reconstruction: The block under consideration is coded with all the available Nmodels DL coding 

models; the various block reconstructions are then obtained and converted to PC coordinates for quality 

assessment; 

• Rate and Distortion Assessment: The distortion between the original and the decoded blocks is assessed 

with a PC objective distortion metric, e.g. the point-to-point distance (D1); the number of bits per input 

point required by each DL coding model (rate) is determined; 

• RD-based DL Coding Model Selection: The DL coding model providing the block reconstruction with 

the lowest RD cost is selected; 
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• Selected DL Coding Model Signaling: The selected DL coding model for each block is signaled to the 

decoder by using a dedicated symbol in the Signaling Bitstream. This symbol stream is coded with an 

adaptive arithmetic codec, using adaptive probability tables, which are updated as each block is processed. 

2.3 DL Coding Model Training  

All the DL coding models used by ADL-PCC were trained in the same conditions as described in Section 1.3 

for DL-PCC, with the exception of a few parameters. Five RD points were obtained by training models with 

𝜆=500, 900, 1500, 5000 and 20000. In addition, for each RD point, multiple DL coding models were trained 

for different PC characteristics. With Nmodels =5, five models were trained for each RD point for α=0.5, 0.6, 

0.7, 0.8 and 0.9. Larger α values are more suited to sparse PCs, while smaller α values perform better for 

denser PCs. 
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PART II – Scalable PC Geometry Codecs 

The second part of this document describes the core of this proposal, notably the scalable PC geometry 

codecs. Both proposed scalable codecs are based on the basic, non-scalable DL-PCC solution presented 

above. 

3. Resolution Scalable DL-based PC Geometry Coding 

This section describes the first proposed scalable PC geometry codec (for additional details, please refer to 

[2]). Based on the non-scalable DL-PCC codec, the RS-DLPCC solution offers scalability on the number of 

points by using interlaced sampling to generate interlaced blocks that can be coded with the DL coding model 

from Fig. 2. The various scalable layers are independently coded, thus effectively offering multiple 

description coding which goes beyond scalable coding and may be useful for specific application domains.   

3.1 High-level Description of the Proposal 

The overall architecture of the proposed RS-DLPCC codec is presented in Fig. 5; moreover, the various 

modules are briefly described as follows: 

• Encoder: 

o Interlaced Blocks Creation: The PC is first divided into large disjoint (super-)blocks; each super-

block is further divided by applying interlaced sampling, thus generating up to 8 interlaced blocks 

for each super-block, which are coded separately; 

o DL-based Block (En)Coding: Each interlaced block is coded with the DL coding model 

described in Section 1.2.2; 

o Block Coding Order Optimization: After encoding the interlaced blocks within a super-block, 

the order by which they are attributed to each consecutive scalable layer is determined by 

minimizing the accumulated RD cost at each layer; 

• Decoder: 

o DL-based Block (De)Coding: The interlaced blocks within each super-block, forming the 

different scalability layers, are progressively decoded with the DL coding model (from Fig. 2), 

yielding a fully (or partially) reconstructed PC. 
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Fig. 5. Overall architecture of the proposed RS-DLPCC solution [2]. 

3.2 Detailed Description of each Architecture Module 

Each of the modules presented in Fig. 5 is described here in more detail. 

3.2.1 Interlaced Blocks Creation 

As described in Section 1.2.1, a voxel-based 3D block representation is used. However, given the resolution 

scalability goal, it is proposed to divide the PC into interlaced blocks. This interlaced approach allows to 

successively increase the number of decoded points (i.e., the PC density) with each new decoded scalable 

layer, which is very effective from a subjective quality point of view. The interlaced blocks are obtained as 

follows: 

1. Division into Disjoint Super-blocks – The PC is first divided into disjoint blocks, referred as super-

blocks, here with size 128×128×128; other sizes may be used depending on the random access needs.   

2. Interlaced Sub-sampling of Super-blocks – Using interlaced sub-sampling with a sampling factor of 2 

in each 3D direction, each (128×128×128) super-block is divided into smaller blocks, here with the target 

size of 64×64×64. An example of interlaced sampling is shown in Fig. 6, where the coding blocks are 

half the size of the super-blocks in each spatial dimension.  

 

Fig. 6. Example of interlaced sampling with sampling factor of 2 in each 3D direction. A super-block of 4×4×4 

samples results into 8 blocks, each with 2×2×2 samples [2]. 
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This PC representation approach arranges the full PC into several super-blocks, each with up to 8 interlaced 

blocks, thus enabling resolution scalability with up to 8 scalable layers, as demonstrated in Fig. 7. Each 

interlaced block is independently coded with the DL-based coding solution described in Section 1.2.2. 

Additionally, the position of each super-block is transmitted to the decoder. 

 

 

Fig. 7. Example of disjoint and interlaced blocks for the same super-block: (a) 128×128×128 super-block; (b) 

disjoint division into eight 64×64×64 blocks, four of which are empty; (c) the four disjoint occupied blocks obtained 

from (b); (d) the eight 64×64×64 interlaced blocks obtained from (a) [2]. 

3.2.2 DL-based Block Coding 

The adopted end-to-end DL coding model for the RS-DLPCC solution is the same as the one presented in 

Fig. 2 for the DL-PCC solution. However, in this case, a single trained DL coding model is used to code all 

scalable layers of the proposed scalable coding solution. 

3.2.3 Block Coding Order Optimization 

In a resolution scalable context, at each layer, only one block in each super-block is decoded and added to 

the reconstructed PC, independently of the other blocks. Although the coding order of the blocks within a 

super-block does not impact the reconstruction quality at the last scalable layer, experiments have shown that 

the block coding order has an impact on the quality of the intermediate decoded layers. When decoding layers 

following a raster order, points are added along one spatial dimension at a time, meaning that there will be 

gaps in the other dimensions in intermediate layers, which will result in larger distances/errors. 

With this in mind, after encoding all blocks with the end-to-end DL coding model, the best coding order for 

the 8 interlaced blocks constituting each super-block is determined by sequentially adding the block that most 
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reduces the accumulated distortion at each layer. This block coding order optimization only considers the 

accumulated distortion at each layer since it has been observed that the rate for all interlaced blocks within a 

super-block tends to be very similar; this approach allows reducing the overall coding complexity since no 

rate has to be computed for this optimization. An example of the benefit of an optimized coding order is 

shown in Fig. 8. 

 

Fig. 8. Example of raster vs optimized layer decoding order. 

3.2.4 DL-based Block (De)Coding 

At the decoder side, each block is decoded with the DL coding model shown in Fig. 2. The PC is reconstructed 

by progressively decoding each layer of blocks, thus increasing the total number of decoded points and 

reconstructing an increasingly denser and richer PC. In fact, since blocks, and therefore layers, are coded 

independently and each offers a meaningful PC (what does not necessarily happen in all scalable coding 

solutions), RS-DLPCC can also be regarded as a multiple description coding solution. 

3.3 DL Coding Model Training  

For this RS-DLPCC proposal, the same loss function and a similar training process as for DL-PCC were used. 

In this case, only one model was trained using α=0.7, and λ=500 since this was found to provide a good RD 

trade-off, although not equally good for all PC densities. For the training dataset, interlaced blocks were used 

instead of disjoint blocks.  

3.4 Scalability and Random Access Requirements 

The proposed RS-DLPCC codec meets the JPEG Call for Evidence requirements due to the following 

features: 

• Random Access: The PC is divided into super-blocks, which are coded independently. Since the 

positions of the coded super-blocks are transmitted to the decoder, this allows the user to choose decoding 

only selected regions of the PC, thus providing spatial random access. 

• Number of Points Scalability: Within each super-block, its interlaced blocks are also coded separately, 

making it possible to decode only a subset of the interlaced blocks, while still allowing to reconstruct a 

Raster order Optimized order 

Layers 

Q
u
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it
y
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meaningful PC, although with fewer points. Then, the remaining interlaced blocks can be progressively 

decoded, adding points to the reconstructed PC, thus providing scalability on the number of points, as 

shown in Fig. 9. 

 

Fig. 9. Example of number of points scalability. The number of points increases with each decoded layer, thus also 

improving quality. 

The full bitstream encapsulates: 

• Super-block positions; 

• Interlaced block coding order for the blocks within each super-block; 

• Separate and identifiable sub-streams for all blocks within each super-block, consisting of the 

“Bitstream” and “Side Info Bitstream” obtained from the DL coding  model shown in Fig. 2. 

4. Quality Scalable DL-based PC Geometry Coding 

This section describes the second proposed scalable codec, QS-DLPCC, which offers quality scalability. For 

additional details, please refer to [3]. 

4.1 High-level Description of the Proposal 

The overall architecture of the proposed QS-DLPCC codec is presented in Fig. 10. This codec is also based 

on the previously described DL-PCC, with the addition of progressive coding of the latent values and a quality 

scalability control mechanism. QS-DLPCC shares the same DL coding model design described in Fig. 2, 

adapted for the proposed quality scalability control.  

 

1st Layer  …   3rd Layer   …   5th Layer 
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Fig. 10. Overall architecture of the proposed QS-DLPCC solution [3]. 

The various modules presented in Fig. 10 can be briefly described as follows: 

• Encoder: 

o Division into 3D Blocks: The PC is divided into disjoint blocks of the target size, which are coded 

separately; 

o AE Encoder: Each block is encoded with an end-to-end DL coding model, which uses an 

architecture similar to the one in Fig. 2. The core step is once again an autoencoder, which 

transforms the input block into a latent representation; 

o Latent Feature Map Splitting: The latent representation, consisting of multiple feature maps, is 

divided and grouped into different layers, to be coded separately. This approach introduces the 

capability of performing quality scalability; 

o Quantization and Entropy Coding: The feature maps in each layer are then quantized and 

entropy coded, using the same DL-PCC approach (see Section 1.2.2); 

• Decoder: 

o Entropy Decoding and Inverse Quantization: The bitstream is decoded to generate the feature 

maps in each layer; 

o Latent Feature Map Grouping: At each layer, its feature maps are grouped with the feature 

maps from the previously decoded layers; 

o AE Decoder: At each layer, the available feature maps are used to decode the block, with the 

inverse transform; 

o 3D Blocks Merging: At each scalability layer, the decoded blocks are merged to reconstruct the 

PC. 

4.2 Detailed Description of each Architecture Module 
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Each of the modules presented in Fig. 10 is described here in more detail. 

4.2.1 Division into 3D Blocks & 3D Blocks Merging 

Just like for the non-scalable codec (DL-PCC), the PC geometry (3D coordinates) is converted into a binary, 

voxel-based 3D block representation, as described in Section 1.2.1. The PC is then divided into disjoint blocks 

of size 64×64×64. Each block is independently coded with a DL-based coding solution, similar to the one 

described in Section 1.2.2, albeit with some differences to allow scalability, as described in the following 

sections. The position of each block is transmitted to the decoder so that, at the decoder, the decoded blocks 

may be merged to form the reconstructed PC. 

4.2.2 AE Encoder & AE Decoder 

The first step of the adopted DL-based PC geometry coding solution is the convolutional autoencoder (AE). 

Its design is the same as for the DL-PCC codec: 6 convolutional layers, each consisting of 32 filters with 

5×5×5 support, resulting in 520000 weights plus 129 biases, totaling 520129 trainable parameters. 

Given an input block of size 64×64×64, the AE encoder transforms it into a latent representation consisting 

of 32 feature maps of size 8×8×8, as detailed in Fig. 11. 

 

Fig. 11. Autoencoder design of the proposed QS-DLPCC solution. The number of filters (NF) was set to 32 [3]. 

4.2.3 Latent Feature Map Splitting & Latent Feature Map Grouping 

After obtaining the full latent representation, this module implements the key feature of appropriately 

managing the latents to obtain a scalable PC geometry representation, thus allowing scalable/progressive 

decoding. At the encoder, the latent representation is split into several layers of feature maps to be separately 

encoded, thus multiple layer sub-streams are obtained after entropy coding. 

In this proposal, 4 layers were defined, with a feature map distribution of 3, 5, 8 and 16 from the first to the 

last layer, respectively. While results for this proposal are presented considering these layer configurations, 

it is worth noting that the number of layers and the distribution of feature maps can be customized depending 

on the desired application requirements. 

At the decoder side, these layers can be consecutively decoded, allowing to obtain four quality levels without 

the need to decode the entire representation/bitstream. The progressive decoding process is exemplified in 
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Fig. 12, and it can be described by the following stages:  

• The sub-stream of the 1st layer, consisting of 3 feature maps, is entropy decoded; since the AE decoder 

requires 32 feature maps, the missing 29 are padded with zeros; the padded latent representation is 

given to the AE decoder, which reconstructs the block with a low quality. 

• The sub-stream of the 2nd layer, consisting of 5 feature maps, is entropy decoded; these feature maps 

are grouped with the ones decoded in the 1st layer; the missing 24 feature maps are padded with zeros; 

the padded latent representation is given to the AE decoder, which reconstructs the block with slightly 

better quality. 

• The sub-stream of the 3rd layer, consisting of 8 feature maps, is entropy decoded; these feature maps 

are grouped with the ones decoded in the previous two layers; the missing 16 feature maps are padded 

with zeros; the padded latent representation is given to the AE decoder, which reconstructs the block 

with improved quality. 

• The sub-stream of the 4th layer, consisting of the last 16 feature maps, is entropy decoded; these are 

grouped with the ones decoded in the previous three layers; the complete latent representation is 

given to the AE decoder, which reconstructs the block with the best quality. 

                  

Fig. 12. Example of splitting and grouping of the feature maps in encoder and decoder, respectively. 

4.2.4 Quantization and Entropy Coding & Entropy Decoding and Inverse Quantization 

The quantization and entropy coding approach is the same as the one used for the non-scalable DL-PCC 

codec, described in Section 1.2.2. However, in this case, instead of using a single Variational autoencoder 

(VAE) for all 32 feature maps of the complete latent representation, four separate VAEs are used, one for 

each scalable layer individually: 
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• 1st layer: the VAE consists of 6 convolutional layers, each learning 3 filters with 3×3×3 support, 

resulting in 1458 weights plus 15 biases; to learn the entropy model (Entropy bottleneck in Section 

1.2.2), 138 trainable parameters are used; 

• 2nd layer: the VAE consists of 6 convolutional layers, each learning 5 filters with 3×3×3 support, 

resulting in 4050 weights plus 25 biases; to learn the entropy model (Entropy bottleneck in Section 

1.2.2), 230 trainable parameters are used; 

• 3rd layer: the VAE consists of 6 convolutional layers, each learning 8 filters with 3×3×3 support, 

resulting in 10368 weights plus 40 biases; to learn the entropy model (Entropy bottleneck in Section 

1.2.2), 368 trainable parameters are used; 

• 4th layer: the VAE consists of 6 convolutional layers, each learning 16 filters with 3×3×3 support, 

resulting in 41472 weights plus 80 biases; to learn the entropy model (Entropy bottleneck in Section 

1.2.2), 736 trainable parameters are used. 

The number of trainable parameters of a convolutional layer (not to be confused with the scalable layer) is 

dependent on the number of input data channels, the number of filters (output channels), and the filter support 

size (weights = input channels × filter support × filters; bias = filters). As for the number of parameters to 

learn the entropy model, it is directly dependent on the number of filters. For this reason, since each scalable 

layer has a different number of feature maps/filters, the number of trainable parameters is also different.  

A single trained DL coding model is used to code all scalable layers of the proposed progressive coding 

solution. The total number of trainable parameters in the full DL coding model is 579109. 

4.3 DL Coding Model Training  

Similar to the previous codec, the DL coding model used in the QS-DLPCC codec was trained by minimizing 

a RD loss function. However, in this solution all four scalable layers were trained jointly, meaning that a RD 

term is minimized for each layer. The loss function is thus given by: 

𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑖 +  𝜆𝑖 × 𝐶𝑜𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑖

4

𝑖=1

. (3) 

It is important to select appropriate 𝜆𝑖 values, since they can significantly impact the RD performance. Similar 

𝜆𝑖 values for two layers may cause the RD performance to be the same, thus effectively eliminating one 

scalable layer, which is undesirable. Since the base layer must offer a low bitrate, 𝜆1 should be largest, to 

obtain an initial rough PC reconstruction. As the layers progress, 𝜆𝑖 should be reduced to allow more rate to 

encode latter feature maps, so that the AE can learn additional features with latter filters, thus achieving 

successively higher quality with every layer. For this proposal, using 𝜆𝑖=20000, 4000, 1000 and 100 were 

found to be appropriate values. As for the distortion metric, the Focal Loss [7] was also used with α=0.7 

however, for sparse PCs, larger values are preferable, e.g. α=0.9. Similar to DL-PCC and ADL-PCC, training 

data was divided into disjoint blocks.  

4.4 Scalability and Random Access Requirements 
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The proposed QS-DLPCC codec meets the JPEG Call for Evidence requirements due to the following 

features: 

• Random Access: Just as for the DL-PCC codec, the PC is divided into disjoint blocks, which are coded 

independently. Since the positions of the coded blocks are transmitted to the decoder, this allows the user 

to choose decoding only selected regions of the PC, thus providing spatial random access. 

• Quality Scalability: For each block, the latent representation (i.e. the transform coefficients) is divided 

into different layers that are coded separately, making it possible to decode only part of the latent 

representation, allowing to reconstruct a meaningful PC, albeit with lower quality. The latent 

representation can be progressively decoded, generating more and more refined reconstructions with each 

layer, as shown in Fig. 13. 

 

Fig. 13. Example of quality scalability. The reconstructed PC becomes more refined with each decoded layer, 

increasing quality. 

The full bitstream encapsulates: 

• Block positions; 

• Separate and identifiable sub-streams for all blocks, consisting of the “Bitstream” and “Side Info 

Bitstream” obtained from the DL coding model. 

5. Performance Assessment 

To assess the performance of the proposed scalable coding solutions, the JPEG test PCs were coded following 

the CTC defined for the JPEG Call for Evidence on Point Cloud Coding [10].  

5.1 Test Material 

The test material used for the assessment of the proposed scalable codecs consists of 8 PCs, including people 

(full bodies and upper bodies) as well as inanimate objects. This dataset was made available in the context of 

1st Layer                  2nd Layer                  3rd Layer                  4th Layer 
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the JPEG Call for Evidence on Point Cloud Coding [10], and is presented in Fig. 14. 

    

            (a) Bumbameuboi                           (b) Guanyin                            (c) Rhetorician              (d) Romanoillamp  

    

                (e) Phil                                              (f) Ricardo                                (g) Longdress              (h) Soldier 

Fig. 14. Example rendering for the test PCs. 

5.2 RD Performance Results: Tables 

For each scalable/progressive layer, the JPEG recommended geometry quality metrics – point-to-point 

(PSNR D1), point-to-plane (PSNR D2) and plane-to-plane angular similarity (MSE AS) – were computed.  

The key results, i.e. number of decoded points (Out Points), number of bytes to code the geometry (Geo 

Bytes), bits per geometry input point (Geo bpp), and objective quality metrics for geometry, for each RD 

point and for each test PC, are detailed in Table I and Table II for RS-DLPCC and QS-DLPCC, respectively. 
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Table I. RS-DLPCC coding results, at different RD points, for each test PC. 

Point Cloud 
In 

Points 

RD 

Point 

Out 

Points 

Geo 

Bytes 

Geo 

bpp 

PSNR 

D1 

PSNR 

D2 

MSE 

AS 

Bumbameuboi 113160 

R01 16344 45281 3.201 47.957 66.551 0.567 

R02 31203 88121 6.230 51.065 68.048 0.578 

R03 46013 131139 9.271 52.957 68.848 0.591 

R04 60101 173461 12.263 54.305 69.607 0.606 

R05 73740 215077 15.205 55.384 69.969 0.622 

R06 86673 256654 18.144 56.290 70.013 0.637 

R07 99265 297454 21.029 57.096 70.024 0.655 

R08 110997 337436 23.855 57.757 70.030 0.669 
   

 
     

Guanyin 2297852 

R01 369006 85901 0.299 59.230 69.971 0.842 

R02 714638 168782 0.588 65.305 72.062 0.896 

R03 1081832 254093 0.885 66.394 73.035 0.908 

R04 1436507 337845 1.176 67.562 73.092 0.916 

R05 1801637 422968 1.473 68.684 73.109 0.918 

R06 2155293 506551 1.764 70.114 73.118 0.920 

R07 2501924 589250 2.051 70.387 73.106 0.921 

R08 2851054 672564 2.342 70.361 73.077 0.923 
   

 
     

Longdress 857966 

R01 134776 32266 0.301 62.214 70.168 0.863 

R02 265807 63829 0.595 65.502 71.699 0.907 

R03 400028 95756 0.893 66.511 72.712 0.919 

R04 531394 127279 1.187 67.642 73.750 0.928 

R05 665280 159117 1.484 68.758 73.760 0.932 

R06 798191 190753 1.779 70.228 73.755 0.934 

R07 929315 222269 2.073 70.831 73.766 0.936 

R08 1061100 253838 2.367 70.817 73.752 0.938 
   

 
     

Phil 356258 

R01 56054 12001 0.269 56.748 62.991 0.837 

R02 110175 23349 0.524 59.546 64.849 0.871 

R03 165793 34944 0.785 60.471 65.820 0.879 

R04 220232 46371 1.041 61.437 66.888 0.887 

R05 275694 57923 1.301 62.500 67.332 0.889 

R06 330543 69350 1.557 63.857 67.339 0.891 

R07 384529 80724 1.813 64.120 67.350 0.893 

R08 439073 92144 2.069 64.106 67.328 0.895 
   

 
     

Rhetorician 1764588 
R01 285865 66934 0.303 61.681 70.157 0.853 

R02 562068 132464 0.601 65.323 71.784 0.902 
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R03 845633 198742 0.901 66.400 72.797 0.914 

R04 1122369 264231 1.198 67.553 73.094 0.922 

R05 1405170 330446 1.498 68.650 73.108 0.924 

R06 1684737 396256 1.796 70.073 73.121 0.926 

R07 1961188 461836 2.094 70.203 73.126 0.928 

R08 2239320 527297 2.391 70.186 73.110 0.929 
   

 
     

Ricardo 1414040 

R01 221608 43435 0.246 62.862 68.879 0.851 

R02 436162 85407 0.483 65.665 70.800 0.883 

R03 656572 128153 0.725 66.577 71.960 0.891 

R04 873021 170455 0.964 67.538 73.380 0.899 

R05 1092521 212974 1.205 68.609 73.731 0.901 

R06 1309399 255314 1.444 69.993 73.739 0.903 

R07 1523615 297200 1.681 70.371 73.748 0.905 

R08 1739816 339176 1.919 70.354 73.728 0.906 
   

 
     

Romanoillamp 638071 

R01 117260 37504 0.470 59.351 71.133 0.805 

R02 229806 74161 0.930 63.823 72.678 0.905 

R03 345049 111118 1.393 65.420 73.047 0.924 

R04 456687 147693 1.852 66.860 73.036 0.935 

R05 571815 184583 2.314 67.940 73.062 0.940 

R06 683247 221230 2.774 68.479 73.080 0.943 

R07 795735 257870 3.233 68.475 73.071 0.945 

R08 908199 294310 3.690 68.459 73.046 0.947 
   

 
     

Soldier 1089091 

R01 172101 41611 0.306 62.254 70.239 0.864 

R02 339563 82292 0.604 65.545 71.675 0.906 

R03 510993 123432 0.907 66.547 72.580 0.917 

R04 677998 164045 1.205 67.663 73.753 0.925 

R05 848530 205121 1.507 68.780 73.765 0.930 

R06 1017803 245951 1.807 70.251 73.770 0.933 

R07 1184791 286658 2.106 70.797 73.777 0.935 

R08 1352547 327281 2.404 70.784 73.762 0.937 

 

Table II. QS-DLPCC coding results, at different RD points, for each test PC. 

Point Cloud 
In 

Points 

RD 

Point 

Out 

Points 

Geo 

Bytes 

Geo 

bpp 

PSNR 

D1 

PSNR 

D2 

MSE 

AS 

Bumbameuboi 113160 

R01 305286 33072 2.338 45.128 62.480 0.550 

R02 374799 61120 4.321 47.140 64.617 0.575 

R03 321028 182749 12.920 55.422 70.660 0.669 
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R04 389317 452218 31.970 64.124 72.151 0.709 
         

Guanyin 2297852 

R01 3126253 58177 0.203 67.849 69.843 0.851 

R02 2960283 159006 0.554 70.176 73.106 0.919 

R03 2811976 265875 0.926 71.308 74.792 0.941 

R04 2662705 709478 2.470 72.843 76.820 0.962 
   

      

Longdress 857966 

R01 1165557 22487 0.210 68.248 70.462 0.870 

R02 1087195 61112 0.570 70.624 73.845 0.931 

R03 1037178 99865 0.931 71.624 75.282 0.947 

R04 977774 265100 2.472 73.320 77.423 0.967 
   

      

Phil 356258 

R01 459195 8815 0.198 61.989 64.706 0.816 

R02 435346 22533 0.506 64.186 67.732 0.892 

R03 422084 36694 0.824 65.158 69.068 0.917 

R04 411515 94234 2.116 66.341 70.598 0.942 
   

      

Rhetorician 1764588 

R01 2426829 46805 0.212 67.743 69.950 0.859 

R02 2327674 127218 0.577 69.772 72.804 0.923 

R03 2213386 211187 0.957 70.705 74.109 0.941 

R04 2085923 562896 2.552 72.333 76.410 0.963 
   

      

Ricardo 1414040 

R01 1828147 32094 0.182 68.348 71.192 0.835 

R02 1735765 82851 0.469 70.243 73.832 0.899 

R03 1695908 135176 0.765 71.010 74.892 0.919 

R04 1658598 352250 1.993 72.008 76.192 0.944 
   

      

Romanoillamp 638071 

R01 871880 24686 0.310 62.373 70.059 0.854 

R02 1071201 66936 0.839 67.467 72.413 0.931 

R03 1016506 113266 1.420 67.956 73.307 0.943 

R04 945745 313758 3.934 69.049 75.827 0.964 
   

      

Soldier 1089091 

R01 1488172 28926 0.212 68.353 70.675 0.871 

R02 1388370 78785 0.579 70.594 73.874 0.931 

R03 1321438 128894 0.947 71.618 75.325 0.948 

R04 1244676 339062 2.491 73.292 77.422 0.968 

5.3 RD Performance Results: RD Charts and BD-PSNR 

The RD performance results for RS-DLPCC and QS-DLPCC are plotted as RD charts and compared with 

the G-PCC and V-PCC (Intra) anchors in Fig. 15, using the three previously mentioned geometry objective 
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quality metrics. The results for the ADL-PCC non-scalable solution are also presented in Fig. 15, to allow 

for a RD performance comparison and the assessment of the RD penalty cost introduced by the use of 

scalability (keeping in mind that these scalable coding solutions are the first scalable designs made and better 

performing designs are expected in the future).  

To summarize the results, Table III shows the Bjontegaard-Delta PSNR (BD-PSNR) gains for each solution, 

using G-PCC Trisoup as the reference codec, since it is the one showing the poorest RD performance. For 

many cases, mostly for ADL-PCC, the intersection of quality ranges between the RD curves is rather short, 

or even non-existing; in these situations, the computation of the BD-Rate savings is unreliable or not possible 

at all, and thus BD-Rate results are not shown together with BD-PSNR. 
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Fig. 15. RD performance for the proposed RS-DLPCC and QS-DLPCC solutions, in comparison with non-scalable 

ADL-PCC, and the V-PCC and G-PCC anchors. Each row corresponds to a different test PC. From left to right: 

PSNR D1, PSNR D2 and MSE AS geometry quality metrics. The dashed vertical line marks the lossless bitrate 

achieved with G-PCC Octree. 

Table III. Bjontegaard-Delta PSNR gains between the DL-based solutions using G-PCC Trisoup as reference. The 

best results are presented in bold, and the second best in italic. 

 
BD-PSNR D1 (dB) BD-PSNR D2 (dB)  

ADL-PCC RS-DLPCC QS-DLPCC ADL-PCC RS-DLPCC QS-DLPCC 

Bumbameuboi 2.979 0.135 -1.824 0.976 1.159 -1.510 

Guanyin 4.630 -3.928 2.449 4.973 1.305 2.250 

Longdress 4.685 -3.186 2.435 5.308 0.804 2.547 

Phil 7.099 0.063 5.952 5.224 0.769 3.688 

Rhetorician 4.215 -3.175 2.045 4.645 1.054 1.899 

Ricardo 5.146 -1.792 3.429 5.464 0.396 3.489 

Romanoillamp 1.602 -4.067 -0.377 3.701 1.930 1.571 

Soldier 4.977 -3.162 2.461 5.683 0.742 2.579 

Average 4.417 -2.389 2.071 4.497 1.020 2.064 

The key observation is that both ADL-PCC and QS-DLPCC show substantial quality gains regarding G-PCC 

Trisoup while this is not the case for RS-DLPCC which shows quality losses, very much related to the 

independent coding of the scalable layers. 

The dashed vertical line indicates the rate for which G-PCC Octree achieves lossless coding, thus clearly 

indicating that lossy compression performance on the right side of that line may not be very meaningful.  

5.4 Number of Decoded Points 

Fig. 16 plots the number of decoded points for each coding solution. These charts are very illustrative of the 

meaning of number of points scalability. 
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Fig. 16. Evolution of the number of points decoded, for every rate point, for the proposed RS-DLPCC and QS-

DLPCC solutions, the non-scalable ADL-PCC, and the V-PCC and G-PCC anchors. The dashed horizontal line 

marks the original number of input points. 

The key observation is the good resolution scalability offered by G-PCC Octree and RS-DLPCC solutions 

while ADL-PCC and QS-PCC start with a large number of decoded points to approach later the original 

number of decoded points. Interestingly, V-PCC does not have a large variation on the number of decoded 

points for the various RD points. 

5.5 Analysis of the Results 

From the full set of performance results included in the previous subsections, it is possible to observe and 
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conclude: 

ADL-PCC versus MPEG Benchmarks 

• ADL-PCC achieves significant compression gains when compared with both G-PCC codecs, at 

medium and high bitrates. 

• Moreover, ADL-PCC has often RD performance comparable or just below V-PCC Intra, thus 

demonstrating the great potential of DL-based PC coding solutions. 

RS-DLPCC versus MPEG Benchmarks 

• The RS-DLPCC RD performance is comparable to G-PCC performance of both Trisoup and Octree, 

with fluctuations depending on the G-PCC method and the input PC features, e.g. density; however, 

this also largely depends on the used geometry objective quality metric. 

• Compared with V-PCC, however, RS-DLPCC performs considerably worse. 

• The RS-DLPCC performance is significantly poorer for the PSNR D1 quality metric than for the 

other quality metrics, mainly for the first scalable layers. This is due to the very low number of 

decoded points at early layers, as shown in Fig. 16. This mismatch with the number of points in the 

reference PC results in a large error distance when directly measuring the distance between 

neighboring points. As such, this metric alone may not be appropriate to measure the performance of 

coding solutions with number of points scalability, notably for the first layers. 

• The RS-DLPCC performance improves for the PSNR D2 and MSE AS metrics, notably for the first 

layers, outperforming G-PCC Trisoup in many situations. These quality metrics seem to be more 

robust to differences on the number of points between the reference and decoded PCs, since they 

measure the error considering the surface formed by the points. 

• The number of points decoded at each RS-DLPCC layer increases linearly, since each layer contains 

approximately the same number of interlaced blocks and points. 

QS-DLPCC versus MPEG Benchmarks 

• The QS-DLPCC performance is competitive with that of both G-PCC anchors, achieving significant 

compression gains in most cases. 

• QS-DLPCC is still fairly below V-PCC, but in some cases it achieves a close performance. 

• While for most PCs the trained DL coding model with α=0.7 (from Equation 2) provides very good 

results, for the sparse Bumbameuboi PC the performance is poor, leading to a rather low number of 

decoded points. This is because the α parameter strongly influences the number of decoded points 
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and its ideal value is very dependent on the PC density/sparsity. By training a DL coding model with 

α=0.9 instead, the performance for Bumbameuboi is significantly improved. 

• The QS-DLPCC solution is highly customizable, in the sense that the DL coding model can be trained 

for different combinations of the parameters that control the scalability: the number of layers, and 

the distribution of feature maps per layer. By fine tuning these parameters, this solution can further 

improve RD performance. 

QS-DLPCC versus RS-DLPCC 

• Overall, QS-DLPCC considerably outperforms RS-DLPCC, with the largest gains being observed 

for the PSNR D1 quality metric. This codec does not present the issue of having a very small number 

of points at early layers, which would penalize results for PSNR D1. 

• QS-DLPCC tends to decode a large number of points, especially at early layers, and approaches the 

original number of points at the last layer. This suggests that the α value from the focal loss (Equation 

(2)) used in training may not be the ideal one. Using an adaptive DL coding selection method with 

multiple trained DL coding models, similar to the one used in ADL-PCC, may be able to reduce the 

number of (unnecessary) points, ultimately improving the RD performance. 

• The key reason for the better QS-DLPCC performance seems to be related to the independent coding 

of the RS-DLPCC scalable layers; this allows concluding that there is a RD price to pay to obtain 

multiple description coding which may be a desired functionality for specific applications.    

Scalable (RS-DLPCC and QS-DLPCC) versus non-scalable (ADL-PCC) 

• There is still a significant RD performance penalty associated to the use of the scalable codecs as 

may be observed by comparing with the non-scalable ADL-PCC benchmark. It is expected that this 

RD penalty may be reduced in the future since RS- and QS-DLPCC are the first, certainly non-

optimum, DL-based scalable coding solutions which serve as a proof of concept. 

• The ADL-PCC results indicate that there is still a large margin of improvement for the scalable 

solutions and thus many improvements may still be obtained. For instance, there is still redundancy 

between the scalable layers that can be better exploited, and the DL coding model parameters can be 

better optimized according to the input PC characteristics. 

6. Color Coding  

This proposal is focused on PC geometry coding only, notably proposing the RS-DLPCC and QS-DLPCC 

solutions. It is worth noting that the proposed DL-based geometry scalable solutions can be extended to 

jointly code both geometry and color, for instance by adding the color information in separate channels to the 

binary 3D blocks that represent the geometry.  

However, the JPEG PCC CTC [10] only foresee subjective quality assessment for the proposals coding both 



                                                 ISO/IEC JTC 1/SC29/WG1M90019 
   90th Meeting, Online, January 2021 

 

 

 

- 32 - 

the geometry and color. Thus, to allow for some subjective quality assessment, the proponents decided to 

code the color with the G-PCC standard for the decoded geometry/points generated with the RS-DLPCC 

solution, after recoloring. This choice was determined by the limited time to code the texture and the interest 

in performing subjective assessment when the number of decoded points changes substantially as it happens 

for RS-DLPCC. 

In this context, the G-PCC standard was used for color coding, as follows: 

• Geometry is encoded and decoded with the proposed RS-DLPCC solution; 

• For each geometry scalable layer, the decoded points are recolored by transferring the color from the 

original input PC, considering the nearest neighboring point; 

• For each geometry scalable layer, the color for the recolored points is encoded with G-PCC, using 

the lossless geometry coding mode with Octree (so that the (decoded) geometry is not changed during 

color coding), and the Predlift color encoder, which has been reported to be superior to RAHT [10]. 

For G-PCC coding, the “MPEG PCC tmc13 version release-v7.0-0-g47cf663” reference software has been 

used, with the parameters described in the JPEG Pleno PCC CTC v3.3 [10] associated to the JPEG PCC Call 

for Evidence.  

The CTC specifies the following five target bitrates (with a ±10% tolerance) for the joint coding of geometry 

and color, to be evaluated in subjective tests: 

• R01: 0.10 bits per point (bpp); 

• R02: 0.35 bpp; 

• R03: 1.00 bpp; 

• R04: 2.00 bpp; 

• R05: 4.00 bpp. 

For color coding, the qp parameter was set for each PC and each rate point in order to achieve the target joint 

(geometry + color) bitrates specified in the CTC; the used qp values for the color are shown in Table IV. 

Table IV. G-PCC qp parameter values for color coding. 

Point Cloud R01 R02 R03 R04 R05 

Bumbameuboi - 46 46 34 28 

Guanyin - 46 46 34 28 

Longdress - 46 46 34 28 

Phil - 40 40 34 22 

Rhetorician - 40 40 28 19 
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Ricardo - 28 22 22 10 

Romanoillamp - 46 40 40 28 

Soldier - 40 40 28 22 

No results could be obtained for the first target rate point R01, corresponding to lower rate (0.1 bpp), for any 

test PC.  

For the remaining rate points, the obtained results are presented in Table V. Only the PSNR D2 geometry 

metric is shown since it is more suited to express the subjective quality of resolution scalable solutions; 

nonetheless, the results for all metrics are available in the supplemental results Excel file.  

It is important to note that, for the Bumbameuboi PC, the obtained bitrates surpassed the target bitrates by a 

significant margin, which may justify its exclusion from the subjective assessment experiment. This is largely 

due to the fact that this PC is very sparse and the current DL coding model parameters may not be optimal 

for this type of PC. This also reinforces the importance of having an adaptive coding solution as ADL-PCC. 

Likewise, for the Romanoillamp PC, the second rate point R02 could not be achieved, presenting a slightly 

larger bitrate. These cases are marked with color in Table V. 

Table V. RS-DLPCC geometry + G-PCC Predlift color coding results for the target rate points, for each test PC. 

Point Cloud 
RD 

Point 

Out 

Points 

Geo 

Bytes 

Color 

Bytes 

Total 

Bytes 
bpp 

PSNR 

D2 

PSNR 

Color 

Bumbameuboi 

R02 16344 45281 1273 46554 3.29 66.55 21.69 

R03 46013 131139 3200 134339 9.50 68.85 23.36 

R04 73740 215077 11126 226203 15.99 69.97 24.78 

R05 110997 337436 28566 366002 25.88 70.03 26.33 
         

Guanyin 

R02 369006 85901 11096 96997 0.34 69.97 25.57 

R03 1081832 254093 32625 286718 1.00 73.04 26.34 

R04 1801637 422968 174502 597470 2.08 73.11 27.82 

R05 2851054 672564 537709 1210273 4.21 73.08 29.54 
         

Longdress 

R02 134776 32266 5196 37462 0.35 70.17 25.52 

R03 400028 95756 14416 110172 1.03 72.71 26.48 

R04 665280 159117 65169 224286 2.09 73.76 28.22 

R05 1061100 253838 193271 447109 4.17 73.75 29.86 
         

Phil 

R02 56054 12001 3500 15501 0.35 62.99 28.98 

R03 165793 34944 9913 44857 1.01 65.82 29.94 

R04 275694 57923 24764 82687 1.86 67.33 31.20 

R05 439073 92144 101153 193297 4.34 67.33 32.87 
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Rhetorician 

R02 285865 66934 9623 76557 0.35 70.16 32.94 

R03 845633 198742 25520 224262 1.02 72.80 34.07 

R04 1405170 330446 99871 430317 1.95 73.11 35.69 

R05 2239320 527297 352948 880245 3.99 73.11 37.29 
  

     
 

 

Ricardo 

R02 221608 43435 13912 57347 0.32 68.88 40.94 

R03 656572 128153 62662 190815 1.08 71.96 42.25 

R04 1309399 255314 124759 380073 2.15 73.74 44.37 

R05 1739816 339176 336120 675296 3.82 73.73 45.09 
         

Romanoillamp 

R02 117260 37504 2249 39753 0.50 71.13 27.19 

R03 229806 74161 8968 83129 1.04 72.68 28.01 

R04 456687 147693 22292 169985 2.13 73.04 28.85 

R05 683247 221230 102091 323321 4.05 73.08 29.99 
         

Soldier 

R02 172101 41611 6617 48228 0.35 70.24 32.80 

R03 510993 123432 17926 141358 1.04 72.58 33.85 

R04 848530 205121 70680 275801 2.03 73.76 35.53 

R05 1352547 327281 194662 521943 3.83 73.76 37.06 

7. Submitted Materials 

This section lists the materials that constitute this proposal, notably: 

• JPEG document with textual description: 

o IT-IST-IPLeiria Response to Call for Evidence on JPEG.pdf 

• Excel file with complete results: 

o SupplementaryResults.xlsx  

• Source code/scripts of the decoder for the proposed scalable solutions (RS-DLPCC, and QS-DLPCC for 

2 different parameter α values): 

o 01_SourceCode/ 

• Bitstream files of the proposed scalable solutions (RS-DLPCC, and QS-DLPCC for 2 different parameter 

α values): 

o 02_Bitstream_Files/ 

• Decoded PCs with geometry only, obtained with the proposed scalable solutions (RS-DLPCC, and QS-



                                                 ISO/IEC JTC 1/SC29/WG1M90019 
   90th Meeting, Online, January 2021 

 

 

 

- 35 - 

DLPCC for 2 different parameter α values): 

o 03_Decoded_PCs_Geo/ 

• Decoded PCs with color for subjective assessment, with geometry obtained with the RS-DLPCC solution, 

and color with G-PCC Predlift: 

o 04_Decoded_PCs_Geo+Color/ 
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