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Spin chains with symmetry-protected edge modes are promising candidates to realize intrinsically robust
physical qubits that can be used for the storage and processing of quantum information. In any experimental
realization of such physical systems, weak perturbations in the form of induced interactions and disorder are
unavoidable and can be detrimental to the stored information. At the same time, the latter may in fact be
beneficial; for instance, by deliberately inducing disorder which causes the system to localize. We explore
the potential of using an XZX cluster Hamiltonian to encode quantum information into the local edge modes
and comprehensively investigate the influence of both many-body interactions and disorder on their stability
over time, adding substance to the narrative that many-body localization may stabilize quantum information.
We recover the edge state at each time step, allowing us to reconstruct the quantum channel that captures the
locally constrained out-of-equilibrium time evolution. With this representation in hand, we analyze how well
classical and quantum information are preserved over time as a function of disorder and interactions. We find
that the performance of the edge qubits varies dramatically between disorder realizations. Whereas some show a
smooth decoherence over time, a sizable fraction is rapidly rendered unusable as memories. We also find that the
stability of the classical information—a precursor for the usefulness of the chain as a quantum memory—depends
strongly on the direction in which the bit is encoded. When employing the chain as a genuine quantum memory,
encoded qubits are most faithfully recovered for low interaction and high disorder.
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I. INTRODUCTION

The prospect of highly controllable quantum simulators
[1–4] allows for the simulation of complex Hamiltonians,
potentially realizing exotic phases of matter. A celebrated
class of such phases is topological phases of matter, which
offer the promise of robust encodings of quantum information
with a reduced need for active error correction [5–7]. Simple
instances of these exist in one-dimensional spin chains, where
one finds symmetry-protected topological phases (SPTs)
which host emergent edge zero modes that enforce approx-
imate degeneracies in the spectrum and define edge states
which are dynamically decoupled from the bulk [8–12]. The
latter feature makes these systems interesting candidates for
physical qubits used in quantum memories, as well as in im-
plementations of measurement-based quantum computation
[13–15], which exploit the entanglement properties of the
SPT to effectuate gate operations. However, for a practical
quantum memory architecture, the topologically facilitated
isolation of the edge states from the bulk must preserve the
encoded data for a sufficiently long time, ideally several thou-
sand multiples of the time taken to implement logical gates.
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The ability of an SPT edge mode to retain information de-
pends largely on the strength of interactions which perturb the
SPT order. These drive two related phenomena: the splitting
of the ground-state degeneracy and the broadening of its edge
zero modes. While the former controls the phase transition, the
latter can have a significant impact on our ability to practically
use the edge modes for storage purposes. We should typically
expect to encode information into only a finite number of
spins located at the boundary of the chain. The edge mode has
no such restriction and usually decays exponentially into the
chain (see Fig. 1). This mismatch between the finite number
of sites we can encode into and the long tails of the edge mode
operators means that we can never expect our information
to be totally preserved even when we take the system to the
thermodynamic limit to make the edge modes exact constants
of motion. With this in mind, one naturally turns to search for
features which can further localize the edge modes without
engaging in fine tuning.

One readily available and promising candidate for this role
is disorder. While usually considered an obstacle to analytical
and numerical study, this feature is both generically present
in physical systems and also enables a variety of localization
phenomena, which may conceivably enhance the localization
of the emergent edge modes. These go by different names
depending on whether the underlying physics is describable
using free fermions (Anderson localization [16]) or is intrinsi-
cally interacting (many-body localization, or MBL [17,18]).
While the exact phenomenology of these two differs, both
feature local constants of motion. In the SPT context, this

2643-1564/2020/2(1)/013120(10) 013120-1 Published by the American Physical Society

https://orcid.org/0000-0001-5186-3875
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013120&domain=pdf&date_stamp=2020-02-04
https://doi.org/10.1103/PhysRevResearch.2.013120
https://creativecommons.org/licenses/by/4.0/


GOIHL, WALK, EISERT, AND TARANTINO PHYSICAL REVIEW RESEARCH 2, 013120 (2020)

FIG. 1. This is a sketch of the one-dimensional spin chain inves-
tigated in this work. The support of the edge zero mode operators
under the influence of perturbations is depicted in orange. The blue
regions are the local edge qubits to which an experimenter would
have access.

has been proposed as a method to attenuate the effective
interaction between the two edge modes since any coupling
between them must be mediated by bulk eigenstates which,
if only locally supported, can only connect the two via a
prohibitively small number of virtual processes [19–21].

While this heuristic is appealing, precious little confirma-
tion of it has been forthcoming since initial investigations
established that the edge modes are not destabilized by the
presence of disorder [22]. In fact, a recent work by some of
the authors [23]—built on the earlier Ref. [24]—suggests that
the shape of the edge mode when subjected to disorder and
interaction changes in a more intricate way than expected.
There, the support of the edge modes was investigated and,
surprisingly, found to depend heavily on the specific edge
mode that was analyzed. In light of this, a thorough exami-
nation of disorder effects on the temporal stability of the edge
mode appears to be urgently required. Here, we achieve this
goal: We explicitly determine the dynamics of the encoded
subspace and quantify the extent to which information can be
recovered at a given time.

Before proceeding, it is critical to specify what is meant by
a good quantum memory. Any imperfect memory device can
be viewed as a partially decohering channel acting upon the
encoded quantum states. For a comprehensive investigation,
the first step is to compute the operators that define this
channel, from which all potentially relevant measures can then
be calculated. It is important to carefully select measures that
meaningfully quantify the notion of information preservation
in the context of quantum computation and communication
applications. Ideally, a measure should be operationally well
motivated, straightforward to calculate, and amenable to ex-
perimental verification. In this work, we perform full recon-
struction of the time-evolved state on the edge mode subspace.
This allows us to fully reconstruct the effective quantum
channel applied at each time step. With this reconstruction at
hand, we compute bounds on two measures of information
preservation when using the system as a quantum memory:
the retrievability of a logical bit, which is a prerequisite for
a quantum memory, and the coherent information, which
bounds the quantum capacity that is the ultimate limit to quan-
tum information transmission and particularly relevant for
quantum communication applications, e.g., quantum repeaters
[25,26]. For the classical information, we find a multifaceted
behavior consistent with Ref. [23] supporting the observation
that encoding with different edge state bases results in differ-
ent stability behavior. In the quantum information setting, we
find that disorder helps the recovery of the encoded qubits,
but low interaction strength is mandatory. Our results extend
and enrich the narrative of disorder helping localize edge

modes, as we find that there are encodings and Hamiltonian
parameters for which this paradigm holds and others where it
does not. In practice, this either makes an optimization over
all possible parameters necessary to find the “sweet spot”
of information coherence or demands an educated choice of
physical realization. One can equally see our work as shed-
ding light on notions of locally constrained nonequilibrium
dynamics that interplays with disorder [27].

II. SETTING

In this work, we analyze the interplay of disorder, in-
teractions, and symmetry-protected topological (SPT) order.
We are specifically interested in the stability of the protected
subspace spanned by the unperturbed edge modes when the
system is subjected to many-body interactions and disorder.
To measure the extent to which the locally encoded state
gets entangled with the bulk, we time evolve the system and
reconstruct the unperturbed edge mode subspace. We study
a spin chain of length N hosting a disordered XZX cluster
Hamiltonian,

H0({h j}) = −
N−1∑
j=2

(1 + h j )Xj−1ZjXj+1, (1)

where the h j are drawn uniformly from the interval [−�
2 , �

2 ],
and Xj,Yj, Zj are the Pauli operators acting at site j. Here,
we restrict the disorder to act only on the cluster terms,
disordering around a mean bulk gap of 1. We include this
offset to distinguish the ability of disorder to help localize
the edge modes from the bulk energy gap’s power to do the
same. The choice to have disorder appear in the coefficient
of the cluster terms is a pragmatic one; any other model of
disorder, e.g., a random local magnetic field, competes with
the SPT order and thereby drives a transition to a topologically
trivial phase [19,22]. Disordering the cluster terms themselves
is an ideal version of disorder in the sense that this version
splits degenerate levels for excited states, while preserving the
ground-state manifold. Therefore, we expect any other model
of disorder to cause less localization in the system.

Even disordered, the Hamiltonian in Eq. (1) is a solvable
representative of an SPT phase protected by the time-reversal
operator,

T =
N∏

i=1

ZiK, (2)

where K is complex conjugation. Thus, this system supports
protected edge zero modes, i.e., operators localized on the
edge which commute with the Hamiltonian, at least up to an
error that is exponentially suppressed in system size. At this
solvable point, these operators commute exactly and can be
identified by inspection. There are six such operators,

Oi
Edge =

⎧⎪⎨
⎪⎩

Ox
L = X1, Ox

R = XN ,

Oy
L = Y1X2, Oy

R = XN−1YN ,

Oz
L = Z1X2, Oz

R = XN−1ZN

⎫⎪⎬
⎪⎭

, (3)

that split into two independent Pauli algebras, i.e., one for
the left and right edge, respectively. Each of these Pauli
algebras implies the existence of a special two-dimensional
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Hilbert space hosted on these edges, corresponding to the
fundamental representation of these algebras.

The physical situation underlying this algebraic picture
is reflected by a subtle decomposition of the Hilbert space.
The logical left (right) edge qubit is only encoded into a
two-dimensional subspace HL (HR) of the four-dimensional
Hilbert space described by the physical qubits on the two left-
most (right-most) sites. It is important to stress that the bulk
degrees of freedom, associated with HBulk, involve physical
sites 3, . . . , N − 2 as well as the remaining two-dimensional
subspaces of each of the two edges. Initial preparations are
product state vectors of the form

|ψ〉 = |ψL〉 ⊗ |ψBulk〉 ⊗ |ψR〉. (4)

In the ideal limit, without any interactions, these edge states
|ψL〉, |ψR〉 are independent of the global unitary time evo-
lution generated by H0—never becoming entangled with the
bulk—and thus do not decohere. This changes, however, as
soon as coupling terms are added to the Hamiltonian. In this
case, the actual edge modes broaden (sketched in Fig. 1) and
no longer coincide with their compact form in Eq. (3). The
corresponding edge states hybridize, splitting the degeneracy
by an amount which is suppressed exponentially with system
size [8,9,28,29]. Our logical qubits are no longer time inde-
pendent and become entangled with the rest of the chain. By
restricting ourselves to measurements of the edge operators in
Eq. (3), we will be partially tracing an entangled state leading
to decoherence over time.

To model this effect, we introduce an Ising-type interac-
tion,

HZZ(J ) = −J
N−1∑
j=1

ZjZ j+1, (5)

resulting in the following Hamiltonian:

H ({h j}, J ) = H0({h j}) + HZZ(J ), (6)

where we vary both J and �. Note that the resulting Hamil-
tonian is no longer free and hence requires a treatment in the
full Hilbert space.

As we are interested in studying the evolution of the states
of the edge Hilbert space, we need a way of constructing the
reduced dynamics on what is effectively an open quantum
system. This can be done by time evolving an initial pure
product state on the entire system of the form in Eq. (4), and
then evaluating the time-evolved reduced state of the edge, ρt ,
as

ρt = tr Bulk(e−iHt |ψ〉〈ψ |eiHt )

= Et (|ψL,R〉〈ψL,R|), (7)

with |ψL,R〉 = |ψL〉 ⊗ |ψR〉. These dynamics, for fixed bulk
preparations, gives rise to a family of quantum channels Et ,
acting on the state space over HL,R. This time-parametrized
family is also referred to as the dynamical map that captures
time evolution of the edge. We now investigate the effects
of these dynamics on the viability of the edge modes as a
quantum memory.

III. METHODS

A. Characterizing quantum memories

The approximate conservation of the observable quantities
is often used as a proxy for the information storage capa-
bilities of a physical system, topological or otherwise. In
fact, disordered models in a many-body localized phase have
been shown to preserve spin orientation along a magnetization
direction both theoretically [30,31] and experimentally [32] in
one dimension, with similar results in two dimensions [33].
While these phenomena are indeed hallmarks of dynamical
decoupling, they are only a prerequisite for a useful quantum
memory. Specifically, the information encoded into a polar-
ized spin state in an MBL system is only a classical bit string,
even if the system itself is quantum. Given the abundance of
efficient classical memories, using a quantum system for bit
storage seems wasteful. A true quantum memory must be able
to robustly store an arbitrary—typically unknown—qubit.
This necessitates the existence of a protected two-dimensional
Hilbert space, which is not guaranteed by the presence of
even an arbitrary number of conserved quantities. Rather,
preservation of any fixed basis can be seen as a necessary
condition, but to promote the system in question to a quantum
memory, all other possible bases must be preserved too.

To assess the usefulness of a system as a quantum mem-
ory, we will now introduce measures which quantify the
amount of both classical and quantum information that is
retrievable from our system. As mentioned above, classical
information storage is a necessary condition for realizing a
quantum memory. The storage capabilities of quantum states
are relevant for quantum computations, where one reads in a
classical bit string into a quantum system, then performs some
(possibly) quantum gates on it and reads out the classical bit
string encoding the result of the computation again. Moreover,
many quantum communication protocols require a quantum
memory, e.g., for quantum networks, it is often necessary to
store an entangled state between some nodes while prepar-
ing further entanglement between others. As such, quantum
memories are a crucial building block for many quantum
technologies [34].

Since we are interested in the stability of information
(whether classical or quantum) stored in edge states, care
should be taken in defining measures thereof. The robust-
ness of a logical bit, whose value is encoded via orthogonal
state vectors |ψ〉 and |φ〉 in an imperfect quantum memory
described in its time evolution by Et , is essentially given by
the distinguishability of the logical states at the output [i.e.,
between ρ = Et (|ψ〉〈ψ |) and σ = Et (|φ〉〈φ|)]. This can be
captured by the trace distance,

D(ρ, σ ) = 1
2 ||ρ − σ ||1. (8)

Operationally, this is directly related to the probability of suc-
cessfully recovering an encoded logical bit. For example, the
maximum probability p of distinguishing between quantum
states ρ and σ on a single-shot level is

p = 1
2 + 1

2D(ρ, σ ), (9)

assuming each state occurs with initial identical probability
of 1/2. This, then, is precisely the optimal probability that
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an unknown equiprobable logical bit could be successfully
determined from the output of the memory.

As outlined above, these notions can be extended to quan-
tify the performance of a quantum memory by considering
all possible encodings. This insight was used in Ref. [35]
to propose a figure of merit called the integrity, which is
essentially the output distinguishability minimized over all
possible orthogonal state encodings. Intuitively, this measure
tracks how well the entire logical subspace is preserved under
the time evolution. It can also be related to other important
metrics in quantum information processing such as the logical
fidelity and the error-correction pseudothreshold [36,37].

For our system, the integrity at time t will be given by

I (t ) = min
|ψL,R〉⊥|φL,R〉

D[Et (|ψL,R〉〈ψL,R|), Et (|φL,R〉〈φL,R|)],

(10)

where |ψL,R〉 is a quantum state vector of HL,R and |φL,R〉
is an orthogonal state vector, evolved in time. Note that
this is a slight generalization with respect to [35] where
only single-qubit systems were considered, for which the
orthogonal complement of a pure state is uniquely defined.
The generalization here to two qubit states will thus require
simultaneous minimization over pairs of orthogonal input
states, which can still be captured as an efficiently solvable
semidefinite problem. Nevertheless, the primary minimization
in the integrity is highly nontrivial for general Et so we will
resort to upper bounding this quantity by evaluating the output
distinguishability for particular orthogonal encodings.

Given the above definition of the integrity, there is an
immediate connection to the classical information capacity
of the quantum channel Et . This quantifies the asymptotic
rate at which classical bits encoded in quantum states can
be retrieved, once the quantum systems undergo an evolu-
tion dictated by the quantum channel Et . This is the most
meaningful definition of capturing the capability of storing
classical information. On the formal level, it is defined as the
regularized Holevo-χ of the quantum channel [38]. Since the
integrity gives rise to a specific product encoding, we have

pI (t ) log2 pI (t ) + [1 − pI (t )] log2[1 − pI (t )] � CCl(Et ),

(11)

where pI (t ) is the distinguishing probability associated with
I (t ) via Eq. (9).

In what follows, we restrict ourselves to eigenstates of the
unperturbed edge mode operators in Eq. (3) as inputs. That is,
the initial orthogonal state vectors |ψL,R〉 and |φL,R〉 entering
the definition of the integrity are chosen to be orthogonal
eigenvectors of XL ⊗ XR, YL ⊗ YR, and ZL ⊗ ZR. We make
this choice because it should be relevant in the context of
possible experimental realizations, and also because similar
input states have been shown to saturate the minimum in
Eq. (10) for some classes of channels [35]. We refer to these
physically motivated variants as directed integrities and will
denote them as IX (t ), IY (t ), IZ (t ), respectively.

For quantum communication, arguably the most meaning-
ful quantity is the quantum channel capacity Q, which is the
maximum number of qubits that can be reliably transmitted
per use of the channel in the asymptotic limit of many uses.

More precisely, this means that Q(Et ) is the maximum rate
at which one can send qubits through a channel E , such
that the probability of error goes to zero in the limit of
many uses of the channel. To date, this quantity has only be
evaluated for certain classes of channels. This is because, in
general, it requires a complicated optimization over input en-
codings (possibly entangled across channel uses). Typically,
one writes Q using a “regularization” of the the single-shot
capacity Q1,

Q(Et ) = lim
n→∞

1

n
Q1

(
E⊗n

t

)
, (12)

where E⊗n
t represents n parallel uses of the channel. To

calculate Q1, one only optimizes over encodings for a single
input round, and thus

Q1(Et ) = sup
ρ

{S[Et (ρ)] − S[(Et ⊗ I)(|ψ〉〈ψ |)]}

= sup
ρ

C(Et )ρ, (13)

where |ψ〉 is a purification of ρ and S(ρ) = −tr(ρ log2 ρ) is
the von Neumann entropy. The quantity on the right, C(Et )ρ ,
is called the coherent information [38].

Even this optimization can be quite challenging, so we
instead choose a particular input state which yields a lower
bound to the channel capacity. We choose to input one-half of
a maximally entangled state, such that the state going through
the channel, ρ, will be the maximally mixed state. This state
is completely isotropic and should hence be a good candidate
to assess the (possibly asymmetric) induced noise. In fact, it
also can be shown via the Choi-Jamiołkowski isomorphism
that the resulting bipartite output state is a unique alternative
representation of the map E . In any event, this procedure
yields a convenient lower bound to the quantum capacity of
the memory.

B. Computing figures of merit

Having identified meaningful quantities for determining
whether information is protected, we turn to the messy busi-
ness of actually computing them. The first step is to compute
the quantum channel Et which captures the edge state dy-
namics. There are several mathematically equivalent ways to
represent a quantum channel, such as its Choi-Jamiołkowski
isomorphic quantum state or its Kraus operators [39]. We
will employ an alternative approach, better suited to the
particularities of the problem, known as the matrix form of the
channel. Obtaining this representation will essentially entail
computing the final edge states given a set of well-chosen
initializations. While this is formally done by evaluating the
partial trace in Eq. (7), doing so directly is very inefficient.
The difficulty comes from attempting to trace over HBulk,
which contains information that lives on the same physical
sites as the edge qubits. This means that we cannot use the
physical site index to perform the partial trace, forcing us to
change to a basis where the decomposition of our full Hilbert
space into HBulk ⊗ HL,R is made explicit.

To avoid this complication, we compute the density matrix
by instead evaluating the expectation values of a tomograph-
ically complete set of observables, built using the edge mode
operators defined in Eq. (3). With these, we reconstruct the
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density matrix on the two-qubit system residing on the edge
using

ρ(t ) = 1

4

∑
i, j ∈

{0, x, y, z}

〈
Oi

LO
j
R(t )

〉
σ i

L ⊗ σ
j

R, (14)

where a superscript of 0 indicates that we take an identity op-
erator in the relevant Hilbert space. Beyond providing a com-
putational advantage in the following analysis, this method of
evaluating the density matrix also provides an intuitive picture
for how one would characterize a memory experimentally.
The experimenter would measure a tomographically complete
set of observables until sufficient statistics are obtained to
accurately determine the expectation values in Eq. (14) and
hence reconstruct the density matrix [39,40]. This proce-
dure, known as quantum state tomography, has been imple-
mented in a wide variety of quantum information experiments
[41–44]. In general, at least d2 − 1 different measurement
settings are required to fully characterize a d-dimensional
state.

With the edge state determined, only the computational
challenge of obtaining the effective channel Et remains. Since
Et is linear, we can always think of it as acting on a vector
space spanned by the Hilbert-Schmidt scalar products of
basis elements, usually written as |m〉〈n|, and find its matrix
elements in that basis. In our case, the matrix form can be
obtained from the numerical values of Et (|m〉〈n|), using a
Z-spin basis, letting |m〉, |n〉 ∈ {|↑,↑〉, |↓,↓〉, |↑,↓〉, |↓,↑〉}.
However, our procedure in Eq. (14) only allows us to evaluate
the map on elements of the form |m〉〈m|, and so producing all
the operator basis elements seems out of reach. Thankfully,
there exists an algorithm for producing the off-diagonal ele-
ments, namely,

Et (|m〉〈n|)

= Et (|+〉〈+|) + iEt (|−〉〈−|) − 1 + i

2
Et (|n〉〈n|)

− 1 + i

2
Et (|m〉〈m|), (15)

where |+〉 = 1/
√

2(|m〉 + |n〉) and |−〉 = 1/
√

2(|m〉 + i|n〉).
This entire process of characterizing a map by performing
state tomography on the output of a set of judiciously chosen
inputs is often referred to as quantum process tomography
[39]. Performing this calculation at every time step allows
us to track the progressive degradation of the memory and
calculate any of the single-shot quantities defined in Sec. III A.
We do so for a number of disorder configurations and interac-
tion strengths, obtaining a comprehensive picture of the edge’s
response to both.

IV. RESULTS

In this section, we present the numerical results obtained
for the disordered SPT model with Ising-type perturbations
defined in Eq. (6). We carried out simulations for a system
size N = 14 and 100 disorder realizations. The Hamiltonian
parameters used are J ∈ {0.1, 0.075, 0.05, 0.025} and � ∈
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5}, where we deliberately chose

FIG. 2. This plot shows the Z-directed integrity IZ (t ) as a func-
tion of time for 15 random samples (blue/green shades) and their
average (red). The Hamiltonian parameters in this plot are J = 0.075
and � = 1.0. The system is of size N = 14 and we simulated the
time evolution until t = 2000 using step sizes of �t = 0.1.

some values � � 2 to study the regime where disorder com-
petes with the bulk gap.

All shown time traces were simulated from t = 0 to 2000
(in units of inverse energy of the XZX coupling) by inte-
grating Schrödinger’s equation with a step size of �t = 0.1.
For each disorder realization, we use 20 different initial states
to obtain full tomographic information of the two-qubit sub-
space. At every integer time slice, we calculate the expectation
value of all 15 combinations of the unperturbed edge mode
operators given in Eq. (3). Tracking these quantities over time
allows us to reconstruct the full channel that represents the
time evolution reduced to the edges as laid out in Eq. (7).

As discussed in Sec. III A, we will first investigate directed
integrities which, individually, are only a measure of the qual-
ity of a classical memory. When all three Pauli directions are
taken together, however, they serve as an upper bound for the
integrity of the quantum channel. We find that the behavior of
each instance varies considerably between different disorder
realizations. To demonstrate this issue, in Fig. 2 we show the
time traces of the Z-directed integrity IZ (t ) for 15 randomly
chosen instances of disorder with Hamiltonian parameters
J = 0.1 and � = 1.5. The red curve is an average over the
15 traces; the traces themselves are shown in shades of green
and blue.

Though this average looks well behaved, the obtained
traces show a wide variety of behavior from one realization to
the next. It is useful to split the traces into two groups: those
which decrease exponentially with gentle fluctuations and
those which oscillate wildly within an exponentially decaying
envelope. The former of these should dominate any average,
and so we expect that our disorder-averaged quantities should
softly decay, a finding consistent with previous results in
related work [22].

While this would usually be the end of a story featuring
disorder, the appearance of rapidly fluctuating traces is very
concerning. Since a low value in the integrity and coherent in-
formation both indicate the formation of entanglement, we can
only conclude that the edge state is oscillating between states
of high and low bulk entanglement. This scenario constitutes a
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FIG. 3. Recovery fractions of directed integrities for a fixed threshold as a function of time. Colors encode the disorder strength �. The
system size is N = 14 and we simulated the time evolution until t = 2000 using step sizes of �t = 0.1. (a) Data for the Z-directed integrity
FIZ (t, τ = 0.7) with J = 0.1. (b) Data for FIZ (t, τ = 0.7) with J = 0.05. (c) Data for the Y -directed integrity FIY (t, τ = 0.7) with J = 0.1.
(d) Data for FIY (t, τ = 0.7) with J = 0.05.

fiendish obstacle for any experimental implementation. Even
if one could, in principle, decode the stored data by picking
a moment of low entanglement, the experimenter would need
detailed knowledge about the system dynamics to do so reli-
ably. One might hope that these wild fluctuations are limited
to this single integrity plot, indicating a pathology with limited
scope. But, as we shall see, they appear in a sizable fraction
of disorder realizations and so are intrinsic to the dynamics of
this system.

Given the extreme variation between disorder realizations,
we find ourselves in a circumstance where disorder averaging
would impede our ability to determine the suitability of this
system to act as a quantum memory. Instead, we will define a
phenomenological quantity appropriate for the given problem,
which we call the recovery fraction,

FA(t, τ ) := Nrec

Ntot
, (16)

where Nrec is defined as the number of instances for which
the measured quantity A is larger than τ , i.e., |{A(t )|A(t ′) > τ

∀t ′ � t}|. The coefficient τ captures a minimum threshold that
a hypothetical experimenter would need in order to recover
the encoded information. In the limit of infinite sample size,
the recovery fraction converges to a probability. This recov-
ery probability gives the relative proportion of systems that
reliably, meaning for all times smaller than t , stays above the
recovery threshold τ .

A. Directed integrities

We first investigate the directed integrities
IX (t ), IY (t ), IZ (t ), which quantify how well the two initially
orthogonal states in the X,Y, or Z logical basis remain so.
Each of these gives an upper bound to the true integrity, but
there are significant differences between these bases which
require comment.

As described above, we will look at the recovery fraction
to identify which realizations would be unusable due to rapid
oscillatory behavior. Figure 3 shows the time evolution of
the recovery fraction for each directed integrity. The left
panels show the recovery fraction for the Z-directed integrity

FIZ (t, τ = 0.7) for interaction strengths J ∈ {0.1, 0.05}. Col-
ors encode the different disorder strengths. For any combina-
tion of Hamiltonian parameters, we find a steep initial drop
of the recovery probability followed by a long plateau. When
tuning the strengths of the interactions and disorder, we find
that decreasing interactions and increasing disorder increases
the apparent saturation value of the recovery probability. This
is plausibly explained by the sharper localization behavior
in such conditions, a mechanism that conceivably improves
the storage of classical information. The sharp initial drop-off
is both intriguing and highly disturbing, as it implies that
even for relatively weak interaction strengths (e.g., J = 0.05),
a huge fraction of disorder realizations fall below threshold
immediately. The loss of 25% to 50% of these shows that
while the overall decay profile may be exponential, the fine
structure of the evolution would preclude us from saying that
the information is protected in any practical sense. We would
like to point out that the X -directed integrity shows the same
qualitative behavior and thus is not displayed separately here.

When analyzing the recovery fraction for the Y -directed
integrity FIY (t, τ = 0.7) shown in the two panels on the right,
we find a sizable quantitative increase of the recovery fraction
accompanied by a similar qualitative effect of interactions,
namely, the recovery probability decreases with interaction
strength. However, its disorder dependence differs signifi-
cantly from the IZ (t ) case. Here, increasing the disorder
strength initially decreases the integrity of the Y basis, before
rising again past � = 3. This indicates that the Y -directed
integrity is controlled by the likelihood of having cluster terms
with coefficients 1 + hj close to zero. This begins to occur
when � ∼ 2 and is most likely in the parameter region of � ∈
[2, 3]. The resurgence of the recovery fraction past this regime
can be understood as the disorder parameter dominating both
the mean gap and interaction strength. Thus we expect the
system to behave identically to one with weaker interactions.
While initially shocking, the large quantitative and qualitative
difference between bases actually mirrors results from pre-
vious numerical studies performed by some of the authors
[23], where the perturbed edge zero mode operators showed
a similar disorder and interaction dependence.
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FIG. 4. Final recovery fraction of directed integrities at t = 2000 as a function of the threshold τ . Colors encode the disorder strength �.
The system size is N = 14. (a) Data for the Z-directed integrity FIZ (t = 2000, τ ) with J = 0.1. (b) Data for FIZ (t = 2000, τ ) with J = 0.05.
(c) Data for the Y -directed integrity FIY (t = 2000, τ ) with J = 0.1. (d) Data for FIY (t = 2000, τ ) with J = 0.05.

While the time dependence of FI reveals curious behavior,
in practice, an experimenter will be interested in how well the
bit can be recovered after time evolution. It is thus instructive
to consider the final value of our simulation at t = 2000 and
plot this value as a function of the threshold τ , ensuring that
we have not artificially depressed the recovery fraction by
choosing an overly optimistic threshold. The resulting plots
are shown in Fig. 4. Again, the color encodes disorder and
the two panels on the left show two interaction strengths
J ∈ {0.1, 0.05} for the final recovery fraction of the Z-directed
integrity FIZ (t = 2000, τ ). Here, we find that the recovery
fraction starts at 1 and smoothly goes to zero when the thresh-
old reaches 1. Again, the interaction plays a crucial role here,
depressing the recovery fraction uniformly as it increases. The
disorder blunts this effect as before, but the effect saturates
when it is of the order of the mean bulk gap. When turning to
the final recovery fraction of the Y -directed integrity FIY (t =
2000, τ ) shown in the two panels on the right, we again see
an extreme sensitivity to the disorder strength, with a final
recovery fraction which is almost identically 1 for all but the
most aggressive values of τ , while disorder is very low (<0.5),

FIG. 5. In this heat map, we show the disorder and interaction
dependence of the final recovery fraction FIZ (t = 2000, τ = 0.7) for
a fixed threshold for the Z-directed integrity.

with an immediate drop-off for higher disorder strengths.
What becomes more apparent is disorder’s homogenization of
the bases, improving the integrity of the X and Z encodings
while simultaneously degrading the Y encoding so that the
final recovery fractions are similar.

These results are nicely summarized in Figs. 5 and 6,
with heat maps of FIZ (t, τ = 0.7) and FIY (t, τ = 0.7), re-
spectively. Here we can clearly see the monotonic improve-
ment of the Z-directed integrity with increasing disorder and
decreasing interaction strength, while the Y -directed integrity
shows a clear dip as � approaches 2. We do see a resurgence
in both plots when � moves beyond 4, but this corresponds to
the disorder scale becoming the dominant energy scale in the
system, playing a similar role to the mean gap in the original
problem.

Taken together, the directed integrities paint a curious
picture. Classical bits encoded using any basis will be suscep-
tible to degradation from interactions. Bizarrely, our ability
to attenuate this with disorder depends more on the chosen
edge basis than the interaction strength, with the Y basis
being clearly superior for weak disorder. We would like to

FIG. 6. In this heat map, we show the disorder and interaction
dependence of the final recovery fraction FIY (t = 2000, τ = 0.7) for
a fixed threshold for the Y -directed integrity.
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FIG. 7. This figure shows data for the coherent information for various interaction strengths. Colors encode the disorder strength �. The
system is of size N = 14. Simulations run up to 2000 tunneling times with a step size of �t = 0.1. J ∈ {0.1, 0.05}. (a) Time evolution of
the recovery fraction of the coherent information FC (t, τ = 1.2) with J = 0.1. (b) The coherent information FC (t, τ = 1.2) with J = 0.05.
(c) The final recovery fraction of the coherent information FC (t = 2000, τ ) as a function of the threshold τ with J = 0.1. (d) The final recovery
fraction FC (t = 2000, τ ) with J = 0.05.

stress again that considering single directed integrities only
allows conclusions about classical information storage. The
actual integrity is the minimum of all possible encodings and
is thus upper bounded by the worst of our directed integrity
results, e.g., the Z-directed integrity. Since this is improved
by introducing disorder, this suggests that disorder does in
fact help its ability to store quantum information, albeit at the
cost of reducing its classical information storage capabilities,
which are captured by the Y -directed integrity. To confirm
this, we will now calculate the coherent information of the
dynamical map.

B. Coherent information

In this part, we carry out the very same analysis as for the
directed integrities, but now we use the coherent information
C(t ) which gives a lower bound to the single-shot capacity
Q1(t ) of our system. Q1(t ) quantifies the number of qubits
which could be reliably extracted from our system after
our time evolution using some optimal single-shot encoding

FIG. 8. In this heat map, we show the disorder and interaction
dependence of the final recovery fraction of the coherent information
FC (t = 2000, τ = 1.2).

strategy. The coherent information then corresponds to fixing
an encoding strategy, and thus both range from zero to two.

The time dependence of the recovery fraction of the co-
herent information FC (t, τ = 1.2) for a fixed threshold and
different interaction strengths is shown in the left panels
of Fig. 7. The behavior shown is strikingly similar to the
Z-directed integrity, showing the same immediate decline in
recovery fraction, but now for a quantity which is genuinely
quantum. Decreasing the interaction strength and increasing
the disorder strength both improve the coherent informa-
tion monotonically, a feature also shared with the Z-directed
integrity. These similarities continue in the final recovery
probability of the coherent information FC (t = 2000, τ ) as a
function of cutoff τ as shown in the panels on the right in
Fig. 7, showing that most of the improvement comes from
reducing the interaction strength.

If we now again consider the final recovery probability of
the coherent information FC (t = 2000, τ = 1.2) with fixed
threshold as a function of disorder and interaction strength
as shown in Fig. 8, we again see that high disorder and low
interaction lead to the highest final recovery fraction of the
coherent information. The figure looks very similar to what
we have obtained for the Z-directed integrities, confirming
that the ability of these to store information is the limiting
factor in the edge’s ability to preserve quantum information
reliably.

V. CONCLUSIONS

Using edge modes of topologically protected systems is
a promising avenue for quantum information tasks. It is,
however, largely unclear how stable information encoded into
these systems will actually be when the system is perturbed
away from its solvable point by spurious interactions and
disorder, both of which are omnipresent in realistic experi-
mental realizations. Here, we present numerical results for the
dynamical recoverability of information—both classical and
quantum—encoded into the edge mode subspace of an XZX
cluster Hamiltonian with both tunable many-body interactions
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and disorder as a perturbation. We reconstruct the edge state
density matrix to obtain the channel which represents the time
evolution. With these data, we are in position to calculate mea-
sures of classical information, namely, directed integrities,
and quantum information, namely, the coherent information.

By studying the directed integrities, we find that not
only do disorder strength and interaction strength change the
amount of recoverable information, but also that the specific
encoding direction plays a crucial role in determining the
coherence of the encoded bits. The best encoding is found to
be in the Y basis of the unperturbed Hamiltonian, yielding
very stable bits for a large range of interaction strengths.
The narrative of disorder aiding the encoding is wrong for
this setting, as we find an intermediate regime when disorder
strength is comparable to gap size (� ∼ 2) which has minimal
recovery fraction, before rising again monotonically beyond
that. It holds, however, for an encoding in the Z or X bases,
where the detrimental effect of interaction strength can be
counteracted by introducing disorder. Since the cluster Hamil-
tonian is not rotationally symmetric to begin with, we do not
expect the bases to behaves uniformly. However, the level of
asymmetry we have observed is startling and provides urgent
motivation to comprehensively understand the relationship
between the microscopic model and the resulting preferred
classical bit-encoding basis.

All of this said, a single encoding basis does not a qubit
make. For quantum information, one needs to characterize the
channel generated by the time evolution reduced to the edge
qubits. We did so by calculating the time-dependent coherent
information stored in the edge states, a basis-independent
quantity. In doing so, we recovered and provided further sub-
stance to the narrative that disorder increases the ability of the
system to store quantum information. Interactions decrease
the quality of the memory in a similar way to the classical
encoding in the Z or X direction.

To distinguish well- and ill-behaved disorder realizations,
we set a minimum performance threshold and evaluated the
fraction of runs which stayed above it over the course of
the evolution. Quite surprisingly, this fraction failed to decay
smoothly over time, as one would expect if there was gradual
decoherence of the edge states. Instead, the recover fraction
dropped precipitously, indicating that a large fraction of dis-
order realizations describe systems that would be worthless
for information storage purposes. Furthermore, these may
not have an appreciable effect on disorder averages, as they
are rapidly oscillatory instead of simply dropping to zero
immediately. It seems fair to say that the interplay of disorder,
interactions, and SPT order is less understood than previ-
ously anticipated. Our findings are compatible with those in
Ref. [23], where a similarly multifaceted picture for the edge
mode support was found using a completely different method.

FIG. 9. Estimated climate footprint of the computations pre-
sented in this paper. Prototyping is not included in these calculations.
Estimations have been calculated using the examples of Scientific
CO2nduct [50] and are correct to the best of our knowledge.

These results demand more foundational work, possibly in-
cluding an extension of perturbation theory to systems with
topologically protected degeneracies.

Our work covers information loss due to unitary dynamics
under perturbed Hamiltonians, but real-world experiments
are also coupled to the outside world leading to further
decoherence. Since localization effects are also expected to
be diminished in the presence of dissipation [45,46], the
amount of information protection induced by disorder seems
questionable. Given that open system dynamics are also ca-
pable of corrupting topological data directly, even without
the presence of many-body interactions [47–49], investigating
the circumstances where disorder, interactions, and a particle
reservoir are all present is likely to yield fascinating results.

VI. CO2-EMISSION TABLE

Figure 9 summarizes the climate expenses of the simula-
tions presented in this work.
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