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Summary

This document proposes two scalable point cloud (PC) geometry codecs, submitted to the JPEG Call for
Evidence on Point Cloud Coding (PCC) [1], notably targeting two different types of scalability:

1) Resolution Scalable Deep Learning-based Point Cloud Geometry Coding (RS-DLPCC) [2]: This
codec provides scalability on the number of points, called here resolution scalability; since the
scalable layers are independently coded, this codec also offers multiple description coding, i.e. all
layers by themselves offer useful PC reconstructions, which is a very interesting feature for error
resilience, e.g. limiting the effect of packet losses in specific layers, etc.

2) Quality Scalable Deep Learning-based Point Cloud Geometry Coding (QS-DLPCC) [3]: This
codec provides quality scalability using layer dependent coding, meaning that decoding a layer
requires decoding the previous layers as well, thus not offering multiple description coding.

The proposed scalable codecs are based on recent developments in deep learning-based PC geometry coding
(ADL-PCC) [4], and offer the key functionalities targeted by the JPEG Call for Evidence, notably number of
points or resolution scalability, quality scalability, and spatial random access.

The proposed RS-DLPCC and QS-DLPCC coding solutions offer a compression efficiency that is rather
competitive with the MPEG G-PCC standard [5], whereas the non-scalable version (ADL-PCC) of the
proposed codecs is able to achieve significant RD performance gains over the G-PCC standard. Nevertheless,
since these are some of the first (if not the first) deep learning-based scalable geometry coding solutions in
the literature, the proposed scalable codecs shall be regarded more as a proof of concept as it is clear that
substantial performance improvements may be expected in the future.

The proposed RS-DLPCC solution has been recently published at the IEEE International Workshop on
Multimedia Signal Processing (MMSP’2020) and should be referenced as:

A. F. R. Guarda, N. M. M. Rodrigues, F. Pereira, “Deep Learning-based Point Cloud Geometry Coding with
Resolution Scalability”, IEEE International Workshop on Multimedia Signal Processing (MMSP’2020),
Tampere, Finland, September 2020.

As for the proposed QS-DLPCC solution, it has been recently published at the IEEE International Conference
on Image Processing (ICIP°2020) and should be referenced as:

A. F. R. Guarda, N. M. M. Rodrigues, F. Pereira, “Point Cloud Geometry Scalable Coding With a Single
End-to-End Deep Learning Model ”, IEEE International Conference on Image Processing (ICIP°2020), Abu
Dhabi, United Arab Emirates, October 2020.

The non-scalable ADL-PCC solution has been recently submitted to the IEEE Journal of Selected Topics in
Signal Processing (J-STSP) as:

A. F. R. Guarda, N. M. M. Rodrigues, F. Pereira, “Adaptive Deep Learning-based Point Cloud Geometry
Coding ”, submitted to IEEE Journal of Selected Topics in Signal Processing (J-STSP).

This proposal is focused on geometry coding only. However, for the purpose of subjective evaluation as

_3-
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defined in the JPEG Call for Evidence, G-PCC coded color has been added to the RS-DLPCC decoded
geometry after appropriate recoloring.
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PART | — Non-Scalable PC Geometry Codecs

To better understand the proposed scalable codecs, this first part of the document provides a description of
the non-scalable deep learning PC geometry coding solution which serves as the basis for RS-DLPCC and
QS-DLPCC. A brief description of the current state-of-the-art, non-scalable coded (Adaptive DL-PCC, or
ADL-PCC) will also be presented and used later as a performance benchmark.

1. DL-based PC Geometry Coding

This first section describes the basic non-scalable deep learning-based point cloud geometry coding (DL-
PCC) solution which will be the core of the following DL-based codecs. The proposed scalable codecs (RS-
DLPCC and QS-DLPCC), described in detail in later sections, are extensions of this solution, in particular
by using different variations of the DL coding model in order to provide scalability.

1.1 High-level Description

The overall architecture of the DL-PCC codec is presented in Fig. 1, with the various modules briefly
described as follows:

e Encoder:

o PC Block Partitioning: The PC is divided into disjoint 3D blocks of the target size, which are
coded separately for random access;

o Deep Learning (DL)-based Block Encoding: Each block is encoded with an end-to-end DL
coding model, which uses the architecture presented in Fig. 2. It can be compared to a typical
transform coding approach, using in this case a convolutional autoencoder to learn a non-linear
transform. The transform generates a set of coefficients, referred to as the latent representation,
which are then quantized in the form of a simple rounding, and finally entropy coded. A learned
adaptive entropy model is used, estimated via a variational autoencoder [6];

e Decoder:

o DL-based Block Decoding: Blocks are decoded using the decoder counterpart of the DL-based
block encoder mentioned before (see Fig. 2);

o PC Block Merging: The decoded blocks are merged to reconstruct the full PC.
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Fig. 2. End-to-end deep DL-based coding model architecture. Green blocks are encoder-only, blue blocks are
decoder-only, and orange blocks are both encoder and decoder [2].

1.2 Detailed Description of each Architecture Module

Each of the modules presented in Fig. 1 is described here in more detail.

1.2.1 PC Block Partitioning/Merging

Before encoding, the PC geometry (3D coordinates) is converted into a binary, voxel-based 3D block
representation, where voxels may be occupied or not; in practice, a ‘1’ signals a filled voxel while a ‘0’
signals an empty voxel. This voxel-based representation defines a regular structure that allows the use of
convolutional neural networks (CNNs), similarly to image and video data; an example is shown in Fig. 3.
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Fig. 3. Example of conversion from 3D PC coordinates to a 3D block of binary voxels.

Considering this new representation, a straightforward way to organize a PC is to divide it into disjoint blocks
of a specific size, in this case 64x64x64, which can then be coded separately with a DL coding model. The
position of each single 3D block is transmitted to the decoder.

At the decoder side, given the decoded blocks and their position, the full PC is reconstructed by merging the
blocks accordingly.

1.2.2 DL-based Block Encoding and Decoding

This section presents the adopted DL-based PC geometry coding solution acting at block-level. Based on
successful CNN architectures for image coding [6], the adopted end-to-end DL coding model is presented in
Fig. 2. The full architecture can be divided into four main coding stages as follows:

1. Autoencoder — The convolutional autoencoder (AE) transforms the input block into a latent
representation with lower dimensionality, in a way comparable to the transform coding stage in traditional
image coding. This latent representation can be considered the transform coefficients, and consists of
multiple feature maps, which number depends on the chosen number of filters for the convolutional layers
to learn. The AE consists of six 3D convolutional layers: the first three layers, corresponding to the
encoder side, apply the so-called direct transform; likewise, the last three layers, corresponding to the
decoder side, apply the so-called inverse transform. Each convolutional layer consists of 32 filters with
5x5x5 support, resulting in 520000 weights plus 129 biases, totaling 520129 trainable parameters.

2. Conditional Entropy Bottleneck — A conditional entropy bottleneck layer from the Tensorflow
compression library [6] is used to quantize (using a simple rounding operation) and then entropy code the
block latent representation. This bottleneck uses a Gaussian scale mixture conditioned on a hyperprior as
the entropy coding model. During training, this layer estimates the entropy of the latent representation
according to the entropy coding model, which is used for the rate-distortion (RD) optimization process.
At coding time, a range encoder is used to create the block bitstream.



IECl " ISO/IEC JTC 1/5C29/'wG1M90019

d JPEG 90th Meeting, Online, January 2021

3. Variational Autoencoder — A variational autoencoder (VAE) is used to capture possible structure
information still present in the block latent representation, which is then used as a hyperprior for the
conditional entropy bottleneck. This way, the entropy coding model parameters can be more accurately
estimated and adapted for each coded block. In this process, the VAE generates its own latent
representation, which also has to be coded and transmitted in the bitstream as additional side information
to the decoder, so that the entropy coding model parameters can be replicated at the decoder. The VAE
has a similar design to the AE, with each convolutional layer consisting of 32 filters with 3x3x3 support,
resulting in 165888 weights plus 160 biases, totaling 166048 trainable parameters.

4. Entropy Bottleneck — Similar to the conditional entropy bottleneck, this entropy bottleneck quantizes
and entropy codes the VAE latent representation. However, it uses a fixed entropy coding model for all
blocks instead of an adaptive one, which is learned during training. To learn this entropy coding model,
1472 trainable parameters are used. As all the components of the end-to-end DL coding model are jointly
trained, the additional side information rate is compensated by reducing the rate associated with the
latents, thus optimizing the overall RD performance.

The total number of trainable parameters in the full DL coding model is 687649.

At the decoder side, each block is decoded with the DL coding model shown in Fig. 2. The “Side Info
Bitstream” is decoded to generate the entropy coding model parameters used for the current block, so that its
“Bitstream” can finally be decoded.

1.3 DL Coding Model Training

In order to achieve efficient compression performance, the DL coding model from Fig. 2 was trained by
minimizing a loss function that considers both the distortion of each decoded block as well as its estimated
coding rate. For this purpose, the loss function follows a traditional formulation involving a Lagrangian
multiplier, A, given by:

Loss Function = Distortion + A1 X Coding rate. (1D

DL-based codecs typically require training a different DL coding model for each target RD point, which is
accomplished by varying the A parameter in Equation (1).

As described in Section 1.2.1, a voxel-based representation was adopted to process the PCs. Thus, for the DL
coding model, the input data is a block of binary voxels, and the decoded data represents a probability score
between ‘0’ and ‘1 for each voxel, i.e. the probability of each voxel being filled. With this in mind, the block
distortion is measured at voxel level as a binary classification error using the so-called Focal Loss (FL) [7],
defined as follows:

—a(1l—v)¥logv, u=1

FL(v,w) = {—(1 —a)v'log(l —v), u=0"’

(2)

where u is the original voxel binary value and v is the corresponding decoded voxel probability score. A
weight parameter, a, is used to control the class imbalance effect since the number of ‘0’ valued voxels in a
block is vastly superior to the number of ‘1’ valued voxels. The parameter y allows increasing the importance

8-
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of correcting misclassified voxels in relation to improving the classification score of already correct voxels;
vy=2 was found to be appropriate.

The DL coding model is trained using a selection of static PCs from the MPEG Point Cloud Compression
(PCC) dataset [8] (naturally, always different from the test PCs). The selected PCs were down-sampled to a
precision of 9 or 10 bit, according to the MPEG PCC Common Test Conditions (CTC) [8], and then
partitioned into blocks of size 64x64x64, as described in Section 1.2.13.2.1. The blocks with less than 500
‘filled’ voxels have been removed in order to avoid the blocks with such low point count which could
negatively affect the training, due to the increased class imbalance. Overall, 6000 blocks were used in the
training process.

Implementation and training are done in Tensorflow version 1.14, using the Tensorflow Compression library
[6] version 1.2. For training, the Adam algorithm [9] is used with a learning rate of 10 and minibatches of
8 blocks during 108 steps.

2. Adaptive DL-based PC Geometry Coding

The basic DL-PCC solution has been further improved by introducing a DL coding model selection
mechanism allowing the codec to adapt to different PC characteristics by using multiple trained DL coding
models. This solution, named adaptive DL-PCC (ADL-PCC), will serve as benchmark to assess the current
cost of scalability for the proposed scalable codecs, thus demonstrating the potential of DL-based coding.

2.1 High-level Description

In this non-scalable ADL-PCC solution, multiple DL coding models have been trained using the same
architecture of Fig. 2, but with training parameters suited for different PC characteristics, e.g. density. At
coding time, each block is encoded and decoded with each DL coding model, so that the best model can be
chosen for each block. The overall ADL-PCC architecture is presented in Fig. 4, with the various modules
briefly described as follows:

e Encoder:

o PC Block Partitioning: The PC is divided into disjoint 3D blocks of the target size, which are
coded separately for random access;

o DL-based Block Encoding and Reconstruction: Each block is encoded with several available
DL coding models;

o DL Coding Model Selection: After encoding and decoding the block for each DL coding model,
the reconstructions are evaluated to select the model which produces the best compression
performance, i.e. adapts better to the specific block characteristics; the selected model is signaled
in the bitstream to the decoder;

e Decoder:
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o DL-based Block Decoding/Reconstruction: Blocks are decoded using the

corresponding/signaled DL coding models, with the decoder counterpart of the DL-based block
encoder mentioned before;

o PC Block Merging: The decoded blocks are merged to reconstruct the PC.

@) Block 1 | DL-based Block, DL-based Block
?“_. PC Block Encoding and ;' Encoding and
2 Partitioning Reconstruction Reconstruction
E H 1 Nimodels
i } DL Coding Model
y ~ Selection

ignaling € ¢
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it 1 14 [ Nizodal
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Fig. 4. Overall architecture of the non-scalable ADL-PCC codec [4].

The main ADL-PCC novelty when compared to DL-PCC is the module DL Coding Model Selection, which
is described in the following subsection.

2.2 DL Coding Model Selection

Considering a given number of trained DL coding models Nmoders, the characteristics of each PC block are
addressed in an adaptive way, by selecting the best from the available DL coding models, with the following
procedure:

e Block Reconstruction: The block under consideration is coded with all the available Nmodels DL coding

models; the various block reconstructions are then obtained and converted to PC coordinates for quality
assessment;

e Rate and Distortion Assessment: The distortion between the original and the decoded blocks is assessed
with a PC objective distortion metric, e.g. the point-to-point distance (D1); the number of bits per input
point required by each DL coding model (rate) is determined,;

e RD-based DL Coding Model Selection: The DL coding model providing the block reconstruction with
the lowest RD cost is selected;

-10 -



IECl " ISO/IEC JTC 1/5C29/'wG1M90019

d JPEG 90th Meeting, Online, January 2021

o Selected DL Coding Model Signaling: The selected DL coding model for each block is signaled to the
decoder by using a dedicated symbol in the Signaling Bitstream. This symbol stream is coded with an
adaptive arithmetic codec, using adaptive probability tables, which are updated as each block is processed.

2.3 DL Coding Model Training

All the DL coding models used by ADL-PCC were trained in the same conditions as described in Section 1.3
for DL-PCC, with the exception of a few parameters. Five RD points were obtained by training models with
A=500, 900, 1500, 5000 and 20000. In addition, for each RD point, multiple DL coding models were trained
for different PC characteristics. With Nmodetls =5, five models were trained for each RD point for 0=0.5, 0.6,
0.7, 0.8 and 0.9. Larger a values are more suited to sparse PCs, while smaller a values perform better for
denser PCs.

-11 -
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PART Il — Scalable PC Geometry Codecs

The second part of this document describes the core of this proposal, notably the scalable PC geometry
codecs. Both proposed scalable codecs are based on the basic, non-scalable DL-PCC solution presented
above.

3. Resolution Scalable DL-based PC Geometry Coding

This section describes the first proposed scalable PC geometry codec (for additional details, please refer to
[2]). Based on the non-scalable DL-PCC codec, the RS-DLPCC solution offers scalability on the number of
points by using interlaced sampling to generate interlaced blocks that can be coded with the DL coding model
from Fig. 2. The various scalable layers are independently coded, thus effectively offering multiple
description coding which goes beyond scalable coding and may be useful for specific application domains.

3.1 High-level Description of the Proposal

The overall architecture of the proposed RS-DLPCC codec is presented in Fig. 5; moreover, the various
modules are briefly described as follows:

e Encoder:

o Interlaced Blocks Creation: The PC is first divided into large disjoint (super-)blocks; each super-
block is further divided by applying interlaced sampling, thus generating up to 8 interlaced blocks
for each super-block, which are coded separately;

o DL-based Block (En)Coding: Each interlaced block is coded with the DL coding model
described in Section 1.2.2;

o Block Coding Order Optimization: After encoding the interlaced blocks within a super-block,
the order by which they are attributed to each consecutive scalable layer is determined by
minimizing the accumulated RD cost at each layer;

e Decoder:

o DL-based Block (De)Coding: The interlaced blocks within each super-block, forming the
different scalability layers, are progressively decoded with the DL coding model (from Fig. 2),
yielding a fully (or partially) reconstructed PC.

-12 -
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Fig. 5. Overall architecture of the proposed RS-DLPCC solution [2].

3.2 Detailed Description of each Architecture Module

Each of the modules presented in Fig. 5 is described here in more detail.

3.2.1 Interlaced Blocks Creation

As described in Section 1.2.1, a voxel-based 3D block representation is used. However, given the resolution
scalability goal, it is proposed to divide the PC into interlaced blocks. This interlaced approach allows to
successively increase the number of decoded points (i.e., the PC density) with each new decoded scalable

layer, which is very effective from a subjective quality point of view. The interlaced blocks are obtained as
follows:

1. Division into Disjoint Super-blocks — The PC is first divided into disjoint blocks, referred as super-
blocks, here with size 128x128x128; other sizes may be used depending on the random access needs.

2. Interlaced Sub-sampling of Super-blocks — Using interlaced sub-sampling with a sampling factor of 2
in each 3D direction, each (128x128%128) super-block is divided into smaller blocks, here with the target
size of 64x64x64. An example of interlaced sampling is shown in Fig. 6, where the coding blocks are
half the size of the super-blocks in each spatial dimension.

Fig. 6. Example of interlaced sampling with sampling factor of 2 in each 3D direction. A super-block of 4x4x4
samples results into 8 blocks, each with 2x2x2 samples [2].

-13 -
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This PC representation approach arranges the full PC into several super-blocks, each with up to 8 interlaced
blocks, thus enabling resolution scalability with up to 8 scalable layers, as demonstrated in Fig. 7. Each
interlaced block is independently coded with the DL-based coding solution described in Section 1.2.2.
Additionally, the position of each super-block is transmitted to the decoder.

(d)

Fig. 7. Example of disjoint and interlaced blocks for the same super-block: (a) 128x128x128 super-block; (b)
disjoint division into eight 64x64x64 blocks, four of which are empty; (c) the four disjoint occupied blocks obtained
from (b); (d) the eight 64x64x64 interlaced blocks obtained from (a) [2].

3.2.2 DL-based Block Coding

The adopted end-to-end DL coding model for the RS-DLPCC solution is the same as the one presented in
Fig. 2 for the DL-PCC solution. However, in this case, a single trained DL coding model is used to code all
scalable layers of the proposed scalable coding solution.

3.2.3 Block Coding Order Optimization

In a resolution scalable context, at each layer, only one block in each super-block is decoded and added to
the reconstructed PC, independently of the other blocks. Although the coding order of the blocks within a
super-block does not impact the reconstruction quality at the last scalable layer, experiments have shown that
the block coding order has an impact on the quality of the intermediate decoded layers. When decoding layers
following a raster order, points are added along one spatial dimension at a time, meaning that there will be
gaps in the other dimensions in intermediate layers, which will result in larger distances/errors.

With this in mind, after encoding all blocks with the end-to-end DL coding model, the best coding order for
the 8 interlaced blocks constituting each super-block is determined by sequentially adding the block that most
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reduces the accumulated distortion at each layer. This block coding order optimization only considers the
accumulated distortion at each layer since it has been observed that the rate for all interlaced blocks within a
super-block tends to be very similar; this approach allows reducing the overall coding complexity since no
rate has to be computed for this optimization. An example of the benefit of an optimized coding order is
shown in Fig. 8.

Raster order Optimized order
" S oo
Y
> &
& e
£ & Optimized
k-1 Raster

Layers

Fig. 8. Example of raster vs optimized layer decoding order.

3.2.4 DL-based Block (De)Coding

At the decoder side, each block is decoded with the DL coding model shown in Fig. 2. The PC is reconstructed
by progressively decoding each layer of blocks, thus increasing the total number of decoded points and
reconstructing an increasingly denser and richer PC. In fact, since blocks, and therefore layers, are coded
independently and each offers a meaningful PC (what does not necessarily happen in all scalable coding
solutions), RS-DLPCC can also be regarded as a multiple description coding solution.

3.3 DL Coding Model Training

For this RS-DLPCC proposal, the same loss function and a similar training process as for DL-PCC were used.
In this case, only one model was trained using a=0.7, and A=500 since this was found to provide a good RD
trade-off, although not equally good for all PC densities. For the training dataset, interlaced blocks were used
instead of disjoint blocks.

3.4 Scalability and Random Access Requirements
The proposed RS-DLPCC codec meets the JPEG Call for Evidence requirements due to the following
features:

e Random Access: The PC is divided into super-blocks, which are coded independently. Since the
positions of the coded super-blocks are transmitted to the decoder, this allows the user to choose decoding
only selected regions of the PC, thus providing spatial random access.

e Number of Points Scalability: Within each super-block, its interlaced blocks are also coded separately,
making it possible to decode only a subset of the interlaced blocks, while still allowing to reconstruct a
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meaningful PC, although with fewer points. Then, the remaining interlaced blocks can be progressively
decoded, adding points to the reconstructed PC, thus providing scalability on the number of points, as
shown in Fig. 9.

1t Layer ... 3"Layer ... 5" Layer

Fig. 9. Example of number of points scalability. The number of points increases with each decoded layer, thus also
improving quality.

The full bitstream encapsulates:
e Super-block positions;
e Interlaced block coding order for the blocks within each super-block;

e Separate and identifiable sub-streams for all blocks within each super-block, consisting of the
“Bitstream” and “Side Info Bitstream” obtained from the DL coding model shown in Fig. 2.

4. Quality Scalable DL-based PC Geometry Coding

This section describes the second proposed scalable codec, QS-DLPCC, which offers quality scalability. For
additional details, please refer to [3].

4.1 High-level Description of the Proposal

The overall architecture of the proposed QS-DLPCC codec is presented in Fig. 10. This codec is also based
on the previously described DL-PCC, with the addition of progressive coding of the latent values and a quality
scalability control mechanism. QS-DLPCC shares the same DL coding model design described in Fig. 2,
adapted for the proposed quality scalability control.
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Fig. 10. Overall architecture of the proposed QS-DLPCC solution [3].
The various modules presented in Fig. 10 can be briefly described as follows:
e Encoder:

o Division into 3D Blocks: The PC is divided into disjoint blocks of the target size, which are coded
separately;

o AE Encoder: Each block is encoded with an end-to-end DL coding model, which uses an
architecture similar to the one in Fig. 2. The core step is once again an autoencoder, which
transforms the input block into a latent representation;

o Latent Feature Map Splitting: The latent representation, consisting of multiple feature maps, is
divided and grouped into different layers, to be coded separately. This approach introduces the
capability of performing quality scalability;

o Quantization and Entropy Coding: The feature maps in each layer are then quantized and
entropy coded, using the same DL-PCC approach (see Section 1.2.2);

e Decoder:

o Entropy Decoding and Inverse Quantization: The bitstream is decoded to generate the feature
maps in each layer;

o Latent Feature Map Grouping: At each layer, its feature maps are grouped with the feature
maps from the previously decoded layers;

o AE Decoder: At each layer, the available feature maps are used to decode the block, with the
inverse transform;

o 3D Blocks Merging: At each scalability layer, the decoded blocks are merged to reconstruct the
PC.

4.2 Detailed Description of each Architecture Module
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Each of the modules presented in Fig. 10 is described here in more detail.

4.2.1 Division into 3D Blocks & 3D Blocks Merging

Just like for the non-scalable codec (DL-PCC), the PC geometry (3D coordinates) is converted into a binary,
voxel-based 3D block representation, as described in Section 1.2.1. The PC is then divided into disjoint blocks
of size 64x64x64. Each block is independently coded with a DL-based coding solution, similar to the one
described in Section 1.2.2, albeit with some differences to allow scalability, as described in the following
sections. The position of each block is transmitted to the decoder so that, at the decoder, the decoded blocks
may be merged to form the reconstructed PC.

4.2.2 AE Encoder & AE Decoder

The first step of the adopted DL-based PC geometry coding solution is the convolutional autoencoder (AE).
Its design is the same as for the DL-PCC codec: 6 convolutional layers, each consisting of 32 filters with
5x5x5 support, resulting in 520000 weights plus 129 biases, totaling 520129 trainable parameters.

Given an input block of size 64x64%64, the AE encoder transforms it into a latent representation consisting
of 32 feature maps of size 8x8x8, as detailed in Fig. 11.

AF Encoder AFE Decoder
Input Block : N . Latent Repr_e;sentation : . .
e 2 2 | B8 g 7 g < |
23 |23 |83 8@ 88 |23 |BE!
g 8 = g = 8| 8 1= = = gr g
L= =i F= R 8 .*th ‘4—'5] u?h- =
64 1 R i Pk A — gy /A
WL L 2 —> 8 g R PA >
N RN 8 ‘ e 9l [0S (XS 3
64 a2 (838 |8E| ° a2 (s |28 A
64 1 x B x 8 x Al : "|x B X & w21,
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\ ) . J |

Fig. 11. Autoencoder design of the proposed QS-DLPCC solution. The number of filters (NF) was set to 32 [3].

4.2.3 Latent Feature Map Splitting & Latent Feature Map Grouping

After obtaining the full latent representation, this module implements the key feature of appropriately
managing the latents to obtain a scalable PC geometry representation, thus allowing scalable/progressive
decoding. At the encoder, the latent representation is split into several layers of feature maps to be separately
encoded, thus multiple layer sub-streams are obtained after entropy coding.

In this proposal, 4 layers were defined, with a feature map distribution of 3, 5, 8 and 16 from the first to the
last layer, respectively. While results for this proposal are presented considering these layer configurations,
it is worth noting that the number of layers and the distribution of feature maps can be customized depending
on the desired application requirements.

At the decoder side, these layers can be consecutively decoded, allowing to obtain four quality levels without
the need to decode the entire representation/bitstream. The progressive decoding process is exemplified in
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Fig. 12, and it can be described by the following stages:

The sub-stream of the 1%t layer, consisting of 3 feature maps, is entropy decoded; since the AE decoder
requires 32 feature maps, the missing 29 are padded with zeros; the padded latent representation is
given to the AE decoder, which reconstructs the block with a low quality.

The sub-stream of the 2" layer, consisting of 5 feature maps, is entropy decoded; these feature maps
are grouped with the ones decoded in the 1% layer; the missing 24 feature maps are padded with zeros;
the padded latent representation is given to the AE decoder, which reconstructs the block with slightly
better quality.

The sub-stream of the 3" layer, consisting of 8 feature maps, is entropy decoded; these feature maps
are grouped with the ones decoded in the previous two layers; the missing 16 feature maps are padded
with zeros; the padded latent representation is given to the AE decoder, which reconstructs the block
with improved quality.

The sub-stream of the 4" layer, consisting of the last 16 feature maps, is entropy decoded; these are
grouped with the ones decoded in the previous three layers; the complete latent representation is
given to the AE decoder, which reconstructs the block with the best quality.

Latent Representation

@ Feature Map of a previous layer

@} .. B DDBo

I O © O O

Il } O O O

S
@ } Layer 3 @ % @ Feature Map of current layer

O

@ } Layer 4

Fig. 12. Example of splitting and grouping of the feature maps in encoder and decoder, respectively.

Zero padded Feature Map

4.2.4 Quantization and Entropy Coding & Entropy Decoding and Inverse Quantization

The quantization and entropy coding approach is the same as the one used for the non-scalable DL-PCC
codec, described in Section 1.2.2. However, in this case, instead of using a single Variational autoencoder
(VAE) for all 32 feature maps of the complete latent representation, four separate VAESs are used, one for
each scalable layer individually:
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e 1% layer: the VAE consists of 6 convolutional layers, each learning 3 filters with 3x3x3 support,
resulting in 1458 weights plus 15 biases; to learn the entropy model (Entropy bottleneck in Section
1.2.2), 138 trainable parameters are used,

e 2" Jayer: the VAE consists of 6 convolutional layers, each learning 5 filters with 3x3x3 support,
resulting in 4050 weights plus 25 biases; to learn the entropy model (Entropy bottleneck in Section
1.2.2), 230 trainable parameters are used,;

e 3 Jayer: the VAE consists of 6 convolutional layers, each learning 8 filters with 3x3x3 support,
resulting in 10368 weights plus 40 biases; to learn the entropy model (Entropy bottleneck in Section
1.2.2), 368 trainable parameters are used,;

e 4" ayer: the VAE consists of 6 convolutional layers, each learning 16 filters with 3x3x3 support,
resulting in 41472 weights plus 80 biases; to learn the entropy model (Entropy bottleneck in Section
1.2.2), 736 trainable parameters are used.

The number of trainable parameters of a convolutional layer (not to be confused with the scalable layer) is
dependent on the number of input data channels, the number of filters (output channels), and the filter support
size (weights = input channels x filter support x filters; bias = filters). As for the number of parameters to
learn the entropy model, it is directly dependent on the number of filters. For this reason, since each scalable
layer has a different number of feature maps/filters, the number of trainable parameters is also different.

A single trained DL coding model is used to code all scalable layers of the proposed progressive coding
solution. The total number of trainable parameters in the full DL coding model is 5791009.

4.3 DL Coding Model Training

Similar to the previous codec, the DL coding model used in the QS-DLPCC codec was trained by minimizing
a RD loss function. However, in this solution all four scalable layers were trained jointly, meaning that a RD
term is minimized for each layer. The loss function is thus given by:

4

Loss Function = Z Distortion; + A; X Coding rate; . 3)
i=1

It is important to select appropriate A; values, since they can significantly impact the RD performance. Similar
A; values for two layers may cause the RD performance to be the same, thus effectively eliminating one
scalable layer, which is undesirable. Since the base layer must offer a low bitrate, A; should be largest, to
obtain an initial rough PC reconstruction. As the layers progress, A; should be reduced to allow more rate to
encode latter feature maps, so that the AE can learn additional features with latter filters, thus achieving
successively higher quality with every layer. For this proposal, using 4;=20000, 4000, 1000 and 100 were
found to be appropriate values. As for the distortion metric, the Focal Loss [7] was also used with a=0.7
however, for sparse PCs, larger values are preferable, e.g. =0.9. Similar to DL-PCC and ADL-PCC, training
data was divided into disjoint blocks.

4.4 Scalability and Random Access Requirements
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The proposed QS-DLPCC codec meets the JPEG Call for Evidence requirements due to the following
features:

e Random Access: Just as for the DL-PCC codec, the PC is divided into disjoint blocks, which are coded
independently. Since the positions of the coded blocks are transmitted to the decoder, this allows the user
to choose decoding only selected regions of the PC, thus providing spatial random access.

e Quality Scalability: For each block, the latent representation (i.e. the transform coefficients) is divided
into different layers that are coded separately, making it possible to decode only part of the latent
representation, allowing to reconstruct a meaningful PC, albeit with lower quality. The latent
representation can be progressively decoded, generating more and more refined reconstructions with each
layer, as shown in Fig. 13.

1% Layer 2" Layer 3 Layer 4™ Layer

Fig. 13. Example of quality scalability. The reconstructed PC becomes more refined with each decoded layer,
increasing quality.

The full bitstream encapsulates:

e Block positions;

e Separate and identifiable sub-streams for all blocks, consisting of the “Bitstream” and “Side Info
Bitstream” obtained from the DL coding model.

5. Performance Assessment

To assess the performance of the proposed scalable coding solutions, the JPEG test PCs were coded following
the CTC defined for the JPEG Call for Evidence on Point Cloud Coding [10].

5.1 Test Material

The test material used for the assessment of the proposed scalable codecs consists of 8 PCs, including people
(full bodies and upper bodies) as well as inanimate objects. This dataset was made available in the context of
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the JPEG Call for Evidence on Point Cloud Coding [10], and is presented in Fig. 14.

(a) Bumbameuboi (b) Guanyin

(e) Phil (f) Ricardo (9) Longdress (h) Soldier
Fig. 14. Example rendering for the test PCs.

5.2 RD Performance Results: Tables

For each scalable/progressive layer, the JPEG recommended geometry quality metrics — point-to-point
(PSNR D1), point-to-plane (PSNR D2) and plane-to-plane angular similarity (MSE AS) — were computed.

The key results, i.e. number of decoded points (Out Points), number of bytes to code the geometry (Geo

Bytes), bits per geometry input point (Geo bpp), and objective quality metrics for geometry, for each RD
point and for each test PC, are detailed in Table | and Table Il for RS-DLPCC and QS-DLPCC, respectively.
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Table I. RS-DLPCC coding results, at different RD points, for each test PC.

oot Cloud In RD | Out | Geo | Geo | PSNR | PSNR | MSE
Points Point Points Bytes bpp D1 D2 AS

RO1 | 16344 | 45281 | 3.201 | 47.957 | 66.551 | 0.567

RO2 | 31203 | 88121 | 6.230 | 51.065 | 68.048 | 0.578

RO3 | 46013 | 131139 | 9.271 | 52.957 | 68.848 | 0.591

. RO4 | 60101 | 173461 | 12.263 | 54.305 | 69.607 | 0.606
Bumbameuboi | 113160 1= oo™ 2010 [ 215077 | 15.205 | 55.384 | 69.969 | 0.622
RO6 | 86673 | 256654 | 18.144 | 56.290 | 70.013 | 0.637

RO7 | 99265 | 297454 | 21.029 | 57.096 | 70.024 | 0.655

RO8 | 110997 | 337436 | 23.855 | 57.757 | 70.030 | 0.669

ROI | 369006 | 85901 | 0.299 | 59.230 | 69.971 | 0.842

RO2 | 714638 | 168782 | 0.588 | 65.305 | 72.062 | 0.896

RO3 | 1081832 | 254093 | 0.885 | 66.394 | 73.035 | 0.908

. RO4 | 1436507 | 337845 | 1.176 | 67.562 | 73.092 | 0.916
Guanyin | 2297852 I 0o "1 801637 | 422968 | 1.473 | 68.684 | 73.109 | 0918
RO6 | 2155293 | 506551 | 1.764 | 70.114 | 73.118 | 0.920

RO7 | 2501924 | 589250 | 2.051 | 70.387 | 73.106 | 0.921

RO8 | 2851054 | 672564 | 2.342 | 70.361 | 73.077 | 0.923

RO1 | 134776 | 32266 | 0.301 | 62.214 | 70.168 | 0.863

RO2 | 265807 | 63829 | 0.595 | 65.502 | 71.699 | 0.907

RO3 | 400028 | 95756 | 0.893 | 66.511 | 72.712 | 0.919

Longdress | 87065 |_RO4_| 531394 | 127279 | 1187 | 67.642 | 73750 | 0.928
RO5 | 665280 | 159117 | 1.484 | 68.758 | 73.760 | 0.932

RO6 | 798101 | 190753 | 1.779 | 70.228 | 73.755 | 0.934

RO7 | 929315 | 222269 | 2.073 | 70.831 | 73.766 | 0.936

RO8 | 1061100 | 253838 | 2.367 | 70.817 | 73.752 | 0.938

RO1 | 56054 | 12001 | 0.269 | 56.748 | 62.991 | 0.837

RO2 | 110175 | 23349 | 0524 | 59.546 | 64.849 | 0.871

RO3 | 165793 | 34944 | 0.785 | 60.471 | 65.820 | 0.879

- ssgpsg | ROA | 220232 | 46371 | 1.041 | 61437 | 66.888 | 0.887
RO5 | 275694 | 57923 | 1.301 | 62500 | 67.332 | 0.889

RO6 | 330543 | 69350 | 1557 | 63.857 | 67.339 | 0.891

RO7 | 384520 | 80724 | 1.813 | 64.120 | 67.350 | 0.893

RO8 | 439073 | 92144 | 2.069 | 64.106 | 67.328 | 0.895

N ROI | 285865 | 66934 | 0.303 | 61.681 | 70.157 | 0.853
Rhetorician | 1764588 01 6068 | 132464 | 0.601 | 65.323 | 71.784 | 0.902
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RO3 845633 | 198742 | 0.901 | 66.400 | 72.797 | 0.914

RO4 | 1122369 | 264231 | 1.198 | 67.553 | 73.094 | 0.922

RO5 | 1405170 | 330446 | 1.498 | 68.650 | 73.108 | 0.924

R06 | 1684737 | 396256 | 1.796 | 70.073 | 73.121 | 0.926

RO7 | 1961188 | 461836 | 2.094 | 70.203 | 73.126 | 0.928

R0O8 | 2239320 | 527297 | 2.391 | 70.186 | 73.110 | 0.929

RO1 221608 | 43435 | 0.246 | 62.862 | 68.879 | 0.851

RO2 436162 | 85407 | 0.483 | 65.665 | 70.800 | 0.883

RO3 656572 | 128153 | 0.725 | 66.577 | 71.960 | 0.891

. R0O4 873021 | 170455 | 0.964 | 67.538 | 73.380 | 0.899

Ricardo | 1414040 05092501 | 212974 | 1.205 | 68.609 | 73.731 | 0.901

RO6 | 1309399 | 255314 | 1.444 | 69.993 | 73.739 | 0.903

RO7 | 1523615 | 297200 | 1.681 | 70.371 | 73.748 | 0.905

RO8 | 1739816 | 339176 | 1.919 | 70.354 | 73.728 | 0.906

RO1 117260 | 37504 | 0.470 | 59.351 | 71.133 | 0.805

RO2 229806 | 74161 | 0.930 | 63.823 | 72.678 | 0.905

RO3 345049 | 111118 | 1.393 | 65.420 | 73.047 | 0.924

Romanoillamp | 638071 RO4 456687 | 147693 | 1.852 | 66.860 | 73.036 | 0.935

RO5 571815 | 184583 | 2.314 | 67.940 | 73.062 | 0.940

RO6 683247 | 221230 | 2.774 | 68.479 | 73.080 | 0.943

RO7 795735 | 257870 | 3.233 | 68.475 | 73.071 | 0.945

RO8 908199 | 294310 | 3.690 | 68.459 | 73.046 | 0.947

RO1 172101 | 41611 | 0.306 | 62.254 | 70.239 | 0.864

RO2 339563 | 82292 | 0.604 | 65.545 | 71.675 | 0.906

RO3 510993 | 123432 | 0.907 | 66.547 | 72.580 | 0.917

. R04 677998 | 164045 | 1.205 | 67.663 | 73.753 | 0.925

Soldier | 1089091 | 215 848530 | 205121 | 1507 | 68.780 | 73.765 | 0.930

R06 |1017803 | 245951 | 1.807 | 70.251 | 73.770 | 0.933

RO7 1184791 | 286658 | 2.106 | 70.797 | 73.777 | 0.935

R0O8 | 1352547 | 327281 | 2.404 | 70.784 | 73.762 | 0.937

Table 1. QS-DLPCC coding results, at different RD points, for each test PC.

Point Cloud Ip Rp Qut Geo Geo PSNR | PSNR | MSE

Points | Point | Points | Bytes bpp D1 D2 AS

RO1 305286 | 33072 | 2.338 | 45.128 | 62.480 | 0.550

Bumbameuboi | 113160 R02 374799 | 61120 | 4.321 | 47.140 | 64.617 | 0.575

RO3 321028 | 182749 | 12.920 | 55.422 | 70.660 | 0.669
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RO4 389317 | 452218 | 31.970 | 64.124 | 72.151 | 0.709

RO1 | 3126253 | 58177 | 0.203 | 67.849 | 69.843 | 0.851
R0O2 | 2960283 | 159006 | 0.554 | 70.176 | 73.106 | 0.919
R0O3 | 2811976 | 265875 | 0.926 | 71.308 | 74.792 | 0.941
R0O4 | 2662705 | 709478 | 2.470 | 72.843 | 76.820 | 0.962

Guanyin 2297852

RO1 | 1165557 | 22487 | 0.210 | 68.248 | 70.462 | 0.870
R02 | 1087195 | 61112 | 0.570 | 70.624 | 73.845 | 0.931
R0O3 | 1037178 | 99865 | 0.931 | 71.624 | 75.282 | 0.947
R04 977774 | 265100 | 2.472 | 73.320 | 77.423 | 0.967

Longdress 857966

RO1 459195 | 8815 0.198 | 61.989 | 64.706 | 0.816
RO2 435346 | 22533 | 0.506 | 64.186 | 67.732 | 0.892
RO3 422084 | 36694 | 0.824 | 65.158 | 69.068 | 0.917
R04 411515 | 94234 | 2.116 | 66.341 | 70.598 | 0.942

Phil 356258

RO1 | 2426829 | 46805 | 0.212 | 67.743 | 69.950 | 0.859
R02 | 2327674 | 127218 | 0.577 | 69.772 | 72.804 | 0.923
RO3 | 2213386 | 211187 | 0.957 | 70.705 | 74.109 | 0.941
R0O4 | 2085923 | 562896 | 2.552 | 72.333 | 76.410 | 0.963

Rhetorician | 1764588

RO1 | 1828147 | 32094 | 0.182 | 68.348 | 71.192 | 0.835
R02 | 1735765 | 82851 | 0.469 | 70.243 | 73.832 | 0.899
R0O3 | 1695908 | 135176 | 0.765 | 71.010 | 74.892 | 0.919
R0O4 | 1658598 | 352250 | 1.993 | 72.008 | 76.192 | 0.944

Ricardo 1414040

RO1 871880 | 24686 | 0.310 | 62.373 | 70.059 | 0.854
R02 | 1071201 | 66936 | 0.839 | 67.467 | 72.413 | 0.931
R0O3 | 1016506 | 113266 | 1.420 | 67.956 | 73.307 | 0.943
RO4 945745 | 313758 | 3.934 | 69.049 | 75.827 | 0.964

Romanoillamp | 638071

RO1 | 1488172 | 28926 | 0.212 | 68.353 | 70.675 | 0.871
R02 | 1388370 | 78785 | 0.579 | 70.594 | 73.874 | 0.931
RO3 | 1321438 | 128894 | 0.947 | 71.618 | 75.325 | 0.948
R04 | 1244676 | 339062 | 2.491 | 73.292 | 77.422 | 0.968

Soldier 1089091

5.3 RD Performance Results: RD Charts and BD-PSNR

The RD performance results for RS-DLPCC and QS-DLPCC are plotted as RD charts and compared with
the G-PCC and V-PCC (Intra) anchors in Fig. 15, using the three previously mentioned geometry objective
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quality metrics. The results for the ADL-PCC non-scalable solution are also presented in Fig. 15, to allow
for a RD performance comparison and the assessment of the RD penalty cost introduced by the use of
scalability (keeping in mind that these scalable coding solutions are the first scalable designs made and better
performing designs are expected in the future).

To summarize the results, Table 111 shows the Bjontegaard-Delta PSNR (BD-PSNR) gains for each solution,
using G-PCC Trisoup as the reference codec, since it is the one showing the poorest RD performance. For
many cases, mostly for ADL-PCC, the intersection of quality ranges between the RD curves is rather short,
or even non-existing; in these situations, the computation of the BD-Rate savings is unreliable or not possible
at all, and thus BD-Rate results are not shown together with BD-PSNR.
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Fig. 15.RD performance for the proposed RS-DLPCC and QS-DLPCC solutions, in comparison with non-scalable
ADL-PCC, and the V-PCC and G-PCC anchors. Each row corresponds to a different test PC. From left to right:
PSNR D1, PSNR D2 and MSE AS geometry quality metrics. The dashed vertical line marks the lossless bitrate
achieved with G-PCC Octree.

Table 111. Bjontegaard-Delta PSNR gains between the DL-based solutions using G-PCC Trisoup as reference. The
best results are presented in bold, and the second best in italic.

BD-PSNR D1 (dB) BD-PSNR D2 (dB)
ADL-PCC | RS-DLPCC |QS-DLPCC}| ADL-PCC | RS-DLPCC |QS-DLPCC

Bumbameuboi 2.979 0.135 -1.824 0.976 1.159 -1.510
Guanyin 4.630 -3.928 2.449 4,973 1.305 2.250
Longdress 4.685 -3.186 2.435 5.308 0.804 2.547
Phil 7.099 0.063 5.952 5.224 0.769 3.688
Rhetorician 4.215 -3.175 2.045 4.645 1.054 1.899
Ricardo 5.146 -1.792 3.429 5.464 0.396 3.489
Romanoillamp 1.602 -4.067 -0.377 3.701 1.930 1.571
Soldier 4,977 -3.162 2.461 5.683 0.742 2.579

Average 4.417 -2.389 2.071 4.497 1.020 2.064

The key observation is that both ADL-PCC and QS-DLPCC show substantial quality gains regarding G-PCC
Trisoup while this is not the case for RS-DLPCC which shows quality losses, very much related to the
independent coding of the scalable layers.

The dashed vertical line indicates the rate for which G-PCC Octree achieves lossless coding, thus clearly
indicating that lossy compression performance on the right side of that line may not be very meaningful.

5.4 Number of Decoded Points

Fig. 16 plots the number of decoded points for each coding solution. These charts are very illustrative of the
meaning of number of points scalability.
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Fig. 16. Evolution of the number of points decoded, for every rate point, for the proposed RS-DLPCC and QS-
DLPCC solutions, the non-scalable ADL-PCC, and the V-PCC and G-PCC anchors. The dashed horizontal line
marks the original number of input points.

The key observation is the good resolution scalability offered by G-PCC Octree and RS-DLPCC solutions
while ADL-PCC and QS-PCC start with a large number of decoded points to approach later the original
number of decoded points. Interestingly, V-PCC does not have a large variation on the number of decoded
points for the various RD points.

5.5 Analysis of the Results

From the full set of performance results included in the previous subsections, it is possible to observe and
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conclude:

ADL-PCC versus MPEG Benchmarks

ADL-PCC achieves significant compression gains when compared with both G-PCC codecs, at
medium and high bitrates.

Moreover, ADL-PCC has often RD performance comparable or just below V-PCC Intra, thus
demonstrating the great potential of DL-based PC coding solutions.

RS-DLPCC versus MPEG Benchmarks

The RS-DLPCC RD performance is comparable to G-PCC performance of both Trisoup and Octree,
with fluctuations depending on the G-PCC method and the input PC features, e.g. density; however,
this also largely depends on the used geometry objective quality metric.

Compared with V-PCC, however, RS-DLPCC performs considerably worse.

The RS-DLPCC performance is significantly poorer for the PSNR D1 quality metric than for the
other quality metrics, mainly for the first scalable layers. This is due to the very low number of
decoded points at early layers, as shown in Fig. 16. This mismatch with the number of points in the
reference PC results in a large error distance when directly measuring the distance between
neighboring points. As such, this metric alone may not be appropriate to measure the performance of
coding solutions with number of points scalability, notably for the first layers.

The RS-DLPCC performance improves for the PSNR D2 and MSE AS metrics, notably for the first
layers, outperforming G-PCC Trisoup in many situations. These quality metrics seem to be more
robust to differences on the number of points between the reference and decoded PCs, since they
measure the error considering the surface formed by the points.

The number of points decoded at each RS-DLPCC layer increases linearly, since each layer contains
approximately the same number of interlaced blocks and points.

QS-DLPCC versus MPEG Benchmarks

The QS-DLPCC performance is competitive with that of both G-PCC anchors, achieving significant
compression gains in most cases.

QS-DLPCC is still fairly below V-PCC, but in some cases it achieves a close performance.

While for most PCs the trained DL coding model with a=0.7 (from Equation 2) provides very good
results, for the sparse Bumbameuboi PC the performance is poor, leading to a rather low number of
decoded points. This is because the o parameter strongly influences the number of decoded points
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and its ideal value is very dependent on the PC density/sparsity. By training a DL coding model with
a=0.9 instead, the performance for Bumbameuboi is significantly improved.

The QS-DLPCC solution is highly customizable, in the sense that the DL coding model can be trained
for different combinations of the parameters that control the scalability: the number of layers, and
the distribution of feature maps per layer. By fine tuning these parameters, this solution can further
improve RD performance.

QS-DLPCC versus RS-DLPCC

Overall, QS-DLPCC considerably outperforms RS-DLPCC, with the largest gains being observed
for the PSNR D1 quality metric. This codec does not present the issue of having a very small number
of points at early layers, which would penalize results for PSNR D1.

QS-DLPCC tends to decode a large number of points, especially at early layers, and approaches the
original number of points at the last layer. This suggests that the o value from the focal loss (Equation
(2)) used in training may not be the ideal one. Using an adaptive DL coding selection method with
multiple trained DL coding models, similar to the one used in ADL-PCC, may be able to reduce the
number of (unnecessary) points, ultimately improving the RD performance.

The key reason for the better QS-DLPCC performance seems to be related to the independent coding
of the RS-DLPCC scalable layers; this allows concluding that there is a RD price to pay to obtain
multiple description coding which may be a desired functionality for specific applications.

Scalable (RS-DLPCC and QS-DLPCC) versus non-scalable (ADL-PCC)

There is still a significant RD performance penalty associated to the use of the scalable codecs as
may be observed by comparing with the non-scalable ADL-PCC benchmark. It is expected that this
RD penalty may be reduced in the future since RS- and QS-DLPCC are the first, certainly non-
optimum, DL-based scalable coding solutions which serve as a proof of concept.

The ADL-PCC results indicate that there is still a large margin of improvement for the scalable
solutions and thus many improvements may still be obtained. For instance, there is still redundancy
between the scalable layers that can be better exploited, and the DL coding model parameters can be
better optimized according to the input PC characteristics.

6. Color Coding

This proposal is focused on PC geometry coding only, notably proposing the RS-DLPCC and QS-DLPCC
solutions. It is worth noting that the proposed DL-based geometry scalable solutions can be extended to
jointly code both geometry and color, for instance by adding the color information in separate channels to the
binary 3D blocks that represent the geometry.

However, the JPEG PCC CTC [10] only foresee subjective quality assessment for the proposals coding both

-31-



IECl " ISO/IEC JTC 1/5C29/'wG1M90019

d JPEG 90th Meeting, Online, January 2021

the geometry and color. Thus, to allow for some subjective quality assessment, the proponents decided to
code the color with the G-PCC standard for the decoded geometry/points generated with the RS-DLPCC
solution, after recoloring. This choice was determined by the limited time to code the texture and the interest
in performing subjective assessment when the number of decoded points changes substantially as it happens
for RS-DLPCC.

In this context, the G-PCC standard was used for color coding, as follows:

e Geometry is encoded and decoded with the proposed RS-DLPCC solution;

e For each geometry scalable layer, the decoded points are recolored by transferring the color from the
original input PC, considering the nearest neighboring point;

e For each geometry scalable layer, the color for the recolored points is encoded with G-PCC, using
the lossless geometry coding mode with Octree (so that the (decoded) geometry is not changed during
color coding), and the Predlift color encoder, which has been reported to be superior to RAHT [10].

For G-PCC coding, the “MPEG PCC tmc13 version release-v7.0-0-g47cf663” reference software has been
used, with the parameters described in the JPEG Pleno PCC CTC v3.3 [10] associated to the JPEG PCC Call
for Evidence.

The CTC specifies the following five target bitrates (with a £10% tolerance) for the joint coding of geometry
and color, to be evaluated in subjective tests:

e RO01: 0.10 bits per point (bpp);
e RO02:0.35 bpp;
e RO03:1.00 bpp;
e RO04:2.00 bpp;
e RO05: 4.00 bpp.

For color coding, the gp parameter was set for each PC and each rate point in order to achieve the target joint
(geometry + color) bitrates specified in the CTC; the used gp values for the color are shown in Table 1V.

Table IV. G-PCC gp parameter values for color coding.

Point Cloud RO1 R0O2 RO3 R04 R0O5
Bumbameuboi - 46 46 34 28
Guanyin - 46 46 34 28
Longdress - 46 46 34 28
Phil - 40 40 34 22
Rhetorician - 40 40 28 19
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Ricardo - 28 22 22 10

Romanoillamp - 46 40 40 28

Soldier - 40 40 28 22

No results could be obtained for the first target rate point RO1, corresponding to lower rate (0.1 bpp), for any
test PC.

For the remaining rate points, the obtained results are presented in Table V. Only the PSNR D2 geometry
metric is shown since it is more suited to express the subjective quality of resolution scalable solutions;
nonetheless, the results for all metrics are available in the supplemental results Excel file.

It is important to note that, for the Bumbameuboi PC, the obtained bitrates surpassed the target bitrates by a
significant margin, which may justify its exclusion from the subjective assessment experiment. This is largely
due to the fact that this PC is very sparse and the current DL coding model parameters may not be optimal
for this type of PC. This also reinforces the importance of having an adaptive coding solution as ADL-PCC.

Likewise, for the Romanoillamp PC, the second rate point RO2 could not be achieved, presenting a slightly
larger bitrate. These cases are marked with color in Table V.

Table V. RS-DLPCC geometry + G-PCC Predlift color coding results for the target rate points, for each test PC.

Point Cloud R!I) O.ut Geo Color Total bpp PSNR | PSNR
Point | Points | Bytes | Bytes Bytes D2 Color

RO2 | 16344 | 45281 | 1273 | 46554 | 3.29 | 66.55 | 21.69

[ RO3 | 46013 | 131139 | 3200 | 134339 | 950 | 68.85 | 23.36
Bumbameubol o 1773740 | 215077 | 11126 | 226203 | 15.99 | 69.97 | 24.78
RO5 | 110997 | 337436 | 28566 | 366002 | 25.88 | 70.03 | 26.33

RO2 | 369006 | 85901 | 11096 | 96997 | 034 | 69.97 | 2557

. RO3 | 1081832 | 254093 | 32625 | 286718 | 1.00 | 73.04 | 26.34
Guanyin RO4 | 1801637 | 422968 | 174502 | 597470 | 2.08 | 73.11 | 27.82
RO5 | 2851054 | 672564 | 537709 | 1210273 | 4.21 | 73.08 | 29.54

RO2 | 134776 | 32266 | 5196 | 37462 | 035 | 7017 | 2552

RO3 | 400028 | 95756 | 14416 | 110172 | 1.03 | 72.71 | 26.48

Longdress 04 | 665280 | 150117 | 65160 | 224286 | 2.09 | 73.76 | 28.22
RO5 | 1061100 | 253838 | 193271 | 447100 | 4.17 | 73.75 | 29.86

RO2 | 56054 | 12001 | 3500 | 15501 | 035 | 62.99 | 28.98

. RO3 | 165793 | 34944 | 9913 | 44857 | 1.01 | 65.82 | 29.94

Phil RO4 | 275694 | 57923 | 24764 | 82687 | 1.86 | 67.33 | 31.20
RO5 | 439073 | 92144 | 101153 | 193297 | 4.34 | 67.33 | 32.87
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R02 285865 | 66934 | 9623 76557 0.35 70.16 | 32.94
RO3 845633 | 198742 | 25520 | 224262 1.02 72.80 | 34.07

Rhetorician o/~ 7405170 | 330446 | 99871 | 430317 | 1.95 | 73.11 | 35.69
RO5 | 2239320 | 527297 | 352948 | 880245 | 3.99 | 7311 | 37.29
RO2 | 221608 | 43435 | 13912 | 57347 | 032 | 68.88 | 40.94
Ricardo RO3 | 656572 | 128153 | 62662 | 190815 | 1.08 | 71.96 | 42.25

RO4 | 1309399 | 255314 | 124759 | 380073 2.15 73.74 | 44.37
RO5 | 1739816 | 339176 | 336120 | 675296 3.82 73.73 | 45.09

RO2 117260 | 37504 | 2249 39753 0.50 71.13 | 27.19
RO3 229806 | 74161 | 8968 83129 1.04 72.68 | 28.01
R04 456687 | 147693 | 22292 | 169985 2.13 73.04 | 28.85
RO5 683247 | 221230 | 102091 | 323321 | 4.05 73.08 | 29.99

Romanoillamp

RO2 172101 | 41611 | 6617 48228 0.35 70.24 | 32.80
RO3 510993 | 123432 | 17926 | 141358 1.04 72.58 | 33.85
R04 848530 | 205121 | 70680 | 275801 2.03 73.76 | 35.53
RO5 | 1352547 | 327281 | 194662 | 521943 3.83 73.76 | 37.06

Soldier

7. Submitted Materials
This section lists the materials that constitute this proposal, notably:
e JPEG document with textual description:
o IT-IST-IPLeiria Response to Call for Evidence on JPEG.pdf
e Excel file with complete results:
o SupplementaryResults.xlsx

e Source code/scripts of the decoder for the proposed scalable solutions (RS-DLPCC, and QS-DLPCC for
2 different parameter o values):

o 01_SourceCode/

o Bitstream files of the proposed scalable solutions (RS-DLPCC, and QS-DLPCC for 2 different parameter
a values):

o 02_Bitstream_Files/

e Decoded PCs with geometry only, obtained with the proposed scalable solutions (RS-DLPCC, and QS-
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DLPCC for 2 different parameter a values):
o 03 _Decoded PCs_Geo/

e Decoded PCs with color for subjective assessment, with geometry obtained with the RS-DLPCC solution,
and color with G-PCC Predlift:

o 04 Decoded PCs_Geo+Color/

-35-



IECl " ISO/IEC JTC 1/5C29/'wG1M90019

o JPEG

90th Meeting, Online, January 2021

References

1.

10.

ISO/IEC JTC1/SC29/WG1 N88014, “Final Call for Evidence on JPEG Pleno Point Cloud Coding,”
Online Meeting, July 2020.

A. Guarda, Nuno M. M. Rodrigues and F. Pereira, “Deep Learning-based Point Cloud Geometry
Coding with Resolution Scalability”’, IEEE International Workshop on Multimedia Signal Processing
(MMSP’2020), Tampere, Finland, September 2020.

A. Guarda, Nuno M. M. Rodrigues and F. Pereira, “Point Cloud Geometry Scalable Coding With a
Single End-to-End Deep Learning Model”, IEEE International Conference on Image Processing
(ICIP’2020), Abu Dhabi, United Arab Emirates, October 2020.

A. Guarda, Nuno M. M. Rodrigues and F. Pereira, “Adaptive Deep Learning-based Point Cloud
Geometry Coding”, submitted to IEEE Journal of Selected Topics in Signal Processing (J-STSP).

L. Cui, R. Mekuria, M. Preda and E. S. Jang, “Point-Cloud Compression: Moving Picture Experts
Group's New Standard in 2020,” IEEE Consumer Electronics Magazine, vol. 8, no. 4, pp. 17-21, July
2019.

J. Ballé, D. Minnen, S. Singh, S. J. Hvang and N. Johnston, “Variational Image Compression with a
Scale Hyperprior,” International Conference on Learning Representations (ICLR 2018), Vancouver,
Canada, Apr. 2018.

T. Lin, P. Goyal, R. Girshick, K. He and Piotr Dollar, “Focal Loss for Dense Object Detection,” IEEE
International Conference on Computer Vision (ICCV’2017), Venice, Italy, Oct. 2017.

ISO/IEC JTC1/SC29/WG1! N19084, “Common Test Conditions for Point Cloud Compression,”
Brussels, Belgium, Jan. 2020.

D. P. Kingma and J. Ba, “Adam: a Method for Stochastic Optimization,” International Conference on
Learning Representations (ICLR’2015), San Diego, CA, USA, May 2015.

ISO/IEC JTC1/SC29/WG1 N88044, “JPEG Pleno Point Cloud Coding Common Test Conditions v3.3,”
Online Meeting, July 2020.

-36 -



