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Abstract 

The rate constants for the reactions of a variety of nucleophiles reacting with substituted 

benzyl chlorides in liquid ammonia (LNH3) have been determined. To fully interpret the 

associated linear free-energy relationships, the ionisation constants of phenols ions in liquid 

ammonia were obtained using UV spectra. These equilibrium constants are the product of 

those for ion-pair formation and dissociation to the free ions, which can be separated by 

evaluating the effect of added ammonium ions. There is a linear relationship between the pKa 

of phenols in liquid ammonia and those in water of slope 1.68. Aminium ions exist in their 

unprotonated free base form in liquid ammonia and their ionisation constants could not be 

determined by NMR. The rates of solvolysis of substituted benzyl chlorides in liquid ammonia 

at 25 
o
C show a Hammett ρ of zero, having little or no dependence upon ring substituents, 

which is in stark contrast with the hydrolysis rates of substituted benzyl halides in water, 

which vary 10
7
 fold. The rate of substitution of benzyl chloride by substituted phenoxide ions 

is first order in the concentration of the nucleophile indicative of a SN2 process, and the 

dependence of the rate constants on the pKa of the phenol in liquid ammonia generates a 

Brønsted βnuc = 0.40. Contrary to the solvolysis reaction, the reaction of phenoxide ion with 4-

substituted benzyl chlorides gives a Hammett ρ = 1.1, excluding the 4-methoxy derivative, 

which shows the normal positive deviation. The second order rate constants for the 

substitution of benzyl chlorides by neutral and anionic amines show a single Brønsted βnuc = 

0.21 (based on the aqueous pKa of amine), but their dependence on the substituent in 

substituted benzyl chlorides varies with a Hammett ρ of 0 for neutral amines, similar to that 

seen for solvolysis, whereas that for amine anions is 0.93, similar to that seen for phenoxide 

ion.  

The rates of aromatic nucleophilic substitution reactions in liquid ammonia are much faster 

than those in protic solvents indicating that liquid ammonia behaves like a typical dipolar 

aprotic solvent in its solvent effects on organic reactions. Nitrofluorobenzenes (NFBs) readily 

undergo solvolysis in liquid ammonia and 2-NFB is about 30 times more reactive than the 4-

substituted isomer. Oxygen nucleophiles, such as alkoxide and phenoxide ions, readily 

displace fluorine of 4-NFB in liquid ammonia to give the corresponding substitution product 

with little or no competing solvolysis product. Using the pKa of the substituted phenols in 
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liquid ammonia, the Brønsted βnuc for the reaction of 4-NFB with para-substituted phenoxides 

is 0.91, indicative of the removal of most of the negative charge on the oxygen anion and 

complete bond formation in the transition state and therefore suggests that the decomposition 

of the Meisenheimer σ-intermediate is rate limiting. The aminolysis of 4-NFB occurs without 

general base catalysis by the amine and the second order rate constants generate a Brønsted 

βnuc of 0.36 using either the pKa of aminium ion in acetonitrile or in water, which is also 

interpreted in terms of rate limiting breakdown of Meisenheimer σ-intermediate. Nitrobenzene 

and diazene are formed as unusual products from the reaction between sodium azide and 4-

NFB which may be due to the initially formed 4-nitroazidobenzene decomposing to give a 

nitrene intermediate, which may dimerise and be trapped by ammonia to give the unstable 

hydrazine which then yields nitrobenzene. 

We have developed a method for the amination of aryl halides in liquid ammonia using copper 

(I) catalysis which enables direct synthesis of a number of primary amines with excellent 

yields. This method does not require strong base and ligands as additives and the amination in 

liquid ammonia has exclusive selectivity for the formation of primary amines, even under 

relative higher temperature. The amount of catalyst required for the reaction is relatively lower 

than that generally used, and the convenience of products separation with liquid ammonia as 

reaction medium indicate its potential industrial application. The preliminary mechanistic 

investigation indicates that the rate of the amination is first order dependence on the 

concentration of copper (I) catalyst, and the formation of triamminecopper (I)-aryl ring 

intermediate is probably the rate limiting step in liquid ammonia. Due to strong coordination 

of solvent molecules to the copper (I) ion, the kinetics of the reaction are generally insensitive 

to the addition of other conventional ligands in liquid ammonia.   

The copper (I) catalysed 1,3-Huisgen cycloaddition reaction of azide and alkynes (Cu
I
AAC) in 

liquid ammonia requires less catalyst than those in conventionally used solvents. The excellent 

yield, exclusive selectivity, and most importantly, the ease of separation of the product 

indicate the potential advantages of using liquid ammonia as the solvent for this reaction. The 

preliminary mechanistic investigation suggests that Cu
I
AAC reaction in liquid ammonia is a 

stepwise process with the initial formation of copper (I)-acetylide ion complex, followed by its 

combination with copper (I) coordinated azide.   
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A list of commonly used symbols and abbreviations in this thesis 

 

LNH3 liquid ammonia 

HBD hydrogen bond donor 

HBA hydrogen bond acceptor 

εr dielectric constant 

λmax maximum absorbance wavelength (nm) 

εmax molar extinction coefficient at λmax 

DMSO dimethyl sulphoxide 

DCM  dichloromethane 

THF tetrahydrofuran 

DMF N,N-dimethyl formaldehyde 

HMPT hexamethylphosphoramide 

AN acetonitrile 

DMAc N,N-dimethylacetamide 

NMP N-methyl-2-pyrrolidone 

kobs observed pseudo-first-order rate constant 

ksol solvolysis rate constant (s
-1

) 

k2 second order rate constant (M
-1

s
-1

) 

t1/2 half-life of reaction(s
-1

 or hr
-1

) 

GC gas chromatography 

HPLC high performance liquid chromatography 

DSC differential scanning calorimetry 

DN donor number, qualitative measure of Lewis 

basicity (kcal mol
-1

) 

I ionic strength (M) 

Ki equilibrium constant for ion-pair formation  

Kd equilibrium constant for ion-pair dissociation 

K equilibrium constant 

DEPT distortionless enhancement by polarisation 

transfer 

MDN malonodinitrile 
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NFBs nitrofluorobenzenes 

4-NFB 4-nitrofluorobenzene 

2-NFB 2-nitrofluorobenzene 

2,4-DFNB 2,4-difluoronitrobenzene 

4-NAB 4-nitroazidobenzene 

2-NAB 2-nitroazidobenzene 

ρ Hammett reaction constant 

σ Hammett substituent constant 

βnuc Brønsted constant for nucleophilic substitution 

reaction 

SNAr nucleophilic aromatic substitution with 

addition-elimination mechanism 
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1. Solvent effects on organic reactions 

Solvents are ubiquitous, and in most circumstances, are indispensable in chemistry and, in a 

sense, the extent of understanding of solutions reflects the development in chemistry. The 

history of utilising and developing solvents can be traced back to the times of when Greek 

Alchemists were searching for a universal solvent so-called “Alkahest”.
1
 Solvents are widely 

used in nowadays, not only in academic research, but most importantly, in industry, in fact the 

global solvents market is estimated to reach 19.9 million tons by 2015, according to a report 

by Global Industry Analysts, Inc.
2
 Therefore, knowledge of solution properties and 

investigations of solvents effects on organic reactions benefit academic chemical research as 

well as industry, and the choice of the solvents has significant impact on the efficiency and 

even nature of organic reactions. Although there have been many achievements on 

understanding solvent properties and their influences on the organic reaction in recent years,
1,3

 

due to the complex nature of solution and solvent effects on the reactions, our understanding 

of solutions are still imperfect and the progress of research has been relatively slow compared 

with the breakthrough in other chemical research areas, such as catalysis, synthesis and 

materials. In addition, most modern research in this area remains academic and, therefore can 

only benefit industry in a limited way. In recent years, as environmental issues become more 

and more crucial, some conventionally used solvents in industry are listed as „unclean‟, and 

potentially may harm the ecosystem. Thus it is imperative to discover „greener‟ solvents which 

could replace some of the currently used ones but not at the expense of losing their beneficial 

solvent effects.
4
  

1.1 The classification of solvents 

The nature of solvents can be quite different. Solvents can be classified in terms of chemical 

constitution, physical properties, and acid-base behaviours.
1
 Despite the many criteria for the 

classification of solvents, the solvents are often broadly divided into two different categories, 

nonpolar and polar. The dielectric constants (εr) of solvents can provide a rough indication of a 

solvent‟s polarity. Generally speaking, solvents with a dielectric constant of less than 15 are 

considered to be nonpolar. Theoretically, the dielectric constant measures the solvent's ability 

to decrease the field strength of the electric field surrounding a charged species immersed in it. 

This reduction is then compared to the field strength of the charged species in vacuum.
5
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Although the dielectric constant gives a general indicator to group the solvents, considering 

the enormous number of solvents, such a single parameter based classification is far from 

satisfactory. For example, methanol (εr = 33) has roughly the same dielectric constant as DMF 

(εr = 36.7) at 25 
o
C, but their other solvent properties including the solubility of solutes are 

quite different, these differences become more pronounced when considering solvent effects 

on the rates of  nucleophilic substitution reactions in these two solvents. Obviously, the 

classification of solvents needs to consider more parameters to fully explain and understand 

solvent effects. Current classifications of solvents combine dielectric constant, dipole moment 

(D), hydrogen bond donor (HBD) and acceptor (HBA) abilities of the solvent. Generally 

speaking, solvents fall into one of three main categories:
6
 

1. Protic: refer to solvents that possess a proton donating function, normally the 

solvent molecule contains an -OH or -NH- group. Typical examples are 

alcohols, amines, carboxylic acids and water. These have a large dipole 

moment and a capacity for hydrogen bonding.   

2. Dipolar aprotic: solvents of this category have no acidic proton, but possess a 

large dipole moment. Representative examples are DMSO, DMF, acetonitrile, 

nitromethane and ketones.  

3. Non-polar aprotic: these solvents, which have only a small dipole moment, no 

acidic protons, and also have a very weak or no ability to donate or accept 

electrons. The intermolecular forces between solvent molecules are very weak. 

Hydrocarbons, halocarbons and ethers are among the typical examples.   

It is worth noting that due to the physical and chemical differences between solvents, it is 

sometimes difficult to classify them neatly into one of the above classes and some are within 

borderline. Some solvents that belong to protic category can be considered as amphiprotic and 

act both as HBD and HBA. Table 1 shows the physical properties and classification of some 

conventionally used solvents.  
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Table 1 Physical properties of some commonly used solvents at 25 
o
C

7
 

solvent boiling point (
 o
C) dielectric constant dipole moment (D) classification 

n-hexane 69 1.88 0 non-polar 

benzene 80 2.3 0 non-polar 

1,4-dioxane 101 2.3 0.45 non-polar 

toluene 81 2.4 0.36 non-polar 

diethyl ether 35 4.3 1.15 non-polar 

chloroform 61 4.8 1.04 non-polar 

ethyl acetate 77 6.0 1.78 polar aprotic 

acetic acid 118 6.2 1.74 protic, amphiprotic 

THF 66 7.5 1.75 polar aprotic 

DCM 40 9.1 1.60 polar aprotic 

Ammonia
a
 -33 16.7 1.42 dipolar aprotic 

isopropanol 82 18 1.63 protic, amphiprotic 

acetone 56 21 2.88 polar aprotic 

ethanol 79 30 1.69 protic, amphiprotic 

methanol 65 33 1.70 protic, amphiprotic 

acetonitrile 82 37.5 3.92 dipolar aprotic 

DMF 153 38 3.82 dipolar aprotic 

DMSO 189 46.7 3.96 dipolar aprotic 

water  100 80 1.85 protic, amphiprotic 

a 
Reference 8. 

1.2 Solvent effects on solubility 

The solubility of chemicals in solvents is one of the fundamental and direct factors that affect 

the efficiency of organic reactions. The state of reactants dispersed in the solvent dictates 

whether the reaction is under homogeneous and heterogeneous conditions, which is of great 

importance for the kinetics and mechanisms of the reactions involved, more often than not, 

this is also true for the selectivity and product yields of reactions. The classical view of 

solvation process includes the following steps:
9
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1. A cavity must be created within the solvent to hold the solute molecule, this requires 

the solvent molecules to overcome the intermolecular forces, such as hydrogen 

bonding and dipole-dipole interaction between solvent molecules, so it is an 

enthalpically unfavourable process. The creation of cavity also causes the order of the 

solvent to increase, thus it is also an entropically unfavourable and so the total 

contribution of this process to the overall free energy of solvation process is positive. 

2. The solute must be separated from the bulk solute (solid or liquid) and requires the 

conquest of solute-solute interactions to enable solute molecules to become free from, 

for example, the restriction of crystal lattice energies in solid solutes. This process is 

enthalpically unfavourable but generally entropically favourable. The net contribution 

to the overall free energy of solvation is usually also positive. 

3. The solute molecule inserts into the solvent cavity, and interacts and mixes with the 

bulk solvent molecules. This usually results in enthalpically favourable solute-solvent 

interactions, and due to the mixing, the mixture may become more disordered. 

Therefore, this step is the key step for the dissolution of a solute, it contributes 

negatively to the overall free energy of solvation.  

The total free energy of solvation (ΔGsol) is the sum of the free energy changes from each 

individual step. If dissolution of solute is to occur spontaneously, it must be accompanied by a 

reduction in free energy. Empirically, dissolution occurs when solvent-solvent interactions are 

similar to the interactions between solvent and solute, which is the principle behind the well-

known term “similia similibus solvuntur (like dissolves like).” There are several key 

interactions that can affect the free energy of solvation, such as ion-dipole, dipole-dipole, 

dipole-induced dipole, hydrogen bonding, electron-pair donor/electron-pair acceptor 

interactions and last but not least, hydrophobic forces.  

[B-A]solv [B BA A]solv]solv ]solv

Kdissoc.Kion-pair

DissociationIonisation 

[ [

Scheme 1  
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Solutions of compounds that can undergo ionisation and dissociation in solvents to produce 

ion-pairs and free-ions involve further free energy changes (Scheme 1). The associated 

equilibrium constants are: Kion-pair = [B
  

A ] / [B-A]; Kdissoc. = [B ] • [A ] / [B
  

A ].  

A clear distinction must be made for the ionisation and dissociation steps, the former produces 

solvent caged ion pairs by heterolysis of a covalent bond, or reduces the electrostatic forces of 

the ionic bond by forming the solvent intervened contact ion-pairs (but still in a single solvent 

cage), while the dissociation produces free-ions which are solvated and separated completely 

by solvent molecules. The solvent can influence these two steps very differently, according to 

the theoretical model (Equation 1), the potential energy of an ion-ion interaction of the 

solvent separated ion pair is influenced by dielectric constant (εr), charge on the ion (Z • e) and 

the distance between two charges (r). 

Uion-ion = 
εr4πε0

1   
 

 

zz e2

r

Equation 1

•
•

• •

 

Therefore, those solvents which have a sufficiently high dielectric constant are more likely to 

cause the ion-pairs to become fully dissociated and solvated ions.  

 1.3 Solvent effects on chemical equilibria 

Since the dissolution of chemicals in solvent to make a homogeneous solution involves the 

interactions between solute and solvent molecules, and these interactions are key to the 

solvation energy, it is not difficult to imagine that different solvents may exert a specific 

solvation preference towards different solutes, which generates a differential stabilisation of 

the reactant or product which is the origin of solvents effects on the chemical equilibrium. In 

general, the equilibrium will be shifted by a change in solvent so as to favour the side most 

stabilised by solvation.  
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1.3.1 Acid/Base equilibria 

Of all the equilibria that can be affected by solvent effects, acid/base equilibria are probably 

the most important and have been widely investigated.
10

 The ionisation equilibrium of an acid 

or a base (Scheme 2), is often strongly influenced by a solvent change. Obviously, the basicity 

or acidity of the solvent plays an important role in the ionisation of acids or protonation of 

bases, respectively. For example, the ionisation of acids is essentially a proton transfer 

reaction from the acid to the solvent. However, the dielectric constant and the ability of the 

solvent to preferentially solvate the various species are also of crucial importance. The 

dielectric constant of a solvent can, in some cases, significantly affect the acidity or basicity of  

HAn+1 SH

SH

SH2 An

An

K

K'

HAn+1 S

Scheme 2  

compounds. For example, acetic acid has a pKa of 4.76 in water (εr = 78.4, 25
o
C) at 25

o
C, 

while that in methanol
11

 (εr = 32.7, 25
o
C)

12
 is 9.63. Although water is only 10-20 times more 

basic than methanol, there is a large decrease in the acidity constant. These observations are 

consistent with the prediction from the theoretical model that the pKa of acid is inversely 

proportional to the dielectric constant of the solvent. The effect of the solvent dielectric 

constant on the ionisation constants depends very much on the charges of the species involved. 

If the acid has a charge of +1, for example, NH4
+
, the dissociation constant of the acid has 

very limited sensitivity towards the change of solvent dielectric constant, because there is a 

positive charge on each side of the equilibrium. On the other hand, the dissociation constants 

of those acids which are neutral or have negative charge are greatly affected by the solvent 

dielectric constant, because of the change in charge upon ionisation. For neutral and charged 

acids, the general trend is for the acidity to increase with increasing dielectric constant of the 

solvent.  

The rules above are sometimes not in very good agreement with experimental observations, 

for example, the acidity of picric acid (2,4,6-trinitrophenol) at 25
o
C is only 3000 times greater 

in water (pKa = 0.43) than in methanol (pKa = 3.90),
13

 less than the difference observed for 
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acetic acid, moreover, it is only about 5 times less acidic than in DMSO (pKa = -0.30), 

although the dielectric constant of DMSO is about half of that for water. The reason for the 

acidity of picric acid being less sensitive to the change of solvent is presumably due to the 

charge on the oxygen anion being highly delocalised over the large benzene ring and nitro 

groups, unlike the case for the carboxylate anion, where the charge is only delocalised over 

two oxygen atoms. The example above show that in addition to the basicity/acidity of the 

solvent and its dielectric constant, there are other interaction forces, such as ion-dipole, dipole-

dipole, hydrogen bonding, etc., which may result in a specific solvent effect on the acid/base 

equilibria.  

The ionising ability of a solvent increases with solvent ionic strength (I), especially for solutes 

which are susceptible to a strong electric field effect, in other words, have a greater 

polarisability. Adding salt can affect ionisation and dissociation constants differently, but in  

 

 

Figure 1 Aqueous pKa of acetic acid decreases with the increase of ionic strength (NaNO3) at 

25 
o
C  
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general, without the presence of common ion effect and at low salt concentration, the 

ionisation and dissociation constant increases with increasing ionic strength. For example, the 

pKa of acetic acid decreases from 4.76 in pure water to 4.45 when ionic strength (I) increases 

to 1.5M (NaNO3) (Figure 1).  

1.3.2 Tautomeric equilibria 

The preferential solvation of different species in tautomeric equilibria, such as keto/enol, 

imine/enamine, azo/hydrazone, ring/chain equilibria, etc. can also give rise to solvent effects. 

Solvent effects on these equilibria are often key to the selectivity of organic reactions when 

ambident nucleophilic species are involved. Among all of the tautomeric equilibria, keto/enol 

equilibria have been most widely studied.
14

 For example, in a symmetrical 1,3-diketone, there 

is a equilibrium between two possible tautomers (enol, and 1,3-diketo form) (Scheme 3): 

enol 1,3-diketo

Scheme 3  

The keto/enol equilibrium constant Ktauto can be expressed as: Ktauto = [enol]/[diketo] and the 

values for acetylacetone and dimedone (5,5-dimethylcyclohexane-1,3-dione) in different 

solvent are shown in Table 2.   

In solution, the 1,3-diketo form is the dominant species for the open chained acetylacetone, 

solvent effects on the equilibrium constant are relatively small in typical dipolar aprotic and 

dipolar protic solvents. The enol form only becomes significant in some nonpolar aprotic 

solvents, but there is still more than 70% of the 1,3-diketo form (in THF). Compared with the 

1,3-diketo form, the enol is overall less polar due to an intramolecular hydrogen bond which 

also reduces its susceptibility to stabilisation by H-bonding from the solvent, whereas the 1,3-

diketo form could be stabilised in this way. Thus, a change of solvent from a dipolar protic or 

dipolar aprotic to a nonpolar solvent favours the formation of intramolecular hydrogen 

bonding in the enol at the expense of the 1,3-diketo form. In contrast to the open chain 
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Table 2 Equilibrium constants of enol tautomers of acetylacetone and dimedone in different solvents at 20 
o
C

1
 

Solvent (deuterated) Ktauto (acetylacetone) Ktauto (dimedone) 

gas phase
a
 0.74 ___ 

tetrahydrofuran 0.40 ___ 

toluene 0.39 0.08 

tetrachloromethane 0.29 ___ 

1,4-dioxane 0.13 2.8 

acetone 0.13 4.2 

chloroform 0.09 0.05 

methanol 0.07 148 

water 0.07 19 

dimethyl sulfoxide 0.05 94 

a
40 

o
C value.   

acetylacetone, the cyclic dimedone has a significant amount of enol form but the variation 

with solvent is not as clear as with the open chained compound. The enol form of dimedone is 

favoured much more in dipolar solvents than in nonpolar solvents, presumably because the 

1,3-diketo form is locked in the cis- arrangement with consequentially a high dipole moment 

and the enol form is unable to easily form an intramolecular H-bond and so is much more 

susceptible to H-bonding stabilisation from the solvent.
15

  

An interesting example shows how intramolecular hydrogen bonding affects the enol/keto 

equilibrium in various solvents with different polarity. For β-ketonitriles, due to the linear 

structure of cyano group, the six-membered cyclic intramolecular hydrogen bond is unable to  

C C

Scheme 4  

form (Scheme 4). Without this stabilisation, therefore the intermolecular hydrogen bonding 

between enolic OH and solvent molecules are more likely to form in protic polar solvents than 
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nonpolar ones. In addition, the conjugation between the double bond and the cyano group 

further stabilises the enol form which also leads to some charge separation. Thus, the enol 

content increases as the solvent changes from nonpolar to polar.
16

 

Similar solvent effects are also in lactim/lactam equilibria. One of the most classic examples is 

solvent effects on hydroxypyridine/pyridone equilibria (Scheme 5) in which hydroxypyridines 

dominate in the gas phase. However, the reverse situation is found in solutions, and increasing 

the solvent polarity significantly shifts the equilibrium towards the pyridone form. The 

difference in equilibrium constant in water and the gas phase is greater than 10
4
 for 4-

hydroxypyridine at 25 
o
C.

17
 Due to resonance, both 2- and 4- pyridone is a charge separated 

species and so the keto form is more polar than the corresponding hydroxypyridine. Polar 

solvents significantly stabilise the charge distribution of the pyridone form.       

. .
. .

. 

. .

O

O

4-Hydroxylpridine

2-Hydroxylpridine

4-pyridone

2-pyridone

Scheme 5 
 

Besides the examples described above, solvent effects can also be observed in Brønsted 

acid/base, Lewis acid/base, conformational, and E/Z isomerisation equilibria, etc., all of which 

reveal the influences of solvation on relative molecular stabilities.    
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1.4 Solvent effects on the rates of organic reactions 

The rate and order of chemical reactions can be considerably changed by a change of solvent, 

and in some extreme cases, rate accelerations as high as up to 10
9
 can be achieved by a solvent 

change.
18

 Studies of solvent effects on the rate of chemical reactions have a long and 

enlightening history, for example, as early as 1890, Menschutkin demonstrated that the rate of 

quaternisation of triethylamine by ethyl iodide was found to be very dependent on the reaction 

medium. Compared with the rate in n-hexane, the rate of the Menschutkin reaction is 4 times 

faster in ether, 280 times faster in methanol, and about 750 times faster in benzyl alcohol.
19

 

The choice of solvents is especially important for the chemical industry, where an appropriate 

choice of reaction medium can not only significantly reduce the cost of a product, but also can 

be eco-friendly to the environment. Therefore the establishment of theories and rules for 

solvent effects on reactions can facilitate the design and selection of a solvent for organic 

synthesis.  

In principle, the way in which solvents can affect reaction rates can be rationalised in terms of 

transition-state theory
3,20

 which describes the differential solvation of reactants and activated 

complexes leading to a change in the free energy of activation. Transition state theory is 

essential for a qualitative understanding of solvent effects on reactions, although it has 

limitation in some extreme cases, for example, when the rate of solvent reorganisation 

becomes rate-limiting. The latter has only been given attention recently due to rate 

measurement techniques becoming more advanced. It concerned with the non-equilibrium 

solvation of the activated complex that may occur in some fast or ultra-fast reactions, which is 

generally ignored in conventional transition state theory.
21

 Under such circumstances, the rate 

of reaction will depend on the solvent dynamics or friction and so with the density, viscosity, 

internal pressure, etc.   

1.4.1 Transition state theory
3,20 

A B [A-B]‡ C D

reactants productsactivitate complex

Scheme 6  
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Consider a reaction between reactants A and B passing through an activated complex [A-B]
‡
 

to give products C and D (Scheme 6), in which the reactants are quasi-equilibrated with 

activated complex[A-B]
‡
. The equilibrium constant can be given as follow:   

K
‡
 = [A-B]

‡ 
/ [A][B], in which [A], [B] and [A-B]

‡
 corresponding to the concentration of 

reactants and activated complex respectively. Transition state theory presumes that the 

formation of products, C and D, does not affect the equilibrium between reactants and 

activated complex and the free energy of the activated complex occupies the highest point 

during the reaction process and is defined as transition state, the activated complex is the 

corresponding chemical entity, and the structure of the activated complex is defined as 

transition state structure (Figure 2). 

E

reaction coordinate

A+B

products

reactants

C+D

[A-B]‡

transition state

ΔGrnx

ΔG‡

o

Figure 2  

Figure 2 Single-dimensional reaction energy profile of the reaction (Scheme 6). ΔG
‡
: Gibbs 

energy of activation; ΔGrnx
o
: Gibbs energy of the reaction.  

The decomposition of activated complex to give the products proceeds with a fixed rate 

constant kT/h and so effectively rates of reactions vary as the concentration of the activated 

complex vary. Assuming that the reactants and activated complex are in thermal equilibrium 

with the solvent, a change in solvent will lead to a modification of the height of the reaction 

energy barrier by differential solvation of the activated complex and reactants. A change of 



Introduction 

14 

solvent that reduces the energy barrier for reaction can be realised by either decreasing the 

energy of the activated complex though solvation stabilisation or by increasing the energy of 

reactant state though solvation destabilisation. It is the net differential change in the free 

energies of solvation that determines whether a change in solvent results in an increase or 

decrease in the rate of reaction. The solvation effects on the activated complex and reactants 

could be in the same or opposite direction (Figure 3).  

reactants reactants

products products

(a) (b)

E E

reaction coordinate reaction coordinate

activated complex activated complex

ΔG1
‡

ΔG2
‡

ΔG3
‡

ΔG1
‡

ΔG2
‡

ΔG3
‡

Figure 3

 

Figure 3 The reduction of the reaction energy barrier by differential solvation of (a) the 

activated complex, (b) the reactants. ΔG1
‡
: Gibbs free energy of activation of the reaction in 

solvent 1; ΔG2
‡
: Gibbs free energy of activation of the reaction in solvent 2; ΔG3

‡
: standard 

Gibbs transfer free energy for the reactants (ΔG
R

1→2) or activated complex (ΔG
‡

1→2). 

From the measurement of rate constants in different solvents and different temperatures, the 

activation parameters can be acquired and compared, thus enabling analysis of solvent effects 

on reaction rates.      
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1.4.2 Hughes-Ingold solvation ‘rules’  

The structure of the activated complex in the transition state may be modified by changes in  

solvent. According to the Hammond postulate,
22

 reactions can be described as proceeding 

through a reactant-like or a product-like transition state structure. These structures can vary in 

terms of bond formation/breaking and charge distribution. Like „normal‟ molecules, the 

activated complexes are subjected to the interactions with solvent molecules and these may be 

stabilising or destabilising, which, in some cases, may even lead to a change in reaction 

mechanism. Generally, reactions proceed through activated complexes which can be grouped 

roughly into polar, isopolar and free-radical types. Polar types of activated complexes have a 

considerable charge separation which differs from the reactant state and normally exhibits the 

largest solvent effects. Hughes and Ingold
23

 investigated solvent effects on a range of aliphatic 

nucleophilic substitution reactions, but only the pure electrostatic interactions between ions or 

dipolar molecules and solvent molecules in reactant and transition states were considered in 

their qualitative solvation model. Based on some simple assumptions and observations they 

concluded that the creation or destruction or dispersal of charge is expected to be subjected to 

an increase and decrease of solvation, respectively. The overall effect of the solvent on the rate 

of reactions of different charge types can be summarised as follows: 

1. An increase in charge density ongoing from the reactants to activated complex will 

lead to an increase in rate in a more polar solvent. 

2. A decrease in charge density ongoing from the reactants to activated complex will 

cause a decrease in rate in a more polar solvent.  

3. A dispersion of charge ongoing from the reactants to activated complex results in a 

small or negligible decrease in rate with a change of solvent polarity.  

Some examples
6
 can be found that agree with these Hughes-Ingold rules (Scheme 7) and a 

more generalised summary of the solvent effects on aliphatic substitution reaction is given in 

Table 3.
24

 

A further extension of the Hughes-Ingold rules was made by Westaway
25

 regarding the 

solvent effects on the structure of activated complexes in SN2 reactions. This solvation rule 

argued that the solvent effects on the transition state structure is primarily determined by the 
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interactions of solvent molecules with the incoming nucleophile and leaving group, and that 

the activated complex, penta-valent central carbon, is unlikely to have a strong interaction 









 ‡

‡

‡
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-

- -

-

charge separation 

charge neutralisation

charge dispersal

kEtOH/H2Ok

1500
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C

C[

[ ]

]

0.001

BrBr 0.2

Scheme 7
 

Table 3 Predicted solvent effects on rates of nucleophilic substitution reactions 

Reaction 

type 

Initial 

reactants 

Activated complex Charge alteration during 

activation 

Effect of increased 

solvent polarity on rate 

SN1 R-X R
δ+…..

X
 δ-

 Separation of unlike charges Large increase 

SN1 R-X
+
 R

δ+…..
X

 δ+
 Dispersal of charge Small increase 

SN2 Y + R-X Y
 δ+…..

R
…..

X
 δ-

 Separation of unlike charges Large increase 

SN2 Y
- 
+ R-X Y

 δ-…..
R

…..
X

 δ-
 Dispersal of charge Small increase 

SN2 Y + R-X
+
 Y

 δ+…..
R

…..
X

 δ+
 Dispersal of charge Small increase 

SN2 Y
- 
+ R-X

+
 Y

 δ-…..
R

…..
X

 δ+
 Destruction of charge Large decrease 

     

with solvent. The transition state of a reaction in which the nucleophile and leaving group 

have the same charge will not significantly be influenced by a change of solvent (Type I SN2 

reaction). On the other hand, a change in solvent will lead to a change of transition state 

energy for a reaction in which the nucleophile and leaving group bear different charges (Type 
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II SN2 reaction). In essence, the Westaway solvation rule is a refinement of Hughes-Ingold 

rules, both of them established a good guide for predicting solvent effects on chemical 

reactions in a qualitative way.  

Despite numerous examples that have been found to be consistent with Hughes-Ingold rules, it 

has its limitations. The model of Hughes-Ingold rules was built upon the assumption and 

simplification that only pure static interactions are considered, and they are not capable of 

evaluating solvent effects on reactions that have an isopolar activated complex.  Moreover, the 

rules are based on a continuous solvation model, assuming the solvent molecules equilibrate 

thermodynamically with reactants and activated complexes, but this is not appropriate for 

some very fast reactions in which the rate limiting step is the solvent reorganisation. A very 

interesting and counterintuitive example challenges the validity of the rules. A theoretical 

study shows that the Gibbs free energy of activation for SN1 ionisation of t-butyl halides in 

solution decreasing with increasing solvent polarity, which is in line with the rules. However, 

the study also shows a decrease in the stabilisation of the activated complexes with increasing 

solvent polarity. This indicates that the activated complex becomes less charged with 

increasing solvent polarity, which is not easily rationalised with the Hughes-Ingold model.
26

 

However, if the charged transition state structure is stabilised by a more polar solvent, then, 

according to the Hammond Postulate this should lead to a more reactant-like transition state 

i.e. less bond fission and less charge development in the transition state. In addition, Hughes-

Ingold rules do not directly consider the contribution from the entropy of activation to the 

overall Gibbs free energy of activation, and regard the enthalpy of activation as dominant. 

However, solvent restriction will result from the interaction of solvent molecules with a 

charged activated complex, giving rise to a large entropy loss. For example, the activation 

parameters for SN1 reaction in other solvents and water indicate that changes in the highly 

ordered water structure make the activation process entropy controlled.    

1.4.3 Specific solvation effects on reaction rates 

Besides pure electronic interactions, such as inductive and dispersion forces which exist 

between solvent molecules and reactants or activated complexes, there are some other specific 

intermolecular forces which are responsible for the solvent effects on the kinetics and 

mechanisms of reactions in solution. Hydrogen bonding forces are among one of the most 
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important specific interactions. In nucleophilic substitution reactions in which the attacking 

nucleophiles or leaving groups are ionic, hydrogen bonding forces are especially important for 

the understanding of solvent effects on the kinetics and mechanisms of these reactions.  In this 

sense, protic solvents have a great advantage by forming hydrogen bonds with reactants and 

leaving group. This is especially the case when the reactants and leaving groups are negatively 

charged anions. Specific solvation of leaving anions by hydrogen bonding facilitates the 

decomposition of activated complexes to form products, thus increasing the rate of reaction. 

On the other hand, specific solvation of attacking anions by hydrogen bonding leads to a 

decrease in the relative nucleophilicity of nucleophiles. For example, the rate of neighbouring 

group assisted solvolysis of 4-methoxyneophyl tosylate (I) is tremendously varied by about  

I  

10
6
-fold on changing solvent from diethyl ether to formic acid due to the difficulty of 

solvating the leaving tosylate anion by ether.
27

 Counter-ions can also affect the nucleophilicity 

of anionic nucleophiles, especially in non-polar solvents. 

Dipolar aprotic solvents, such as DMSO, acetonitrile and DMF, normally have large dipole 

moments and relatively high dielectric constants (Table 1). These solvents have no, or very 

limited, ability to act as hydrogen bond donors and are often called dipolar non-HBD solvents. 

Anions are poorly solvated in these solvents and hence are better nucleophiles than in, say, 

water leading to large rate enhancements in these solvents. As dipolar aprotic solvents are not 

good hydrogen bond donors, anionic nucleophiles are more „free‟ than in protic solvents in 

which these nucleophiles are solvated by the hydrogen bonding and must be at least partially 

desolvated for reaction to occur. For example, the rate of SNAr reaction between sodium azide 

and 4-nitrofluorobenzne in a typical dipolar aprotic solvent is about 10
4
-10

7
 times faster than 

in protic solvents and large rate enhancements are also seen for SN2 reactions involving 

anions.
28

 In contrast, the rate of SNAr reaction between neutral secondary amines and 4-
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fluorobenzene is not affected very much when the solvent is changed from protic to dipolar 

aprotic (Table 4).  

Table 4 Relative rates of representative SNAr, SN2 reactions in protic and dipolar aprotic solvents at 25 
o
C

29
 

solvents 

log (k2,solvent / k2,MeOH)  

N3
 

N3

  

MeOH 0 0 0 

H2O 0.8 N. A. N. A. 

HCONH2 1.1 0.8 N. A. 

acetonitrile 3.7 3.9 0.9 

DMSO 3.1 3.9 2.3 

DMF 3.4 4.5 1.8 

acetone 3.6 4.9 0.4 

HMPT 5.3 7.3 N. A. 

 

It is worth noting that dipolar aprotic solvents also could influence the stability of activated 

complexes. Theoretical studies show that the intermediate Meisenheimer complex for the 

reaction of azide anion with 4-NFB is more stable relative to reactants in dipolar aprotic than 

protic solvents (Figure 4).
30
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Figure 4 The QM/MM calculation of potential energy for the reaction of azide anion with 4-

NFB in different solvents. TS1: transition state 1; TS2: transition state 2; IC: intermediate 

complex.  

1.5 Solvent effects on UV spectra 

In solution, the UV spectra of organic compounds may differ from one solvent to another in 

their wavelength of maximum absorption and extinction coefficient. These changes can be 

interpreted in terms of the changes of interaction between solute and solvent, which can alter 

the energy gap(s) between ground and excited state of solute molecule. In many cases, 

ionisation can play an important role on the UV absorption spectra of organic compounds and 

these spectral changes can allow the determination of dissociation constants.
31

 Normally, 

solvent effects on the UV absorption spectrum are pronounced when the energy gap between 

the ground and excited state of the molecule is relatively large, whereas it is relatively small in 

benzene, polyenes, etc. 
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1.6 Empirical parameters of solvent polarity 

It is not easy to measure solvent polarity but simple physical properties, such as dielectric 

constant or refraction index, are often used to correlate rate constants of reactions. For 

example, it was found that logarithms of relative rate for Menschutkin reaction shows good 

linear relationship with the Kirkwood function
32

 [(εr-1)/(2εr+1)] of the solvent (Figure 5).
33

 

Unfortunately, in most cases it has been found that no correlation between dielectric constant 

and logarithms of rate constants of solvent sensitive reactions. Obviously, the establishment of 

solvent scale need to combine all possible detailed intermolecular interaction forces between 

solvent and solute molecules, such as dipole-dipole, ion-dipole interactions, electrostatic 

forces, hydrogen bonding and EPD/EPA interactions, etc. No single macroscopic physical 

parameters could reflect the intermolecular forces on microscopic level. 

 

Figure 5 The correlation between lg(k/ko) and the Kirkwood function [(εr-1)/(2εr+1)] for the 

Menschutkin reaction between triethylamine and iodoethane at 40 
o
C in binary 

acetone/benzene and acetone/1,4-dioxane mixtures. 



Introduction 

22 

1.6.1 Grunwald-Winstein Equation
34

 

Despite the difficulty and complexity to establish a satisfactory solvent polarity scale, 

Grunwald and Winstein made one of most ambitious attempts to correlate rate constant with 

empirical solvent polarity parameters. Based on the solvolysis rate of t-butyl chloride, they  

Y = log k 
t-BuCl 

 - log k0
 t-BuCl 

log (k/k0) = m • Y + c 

Equation 2 

(Equation 2, Grunwald-Winstein equation, where k0
 t-BuCl 

: the solvolysis rate of t-butyl chloride in 80% (v/v) 

aqueous ethanol at 25 
o
C (Y = 0); k 

t-BuCl 
: the solvolysis rate of t-butyl chloride in the solvent of interest at 25 

o
C). 

found that polar solvents significantly accelerate the reaction and arbitrarily defined a Y 

parameter that describes the ionising power of solvent, and a substrate parameter m that senses 

the rate change to the ionisation power of solvent (Equation 2).  

The correlation of Y and m is a type of linear free energy relationship (LFER), and is 

reasonably successful in correlating the rates of the SN1 solvolytic reactions of various tertiary 

alkyl halides, secondary alkyl sulfonates. However, an unsatisfactory correlation is found for 

some solvolysis reactions with borderline mechanism between SN1 and SN2, such as the 

solvolysis of secondary haloalkanes. The main concern with the Grunwald-Winstein equation 

is whether the solvent intervenes in SN1 solvolysis processes. Schleyer later showed that the 

solvolysis of t-butyl and 1- or 2-adamantyl chlorides and adamantyl tosylates occur without 

nucleophilic assistance from the solvent and can be best regarded as „true‟ SN1 process, 

although protic solvents can facilitate the expulsion of the leaving anion by strong  

log (k/k0)RX = m • Y + l • N + c 

Equation 3 

(Equation 3, modified Grunwald-Winstein equation to account for nucleophilic solvent assistance, where l: 

sensitivity of substrate to the solvent nucleophilic assistance; N: solvent nucleophilicity, in contrast to Y, ionising 

power of solvent). 



Introduction 

23 

hydrogen bonding.
35

 However, studies also found that the solvolysis rates for t-butyl chloride 

and adamantyl chloride are very different in some nucleophilic solvents, which suggests 

partial nucleophilic assistance from some solvents.
36

 In order to account for possible 

nucleophilic solvent assistance, the Grunwald-Winstein equation was later modified to a 

multiple parameter one (Equation 3).
37

  

The Grunwald-Winstein solvent scale is applied mainly to SN1 reactions, and the SN2 

Menschutkin reaction of tri-n-propylamine and iodomethane has been used to measure solvent 

polarity.
38

  

1.6.2 Other spectroscopically obtained empirical parameters  

Spectroscopic methods such as UV-Vis, IR, and NMR have been used to establish a solvent 

polarity scale. Several solvent scales were successfully established by using solvatochromic 

dyes as indicator.
39

 Kosower set up a Z parameter as the molar transition energy based on 1-

ethyl-4-methoxycarbonyl)pyridium iodide as model, a higher Z value corresponding to a more 

polar solvent. So far, about 60 commonly used solvents are included in Kosower Z scale.
40

 

Dimroth and Reichardt proposed an ET (30) parameter based on the UV absorption of N-

phenolate betaine dyes.
41

 Due to the extraordinarily large range of solvatochromic absorption 

of betaine dyes, a much wider solvent polarity spectrum can be established, and so far, 360 

more ET (30) values have been measured. Based on solvent hydrogen bond acceptor basicity 

and hydrogen bond donor acidity, a method called solvatochromic comparison was introduced 

by Taft and Kamlet, using HMPT and methanol as a reference solvent for constructing 

hydrogen bond acceptor (β) and donor (α) ability, respectively, a dual parameters model for 

solvent relative HBD/HBA tendency was established.
42

 Also a parameter π* was introduced 

for the description of solvent dipolarity and polarisability, which was based on the solvent 

effects on π → π* electron transitions of several nitroarmatic compounds. Those parameters 

reflect the solvent properties in different ways, and a combination of them sometimes can give 

good correlations in multiple parameter models.
43

 However, it must be pointed out that there is 

no single method so far that can give an absolute accurate solvent scale, unsatisfactory 

correlations or limitations for each method are unavoidable which reflects the intriguing nature 

of solvent effects on chemical reactions.        
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2. Physical and chemical properties of liquid ammonia
44

 

Ammonia has three covalent N-H bonds and a lone pair of electrons, and adopts a trigonal 

pyramidal shape as the valence shell electron pair repulsion theory predicted (Figure 6). In the  

106.5o

1.01 A


o

 

Figure 6 Structure of ammonia molecule 

gas phase, the bond angle of ammonia (HNH) is 106.5
o
, smaller than that of methane 

(109.5
o
) and greater than that of water (105

o
), and the N-H bond length of ammonia is 1.01 Å, 

which is also in between of that for methane (1.10 Å) and water (0.96 Å). The ammonia 

molecule has the form of a low pyramid of height 0.360 Å,
45

  and this configuration gives rise 

to the possibility of the nitrogen atom passing from its equilibrium position on one side of the 

plane of the hydrogen atoms through the plane to an equally stable position on the other side. 

The energy barrier for this nitrogen inversion is 24.7 kJ mol
-1

 at room temperature.
46

 Because 

ammonia has three possible hydrogen bond donors but only one lone pair for H-bond 

acceptance, its arrangement in the liquid and solid phases is interesting. In the solid phase, X-

ray diffraction indicates that each ammonia molecule is surrounded by six nearest neighbours 

though asymmetrical and nonlinear hydrogen bonds and each electron pair on a nitrogen atom 

can accommodate three hydrogen bonds.
47

 While, in the liquid phase, an ammonia molecule is 

surrounded by an average of 11 molecules close to its boiling point.
48

 However, interestingly, 

infra red spectroscopy of liquid ammonia at room temperature shows that less than 3 hydrogen 

bonds are formed,
49

 in stark contrast with the X-ray results, which suggests that temperature 

and pressure effects are very important factor for the properties of liquid ammonia. 

Table 5 lists some physical properties of liquid ammonia, which has a vapour pressure of 10 

bar at room temperature. Its enthalpy of vapourisation (ΔHvap) of 23.25 kJ mol
-1 

is 

intermediate between those of methane (8.19 kJ mol
-1

) and water (40.65 kJ mol
-1

), suggesting 

a moderate degree of association.  
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Table 5 Some physical properties of liquid ammonia
50

 

critical temperature 132.4 
o
C 

critical pressure 112.3 atm 

vapour pressure of liquid log10 Pmm = 9.95028 - (1473.17)/(T - 3.8603) 10
-3

 T 

enthalpy of formation 5.64 kJ mol
-1

 

enthalpy of vapourisation 23.25 kJ mol
-1

 

refractive index 1.325 

electrical conductivity 1 × 10211 ohm
-1

 cm
-1

 

dielectric constant 22.70 (-50 
o
C), 18.94 (5

 o
C), 17.82 (15

 o
C ), 16.70 (25 

o
C) 

 

The lone pair of ammonia is of great importance in determining the properties of ammonia. It 

makes liquid ammonia one of the most basic molecular liquids and it enables ammonia to be a 

good electron donor and hydrogen bond acceptor. As ammonia has only one lone pair and the 

electronegativity of nitrogen (3.04) is smaller than that of oxygen (3.44), the properties of 

ammonia are also rather different from those of water. The most obvious difference between 

ammonia and water is boiling point. At one atmosphere, ammonia boils at -33.5 
o
C, compared 

with 100 
o
C for water. Despite the difference in properties between liquid ammonia and water, 

they are both classified as protic/amphiphilic solvent in a classical review
1 

and are often listed 

together for comparison (Table 6).  

At 25 
o
C the dielectric constant of water is about 4.7 times greater than that of liquid 

ammonia, which will make an obvious difference on the ionisation and dissociation of 

compounds in these two solvents. Specifically, the high dielectric constant of water facilitates 

the dissociation of ion-pairs while low dielectric constant ammonia favours the formation of 

ion-pairs but not their dissociation into free ions.
51

 The autoprotolysis (self-ionisation) 

constant of ammonia is much lower than that of water, corresponding to a pK = 27.7. In 

addition, the internal energy of liquid ammonia is about -21 kJ mol
-1

, which is around half the 

value for water.
52

As stated earlier, ammonia has only one lone pair of electrons and yet with 

three potential NH hydrogen bond donors, it cannot form a highly organised, web-like solvent 
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structure as in water. It is not surprising that liquid ammonia is highly soluble in water, to give 

a basic solution.  

Table 6 Some physical properties of liquid ammonia and water  

Physical property Liquid ammonia Water 

Melting point (
o
C) -77.7 0 

Boiling point (
o
C) -33.35 100 

Dielectric constant (25
 o
C) 16.7 80 

Dipole moment (D) (25
 o
C) 1.42 1.85 

Density (g/ml) (25
 o
C) 0.606 0.997 

Polarisability (Å3) 2.21 1.84 

Autoprotolysis constant (25
 o
C) 2.0 ×10

-28
 1.0 ×10

-14
 

Empirical polarity (ET30 /kcal mol
-1

)  51.7
a
 63.1 

a 
Reference 53. 

Liquid ammonia has a very strong tendency to donate lone pair electrons as indicated by its 

very high donor number (DNLNH3 = 59 kcal mol
-1

), which is much greater than that for water 

(DNwater = 18 kcal mol
-1

) and even HMPT (DNHMPT = 38.8 kcal mol
-1

),
54

  and, as a 

consequence, it strongly solvates cations through a electron donation, as evidenced by 
23

Na 

chemical shifts.55 However, unlike water, it is not a good hydrogen bond donor
56 and does not 

significantly solvate anions, as shown by the high single ion transfer energies from water.
57

 

Many synthetically useful salts are highly soluble, particularly ammonium salts, e.g. NH4N3, 

67.3g/100g at -36 
o
C,

 58
 and even a ca. 30 M NH4NO3 is possible in liquid ammonia at 25 

o
C.

44a
 Some other salts, such as fluorides, and those with multiple negative charged anions, are 

difficult to dissolve in liquid ammonia at ambient temperature.  For organic solutes, three 

factors may affect the solubility of a molecular substance in liquid ammonia: the magnitude of 

the dispersion forces, the polarity of the ammonia molecule, and the ability of solute to form 

hydrogen bonds. Generally speaking, most common organic compounds are more soluble in 

liquid ammonia then in water. Hydrocarbons are insoluble, but alkyl ethers, alcohols and 

amines are miscible with ammonia, and most importantly, the majority of aromatic 

compounds have a good or moderate solubility at ambient temperature. Solubility is obviously 

important for the potential application of liquid ammonia as an organic reaction medium.  
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The chemical properties of ammonia are closely associated with its physical properties. The 

lone pair of ammonia makes it a Lewis base and ammonia can accommodate a proton to form 

a tetrahedral ammonium cation. Due to electron donation from the lone pair, metal ions are 

coordinated by ammonia molecules. For examples, copper (II) cation forms 

tetraamminediaquacopper (II), [Cu(NH3)4(H2O)2]2
+
 complex in aqueous ammonia, silver (I) 

forms diamminesilver (I), [Ag(NH3)2]
+
. Much attention has been given to the inorganic 

chemistry in liquid ammonia by Lagowski and others.
8,44c,59

 One of the most extraordinary 

phenomenon is that alkali metals can be dissolved and ionised in liquid ammonia to form a 

solution of the metal cation and solvated electrons. Solutions of sodium or potassium in liquid 

ammonia are widely used as reducing agents in the organic synthesis (vide infra).
60

  

3. Organic reactions and mechanisms in liquid ammonia 

Since the commercial availability of liquid ammonia at the beginning of 19th century, 

chemical research in this unique solvent became popular. The early research work in this area 

was performed by Cady, Franklin and Kraus,
61

 mainly covering on the physical and chemical 

properties of liquid ammonia, and especially through Kraus' and his many years of dedication 

to the chemistry of ammonia solutions, some fundamental data on liquid ammonia became 

available, such as the solubility of organic and inorganic chemicals, the conductivities of 

ammonia solutions, ionisation of metals in liquid ammonia,
62

 etc., Audrieth,
,63

 Watt
64

 and later 

Lagowski et al, investigated some fundamental organic and inorganic reactions in liquid 

ammonia. So far the largest body of literature related to liquid ammonia is on the reduction of 

organic compounds in alkali metal/ammonia solution, and the application of sodium/lithium 

amide in liquid ammonia as a strong base in synthesis. The last major review of the literature 

on organic reaction in liquid ammonia was edited by Smith in 1963.
65

 Generally, the uses of 

liquid ammonia in organic reaction are divided into the following areas: 

1. As a supporting medium that dissolves alkali metals for reduction purposes. 

2. As a medium that dissolves alkali metals for the production of very strong bases. 

3. As a reagent (solvolysis or amination) or medium for organic reactions. 
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It should be pointed out that probably due to the limitation of equipment and the awkwardness 

of handling liquid ammonia at ambient temperature or above, most synthetic work has been 

done below or near the boiling point of ammonia.  

3.1 As a solvent for reduction  

The reduction of organic compounds with metals in liquid ammonia is a well-established 

synthetic technique. When an alkali metal is dissolved in liquid ammonia, a deep blue solution 

is formed. The colour is a characteristic of the solvated electron that is given up by metal in 

the medium, and these electrons can be donated to substrates to form radical anions and 

dianions, and the reduced product is generated after the protonation of the anion. 

3.1.1 Cycloalkanes  

Generally speaking, alkanes are inert to the reducing conditions, but the α-keto-cyclopropanes 

can be reduced to the corresponding straight-chain ketone (Scheme 8).
66,67

 The reaction 

probably proceeds through formation of the radical anion of the ketone followed by the 

interaction of radical with the ring and subsequent reduction and protonation of the carbanion.  

 

Scheme 8 

3.1.2 Conjugated alkenes and alkynes  

Non-conjugated alkenes are difficult to reduce by alkali metals in liquid ammonia and, in fact, 

they are often the end product of the reduction of alkynes or conjugated alkenes and aromatic 

rings. Conjugated alkenes can be reduced easily to mono-alkenes, however, the reactive 

intermediate radical anion is active enough to undergo polymerisation or other radical 

reactions, and the stereochemistry could not be predicted due to the conformational instability 

of the allylic radical. For example, butadiene is reduced to a mixture of cis- and trans-2-butene 

with lithium in liquid ammonia, the ratio of the two isomers depends on the reaction 

temperature (Scheme 9).
68
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Li / NH
3 +

 

Scheme 9 

Alkynes are reduced predominantly to trans-alkenes, the stereochemistry of the reaction is 

dictated by the configuration of the intermediate radical anion or dianion, which prefers the 

trans form in order to minimise the interactions between the two newly-created negatively 

charged sp
2
 centres. Thus, 2-heptyne is reduced via the dianion to give exclusively trans-2-

heptene (Scheme 10).
69
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Scheme 10 

3.1.3 Carbonyl groups 

All carbonyl groups, with the exception of the salts of carboxylic acids, are reduced by alkali 

metals to hydroxyl groups in liquid ammonia. Due to the coupling of the reactive radical 

intermediate, the reduction of esters and aldehydes has very little synthetic use, however, if a 

proton donor, such as alcohol, is added to capture the reactive intermediate, the unwanted 

coupling reaction can be avoided, and the reduction can then be run successfully. The 

following are some typical examples (Scheme 11).
70,71 
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Scheme 11 
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3.1.4 Aromatic Compounds 

Possibly the best known of all alkali metal/ammonia reductions is the Birch reduction, the 

partial reduction of aromatic systems to 1, 4-dihydrocyclohexadienes.
72,73,74

 The regio-

selectivity of the Birch reduction depends on whether the substituent is electro-withdrawing or 

electro-donating. The intermediate radical anion tends to locate itself on the carbon ortho to an 

electro-withdrawing group and on the carbon meta to the electro-donating group in order to 

minimise the interactions.
75,76

 This is best illustrated by the two examples below (Scheme 

12).
77,78

 

 

 

Scheme 12 

3.1.5 Halogen-containing compounds 

Most of the work in this area has involved the reduction of aromatic halides, and there are few 

examples of the reduction of aliphatic halides, although the following is an example of the 

reduction of 2, 3-dibromobutane in liquid ammonia (Scheme 13).
79
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3.1.6 Nitro, nitrile groups and epoxides   

Aromatic nitro groups are reduced to anilines, however, the yield is poor compared with 

conventional reduction methods, and is probably due to the reactive intermediate radical or 

radical anion involved.
80

 Surprisingly, aromatic nitriles are not easily reduced to the 

corresponding amine, but, instead the aromatic ring is reduced. The intermediate radical anion  

Na/LNH3 RX

H+

_

  

Scheme 14 

attacks other substrates to give the nucleophilic substitution products which is synthetically 

useful (Scheme 14).
81

 Alkali metal/ammonia reactions with epoxides open the ring and form 

alcohols, the stereochemistry of the process depends on the stability of the anion or dianion 

generated through the reduction. Interestingly, when styrene oxide undergoes the reduction 

with metal/liquid ammonia, 2-phenylethanol is the sole product (Scheme 15).
82

 

 

Scheme 15 

3.2 Liquid ammonia as a solvent for the production and reaction of strong bases  

Generally speaking, alkali metal amides in liquid ammonia react as bases rather than as 

nucleophiles. There are many examples of carbanion formation using metal amides, the 

protons are abstracted in sequence of their pKa value, and once a carbanion or dianion is 

formed, it can undergo inter- or intra-molecular nucleophilic substitution, or elimination 

reactions. For example, phenylacetonitrile in the presence of bromocyclohexane is 

deprotonated by sodium amide in liquid ammonia to form the carbanion, which then attacks 

O

Na/NH3

OH
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bromocyclohexane to give the alkylated product,
83

 or the carbanion may attack a carbonyl 

group of ester in the same way as a Grignard reagent (Scheme 16).
84

 

 

 

Scheme 16 

Terminal alkynes also can be deprotonated by metal amides in liquid ammonia to form the 

corresponding anions, which can react with suitable electrophiles such as alkyl halides, 

ketones, or even carbon dioxide (Scheme 17).
85,86 

 

 

 

 

Scheme 17 

Benzyne formation is a unique example of strong base-promoted elimination, which produces 

a highly reactive localized “acetylene” analogue within the benzene ring. Nucleophiles can 

add to this system to afford an anion intermediate which is then protonated to give substituted 

aromatic compounds (Scheme 18).
87
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The regio-selectivity of the elimination-addition process is determined by the nature of the 

substituent group in the halobenzene. An electron-withdrawing group leads to para-addition of 

the nucleophile to the benzyne intermediate, whereas electron-donating group give a mixture 

of para and meta-substitution products for the reaction of 4-substituted bromobenzene with 

NaNH2 at -33 
o
C (Scheme 19 and Table 7).

88
 

 

Scheme 19 

Table 7 The product ratio of the reaction Scheme 19  

X products ratio 

    para (%)   meta (%) 

CN 95-100 0-5 

OMe 50-55 45-50 

 

A range of condensation reactions in the presence of sodium amide or potassium amide in 

liquid ammonia are known. Hauser et al. extensively investigated the Claisen condensation 

reaction in liquid ammonia.
89

 For example, addition of 2-phenylethyl acetate to 0.9 

equivalents of potassium amide in liquid ammonia at -33 
o
C gives 2-phenylethyl acetoacetate 

in a 39% yield, but with 2 equivalents excess of potassium amide, the major product is 

styrene, resulting from base catalyzed elimination (Scheme 20).
90
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Crossed Claisen condensation reaction between different esters in liquid ammonia is also 

possible, lithium salts are normally used to avoid the enolate exchange (Scheme 21).
91
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Scheme 21 

 

Dieckmann condensation of diethyl adipate in liquid ammonia with one equivalent of sodium 

amide is completed in minutes (Scheme 22).
92

 

- Na+

Na metal, benzene, 12 hr reflux

NaNH2, NH3, -33oC, 5 minutes  

Scheme 22 

3.3 As a solvent for solvolysis    

Solvolysis of substrates in liquid ammonia, involve ammonia as a reactant which leads to the 

replacement of an activated atom or group, for example, halogen, or alkoxy, by an amino 

group. Numerous solvolysis reactions in liquid ammonia are known, and some are widely used 

in preparative organic synthesis. However, the possible solvolysis of reactants must also be 

first considered as unwanted reaction for those reactions which use liquid ammonia as just a 

reaction medium, such as nucleophilic substitution or condensation, etc.  

3.3.1 Alkyl and aryl halides 

Alkyl halides undergo solvolysis in liquid ammonia to give primary, secondary, and tertiary 

amines, and in some cases, quaternary ammonium salts. For a given aliphatic group, the ease 

of solvolysis for alkyl halides generally lies in the order: iodides > bromides >> chlorides.
93
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The solvolysis of sterically hindered alkyl halides is very slow, in stark contrast with that in 

water. For example, the solvolysis of t-butyl chloride in liquid ammonia at 25 
o
C has a half life 

of about 150 days
94

 versus 21 seconds in water.
34a

 In addition, although ammonia is a basic 

solvent, tertiary alkyl halides and activated halides do not undergo elimination to give alkenes 

in liquid ammonia. Shatenshtein
94

 investigated the kinetics of solvolysis of some saturated 

aliphatic halides in liquid ammonia at 25 
o
C (Table 8). 

The data shows that the solvolysis rate of primary alkyl halides hardly changes with increasing 

size of the alkyl group beyond ethyl, but decreases markedly on passing from a primary to a 

branched alkyl chain halide, which suggests the solvolysis of alkyl halides in liquid ammonia 

occurs by an SN2 mechanism. 

Table 8 First order rate constants for the solvolysis of alkyl halides in liquid ammonia at 25 
o
C

94
 

 

halides 

10
4
 kobs (min

-1
) 

X=Cl X=Br X=I 

CH3CH2X 7.42 736 5020 

CH3(CH2)2X 3.98 578 1870 

CH3(CH2)3X 3.15 576 1550 

CH3(CH2)4X 2.49 414 — 

CH3(CH2)5X 3.74 496 — 

CH3(CH2)6X 3.05 529 — 

CH3(CH2)7X 1.53 275 1420 

(CH3)2CH(CH2)2X 2.21 248 750 

(CH3)2CHX 0.119 9.7 182 

CH3CH2CHXCH3 0.077 — — 

(CH3)3CX 0.033 — — 

C6H5CH2Cl 544 — — 
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For a given halide, increasing the size of alkyl group in the alkyl halide tends to favour 

increased formation of primary over secondary amine (Table 9),
95

 the latter product being the 

result of the first formed primary amine, in preference to ammonia, reacting subsequently with 

the alkyl halide. This is also indicates an SN2 mechanism, as the amine becomes bulkier, its 

substitution reaction to form a secondary amine decreases. Inactivated aromatic halides, 

without the presence of a catalyst, generally do not react with liquid ammonia at room 

temperature or even higher,
94

 but some heteroaryl halides do slowly solvolyse, for example, 2-

chlorobenzthiazole gives 2-aminobenzthiazole in liquid ammonia at 20 
o
C.

96
  

Table 9 The solvolysis of alkyl halides with different size of alkyl group in liquid ammonia at 25 
o
C after 24 

hours 

                 solvolysis product  

halides 

primary amine (%) secondary amine (%) 

n-Amyl chloride 10 80 

n-Octyl chloride 45 43 

n-Dodecyl chloride 90 trace 

 

3.3.2 Epoxides 

The opening of epoxides to give β-hydroxyamines occurs in aqueous ammonia and from metal 

amide attack in liquid ammonia. For example, cyclohexene oxide is converted into trans-2-

amino-cyclohexanol by potassium amide in liquid ammonia (Scheme 23).
97
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Scheme 23 

Due to the resistance of epoxides towards the solvolysis in just liquid ammonia, the solvolysis 

rates can be very slow, and some researchers claimed that there was no sign of solvolysis of 

styrene oxide in liquid ammonia at room temperature.
98
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3.3.3 Aldehydes and ketones  

NH2 NH

O
NH3

-33 oC

NH3

-33 oC

N  

Scheme 24 

The solvolysis of aldehydes in aqueous ammonia is well known. The solvolysis of 

propionaldehyde and n-heptaldehyde in liquid ammonia at its boiling point, surprisingly gives 

pyridine derivatives as products. Probably the reaction proceeds via an imine intermediate in 

an aldol-type condensation (Scheme 24).
99

 

In the presence of calcium chloride and ammonium chloride, acetone undergoes a series of 

condensation reactions at 0 
o
C in liquid ammonia.

100
 Acetophenone gives a very low yield 

(3%) of acetophenone imine on heating with ammonia at 180 
o
C for 4 hours, but the yield can 

be improved to 30% by the addition of ammonium chloride as a catalyst.
101

 Benzophenone 

O

NH3
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NH

 

Scheme 25 

fails to react with liquid ammonia at room temperature over several weeks, whereas 

fluorenone under the same conditions gives a quantitative yield of fluorenone imine.
102

 Under 

forcing conditions, benzophenone can be converted to the corresponding imine with high yield 

(Scheme 25).
103

(vide infra) 

3.3.4 Esters 

Many carboxylic esters undergo solvolysis in liquid ammonia to give the corresponding 

amide. The reaction is slow with the alkyl esters of simple aliphatic and aromatic carboxylic 

acids, but the solvolysis may be accelerated by increasing the temperature or by adding the 
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ammonium salts. In liquid ammonia, four trends are clearly observed for the solvolysis of 

ester:
104

 

1. The reaction rate is accelerated by the presence of electro-withdrawing α-substituents 

which increase the electrophilicity of the carbon atom of the ester carbonyl group. 

2. The reaction rate is decreased by the presence of α, β-double bond which decreases the 

electrophilicity of the carbonyl group by conjugation; 

3. Aryl esters undergo the solvolysis reaction more rapidly than their aliphatic analogues. 

4. The solvolysis rate is increased greatly by added the metal amide. 

All of the above suggest that the ammonolysis of esters occurs by an addition-elimination   

mechanism (Scheme 26). 
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Scheme 26 

The catalytic effect of ammonium salts is probably due to either the partial protonation of the 

carbonyl oxygen by ammonium cation, which increase the electrophilicity of carbonyl carbon, 

or protonation of the leaving alcohol presumably analogous to that in the acid-catalysed 

hydrolysis of esters. Table 10 gives the quantitative outcome of the solvolysis of esters in 

liquid ammonia in the absence or presence the ammonium salt.
105

  

Obviously, esters having electron-withdrawing groups as α-substituents solvolyse more 

quickly and added NH4Cl salt has very little effect on the rate of solvolysis, whereas less 

reactive esters are subject to a pronounced catalytic effect with NH4Cl salt.  
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Table 10 The solvolysis of esters at 0 
o
C in liquid ammonia with (B) and without (A) ammonium chloride 

 

esters 

yield of amide (%)
a
 

after 24 hours after 48 hours 

A B A B 

NCCH2CO2C2H5 97 96 99 100 

H2NCOCH2CO2C2H5 67 91 93 98 

C2H5OCOCH2CO2C2H5 9 79 63 95 

C6H5CHOHCO2C2H5 44 63 62 79 

C2H5OCH2CO2C2H5 5 53 38 77 

C6H5CH2CO2C2H5 0.6 2 1.2 4.7 

CH3CO2C2H5 0 1 0 3 

a 
Data in columns A and B correspond to yields in the absence and presence respectively of ammonium chloride. 

(0.025mole ester, 0.2g ammonium chloride was added as catalyst) 

3.4 As a solvent for nucleophilic substitution reactions 

The research in this area is mainly concerned with aromatic nucleophilic substitution (SNAr). 

Shteingarts et al.
 
have

 
investigated the kinetics and regioselectivity in liquid ammonia.

106,107
 

For example, the reaction of sodium methoxide with 4-NFB was carried out in liquid ammonia 

at -70
o
C. The extrapolated reaction rate was claimed to be nine orders of magnitude faster in 

liquid ammonia than in methanol (Scheme 27).
101,102

 

NaOMe

-70°C,  NH3

 

 

Scheme 27 

The selectivity of aromatic nucleophilic substitution in liquid ammonia is also claimed to be 

better than in conventional solvents, for example, the reaction of sodium methoxide with 5,7-

difluoroquinoline at -53 
o
C in liquid ammonia yields a mixture of 5 and 7 substituted product  
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in a ratio of 8:1, the same reaction in DMSO at 25 
o
C gives a ratio of 6:1(Scheme 28). 

Interestingly, the selectivity of the reaction seems to decrease with increasing reaction 

temperature.
108
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Scheme 28 

Vicarious nucleophilic substitution reaction (VNS) and oxidative nucleophilic substitution of 

hydrogen (ONSH) also can be performed in liquid ammonia to give some interesting and 

useful functionalised heterocycles (Scheme 29).
109,110
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Scheme 29 

Some unactivated aryl halides can react with nucleophiles to form C-C, C-N, C-P and C-S 

bonds under photo irradiation or using alkali metals as radical initiators in liquid ammonia, the 

reactions follow an SNR1 mechanism.
111

 For example, 1-naphthyl halides react with 

triphenylphosphine in liquid ammonia under ultrasound or sodium metal to give 

naphthyldiphenylphosphine oxide in moderate yields after the reaction mixture treated with 

40% H2O2 (Scheme 30).
112
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H2O2
Na(3%)

LNH3

Ph2P X = Cl, Br

60-70%  

Scheme 30 

4. The project 

The choice of solvent is still a significant problem in industrial organic synthesis.  Ever 

increasing health and environmental concerns have resulted in some previously common 

solvents, for example chloroform, being proscribed, whilst others, still commonly used in 

research syntheses, are generally avoided at the manufacturing scale. Dipolar aprotic solvents 

(DMSO, DMF, DMAc, and NMP) are used in around 10% of cases. They are expensive and 

there are toxicity concerns with some of them. They are all difficult to recycle due to their 

water miscibility, and are frequently disposed of by incineration.  No single alternative solvent 

is likely to solve these problems. Liquid ammonia is a promising candidate to replace dipolar 

aprotic solvents in a number of applications. Although liquid ammonia is among the least 

expensive bulk chemicals
113

 and is a promising candidate to replace dipolar aprotic solvents in 

a number of industrial processes, its application as a common solvent is relatively unusual. 

Historically it has been used only where its use was essential, because of handling difficulties. 

It can be quantitatively recovered from water by distillation under pressure. There is an 

extensive literature on the physical and chemical properties of liquid ammonia,
64,114

 on the 

reduction of organic compounds in alkali metal/ammonia solution115 and the application of 

alkali metal amides in liquid ammonia as strong bases in synthesis.116 However, there is little 

about the detailed kinetics and mechanisms of aromatic and aliphatic nucleophilic substitution 

in liquid ammonia, and the description of liquid ammonia solvent effects on organic reactions 

are also rare. To the best of our knowledge, there are no systematic studies on the mechanisms 

of organic reactions in liquid ammonia. Present research in liquid ammonia is much associated 

with theoretical studies on the solvent effects. Therefore, it is imperative to establish some 
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fundamental facts and concepts about the effect of liquid ammonia solvent on the behaviour of 

organic reactions.  

The purpose of this project is to investigate the solvent effects of liquid ammonia on the 

kinetics and mechanisms of some fundamental reactions and to examine the scope of this 

solvent in synthesis, and so provide some of the physical organic chemistry required to 

support synthetic programmes.  
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1. Materials  

1.1 General 

Liquid ammonia was purchased from BOC Ltd., has 99.98% purity with minimal levels of 

moisture (<200 ppm) and other impurities (<5ppm oil).
117

 Ammonia was distilled once from 

the cylinder to a burette, and no further purification procedure was made before using as 

reaction solvent. 

All organic and inorganic were purchased from commercial providers, and were used directly 

without further purification unless otherwise noted. (1S,2S)-(+)-N-(4-toluenesulfonyl)-1,2-

diphenylethylenediamine(S,S-TsDPEN, 99.5%) was from Johnson Matthey Catalysis & Chiral 

Technologies. The general solvents were from commercial providers and were Reagent or 

HPLC grade and were used without further purification.  

1.2 Synthesis and purification of organic compounds for starting materials and products 

characterisation  

1
H NMR and proton decoupled

 13
C NMR spectra were acquired with a Bruker Avance 400 

(400 MHz, 100.1 MHz, respectively). Proton and carbon chemical shifts are reported on the δ 

scale relative to tetramethylsilane (δΗ = 0.00 ppm) and CDCl3 (δC = 77.00 ppm) respectively as 

internal standards. Mass spectra were obtained with Agilent 6890 GC and 5973 MS detector. 

Melting points were measured using a Mettler Toledo STAR SW 9.01 DSC instrument.  

1.2.1 Preparation of sodium phenoxides
118

 and triazolate salts
119

 

Sodium phenoxides: phenol (2.4 g, 25 mmol) was dissolved in diethyl ether or THF (20ml), 

under argon. Sodium metal (0.46 g, 20 mmol) was cut into small pieces and added into the 

above solution in several portions at room temperature. After all the sodium was added, the 

reaction was refluxed overnight. Solvent was removed under vacuum, and the residual solid 

was repeatedly washed with petroleum ether (40-60) until no phenol was detected by GC in 

the washing eluent. The solid was dried under vacuum and used without further purification. 

Phenoxide salts are hygroscopic and susceptible to oxidation, therefore all the salts were kept 

in well-sealed bottle and stored under argon. Other phenolates were prepared by the similar 

method. 
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Sodium triazolate: NaOH (0.6 g, 15 mmol) and 1,2,4-triazole (1.0 g, 15 mmol) were dissolved 

in water (10 ml). The solution was maintained at room temperature for 4 h, and then cooled to 

0 
o
C for 2 hours. The crystalline precipitate was filtered and repeatedly washed with ether, and 

dried under vacuum at 100 
o
C to give 1.0 g white solid (72% yield).  

Sodium benzotriazolate: similar to the method for the preparation of sodium phenoxides.  

1.2.2 Preparation of nitroazidobenzenes (Scheme 31)  

NaN3

(NO2)n (NO2)n

n = 1,2

 

Scheme 31 

CAUTION: As organic azides are potentially explosive, it must be handled with care. All aryl 

azides have been stored in the freezer in the dark.  

4-NAB: NaN3 (0.39 g, 6 mmol) was added in portions to 4-NFB (0.71 g, 5mmol) in  DMF 

(15ml) with stirring, the reaction temperature was maintained at 65 
o
C overnight, and the 

reaction mixture then poured into  ice-water (50ml). The yellow precipitate was extracted with 

DCM (3 × 15ml), and the organic layer was dried over anhydrous Na2SO4. After solvent was 

removed under vacuum, a yellow solid (0.71 g, 87% yield) was obtained. The solid was 

recrystallised twice from water-ethanol (2:1) to give 0.58 g (71% yield) yellow solid with a 

purity of 98.5% (GC). Melting point: 74-75 
o
C

120
; 

1
H NMR (400 MHz, CDCl3): δ = 7.36 (d, 

2H), 8.25 (d, 2H); 
13

C NMR (100 MHz, CDCl3): δ = 119.1, 126.5, 143.9, 147.1;
121

 MS (EI, 70 

eV): m/z (%) = 164.1(M
+
, 53.8), 136.1 (51.5), 90.1 (63.0), 63.1 (100), 50.0 (17.6). 

2-NAB: NaN3 (0.39 g, 6 mmol) was added in portions to 2-NFB (0.71 g, 5mmol) in DMF 

(15ml) with stirring, then heated to 60 
o
C and held there overnight. The reaction mixture was 

then poured into ice-water (50ml). The yellow precipitate was extracted with DCM (3 × 

15ml), and the organic layer was dried over anhydrous Na2SO4. After solvent was removed 

under vacuum, a yellow solid (0.79 g, 96% yield) was obtained. The solid was recrystallised 
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twice from water-ethanol (2:1) to give 0.67g (82% yield) of yellow crystals with a purity of 

99% (GC). Melting point: 63-65 
o
C;

122
 
1
H NMR (400 MHz, CDCl3): 7.28-7.39 (m, 2H,), 7.66 

(m, 1H), 8.17 (q, 1H);
123

 
13

C NMR (100 MHz, CDCl3): δ = 121.5, 125.2, 126.3, 134.3, 134.8, 

140.9;
124

 MS (EI, 70 eV): m/z (%) = 164.1(M
+
, 43.8), 136.1 (61.5), 105.1 (100), 50.1 (52.5). 

2,4-Dinitroazidobenzene: NaN3 (0.20 g, 3 mmol) was added in portions to 2,4-

dinitrofluorobenzene (0.37 g, 2mmol) in  DMF (10ml) solution with stirring, held at 40 
o
C 

overnight, and poured into  ice-water (20ml). The yellow precipitation was observed, the 

mixture was extracted with DCM (2 × 10ml), and the organic layer was dried over anhydrous 

Na2SO4. After solvent was removed under vacuum, a deep orange solid was obtained. The 

solid was recrystallised from water-ethanol (2:1) to give 0.23 g (56% yield) orange powder 

with a purity of 97% (GC). Melting point: 67-68 
o
C;

125
 
1
H NMR (400 MHz, CDCl3): δ = 7.50 

(d, 1H), 8.48 (m, 1H), 8.81(d, 1H);
126

 
13

C NMR (100 MHz, CDCl3): δ = 122.5, 127.4, 135.8, 

147.2, 148.9; MS (EI, 70 eV): m/z (%) = 209.1 (M
+
, 7.1), 181.1 (96.5), 51.1 (100). 

1.2.3 Preparation of 1-(4-nitrophenyl)pyrrolidine, piperidine and morpholine (Scheme 

32) 

R1R2NH

R1R2NH = 

 

Scheme 32 

1-(4-nitrophenyl)pyrrolidine: pyrrolidine (1.8 g, 25 mmol) and 4-NFB (2.8 g, 20 mmol) were 

dissolved in DMF (25ml) under argon, the reaction temperature was maintained at 70 
o
C 

overnight. The reaction mixture then poured into 50ml ice-water, the yellow precipitation was 

filtered and washed with water, then dissolved in DCM (10ml). The filtrates was extracted 

with DCM (2 × 10ml) and organic layer was combined and washed with water until no DMF 

was detected in the organic layer by GC. The solvent was removed under vacuum to afford 

2.5g of yellow solid (64% yield). Melting point: 176-177 
o
C;

127
 
1
H NMR (400 MHz, CDCl3): 
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δ = 2.05-2.20 (m, 4H, CH2), 3.38-3.47 (m, 4H, CH2N), 6.48 (d, 2H, aromatic), 8.13 (d, 2H, 

aromatic); 
13

C NMR (100 MHz, CDCl3): δ = 25.5, 47.9, 110.4, 126.4, 136.5, 151.8.
128

 MS (EI, 

70 eV): m/z (%) = 192.1 (M
+
, 100), 191.1 (92.9), 136.1 (23.9), 120.0 (7.1), 104.0 (7.1), 90 

(9.7), 77.0 (10.6). 

1-(4-nitrophenyl)piperidine: pyrrolidine (2.1 g, 25 mmol) and 4-NFB (2.8 g, 20 mmol) were 

dissolved in DMF (25ml) under argon and kept at 70 
o
C overnight. The reaction mixture then 

poured into ice-water (50ml), the yellow precipitation was filtered off and washed with water, 

then dissolved in DCM (10ml). The filtrates was extracted with DCM (2 × 10ml) and organic 

layer was combined and washed with water until no DMF was detected in organic layer by 

GC. The solvent was removed under vacuum to afford 2.8 g yellow solid (68% yield). Melting 

point: 104-105 
o
C

129
;
 1

H NMR (400 MHz, CDCl3): δ = 1.67 (m, 6H, CH2), 3.45 (m, 4H, 

CH2N), 6.76-6.80 (d, 2H, aromatic), 8.06-8.11 (d, 2H, aromatic); 
13

C NMR (100 MHz, 

CDCl3): δ = 24.3, 25.3, 48.3, 112.2, 126.2, 137.2, 154.9.
128

 MS (EI, 70 eV): m/z (%) = 206.1 

(M
+
, 89.4), 205.1 (100), 176.1 (8.0), 165.1 (15.9), 159.1(23.9), 150.0 (18.6), 120.0 (13.3), 77.0 

(11.5). 

1-(4-nitrophenyl)morpholine: morpholine (2.1 g, 25 mmol) and 4-NFB (2.8 g, 20 mmol) were 

dissolved in  DMF (25ml) under argon and kept at 70 
o
C overnight. The reaction mixture then 

poured into 50ml ice-water, the yellow precipitation was filtered off and washed with water, 

then dissolved in DCM (10ml). The filtrates was extracted with DCM (2 × 10ml) and organic 

layer was combined and washed with water until no DMF was detected in organic layer by 

GC. The organic layer was dried over anhydrous Na2SO4, and solvent was removed under 

vacuum to afford 1.8 g yellow solid (44% yield). Melting point: 152-154 
o
C

130
;
 1
H NMR (400 

MHz, CDCl3): δ = 3.32-3.40 (m, 4H, CH2), 3.83-3.89 (m, 4H, CH2N), 6.80-6.87 (d, 2H, 

aromatic), 8.10-8.17 (d, 2H, aromatic); 
13

C NMR (100 MHz, CDCl3): δ = 25.2, 47.9, 110.8, 

126.6, 137.1, 151.7.
128

 MS (EI, 70 eV): m/z (%) = 208.0 (M
+
, 86.7), 150.0 (100), 120.0 (40.8), 

104.0 (12.4), 77.0 (21.2).  
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1.2.4 Preparation of 1-(4-nitrophenyl)-1H-1,2,4-triazole, 4-(4-nitrophenyl)-4H-1,2,4-

triazole and 1-(4-nitrophenyl)-1H-imidazole (Schemes 33 and 34) 

NaH

 

Scheme 33 

K2CO3

 

Scheme 34 

1,2,4-Triazole (2.4 g, 35 mmol) was dissolved in 40 ml DMF, NaH (1.2 g, 50 mmol ) were 

added and mixture was stirred for 1 hour. 4-nitrofluorobenzne (4.9 g, 35 mmol) was added 

dropwise at ambient temperature for 4 hours. The reaction mixture was poured into 100ml ice-

water and the precipitate was isolated by filtration. The residue was dissolved in DCM, the 

insoluble solid was filtered off and collected, recrystallised from water-ethanol (1:1) to give 

1.2g of pale white powder as 4-(4-nitrophenyl)-4H-1,2,4-triazole. The filtrate, DCM layer was 

washed with water until no DMF was observed in washing eluent by GC analysis. The organic 

layer was dried over anhydrous Na2SO4, and solvent was removed under vacuum to afford 

2.8g of pale yellow solid (60% total yield) as 1-(4-nitrophenyl)-1H-1,2,4-triazole.   

1-(4-nitrophenyl)-1H-1,2,4-triazole: Melting point: 194-195 
o
C;

131
 
1
H NMR (400 MHz, 

CDCl3): δ = 7.93-7.97 (m, 2H, Ph), 8.18 (s, 1H, triazole), 8.41-8.49 (m, 2H, Ph), 8.74 (s, 1H, 
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triazole);
132

 
13

C NMR (100 MHz, CDCl3): δ = 119.9, 125.7, 141.3, 146.1, 153.5; MS (EI, 70 

eV): m/z (%) = 190.1 (M
+
, 100), 163.1 (30.4), 136.0 (37.6), 90.1 (54.0), 80.1 (15.5), 63.1 

(44.2), 50.1 (14.6). 

4-(4-nitrophenyl)-4H-1,2,4-triazole: Melting point: >300 
o
C (decomp.) 

1
H NMR (400 MHz, 

DMSO-d6/CDCl3): δ = 8.14 (m, 2H, Ph), 8.54 (m, 2H, Ph), 8.86 (s, 2H, triazole); 
13

C NMR 

(100 MHz, DMSO-d6/CDCl3): δ = 122.8, 126.6, 142.0, 141.8, 147.3. MS (EI, 70 eV): m/z (%) 

= 190.1(M
+
, 100), 160.1 (33.6), 136.1 (40.2), 90 (45.6), 63.1 (28.8), 30.0 (10.6). 

1-(4-nitrophenyl)-1H-imidazole: a mixture of imidazole (0.34 g, 5 mmol) and 4-NFB (0.71 g, 

5 mmol) in 15ml DMF was added K2CO3 (1 g, 7.5 mmol) and stirred at 75 
o
C for overnight. 

The reaction mixture was poured into 50ml ice-water and the precipitate was collected and 

washed with water. The solid then recrystalled from ethanol water (2:1) to give 0.81 g (86% 

yield) pale white solid. Melting point: 202-204 
o
C;

133
 
1
H NMR (400 MHz, CDCl3): δ = 7.27 

(s, 1H, imidazole), 7.38 (s, 1H, imidazole), 7.58 (d, 2H, Ph), 7.98 (s, 1H, imidazole), 8.42 (d, 

2H, Ph); 
13

C NMR (100 MHz, CDCl3): δ = 117.6, 121.4, 126.2, 134.9, 131.9, 142.2, 146.7.
134

 

1.2.5 Preparation of 4-substituted phenyl 4-nitrophenyl ether (Scheme 35) 

X = CN, tBu

 

Scheme 35 

4-substituted phenols (5 mmol), 4-NFB (5 mmol) and K2CO3 (1 g, 7.5 mmol) in DMF (15ml) 

was stirred at 85
o
C for 5 hours. The reaction mixture was poured into ice-water (50ml) and 

extracted with DCM, then the organic layer was washed with water and dried over anhydrous 

Na2SO4. The solvent was removed under vacuum and the solid was recrystallised twice from 

water-ethanol (1:1). 

4-cyanophenyl 4-nitrophenyl ether: 1.1 g light yellow solid (91% yield). Melting point: 161-

162 
o
C;

135
 
1
H NMR (400 MHz, CDCl3): δ = 7.13-7.19 (m, 4H), 7.73 (d, 2H), 8.29 (d, 2H); 

13
C 
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NMR (100 MHz, CDCl3): δ = 108.4, 118.3, 119.0, 126.2, 134.6, 143.9, 159.0, 160.9.
136

 MS 

(EI, 70 eV): m/z (%) = 240.0 (M
+
, 100), 210.0 (30.1), 166.0 (16.8), 140.0 (27.4), 102.0 (16.8), 

75.0 (10.6), 50.0 (10.6). 

4-tert-butyl phenyl 4-nitrophenyl ether: 0.91 g pale yellow solid (67% yield). Melting point: 

58-59 
o
C;

 1
H NMR (400 MHz, CDCl3): δ = 1.35 (s, 9H), 7.00 (m, 4H), 7.46 (d, 2H), 8.19 (d, 

2H);
137

 
13

C NMR (100 MHz, CDCl3): δ = 31.6, 35.6, 117.8, 120.7, 125.4, 127.9, 130.3, 142.5, 

154.8, 164.1. 

1.2.6 Preparation of 1,2-bis(4-nitrophenyl)diazene (Scheme 36)
138

 

NaBH4

MeOH/NaOH

 

Scheme 36 

1,4-dinitrobenzene (0.34 g, 2mmol) was dissolved together with NaOH (1.0 g, 2.5 mmol) in  

methanol (10ml) at 60 
o
C, the solution was stirred and a 5 ml methanol solution of NaBH4 (0.1 

g, 2.5 mmol) was added dropwise, the progress of the reaction being monitored by GC until no 

1,4-dinitrobenzene was observed. Solvent was removed under vacuum and the residue syrup 

was washed with water and extracted with toluene, the organic layer was dried over anhydrous 

Na2SO4. The solvent was removed under vacuum, and the deep brown solid was recrystallised 

from toluene/ethanol (5:1) twice to give 0.22 g (41% yield) of dark orange crystals. Melting 

point: 225-227 
o
C;

139
  

1
H NMR (400 MHz, CDCl3): δ = 8.14 (d, 4H), 8.46 (d, 4H); 

13
C NMR 

(100 MHz, CDCl3): δ = 124.1, 124.9, 150.2, 156.0;
138

 MS (EI, 70 eV): m/z (%) = 272.0 (M
+
, 

36.1), 242.1 (8.4), 150.0 (55.9), 122.0 (100), 92.0 (44.9), 75 (42.3), 74 (40.9), 64 (10.6), 51 

(4.4). 
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1.2.7 Preparation of benzyl azide (Scheme 37)  

NaN3

 

Scheme 37 

NaN3( 2.5g, 38.5mmol) was added to benzyl chloride (3.78 g, 30 mmol) in DMF (25ml) with 

stirring at room temperature, then the temperature was raised to 70 
o
C and maintained 

overnight. The reaction mixture was poured into ice-water (100ml) and extracted with DCM 

(3 ×20ml), and then organic layer was washed with water until no DMF was detected by GC 

analysis. The organic layer was dried over anhydrous Na2SO4 and solvent removed under 

vacuum. The oily residue was distilled (58-60 
o
C / 3mmHg) to give a colourless liquid (2.6g, 

yield 65%). 
1
H NMR (400 MHz, CDCl3): δ = 4.38 (s, 2H, CH2N3), 7.36 (m, 5H, aromatic); 

13
C NMR (100 MHz, CDCl3): δ = 55.6, 128.5, 128.5, 128.7.

140
  

1.2.8 Preparation of N-benzylpyrrolidine, N-benzylpiperidine and N-benzylmorpholine 

(Scheme 38) 

R1R2NH
R1R2NH = 

 

Scheme 38 

Secondary cyclic amine (15 mmol) and benzyl chloride (15 mmol) in  acetonitrile (30ml) were 

added together with Na2CO3 (2.1 g, 20 mmol), reaction temperature was 85 
o
C for 5 hours, the 

reaction mixture was poured into 50ml ice-water, and extracted with DCM (3×10ml). 

Combined organic layers were dried over anhydrous Na2SO4. The solvent was removed under 

vacuum. The crude product purified by flash column (hexane/ethyl acetate = 5:1). 

N-benzylpyrrolidine: 2.1 g colourless oil (yield 87%), 
1
H NMR (400 MHz, CDCl3): δ = 1.71-

1.83 (m, 4 H, CH2), 2.42-2.52 (m, 4 H, NCH2), 3.51(s, 2H, CH2Ph), 7.31 (m, 5H, aromatic); 
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13
C NMR (100 MHz, CDCl3): δ = 23.4, 54.3, 60.8, 127.2, 128.2, 129.2, 139.5;

141
 MS (EI, 70 

eV): m/z (%) = 161.2(M
+
, 54.0), 160.2 (77.0), 132.1 (7.1), 91.1 (100), 84.1 (56.6), 70.1 (39.8), 

65.1 (20.8). 

N-benzylpiperidine: 1.9 g colourless oil (yield 72%), 
1
H NMR (400 MHz, CDCl3): δ = 1.44-

1.48 (m, 2 H, CH2), 1.60 (m, 4H, CH2), 2.41 (m, 4H, NCH2), 3.52 (s, 2H, CH2Ph), 7.32 (m, 

5H, aromatic); 
13

C NMR (100 MHz, CDCl3): δ = 24.4, 25.7, 54.4, 63.6, 127.1, 128.2, 128.9, 

138.5.
142 

N-benzylmorpholine: 2.3 g light yellow oil (yield 88%), 
1
H NMR (400 MHz, CDCl3): δ = 2.46 

(t, 4 H, NCH2), 3.51 (s, 2H, CH2), 3.72 (t, 4H, OCH2), 3.51 (s, 2H, CH2Ph), 7.34 (m, 5H, 

aromatic); 
13

C NMR (100 MHz, CDCl3): δ = 53.6, 63.4, 66.9, 127.2, 128.3, 128.9, 138.9.
143

 

1.2.9 Preparation of 1-Benzylimidazole (Scheme 39) 

K2CO3

 

Scheme 39 

Imidazole (1.4 g, 20mmol) and benzyl chloride (2.5 g, 20mmol) added together with K2CO3 

(3.5 g, 25mmol) in THF (25ml), the reaction mixture was stirred under reflux overnight. After 

filtration of solid, solvent was removed under vacuum to afford a yellow solid as crude 

product. The solid was dissolved in DCM (30ml), washed with brine (3×15ml), and dried over 

anhydrous Na2SO4. After removing the solvent under vacuum, yellow crystals (1.5 g, 47% 

yield) with a melting point 74-75 
o
C were obtained. 

1
H NMR (400 MHz, CDCl3): δ = 5.15 (s, 

2 H, PhCH2), 6.88 (s, 1H, imidazole), 7.07 (s, 1H, imidazole), 7.15 (d, 2H, benzene), 7.31-

7.33(m, 3H, benzene), 7.54 (s, 1H, imidazole); 
13

C NMR (100 MHz, CDCl3): δ = 50.8, 127.2, 

128.3, 128.9, 129.8, 136.2, 137.4.
144
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1.2.10 Preparation of 1-benzyl-1,2,4-triazole and 4-benzyl-1,2,4-triazole (Scheme 40) 

 

Scheme 40 

Sodium 1,2,4-triazolate salt was prepared according to the literature,
119

 and used directly 

without further purification. Sodium 1,2,4-triazolate salt (2.3 g, 25mmol) and benzyl chloride 

(3.2 g, 25mmol) was added to acetonitrile (25ml), the reaction was stirred vigorously under 

heterogeneous conditions at 85 
o
C and the progress of the reaction was monitored by GC 

analysis. After 5 hours, the solvent was removed under vacuum to give yellow solid (2.97 g) 

as crude products (the molar ratio between 1-benzylated and 4-benzylated triazole was 6.9:1 

based on GC analysis). The solid was washed with hot ethyl acetate (3×15ml), and filtrates 

were evaporated in vacuo to give a light yellow solid. The solid residue was purified using 

flash column with DCM/hexane = 6:1 as eluent to give 2.2 g 1-benzyl-1,2,4-triazole as white 

solid with a melting point 55-56 
o
C and 0.25 g 4-benzyl-1,2,4-triazole as white powder with a 

melting point 107-108 
o
C

 
(62% total yield).  

1-benzyl-1,2,4-triazole: 
1
H NMR (400 MHz, CDCl3): δ = 5.34 (s, 2 H, PhCH2), 7.25-7.28 (m, 

2H, Ph), 7.33-7.40 (m, 2H, Ph), 7.91 (s, 1H, triazole), 8.06 (s, 1H, triazole); 
13

C NMR (100 

MHz, CDCl3): δ = 53.6, 128.0, 128.8, 128.9, 129.1, 134.6, 143.1, 152.2. MS (EI, 70 eV): m/z 

(%) = 159.1(M
+
, 39.2), 158.1 (51.1), 132.1 (46.8), 105.1 (11.5), 91.1 (100), 65 (17.7).

145
  

4-benzyl-1,2,4-triazole:
 1

H NMR (400 MHz, CDCl3): δ = 5.20 (s, 2H, PhCH2), 7.19-7.23 (m, 

1H, Ph), 7.36-7.43 (m, 1H, Ph), 8.19 (s, 1H, triazole); 
13

C NMR (100 MHz, CDCl3): δ = 49.1, 

127.6, 129.0, 129.4, 134.2, 142.9. MS (EI, 70 eV): m/z (%) = 159.1 (M
+
, 44.3), 158.1 (7.0), 

132.1 (6.4), 91.1 (100), 65 (12.2).
145
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1.2.11 Preparation of (S)-α-methyl benzyl alcohol (Scheme 41) 

S,S- TsDPEN, TEAF

[Ru(p-cymene)Cl2]2

 

Scheme 41 

A 25ml vessel was pre-charged with [Ru(p-cymene)Cl2]2 (27.5 mg, 0.0375 mmol) and  of  

S,S-TsDPEN[(1S,2S)-(-)-N-(4-toluenesulfonyl)-1,2-diphenylethylenediamine] (23 mg, 

0.075mmol), TEAF (7.5ml, a mixture of formic acid and triethylamine in molar ratio of 5:2) 

was added slowly in several portions until the catalysts were fully dissolved, then the 

remainder was quickly added followed by acetophenone (1.81 g, 15mmol). The solution was 

maintained at 35 
o
C overnight. The reaction mixture was washed with 1M NaOH (10 ml) 

solution, then extracted with DCM, the organic layer was washed with 1M HCl (2×10ml), and 

then with water several times, and dried over anhydrous Na2SO4. The solvent was remove 

under vacuum, and the crude product was purified over silica gel column [ethyl acetate/n-

hexane=1:2.5 (v/v)] to give 1.8 g (S)-α-methyl benzyl alcohol as colourless oil (yield 98.5%, 

99%ee).
 1
H NMR (400 MHz, CDCl3):  1.44 (3H, d, CH3), 2.04 (1H, br. s), 4.85 (1H, q, CH), 

7.26-7.38 (5H, m); 
13

C NMR (100 MHz, CDCl3): δ = 25.4, 70.5, 125.5, 127.8, 128.6, 145.7.
146

 

GC condition for the analysis of (R, S)-α-methyl benzyl alcohol:   

Inlet temperature: 150 
o
C; detector temperature: 150 

o
C;  

Column:  Varian Chrompack CP-Chiral-Dex CB (25.0m×250μm×0.25 μm); 

Oven temperature: Isothermal, 120 
o
C for 35mins; 

Inlet pressure: 14 psig; 

Retention time of alcohol enatiomers: 

(S)-α-methyl benzyl alcohol: 20.6mins; 

(R)-α-methyl benzyl alcohol: 23.6mins. 
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1.2.12 Preparation of (S)-α-methyl benzyl chloride (Scheme 42) 

SOCl2

DCM or hexane

 

Scheme 42 

A 25 ml vessel with ice-bath was charged with thionyl chloride (1.2 g, 10 mmol) and 10ml 

DCM or n-hexane, (S)-α-methyl benzyl alcohol (0.61g, 5 mmol, 99%ee) in 5 ml DCM was 

added dropwise with caution so that the reaction temperature remained below 0 
o
C and the 

reaction mixture agitated vigorously and was under argon during whole process. After adding 

of alcohol, the reaction temperature was allowed to reach the ambient temperature. The 

reaction completed after the reaction mixture agitated vigorously at room temperature for an 

hour. The solvent was removed under vacuum to give a colourless liquid (0.57, 81% yield, 

40.1%ee) as crude product. The crude product was used directly without further 

purification.
147

 The enantiomeric excess of chloride was independent on the reaction solvent 

used. The stability of the chloride was monitored by GC, the results shows that the chloride is 

stable at room temperature, no decomposition or racemisation was observed after days at room 

temperature. 
1
H NMR (400 MHz, CDCl3):  1.92 (3H, d, CH), 5.16 (1H, q, CH3), 7.28-7.51 

(5H, m); 
13

C NMR (100 MHz, CDCl3): δ = 26.6, 58.9, 126.6, 128.3, 128.6, 142.9; MS (EI, 70 

eV): m/z (%) = 140 (M
+
, 48.7), 125 (25.2), 105 (100), 77 (39.8), 63, (9.7), 51 (22.1). 

GC conditions for the analysis of (R, S)-α-methyl benzyl chloride: 

Inlet temperature: 120 
o
C; detector temperature: 120 

o
C;  

Column:  Varian Chrompack CP-Chiral-Dex CB (25.0m×250μm×0.25 μm); 

Oven Temperature: Isothermal temperature fixed at 100 
o
C for 20 mins; 

Inlet pressure: 14 psig; 

Retention time of the chloride enantiomers: 

(S)- α-methyl benzyl chloride: 12.1mins; 

(R)- α-methyl benzyl chloride: 11.5mins. 
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GC condition for the analysis of (R, S)-α-methyl benzylamine: 

 Inlet temperature: 100 
o
C; detector temperature: 100 

o
C;  

Column:  Varian Chrompack CP-Chiral-Dex CB (25.0m×250μm×0.25 μm); 

Oven Temperature: Isothermal temperature fixed at 100 
o
C for 35 mins; 

Inlet pressure: 10 psig; 

Retention time of the amine enantiomers: 

(S)- α-methyl benzylamine: 29.16mins; 

(R)- α-methyl benzylamine: 30.02mins. 

The structures of amines were confirmed by authenticated samples and GC-MS.  

1.2.13 Preparation of (S)-α-methylbenzyl acetate (Scheme 43) 

Ac2O/NaOAc

chloroform

 

Scheme 43 

To a 50ml 3-neck round bottom flask was charged chloroform (25 ml) and (S)-α-methylbenzyl 

alcohol (1.25 g 10 mmol), acetic anhydride (1.53 g, 15 mmol) and ammonium acetate 1 mmol. 

The reaction was held at 75 
o
C for about 40 hours, until all the alcohol was consumed. (GC 

was used for the monitoring the progressing of the reaction). The reaction mixture then treated 

with saturated NaHCO3, extracted with DCM. Organic layer was died over anhydrous 

Na2SO4, and solvent was removed under vacuum to give 1.2g colourless liquid (73% yield). 

1
H NMR (400 MHz, CDCl3):  1.56 (d, 3H), 2.10 (s, 3H), 5.90 (q, 1H), 7.28(s, 1H), 7.29-7.36 

(m, 1H), 7.38 (d, 3H);
148

 
13

C NMR (100 MHz, CDCl3): δ = 21.4, 22.3, 72.3, 126.1, 127.9, 

128.5, 141.7, 170.4;
149

 MS (EI, 70 eV): m/z (%) = 164.0 (M
+
, 27.9), 122.0 (100), 105.0 (75.2), 

104.0 (96.5), 77.0 (34.1), 43.0 (35.4). 
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1.2.14 Preparation of 2-benzylmalononitrile (Scheme 44) 

NaH

 

Scheme 44 

Malononitrile (0.87 g, 13 mmol) and benzyl chloride (1.1 g, 8.7 mmol) were dissolved in 20ml 

THF with stirring at room temperature, NaH (0.53 g, 13 mmol, 60%w/w in mineral oil) was 

added in portions. The temperature was increased to 65 
o
C and held for 4 hours. After washing 

with water, then extracted with DCM (3 × 20ml), the organic layer was dried over anhydrous 

Na2SO4, and solvent was removed under vacuum. The residue was purified using a flash 

column (DCM/hexane = 6:1) to give 0.91g (45% yield) as colourless prisms. Melting point: 

89-90 
o
C;

 1
H NMR (400 MHz, DMSO-d6): 3.38(d, 2H), 5.15(t, 1H), 7.36-7.46(m, 5H); 

13
C 

NMR (100 MHz, DMSO-d6): δ = 24.8, 35.0, 114.6, 128.4, 129.3, 129.8, 135.2.
150

 MS (EI, 70 

eV): m/z (%) = 156.0 (M
+
, 15.0), 91.1 (100), 77.1 (4.0), 65.1 (13.3), 77.0 (3.5), 5 1.1 (6.2). 

1.2.15 Preparation of 4-substituted phenyl benzyl ether (Scheme 45) 

DMF

K2CO3

X = Cl, OMe, Me, CN, NO2, COOMe, tBu  

Scheme 45 

Benzyl chloride (10 mmol) was dissolved in DMF (25 ml) with stirring, and the 4-substittuted 

phenoxide (10 mmol) and K2CO3 (2.0 g, 14 mmol) were added, the mixture was stirred at 80 

o
C for 12 hours. The reaction mixture was poured into ice-water (50 ml), the precipitate were 

filtered and washed with water. The filtrate was extracted with DCM (3×15ml) and the 

organic layer was combined and washed with water until no DMF could be detected by GC. 
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The organic layer was dried over anhydrous Na2SO4, solvent was removed under vacuum, and 

the solid residue recrystallised from ethanol/water (1:1) twice before used as standards. 

4-methylphenyl benzyl ether: 1.7 g white solid (86% yield), melting point: 41-42 
o
C; 

151
 
1
H 

NMR (400 MHz, CDCl3): 2.29(s, 3H), 5.05 (s, 2H), 6.87(d, 2H), 7.09(d, 2H), 7.31-7.44 (m, 

5H);
 13

C NMR (100 MHz, CDCl3): δ = 20.5, 70.1, 114.8, 127.4, 127.9, 128.7, 129.3, 129.8, 

130.2, 137.3, 157.0.
151

 

4-chlorophenyl benzyl ether:
  

1.8 g white solid (83% yield), melting point: 72-73 
o
C;

152 1
H 

NMR (400 MHz, CDCl3): 5.04 (s, 2H), 6.89 (d, 2H), 7.23(d, 2H), 7.31-7.42 (m, 5H);
 13

C 

NMR (100 MHz, CDCl3): δ = 70.1, 116.2, 125.7, 127.4, 128.0, 128.7, 129.3, 136.5, 157.9.
151

  

4-methoxyphenyl benzyl ether: 2.0 g white solid (92% yield), melting point: 68-70 
o
C;

153 1
H 

NMR (400 MHz, CDCl3): 3.77 (s, 3H), 5.01 (s, 2H), 6.75-6.93 (m, 4H), 7.31-7.44 (m, 5H);
 

13
C NMR (100 MHz, CDCl3): δ = 55.7, 70.6, 114.6, 115.8, 127.6, 127.8, 128.6, 137.6, 152.9, 

153.1, 154.
151

 

4-cyanophenyl benzyl ether: 1.7 g white crystal (72% yield), melting point: 92-92.5 
o
C (very 

sharp);
154

 
1
H NMR (400 MHz, CDCl3): 5.14 (s, 2H), 7.03-7.06 (d, 2H), 7.36-7.48 (m, 5H), 

7.59-7.62 (d, 2H);
 155

 
13

C NMR (100 MHz, CDCl3): δ = 70.3, 104.2, 115.6, 119.3, 127.5, 

128.5, 128.8 ,134.1, 135.7,162.0.
156

  

4-tert-butylphenyl benzyl ether: 1.8 g white powder (76% yield), melting point: 62-63 
o
C;

157
 

1
H NMR (400 MHz, CDCl3): 1.29(s, 9H), 5.04 (s, 2H), 6.87 (d, 2H), 7.27-7.34 (m, 5H), 

7.41(d, 2H);
158 13

C NMR (100 MHz, CDCl3): δ = 22.6, 37.6, 69.6, 114.8, 127.3, 127.7, 128.3, 

129.0, 129.6, 130.1, 137.5, 156.5. 

4-carbomethoxyphenyl benzyl ether: 1.7 g white crystal (71% yield), melting point: 99.5-100 

o
C (sharp);

159
 
1
H NMR (400 MHz, CDCl3): 3.86(s, 3H), 5.10 (s, 2H), 7.00 (d, 2H), 7.31-7.46 

(m, 5H), 7.98(d, 2H);
 13

C NMR (100 MHz, CDCl3): δ = 52.3, 71.1, 114.6, 122.7, 127.5, 129.1, 

131.6, 136.3, 162.5, 166.9.
160
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4-nitrophenyl benzyl ether: 1.6 g yellowish solid (70% yield), melting point: 106-107 
o
C;

161
 

1
H NMR (400 MHz, CDCl3): 5.18(s, 2H), 7.04 (d, 2H), 7.38-7.42 (m, 5H), 8.23(d, 2H);

 13
C 

NMR 

 (100 MHz, CDCl3): δ = 70.6, 114.8, 125.9, 127.5, 128.5, 128.9, 135.5, 141.7, 164.1.
156

 

1.2.16 Preparation of (iodoethynyl)benzene (Scheme 46)
162

 

NaH, THF

-78°C
 

Scheme 46 

Phenylacetylene (520 mg, 5 mmol) was dissolved in THF (5 ml) at -10 
o
C with a cooling bath, 

and, with vigorous stirring, NaH (240 mg, 60%wt in mineral oil, 6 mmol) was added and the 

reaction temperature was further lowered down to -78 
o
C. A solution of iodine (1.0 g, 8 mmol) 

in THF (15 ml) was added dropwise at -78 
o
C, and then the temperature was allowed to rise to 

ambient and the mixture left overnight for 14 hours. The reaction mixture was poured into 

saturated Na2S2O3 solution (35ml), extracted with diethyl ether (3×15ml) and the organic layer 

dried over anhydrous Na2SO4. Solvent was removed under vacuum, and the residue was 

purified on a flash column (DCM/n-hexane = 4:1) to give 430mg (38% yield) yellow oil. 
1
H 

NMR (400 MHz, CDCl3): 7.25-7.31 (m, 3H), 7.38-7.42 (m, 2H);
 13

C NMR (100 MHz, 

CDCl3): δ = 6.6, 94.6, 123.8, 129.1, 132.7.
163

 MS (EI, 70 eV): m/z (%) = 228.0 (M
+
, 100), 

175.9 (3.5), 126.9 (5.3), 101.1 (24.8), 75.1 (26.5), 5 1.1 (8.8). 

 

 

 

 

 

 



 

 

 

Experimental 

60 

 

2. Pressure equipments 

Note: Use of these pressure equipments with liquid ammonia must follow the safety 

protocols which are described in the Appendix D: Safety Protocols.  

2.1 Glassware design 

2.1.1 Ammonia tank (B) and burette (C) 

160 mm
110 mm

18 mm

18 mm

standard Omnifit neck

standard Omnifit neck

standard Omnifit necks

Ammonia Tank (B) Ammonia Burette (C)
 

Figure 7 The design of ammonia tank (B) and burette (C) 

The ammonia tank (B) and burette (C) were made of glass by a professional glassware 

company (HGL Ltd., Southampton, UK).  The ammonia tank was uncalibrated has a volume 

capacity of about 40ml, while that for burette is about 30 ml. The burette was calibrated and 

had a minimum volume unit of 0.5 ml. All the necks had a standard Omnifit
®
 which allows 
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connection to standard Omnifit
®
 valves, connectors and septa. Both B and C were pressure 

tested up to 35 bar (Figure 7).  

2.1.2 Reaction vessel (D) 

The reaction vessel (D) also was made of glass and has a volume capacity of 15 ml. It has 2 

Omnifit
®
 necks and a standard GL14 neck which can be fitted with a GL14 lid (the GL14 lid 

has a PTFE coated silicone rubber septa which is inert to the attack from ammonia).  

15 

25

85
Thermo fluid 

Thermo fluid 

Omnifit neck

Omnifit neck

GL14 Neck

GL14 Neck

15

25

Thermo couple

Unit: mm

 

 

Figure 8 The design of reaction vessel (D). 

The reaction vessel also has a jacket which allows connecting with thermo regulators. The 

vessel was pressure tested up to 35 bar and the maximum working temperature of the reactions 

in the vessel was 45 
o
C. The Omnifit

®
 necks allow the reaction vessel (D) connects to 
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Omnifit
®
 valves, septum and tubing, Swagelok connections, ammonia burette (C), pressure 

UV-cell, IR-cell, and pressure NMR tube (Figure 8).   

2.2 Pressure glassware set-up  

As shown in Figure 9, ammonia cylinder (A) is connected to ammonia tank (B) through 

Omnifit
®
 connectors and PTFE tubing (1/16 inch O.D.), which condenses ammonia gas from 

A into B which is cooled by dry-ice or liquid nitrogen. Then liquid ammonia in B is warmed 

to room temperature and is transferred from B to ammonia burette (C) by opening and closing 

the Omnifit
®
 valves. The burette (C) is connected to the reactor (D) through several Omnifit

® 

3-way and 2-way valves in order to keep the pressure balanced between the reactor and the 

burette during the liquid ammonia transfer from (C) to (D), thus the required amount of liquid 

ammonia then can be accurately dispensed from (C) to (D).  

 

 

 

 

 

 

 

A

B

C

D

A: Ammonia Cylinder
B: Ammonia Tank
C: Burrette
D: Reactor(with jacket)

Thermo Fluid

Omnifit 3-way valve

Omnifit 2-way valve
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Figure 9 Diagram of the set-up of pressure equipment for the studies in liquid ammonia. B, C 

and D are fixed into a 60  40 cm wooden board by clamps. B and C are placed inside a 

wooden protection box with a Perspex
 
sheet as

 
front window and a protection sheet is placed 

in front of D when A is charged with liquid ammonia. The maximum working temperature 

allowed for the system is 45 
o
C (18 bar). 

2.3 Pressure UV cells and NMR tubes 

2.3.1 Pressure UV cells  

Pressure UV cells were based on a design by Gill and were on loan from Syngenta. (Figure  

 

Figure 10 A picture of pressure UV cell 
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10).
164

 The body of the pressure UV cell is made of PTFE, and with an inlet and outlet 

controlled by Kel-F valves, the windows of the UV cell are made from CaF2, the path length 

between two windows is 10mm. The top of the UV cell has a standard Swagelok which can be 

connected to the Omnifit
®
 valves, thus the cell can be connected with D (Figure 8) and allows 

the liquid ammonia solution to be transferred from D to the cell. 

2.3.2 Pressure NMR tubes 

Pressure NMR tube rated to 200  psi (14 bar) was purchased from Wilmad-Lab Glass
®
 with an 

O.D. of 5mm, a tube length of 7 inches and was the thin-walled (0.38mm) model which was 

specially designed for 500Hz NMR instruments (Model 522-PV-7).165 The top inlet valve of 

the pressure NMR tube has a standard Swagelok connection which allows the connection to 

Omnifit
®
 valve, thus ammonia solution can be transferred from the pressure vessel (D) to the 

tube (Figure 11). 

 

Figure 11 A diagram of pressure NMR tube   

2.3.3 Pressure syringe 

Pressure syringe was from SGE which has a total volume capacity of 1ml, the minimum 

volume unit of the syringe is 0.01 ml. The top of the pressure syringe has a standard Swagelok 

fitting and a gas tight PTFE on/off valve that enables to connect with various apparatus, such 

as pressure reaction vessels (D), UV cells and NMR tubes. Frequently it was used to inject one  

   

Figure 12 A picture of high pressure syringe 
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of ether solutions of the reactant into the pressure vessel (D) through an Omnifit
®
 septum, 

therefore it also equipped with a special side-hole needle which has a length of 71 mm and an 

O.D. of 1.07mm. The pressure syringe was pressure rated to 500 psi (33 bar) (Figure 12).        

2.4 Pressure tube reactors 

Several pressure tube reactors were made from standard 1/4 inch O. D. Swagelok stainless 

steel tubing (316L seamless, ammonia resistant), the length of these tube reactors was varied 

from 10-20cm. Both ends of these reactors had standard Swagelok fittings which can be sealed 

with Swagelok caps.  These tube reactors had been tested to be able to hold pressure up to 

1200 bar by the provider. Due to requirements form the Swagelok Fittings Protocols, the 

individual reactor only can be used under pressure for 10-15 times. The working temperature 

for these reactors was from 50-110 
o
C. Due to liquid ammonia has a very high coefficient of 

expansion with temperature, great care must be taken to avoid overfilling these pressure tube 

reactors. Ammonia expands by 20% on heating from 25 
o
C to 100 

o
C (volumetric coefficient 

of expansion for liquid ammonia is 2.45 × 10
-3

 K
-1

, the largest among some common liquids). 

3. Instruments  

3.1 Thermo regulator 

Thermo regulator was a Huber-Unistat Tango Nuevo which enables the temperature control of 

pressure vessel (D) accurately (±0.01 
o
C) in a range of -40-200 

o
C. The instrument has a Pt-

100 thermo sensor which can be used as a temperature probe to measure the actual 

temperature difference between thermo fluid and reaction vessel. The temperature control also 

can be monitored by the computer.  Normally the temperature that required for the 

investigation kinetics in liquid ammonia is range between -10- 45 
o
C.  

3.2 Analytical instruments 

GC instrument was an Agilent 7980, the column for general kinetic study was an Agilent J&W 

Scientific 19091J-433 HP5 (30 m × 0.25 mm × 0.25 µm); the column for the chiral product 

analysis was a Varian Chrompack CP-Chiral-Dex CB (25 m × 250μm × 0.25 μm). The general 

GC analysis conditions were:  
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Injection and detector temperature were 250 
o
C. Carrier gas was helium at constant pressure 

14 psi, GC oven started at 50 
o
C for 1.5mins then ramped with a temperature increasing rate of 

20
 o
C/min to 280

 o
C and held the temperature for 2 mins. 

GC-MS was an Agilent 6980 with a 5973 MS selective detector (EI, 70 eV), the column was 

an Agilent J&W Scientific DB-1701(30m × 0.25mm × 0.25µm), the general GC-MS analysis 

condition: 

Injection and detector temperature were 250 
o
C. Carrying gas was helium at constant pressure 

8 psi, GC oven started at 50 
o
C for 1.5mins then ramped with a temperature increasing rate of 

20
 o
C/min to 280

 o
C and held the temperature for 2 mins. 

HPLC instrument was an Agilent 1200 series with a fraction collector for purification and 

products of interest. The column used for general kinetic investigation was an Agilent Zorbax 

Extend C-18 (4.6 mm × 150 mm × 5µm). The general HPLC condition: 

Mobile phase: 75% methanol/25% water, flow rate was 1ml/min, the column temperature was 

set at constant 30 
o
C, and the UV detector was normally set at 254 nm and 365 nm.  

UV-Vis instrument was a Varian Cara 300 series and the pressure cells were fitted inside by 

modification of the chamber.  

Melting points were obtained from a Mettler Toledo DSC (STAR SW 9.01) instrument.  

NMR Instruments were Bruker Avance DPX 400 and 500 MHz NMR spectrometers. 

4. General procedures 

4.1 Kinetics 

4.1.1 Nucleophilic substitution  

Generally, the kinetic measurement for nucleophilic substitution reactions in liquid ammonia 

were carried out under pseudo first order conditions. The concentration of nucleophile was at 

least 10 times greater than those for substrates.  Ether solutions of substrates, for example, 

benzyl chloride, 4-nitrofluorobenzne, etc., were prepared firstly. Normally, the concentration 

of these ether solutions was 0.5 M or 1 M and 0.1-0.2 ml of these solutions was injected into 
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10 ml liquid ammonia, therefore all the kinetic measurements were made in liquid ammonia 

containing 1-2% (v/v) diethyl ether. Normally nucleophiles were pre-charged in the reaction 

vessel (D), together with internal standard, for example, biphenyl or ethyl phenyl ether, etc. 

Generally, 10ml liquid ammonia was released from burette (C) to reaction vessel (D), and the 

concentration of nucleophiles was varied from 0.1M to 1M. With the temperature control from 

thermo regulator and vigorous stirring, liquid ammonia solution was allowed to equilibrate 

with system temperature for 1 hour before the diethyl ether solution of substrate was injected 

through the pressure syringe. The sample (0.5 ml) was released into a 3 ml sample vial at the 

required time interval by opening and closing two way Omnifit
®
 valves, and the reaction was 

stopped with quenching agent, such as saturated NH4Cl solution, 1M HCl or 1M NaOH, 

depending on the nature of the reaction. The aqueous solution was extracted with 1-2ml DCM 

or toluene, the organic layer was separated, dried over anhydrous Na2SO4, and analysed by 

GC, or HPLC. The peak area of starting material and product acquired from GC or HPLC 

instrument were normalised against the peak area of internal standard (Equation 4). The 

reaction profiles were obtained by plotting the normalised area against time by Microsoft 

Excel. 

Normalised area = 

Peak area of internal standard

Peak area of reactants or products

 

Equation 4 

The data then transferred to the commercial data fitting software, such as Berkeley Madonna 

or Scientist 3.0,
166

 and the pseudo first order rate (kobs) was obtained by following both starting 

material and product through data fitting. Table 11, Figures 13 and 14a, b give a typical 

example of data processing and fitting.  
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Table 11 The GC area and normalised area for the reaction between 0.01 M 4-NFB and 0.1 M sodium phenoxide 

in liquid ammonia at 25 
o
C (I = 0.2M NaNO3)

a
 

time (mins) area 4-NFB area product area IS
 
 NA 4-NFB NA product 

      0 2238.4 0 2373.1 0.943 0 

0.33 133.5 20.8 159.7 0.836 0.130 

0.67 149.6 42.5 190.9 0.784 0.223 

1.0 129.7 58.1 179.0 0.725 0.325 

1.5 106.7 77.0 163.7 0.652 0.470 

2.0 116.7 121.3 203.5 0.573 0.596 

2.5 103.4 149.6 207.1 0.499 0.722 

3.0 125.8 224.6 271.5 0.463 0.827 

5.0 95.9 345.8 305.9 0.314 1.130 

7.0 79.4 503.3 365.8 0.217 1.376 

10.0 33.6 481.2 305.0 0.110 1.578 

15.0 9.9 459.2 265.1 0.037 1.732 

20.0 4.0 558.6 312.6 0.013 1.787 

31.0 0 591.2 329.6 0 1.794 

a
 IS = internal standard; NA = normalised area.  
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Figure 13 Reaction profile for the reaction between 0.01 M 4-NFB and 0.1 M sodium 

phenoxide in liquid ammonia at 25 
o
C (I = 0.2 M NaNO3) 

 

Figure 14a Scientist 3.0 data fittings for the reaction between 0.01 M 4-NFB and 0.1 M 

sodium phenoxide in liquid ammonia at 25 
o
C (I = 0.2M NaNO3), following the decreasing of 

4-NFB. 
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Figure 14b Scientist 3.0 data fittings for the reaction between 0.01 M 4-NFB and 0.1 M 

sodium phenoxide in liquid ammonia at 25 
o
C (I = 0.2M NaNO3), following the increasing of 

4-nitrophenyl phenyl ether. 

NH3

ksol

k2

Nuc

Sub-NH2

Sub-Nuc

Sub-X

 

Scheme 47 

k2 =

[Nuc]

kobs  
_  ksol[NH3]

-d[sub]/dt = ksol[NH3][Sub] + k2[Nuc][Sub]

-d[Sub]/dt = kobs[Sub]

kobs = ksol[NH3] + k2[Nuc]

 

Equation 5 
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Due to the background solvolysis of substrate (Scheme 47), the second order rate constant of 

nucleophilic substitution reaction (k2) was obtained from the slope of pseudo first order (kobs) 

against concentration of nucleophile ([Nuc]), or calculated based on pseudo first order (kobs), 

the concentration of nucleophile ([Nuc]) and background solvolysis rate (ksol) according to 

Equation 5.  

Because the rates of some reactions were too fast to be accurately measured by sampling 

method, for example, pseudo first order reaction between thiophenoxide and benzyl chloride, 

or the reaction samples which could not be satisfactorily quenched, for example, the reactions 

between 4-nitrofluorobezene, benzyl chloride and secondary cyclic amines, the kinetic of 

these reactions were acquired by a competition method, so the rate constants were obtained  

 

Mole of nucleophilic product

Mole of solvolysis product

=

ksol[NH3]

k2[Nuc]
 

Equation 6 

from the molar ratio of products through the product analysis (Equation 6).  If the background 

solvolysis rate is so slow compared with nucleophilic substitution rates, for example, 

solvolysis rate of 4-NFB is negligible compared with nucleophilic substitution  

Mole of nucleophilic product 1

Mole of nucleophilic product 2
=

k2,Nuc1[Nuc1]

k2,Nuc2[Nuc2]
 

Equation 7 

reaction rate of 4-NFB with phenoxides, alkoxides, therefore, the rates of some very fast 

reactions, such as thiophenoxide with 4-NFB, can be measured by referencing to the known 

nucleophilic substitution reaction rates according to Equation 7. Rates measured by the 

competition method were the average of at least 3 individual runs.  
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4.1.2 Solvolysis 

General procedure for the solvolysis was similar to that described for nucleophilic substitution. 

The substrates were prepared as standard diethyl ether solutions and injected into reaction 

vessel (D) which was pre-charged with 10 ml of liquid ammonia and internal standard. The 

samples were quenched with 1M NaOH and extracted with DCM or toluene, the organic layer 

was dried over anhydrous Na2SO4 and analysed by general GC or HPLC methods. The 

substrate concentration was varied from 0.01M to 0.02 M, and the solvolysis rate is 

independent of substrate concentration due to constant concentration of ammonia.  

The kinetics of some relatively slow reactions, for example, solvolysis of 4-NFB, were 

measured by both sampling and UV methods. The concentrations of substrates in UV kinetic 

study were range from 2.5 × 10
-5

 M to 5 × 10
-4

M depending on the molar extinction 

coefficient of the substrate. The initial rate of solvolysis reaction was obtained according 

Equation 8, where A: absorbance of reactant or product; max: the molar extinction coefficient 

at maximum absorbance wavelength; C0: the initial concentration of the substrate.  

ksol = A/(maxt • C0) 

Equation 8 

4.2 Ionisation of phenols by UV-Vis study 

Standard solution of phenols (0.05M or 0.1M) were prepared in ether, then 50-100 μL of this 

solution was injected into the pressure vessel (D) using a SGE syringe. If adjustment of the 

ionic strength was required, the salt was also pre-charged in the vessel. With stirring, 10 ml of 

liquid ammonia was released from burette (C) and the liquid ammonia solution was left to 

equilibrate at room temperature for 1 hour. Then the solution was transferred into the pressure 

UV cell. The UV spectra of phenols in acidified, basified water and ether were also acquired 

and compared with these in liquid ammonia. The concentration range of phenol was from 10
-5 

M to 10
-3

M depending on the absorbance intensity of the phenol. The UV spectra were 

recorded at ambient temperature with the dual beam method and the absorbance of phenol was 

relative to the solvent blank.  
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4.3 Ionisation of amines, carbon acids by NMR study 

A liquid ammonia solution of amine or carbon acid was prepared as described above, the 

concentration of substrate being in the range 0.1M to 1M. A small amount of deuterated 

standard (2.5%) such as DMSO-d6, toluene-d8, or benzene-d6 was also added to the solution to 

provide a the deuterium lock, the solution was transferred into a pressure NMR tube, and the 

NMR spectrum was recorded in a Bruker 500 MHz NMR (125 MHz for carbon) instrument. 

For the study of ionisation of carbon acids, in order to confirm the deprotonation, a known 

amount of acetonitrile, THF or benzene was added in the liquid ammonia solution as the 

internal reference. The NMR spectra of amines and carbon acids were also recorded in normal 

deuterium solvent, normally D2O, CDCl3 and DMSO-d6, and compared with these in liquid 

ammonia. In some cases, strong base was required to deprotonate the carbon acid, so the NMR 

solvent was HMPT with benzene-d6 as deuterium lock. In the case of weak quaternary carbon 

signal, a small amount of shiftless relaxation reagent Cr(acac)3, was added in order to shorten 

the spin-lattice relaxation times (T1) of quaternary carbon nuclei.
167

 Proton and carbon 

chemical shifts were on the δ scale relative to DMSO (δΗ = 2.50 ppm, δC = 39.50 ppm) or 

benzene (δΗ = 7.36 ppm, δC = 128.30 ppm) as internal standards. 
19

F NMR chemical shift was 

relative to CFCl3 (δF = 0.00 ppm) as reference. The NMR spectra in normal solvents were 

acquired from a Bruker 400 MHz NMR instrument.   

4.4 Copper (I) catalysed amination of aryl halides and 1,3-dipolar cycloaddition  

A thick walled GC sample vial (2 ml total volume capacity, from Agilent) was pre-charged 

with copper salt and the required amount of reactants and additives. The vial was pre-cooled in 

a cold bath (ethanol slurry, -35 to -50
 o
C), then 1ml liquid ammonia was released into the vial 

carefully, and the vial was quickly sealed with an aluminum cap which has a strong and inert 

PTFE septa. Without stirring, the vial was allows to rise to ambient temperature and kept in a 

protection jar. After the required time interval, the vial was cooled with liquid nitrogen and 

decapped, upon the vapourisation of ammonia, the reaction mixture was treated with 1M 

NaOH then extracted with DCM or toluene, the organic layer was dried over anhydrous 

Na2SO4, and analysed by general GC or HPLC methods. The high temperature reactions, for 

example, copper catalysed amination of aryl bromides and chlorides at 100 
o
C or higher, were 

performed in the pressure tube reactors, and the procedure was similar to those introduced 
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above. The heating apparatus was a GC oven (Agilent 5890) which can accurately control the 

temperature for those reactions that require high temperature conditions (normally range from 

50-120 
o
C) in liquid ammonia. 
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1.1 UV-Vis studies  

Due to the difficulties of easily handling liquid ammonia without the necessary pressure 

equipment at room temperature, the studies on the UV-Vis spectra of organic compounds in 

liquid ammonia above its boiling point are rare. However, UV investigations of liquid 

ammonia solutions of alkali metals below ammonia boiling point have been widely studied.
168

 

Being a good electron donor but with limited ability to form hydrogen bonds, liquid ammonia 

affects UV-Vis spectra of organic compounds showing very different shapes, wavelengths of 

maximum absorption and intensities from other solvents. For example, the UV spectrum of 4-

nitrophenol in liquid ammonia shows a large bathochromic shift of max from its ether solution 

due to ionisation (Figure 1.1).  

  

Figure 1.1 UV absorbance of 4-nitrophenol in different solvents at room temperature, pH = 1 

for acidified water, pH = 13 for basified water.  

 

 

 



 

 

 

Results and Discussion 

77 

 

1.1.1 UV-Vis spectra of aromatic nitro compounds  

The dielectric constant of liquid ammonia is quite different from that for water and the 

extinction coefficients of compounds are generally greater in liquid ammonia compared with 

those in water and also ether under the similar conditions, although the maximum wavelength 

of absorption of some nitrobenzene derivatives changes little on going from water to liquid 

ammonia (Table 1.1). 

Table 1.1 Molar extinction coefficients (max) and wavelength of maximum absorbance (max) of nitrobenzene 

compounds in LNH3 compared with ether at room temperature 

                 

compound 

max(nm) max(M
-1

cm
-1

) 

ether LNH3 ether LNH3 

2-NFB
 

282 295 3000 5150 

4-BFB
 

260 267 6950 8350 

2-nitroaniline 358 410 3900 4100 

4-nitroaniline 348 386 13700 14200 

2-NAB 393 413 5850 5900 

4-NAB 304 383 10350 3500 

2,4-dinitroaniline 378 537 4600 6100 

1,3-dinitrobenzene 300 555 1350 3950 

 

The compounds in Table 1.1 are either stable in liquid ammonia or their solvolysis rates in 

liquid ammonia at room temperature are relatively slow. The wavelength of absorption 

maximum of 4-NFB, 4-nitroaniline and 4-NAB is significantly shorter than the corresponding 

ortho analogue and may indicate a stronger resonance effect from the ortho nitro group, which 

decreases the energy gaps between the ground and excited states. Conversely the extinction 

coefficients are greater for the para-isomers. The absorption spectra of 1,3-dinitrobenzene and 

2,4-dinitroaniline in liquid ammonia show several absorptions (257, 353, 387, 537 nm), which 

are more complicated than those in ether and water (220 and 300 nm). One possible 

interpretation is that 2,4-dinitroaniline is attacked by a solvent molecule to form stable a 

Meisenheimer σ-complexes (Scheme 1.1), which are written as anions rather than zwitterions, 

as we have shown that the aminium ions exist as free bases in liquid ammonia.
219b

  

The formation of Meisenheimer σ-complexes between highly activated benzenes and a 

nucleophile is well known, and has been shown spectroscopically,
169

 including NMR.
170
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Generally speaking, the UV-Vis absorption of a typical Meisenheimer σ-complex is in a range 

between 450-600 nm,
171

 but sometimes fall in the range of the visible spectrum (380-750 nm)  

- -

NH3

NH4
+ - -

NH3

NH4
+

 

Scheme 1.1 

and therefore often colour is observed during the formation of the adducts. 10
-5

 to 10
-4

M 

Liquid ammonia solution of 1,3-dinitrobenzene appears a pink red colour, while that of 2,4-

dinitroaniline is dark green at room temperature. The absorption of 2,4-dinitroaniline at 537 

nm thus can be assigned to one or both of the intermediates (Scheme 1.1). The similar 

absorption at 555 nm for 1,3-dinitrobenzene also can be regarded as due to a Meisenheimer σ-

complex. There is no new product formed after vapourisation of liquid ammonia solution of 

2,4-dinitroaniline and 1,3-dinitrobenzene and it appears that the Meisenheimer σ-complex is 

formed rapidly but reversibly and removal of the ammonia solvent results in its reversion to 

starting material. The stable Meisenheimer σ-complexes of electron deficient arenes have been 

previously demonstrated in liquid ammonia,
172

 however, in the presence of a strong base,
173

 

i.e., NaNH2, or a strong oxidation agent,
174

 i.e., KMnO4, the decomposition of intermediates 

occurs to yield the amination product in liquid ammonia.   

1.1.2 Ionisation of phenols  

K

 

Equation 1.1 

Liquid ammonia is a basic solvent with a very low self-ionisation constant (pK = 27.6 at 25 

o
C) and the ionisation of acids in this solvent generates equivalent amounts of the conjugate 

base and the ammonium ion (Equation 1.1). The low dielectric constant of liquid ammonia 

indicates that most ionic species will be strongly associated in this solvent and conductivity 
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data shows that ion-pairing occurs even at low concentrations and probably larger aggregates 

form at higher concentrations.
175

 There have been several methods used to determine 

ionisation and dissociation constants of acids in liquid ammonia including spectroscopic, 

conductivity and NMR,
176

 however, to our knowledge, there has been no systematic 

evaluation of substituent effects on any one class of acids. We are interested in the relationship 

between ionisation constants in liquid ammonia compared with other solvents and their 

variation with substituents to aid the interpretation of linear free energy relationships in liquid 

ammonia (vide infra). 

1.1.2.1 Ionisation without salt effect  

The max and max of some phenols in liquid ammonia at room temperature are compared with 

those in ether, basic and acidic water, (Table 1.2) and the results show the expected 

bathochromic shift and intensified absorption upon ionisation.  

Table 1.2 Molar extinction coefficients (max) and wavelengths of maximum absorbance (max) of phenols in 

LNH3 at room temperature 

          

phenol  
pKa

a
 

max (nm) max (M
-1
∙cm

-1
) 

Et2O H2O 

pH=1 

 

H2O 

pH=13 
LNH3 Et2O H2O 

pH=1 

 

H2O 

pH=13 
LNH3 

4-methoxyphenol 10.21 290 287 306 296 2650 2800 2780 3530 

phenol  9.99 274 270 287 275 1980 1370 2600 2340 

4-chlorophenol 9.20 283 285 294 287 1833 1890 2150 1885 

3-chlorophenol  9.02 276 274 292 279 2215 1850 2835 2440 

4-carbomethoxyphenol 8.47 251 255 295 319 25050 20360 28010 28200 

3-nitrophenol  8.35 346 340 398 440 2320 2210 3930 4210 

4-cyanophenol  7.95 244 243 274 298 16450 17220 22710 35200 

2,4-dibromophenol 7.79 287 285 307 331 4240 3360 5670 4260 

2,4-dichlorophenol 7.65 286 283 305 325 4880 3120 4850 6240 

3,5-dichlorophenol 

Dichlorophenol  

7.51 282 279 297 320 3265 2295 4425 5470 

5-methyl-2-nitrophenol 7.41 282 295 417 441 8765 4275 6004 9640 

2-nitrophenol  7.23 272 278 418 444 7410 5985 4620 9140 

4-nitrophenol  7.14 302 316 399 434 13165 9155 15990 39060 
a 
Aqueous pKa, ref.177.  

The max of phenol and 3-chlorophenol are similar to those in acidified water, while those for 

4-cyano, 3,5-dichloro, 2-nitro, 4-nitrophenol exhibit large bathochromic shifts along with 

intensified absorption and are similar to the corresponding  spectra in  basified water. The 
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difference in the wavelength of maximum absorption, Δmax, between that in acidic water and 

liquid ammonia increases dramatically when the corresponding aqueous pKa of phenol drops 

below 8 (Figure 1.2). This clearly indicates that phenols with aqueous pKa  7.0 are fully 

ionised in liquid ammonia at room temperature, but not those with pKa  > 8.5. It is also worth 

noting that the molar extinction coefficients of the phenolate ions are, except for 2,4-

dibromophenol,  significantly greater in liquid ammonia compared with those in water. For 

examples, phenols with electron-withdrawing group at para position normally have greater 

extinction coefficient, such as shown by 4-nitro, 4-cyano and 4-carbomethoxyphenol. 

Interestingly, although both ortho, meta and para-nitrophenol are fully ionised in liquid 

ammonia, the molar extinction coefficients are very different in the order para >> ortho > 

meta.   

 

Figure 1.2 A plot of the bathochromic shift (Δmax) of phenols in acidified water (pH = 1) and 

liquid ammonia against the corresponding aqueous pKa of the phenol. (Δmax = max, LNH3 
_
 

max, acidified water). 
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1.1.2.2 Ionisation of phenols with added salts 

1.1.2.2a. Measurement of the apparent pKa of phenols   

Salt effects on the ionisation of acids in solution are well known, as salts can influence the 

activity coefficients of the solutes thus changing the ionisation and dissociation process.
178

 

Normally the acidity of acids increases with the ionic strength of the medium. In liquid 

ammonia, the UV spectra of phenols change with the ionic strength with respect to the 

positions of the absorption bands, the peak shapes and intensities. For example, the absorption 

of 4-chlorophenol at max (326 nm) increases gradually with the increasing concentration of 

added KClO4 (0 to 0.6M) in liquid ammonia, and finally reaches a maximum which does not 

increase by further added salt (Table 1.3, Figures 1.3 and 1.4). This phenomenon suggests 

that under sufficient ionic strength, the phenol can be forced to fully ionise in liquid ammonia, 

and so the molar extinction coefficient of fully ionised species can be determined. 

Table 1.3 The absorbance of 4-chlorophenol (10
-4 

M) at max (326 nm) with various salt concentrations (I = 0 to 

0.6M, KClO4) in liquid ammonia at 25 
o
C  

I (KClO4)/M absorbance (326nm) 

0 0.0561 

0.05 0.155 

0.1 0.222 

0.2 0.281 

0.3 0.304 

0.5 0.305 

0.6 0.309 
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Figure 1.3 The absorbance of 4-chlorophenol (10
-4

M) increases at max (326 nm) with 

increasing concentrations of added salt (KClO4, I = 0 to 0.6M) in liquid ammonia at room 

temperature and reaches a maximum. 
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Figure 1.4 The absorption of 4-chlorophenol at max (326 nm) as a function of added salt 

(KClO4) in liquid ammonia at room temperature.  

Furthermore, the saturation absorbance of phenol is independent of nature of salt, for example, 

3-chlorophenol (10
-4

M) can be forced into fully ionised species with NaCl or KClO4 in liquid 

ammonia and reaches the same saturation absorbance (Appendix A: Tables A1 and A2, 

Figures A1 to A4).    

The sensitivities of the change in absorbance to ionic strength vary with the aqueous pKa of 

the phenol. The salt effect on the UV absorbance of phenols becomes more pronounced when 

the aqueous pKa of phenol is closer to 8.5. For example, the absorption of 4-nitrophenol 

(aqueous pKa = 7.14) does not change with added salt, even under relative high salt 

concentration (Appendix A: Figure A5a), while those for 3- and 4-chlorophenol (aqueous pKa 

= 9.02 and 9.20 respectively) are very sensitive to the added salt in liquid ammonia (vide 

supra). This is compatible with phenols of aqueous pKa < 8 being already fully ionised in the 

absence of added salt. 
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Using these observations and extinction coefficients of the substituted phenoxide ions, and the 

absorbance at max in liquid ammonia, the apparent ionisation constant for phenol (pKa) under 

different concentration of added salt can be calculated, taking the activity coefficients (γ+,-) at 

low concentrations as unity (Equation 1.2). 

pKa = 
_ 

log 
          

  

      
 

Equation 1.2 

Empirically, a reasonable linear relationship is found between these constants and the square 

root of the ionic strength (I
1/2

) and this allows an estimate of the apparent pKa for substituted 

phenols at zero ionic strength (Table 1.4, for details see: Appendix A: Tables A3 to A9; 

Figures A5 to A11).  

Table 1.4 Apparent pKa of some phenols in LNH3 at room temperature 

phenol pKa in water 
a
 pKa in LNH3 (I = 0) 

4-methoxyphenol 10.27 6.62 

phenol 9.99 6.02 

1-naphthol 9.37 4.97 

4-chlorophenol 9.20 4.69 

3-chlorophenol 9.02 4.50 

4-carbomethoxy phenol 8.47 4.04 

3-nitrophenol 8.36 3.61 

4-nitrophenol 7.14 1.10 

 a
 Aqueous pKa value is from reference 177.  

Interestingly, there is a linear relationship between these apparent pKa values and the 

corresponding aqueous ones with a slope of 1.68 (Figure 1.5). This compares with similar 

plots of the acidity constants in other solvents, for example, those in dipolar aprotic solvents 

acetonitrile and DMSO, against the corresponding values in water give slopes of 2.00 and 

1.84,
179 respectively (Figure 1.5, Appendix A: Tables A41 and A42), and these slopes are 

very different from those in protic solvents such as methanol, which gives a slope of 1.15 
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(Appendix A: Table A43 and Figure A25).
180

 The greater dependence of the acidity of 

phenols on substituents in liquid ammonia compared with water presumably results from the 

poorer solvation of the phenoxide anions in the non-aqueous solvent so their stability is more 

dependent on negative charge delocalization through the substituent. The similarity of slopes 

for apparent pKa of phenols in liquid ammonia, DMSO and acetonitrile against that in water 

indicate that liquid ammonia behaves like a dipolar aprotic solvent in its effects upon 

ionisation of organic acids. 

 

Figure 1.5 Plots of the pKa of phenols in liquid ammonia (LNH3), DMSO and acetonitrile 

(AN) against the corresponding aqueous pKa 

1.1.2.2b. Separation of ionisation and dissociation constant   

The apparent pKa of phenols as described above are actually the product of the two constants 

Ki, for ion pair formation, and Kd, for dissociation to the free ions (Scheme 1.2 and Equation 

1.3). The degree of dissociation is dependent on the concentration of ammonium ions and the  
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Scheme 1.2 

Apparent pKa = -log( Ki • Kd )  

Equation 1.3 

addition of the latter generally decreases the UV absorption of the phenoxide ion which then 

levels out when only the ion-pair is present. At higher concentrations of ammonium ions, the 

absorbance then increases again in line with that expected from the ionic strength effect  


 Ki(Kd + [NH4 ])

 Ki(Kd + [NH4 ])  [NH4 ]
Abs. = [ArOH]t. .

 

Equation 1.4  

described earlier. The values of Ki and Kd can be approximated from Equation 1.4, where 

[ArOH]t is the total amount of phenol present, and if it is assumed that the extinction 

coefficients of the phenoxide ions are the same for the ion pair and the free ion.
181

 For 

example, the absorbance of 5.0×10
-5

M 4-carbomethoxyphenol, which is about 70% ionised in 

liquid ammonia, decreases markedly with even small concentrations of NH4Cl (up to 0.05M) 

and then levels out but the absorbance subsequently increases with further increasing NH4Cl 

concentrations (up to 0.2M). Interestingly, the absorbance increases with higher NH4Cl 

concentrations is not as marked as seen with other salts (Figure 1.6), similar observations 

were found with 4-nitrophenol (Appendix A: Table A12, Figure A14). The rapid decrease in 

absorbance at low concentration of ammonium ions is due to the suppression of the 

dissociation step (Appendix A: Table A10, Figure A12), while later slower increase at  higher 
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NH4
+
 concentrations can be regarded as a general salt effect increasing ionisation but which is 

counterbalanced by the specific ion effect on dissociation. 

 

Figure 1.6 Change in absorbance at 315nm of 4-carbomethoxy phenol (5×10
-5

M) with NH4Cl 

in liquid ammonia at room temperature 

At the minimum of absorption, presumably there is no free phenoxide ion in solution and all 

phenoxide ions are ion-paired with NH4
+
. Based upon this assumption and together with the 

mass balance of the process and molar extinction coefficient of the ionised species, a model 

can be established to separate the Ki and Kd by data fitting in Excel (for the detailed model 

building and derivations, see Appendix B: Derivation 1). It is also necessary to assume that 

the extinction coefficient is the same for the phenoxide ion whether it is in the ion-pair or 

‘free’ and that it is independent to the nature of its counter ion. A similar titration of phenols 

by NH4Cl but under constant ionic strength (I = 0.2M, NaCl) in liquid ammonia showed that 

phenoxide absorbance decreased more slowly than with just ammonium chloride and varying 

ionic strength, although the minimum absorbance is the same (Appendix A: Tables A10 to 

A13, Figures A12 to A15). 
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The dissociation constant Kd for the equilibrium between the ion-pair and free ions increases 

with ionic strength, whereas the ionisation constant Ki is almost independent (Table 1.5) and 

it appears that the effect is greater for the weaker acid. At low ionic strength (I<0.2M), Ki  >> 

Kd, which indicates that ionised phenols mainly exist as ion pairs in liquid ammonia at room 

temperature, and is consistent with relatively low dielectric constant of liquid ammonia. 

However, the dissociation constant of the ion-pair to the free ions, Kd, is very dependent on  

Table 1.5 The equlibium constants Ki and Kd of some phenols in liquid ammonia at room temperature 

phenol Cphenol 

Kd Ki 

no ionic strength 

control 

(I=0.2M, 

NaCl) 

 

no ionic strength 

control 

(I=0.2M, 

NaCl) 

4-cabomethoxyphenol 5×10
-5

M 1.2×10
-4

M 5.0×10
-2

M 0.65M
-1

 0.63M
-1

 

4-nitrophenol 2.5×10
-5

M 1.5×10
-2

M 0.11M 5.6M
-1

 1.9M
-1

 

 

the ionic strength of the medium, the difference between Ki  and Kd decreases with increasing 

salt concentration, so that a significant amount of phenoxide ion exists as the ‘free’ ion. 

For 4-nitrophenol at I = 0.2M (NaCl), Ki = 1.9M
-1 

and Kd = 0.11M whereas at low ionic 

strength (the concentration of ammonium ion added varying from 0 to 5×10
-3

M) Ki = 5.6M
-1

 

and Kd = 1.5×10
-2

M. The latter data generates an apparent pKa for 4-nitrophenol from Ki and 

Kd of 1.08 (Equation 1.3), in good agreement with the value of 1.10 obtained by extrapolation 

to zero ionic strength (Table 1.5). The linear relationship between the apparent pKa of phenols 

in liquid ammonia and those in water (Figure 1.5) probably reflects a good correlation 

between Kd and the aqueous pKa.  

The suppression of the concentration of free phenoxide ion by adding ammonium salts is also 

reflected in the kinetics of their reactions as reported in the following sections. The half life of 

the pseudo first order reaction between phenoxide and benzyl chloride is significantly 

increased by adding small amount of NH4Cl in the reaction system, and no reaction at all is 

observed if the NH4Cl concentration is very high. 
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Attempts to measure the ionisation of aminium ions by examining the effect on the UV 

absorbance by adding amines to phenols in liquid ammonia were unsuccessful. For example, 

adding 0.1M triethylamine or piperidine to 3-chlorophenol (1mM) showed less than 5% 

increase in absorption at the max of the phenoxide ion, indicating that the pKa of 

triethylammonium ion in liquid ammonia is < -1 (Appendix B: Derivations 2). 

1.2 NMR studies in liquid ammonia 

 

 

Figure 1.7 
1
H NMR spectrum of ammonia blank at room temperature (500 MHz) 

1
H NMR studies to investigate the ionisation of organic compounds in liquid ammonia are not 

new,
182

 but are rare, especially at room temperature, again probably due to equipment 

availability. Another reason maybe the assumption is that the ammonia solvent peak would be 

very large and broad, which would limit the scope of 
1
H NMR spectrum in liquid ammonia. 

However, although the 
1
H NMR spectrum of liquid ammonia solvent at room temperature 

(Figure 1.7) does show a large ammonia singlet peak at 0.65 ppm (referenced to DMSO-d6, δ 

= 2.50 ppm), it is surprisingly sharp and the downfield region is very clean. However, due to 

the large solvent peak, any compound with a chemical shift below 1.00 ppm may be difficult 

to identify but 
1
H NMR spectra in liquid ammonia still can be useful for the majority of 
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organic compounds. The 
1
H NMR spectra of 0.1M and 1M NH4Cl solution show that solvent 

peak shifted downfield to 0.70 and 1.0 ppm (Figure 1.8), respectively, but still a sharp singlet 

as expected.     

 

Figure 1.8 The superimposition of the 
1
H NMR spectra of ammonia blank and 0.1M NH4Cl 

liquid ammonia solution at 25 
o
C 

1.2.1 Ionisation of aminium salts  

The ionisation of aminium ions in liquid ammonia were investigated using 
1
H NMR at 25 

o
C. 

The control spectra were the chemical shift differences of the protonated and free base forms 

of the amine seen in other solvents. For example, 0.1M trifluoroethylamine hydrochloride 

(aqueous pKa = 5.8) in liquid ammonia shows the same 
1
H NMR spectrum as the free base 

indicating that it is fully deprotonated. Surprisingly, 0.1M benzylamine hydrochloride 

(aqueous pKa = 9.33) and 1M piperidine hydrochloride (aqueous pKa = 11.27) also show the 

same 
1
HNMR spectrum as their free bases indicating that they also are fully deprotonated in 

liquid ammonia (Tables 1.6, 1.7 and 1.8, Appendix C: Figures N1 to N7). These observations 

agree with the UV-Vis studies of mixtures of phenols and amines which showed that amines  

LNH3 blank 

0.1M NH4Cl 

solution 

DMSO peaks 
as reference 
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RNH3 RNH2NH3 NH4

K

 

Equation 1.5 

do not deprotonate phenols in liquid ammonia. The equilibrium for the dissociation of 

aminium ions in liquid ammonia (Equation 1.5) must lie well over to the right, suggesting 

that ammonia solvent stabilises the ammonium ion (NH4
+
) more than the aminium ions 

(RNH3
+
), or put another way, in liquid ammonia, ammonia is a much stronger base than other 

amines, which is different from the situation in water.  

Table 1.6 
1
H NMR shift of trifluoroethylamine and trifluoroethylamine hydrochloride in DMSO-d6 and in liquid 

ammonia at 25 
o
C 

 trifluoroethylamine trifluoroethylamine hydrochloride 

DMSO-d6 δ 3.13(q, 2H) δ 3.17(q, 2H) 

LNH3 δ 3.15(q, 2H) δ 3.18(q, 2H) 

 

Table 1.7 
1
H NMR shift of benzylamine, benzylamine hydrochloride and triethylbenzylammonium chloride in 

DMSO-d6 and in liquid ammonia at 25 
o
C 

 benzylamine benzylamine hydrochloride triethylbenzylammonium chloride 

DMSO-d6 
δ 3.71(s, 2H), 

7.11-7.37(m, 5H) 

δ 4.00(s, 2H),  

7.32-7.53(m, 5H) 

δ 1.30(t, 9H), 3.20(q, 6H), 4.59(s, 

2H), 7.47-7.58(m, 5H) 

LNH3 
δ 3.69(s, 2H), 

7.12-7.26(m, 5H) 

δ 3.69(s, 2H), 

7.14-7.29(m, 5H) 

δ 1.36(t, 9H), 3.20(q, 6H), 4.69(s, 

2H), 7.49-7.62(m, 5H) 

 

Table 1.8 
1
H NMR shift of piperidine and piperidine hydrochloride in DMSO-d6 and in liquid ammonia at 25 

o
C 

 piperidine piperidine hydrochloride 

DMSO-d6 δ 2.64(t, 4H), 1.36-1.54(m, 6H) δ 2.96(t, 4H), 1.52-1.71(m, 6H) 

LNH3 
a 
δ 2.61(t, 4H), 1.35-1.41(m, 6H) 

a
 δ 2.59(t, 4H), 1.34-1.41(m, 6H) 

LNH3 
b 
δ 2.61(t, 4H), 1.35-1.43(m, 6H) 

b 
δ 2.57(t, 4H), 1.31-1.38(m, 6H) 

a 
0.1M. 

b 
1M.  
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Although all amines exist effectively solely in their free base form in liquid ammonia, as will 

be discussed later their nucleophilic reactivity still varies with their aqueous basicities (vide 

infra). 

1.2.2 Ionisation of carbon acids  

Several conventional carbon acids with different aqueous pKa are studied in liquid ammonia 

by 
1
H and 

13
C NMR at 25 

o
C. The NMR spectra are compared with those in other solvents, 

such as DMSO-d6 or CDCl3 in order to confirm the ionisation of these carbon acids in liquid 

ammonia.  

Dimedone (5,5-dimethylcyclohexane-1,3-dione) (1) 

1

2

3

1  

Table 1.9 
1
H NMR spectra of dimedone (1) in various solvents at 25 

o
C (Appendix C: Figure N8) 

solvent 
1
H NMR shift (ppm) 

CDCl3 1.09 (s, 3H); 1.11 (s, 3H); 2.31 (s, 2H); 2.54 (s, 2H); 3.35 (s, 1H); 5.51 (s, 1H) 

DMSO-d6 0.99 (s, 6H); 2.21 (s, 4H); 5.20 (s, 1H) 

LNH3 0.89 (s, 6H); 1.84 (s, 4H); 4.62 (s, 1H) 

 

Table 1.10 
13

C NMR of dimedone (1) in various solvents at 25 
o
C (Appendix C: Figure N9) 

solvent 
13

C NMR shift (ppm) 

CDCl3 28.2; 30.9; 32.7; 54.1; 57.28; 103.0; 191.4; 203.8 

DMSO-d6 28.4; 32.6; 102.8 

LNH3 29.5; 31.5; 50.4; 99.0; 192.4 
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_

deprotonation tautomerisation

LNH3

or DMSO-d6

CDCl3

11a 1b

_

deprotonation tautomerisation

LNH3

or DMSO-d6

CDCl3

11a 1b

 

Scheme 1.3 

Dimedone (1) has an aqueous pKa of 5.25 and, as expected, the 
1
H NMR and 

13
C NMR 

spectra of dimedone (1) in CDCl3 and DMSO-d6 indicate that it is unionised in these two 

solvents, although the ratio between enol (1b)/1,3-diketone (1) significantly changes with the 

properties of the solvent (Scheme 1.3).
 183

  However, dimedone (1) is deprotonated to its 

mono-anion form (1a) in liquid ammonia (Scheme 1.3). 
1
H NMR and DEPT135 spectra of 1 

in liquid ammonia (Tables 1.9 and 1.10, Appendix C: Figure N10) show only one proton 

attached to carbon 2 between the two carbonyl groups, and the carbon shift of the carbonyl 

carbons (carbon 1 and 3) is about 10 ppm smaller than that for a normal carbonyl group which 

comes about 200 ppm. These observations in liquid ammonia are not due to the enol form, 

where intramolecular hydrogen bonding can cause the upfield shift of carbonyl groups as seen 

for open chained 1,3-diketones, such as acetylacetone in CDCl3 which has a carbon shift of 

192 ppm in its enol form.
184

 Intramolecular hydrogen bonding in the enol form of dimedone (1) 

is not possible. The ionisation of 1 in liquid ammonia also supported by the synthetic 

experiment, in which equal molar reaction of 1 and benzyl chloride in liquid ammonia affords 

only mono-substituted product 1c, without the aid from strong bases.  

1c1c  
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1-Nitropropane (2)  

2  

Table 1.11 
1
H NMR of 1-nitropropane (2) in various solvents at 25 

o
C (Appendix C: Figure N11) 

solvent 
1
H NMR shift (ppm) 

CDCl3 1.03 (t, 3H); 2.03 (m, 2H); 4.36 (t, 2H)  

DMSO-d6 0.91 (t, 3H); 1.91 (m, 2H); 4.51 (t, 2H) 

LNH3 0.89 (t, 3H); 1.91 (m, 2H); 4.54 (s, 2H) 

 

1-Nitropropane (2) has an aqueous pKa of 9 and a pKa of 17.2 in DMSO, which suggests that 

there are significant solvation differences of the nitro group by protic and dipolar aprotic 

solvents. 1-Nitropropane (2) is not ionised in liquid ammonia, or in DMSO, based on 
1
H NMR 

data (Table 1.11). Previous studies on the pKa measurement of nitroalkanes by NMR in liquid 

ammonia showed that the ionisation of nitromethane and nitroethane are very dependent on 

the initial concentration of the nitro compound and the temperature, for example, higher 

concentrations of nitromethane and lower temperature resulted in a greater degree of 

deprotonation, e.g., 0.39M nitromethane at -10 
o
C is deprotonated by only 2% in liquid 

ammonia, the authors rationalised these observations in terms of ion aggregation.
185

 In our 

study, the concentration of 2 is 0.1M and the experiment is carried out at 25 
o
C, and no 

ionisation is found at all. It is perhaps worth noting that phenols of aqueous pKa of 9 are also 

not ionised in liquid ammonia, as described previously in this chapter. 

Malonate diethyl ester (3) 

3  
 

Malonate diethyl ester (3) has an aqueous pKa of 13.3 and a pKa of 15.9 in DMSO, but, 

perhaps surprisingly, it is not ionised in liquid ammonia (Table 1.12). A broad single peak of 
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the protons on the central carbon of 3 with a chemical shift similar to that in DMSO-d6 is 

observed in liquid ammonia, probably due to a fast exchange of these protons with solvent In 

liquid ammonia, most of 3 exists in its 1,3-diketone form and there is no evidence of any of 

the enol form.     

Table 1.12 
1
H NMR of malonate diethyl ester (3) in various solvents at 25 

o
C (Appendix C: Figure N12) 

solvent 
1
H NMR shift (ppm) 

CDCl3 1.29 (t, 6H); 3.36 (s, 2H); 4.21 (q, 4H) (J=7.3) 

DMSO-d6 1.20 (t, 6H); 3.47 (s, 2H); 4.11 (q, 4H) (J=8.4) 

LNH3 1.17 (t, 6H); 3.46 (bs, 2H); 4.11 (q, 4H) (J=5.7) 

 

Benzylmalonodinitrile (4) 

2

1

4  

Table 1.13 
1
H NMR of benzylmalonodinitrile (4) in various solvents at 25 

o
C (Appendix C: Figure N13) 

solvent 
1
H NMR shift (ppm) 

CDCl3 3.28 (d, 2H); 3.92 (m, 1H); 7.32-7.39 (m, 5H) 

DMSO-d6 3.38 (d, 2H); 5.15 (t, 1H); 7.36-7.46 (m, 5H) 

LNH3 3.31 (s,2H); 7.34-7.54 (m, 5H) 

 

Table 1.14 
13

C NMR of benzylmalonodinitrile (4) in various solvents at 25 
o
C (Appendix C: Figure N14) 

solvent 
13

C NMR shift (ppm) 

CDCl3 24.9; 36.7; 112.1; 128.8; 129.1; 129.3; 132.9 

DMSO-d6 24.8; 35.0; 114.6; 128.4; 129.3; 129.8; 135.2 

LNH3 11.5; 35.0; 125.0; 128.1; 134.0; 137.7; 145.1 
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_LNH3

4 4a

_LNH3

4 4a  

Scheme 1.4 

The 
1
H NMR spectrum of benzylmalonodinitrile (4) in liquid ammonia does not show a proton 

attached to the methine carbon and 
13

C also supports this by showing, compared with CDCl3, a 

downfield shift of the cyano groups and an upfield shift of the central carbon as expected from 

an increased negative charge density on this carbon. (Tables 1.13 and 1.14) Ionisation of 4 in 

liquid ammonia is further supported by DEPT 135 spectrum (Appendix C: Figure N15) which 

show no coupling between the methine carbon and its attached proton in neutral (4). The large 

downfield shift of the cyano groups (145.1 ppm), although perhaps surprising, is in agreement 

with that reported for the cyano group of the lithium salt of benzyl cyanide anion in THF 

which has a carbon shift of 144.3 ppm.
186

 

Benzyl cyanide (5) 

1

2

5  

Benzyl cyanide (5) has an aqueous pKa of 22 and a pKa of 21.9 in DMSO and, as expected, is 

not ionised in liquid ammonia, based on the comparison of 
1
H NMR and 

13
C NMR data in 

different solvents (Tables 1.15 and 1.16). 

Table 1.15 
1
H NMR of benzyl cyanide (5) in various solvents at 25 

o
C (Appendix C: Figures N16-N18) 

solvent 
1
H NMR shift (ppm) 

CDCl3 3.75 (s, 2H); 7.34-7.38 (m, 5H) 

DMSO-d6 4.02 (s, 2H); 7.32-7.43 (m, 5H) 

LNH3
a
 4.06 (s,2H); 7.30-7.40 (m, 5H) 

a 
Proton relaxation time prolonged to 10s 
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Table 1.16 
13

C NMR of benzyl cyanide (5) in various solvents at 25 
o
C (Appendix C: Figure N19) 

solvent 
13

C NMR shift (ppm) 

CDCl3 142.1; 129.1; 127.9; 127.8; 117.8; 23.5 

DMSO-d6 131.7; 129.3; 128.8; 128.1; 119.6; 23.0 

LNH3 131.5; 129.1; 128.0; 127.7; 119.4; 22.8 

 

It is worth noting that the relaxation time of the methylene protons of 5 are extraordinarily fast 

compared with the aromatic protons
187 and, consequently, it takes 10s relaxation time to 

obtain the expected integration ratio between aromatic protons and methylene protons in liquid 

ammonia (Appendix C: Figures N16-N18). This is not seen in other solvents. The reason for 

this phenomenon in liquid ammonia is not clear, but it is likely due to the specific solute-

solvent interactions of liquid ammonia solutions.
188

 

Acetylacetone (6) and 2-acetocyclohexanone (7) 

6

7

NH3

NH3

6

7

NH3

NH3

 

Scheme 1.5 

Acetylacetone (6) and 2-acetocyclohexanone (7) have an aqueous pKa of 8.95 and 10.1, 

respectively, and a pKa of 13.3 and 14.1 in DMSO, respectively. In liquid ammonia, 

acetylacetone and 2-acetocyclohexanone react rapidly with ammonia to give corresponding 

enamines (Scheme 1.5), confirmed by GC-MS. Also equal molar of 6 and 7 react with benzyl 

chloride give the corresponding mono-substituted products together with the solvolysis 

products in the absence of strong bases, which suggest that both 6 and 7 are ionised in liquid 
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ammonia at room temperature (Scheme 3.11, Section 3.4). Due to the instability of 6 and 7 in 

liquid ammonia at room temperature, NMR investigation is not possible. 

Malonodinitrile (8)  

1
2

8

1
2

8   

Malonodinitrile, MDN, (8) has an aqueous pKa of 11.2 and a pKa of 11.1 in DMSO. MDN (8) 

appears to behave very unusually in liquid ammonia, its 
1
H NMR spectrum at 25 

o
C shows no 

protons attached to the central methylene carbon (Appendix C: Figure N20), which is in stark 

contrast to those observed in other solvents (Table 1.17), and suggesting that both protons 

have been removed to form a carbon dianion. The lack of a proton signal is not due to H-D 

exchange with the deuteriated dimethyl sulfoxide used to ‘lock’ the spectrometer as the same 

result is observed with d8 toluene or d6 benzene as a lock. A similar spectrum is also seen 

when one equivalent of acetonitrile is added using its three methyl hydrogens as an internal 

standard, apparently indicating that there is less than 2% MDN with hydrogen still attached.  It 

is also not due to any rapid exchange mechanism leading to a very broad signal that is not 

observable because there are also no H signals associated with the methylene carbon of MDN 

in the 
1
H NMR spectrum at -40 

o
C (Appendix C: Figure N22).         

Table 1.17 
1
H NMR of malonodinitrile (6) in various solvents at 25 

o
C  

solvent 
1
H NMR shift (ppm) 

CDCl3 3.62 (s,2H) 

D2O
a
 4.79 (s,HOD)  

HMPT
b
 5.34, s; 3.86, s (ratio=4:1) 

DMSO-d6 4.42, s; 3.37, s (ratio=4:1) 

LNH3
c
 not observed  

a 
Fast proton exchange between 8 and D2O generates the HOD signal at 4.79, all protons of 8 are replaced by 

deuterium, which is confirmed by GC-MS analysis. 
b 
With benzene-d6 as deuterium lock, 

1
H NMR of HMPT: δH 

(CDCl3, ppm): 2.65 (d, 18H), J = 9.2 Hz; HMPT: δH (D2O, ppm): 2.58 (d, 18H), J = 9.5Hz.  
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Ionisation of MDN would transfer the protons to ammonia to form ammonium ions but the 

addition of ammonium chloride does not affect the 
1
H NMR spectrum (Appendix C: Figures 

N21 to N24). 

Table 1.18 
13

C NMR and DEPT 135 of malonodinitrile (8) in various solvents at 25 
o
C 

solvent  
13

C NMR shift (ppm) DEPT 135 

CDCl3  8.77; 109.4 8.77(CH2) 

D2O  -2.94; 8.44; 111.4 not observed 

HMPT
a
  7.08; 112.5 7.08(CH2); 112.51(CH)

b
 

DMSO-d6  8.79; 112.1 8.79(CH2); 112.39(CH)
c
 

LNH3
d
  -3.12; 131.5 not observed 

a 
With benzene-d6 as deuterium lock, 

13
C NMR of HMPT: δC (CDCl3, ppm): 36.81; 36.83; HMPT: δC (D2O, 

ppm): 35.93; 35.97. 
b
 CH peak is weak, the peak intensity ratio between the CH2 and CH carbon is 32:1. 

c
 CH 

peak is also weak, the peak intensity ratio between the CH2 and CH carbon is 12:1. 
d 13

C NMR is recorded with 

DMSO-d6 or benzene-d6 as deuterium lock.  

 

The 
13

C NMR spectrum of MDN in liquid ammonia at 25 
o
C shows a very high field carbon 

signal at -3.12ppm (Table 1.18, Appendix C: Figure N21), consistent with the formation of a 

negatively charged carbon,
189

 which can be compared with the methylene carbon signal of 

MDN in dimethyl sulfoxide which occurs at 8.8ppm. There are only two quaternary carbons as 

expected for the MDN carbon dianion, (CN)2C
2– 

and the DEPT 135 spectrum of 

malonodinitrile (8)  in liquid ammonia shows no carbons attached to H. Interestingly, the 
13

C 

NMR spectrum shows the cyano carbons shifted downfield in liquid ammonia to 131ppm 

compared with 112.1ppm in the neutral MDN in dimethyl sulfoxide. 

All of these observations are not due to a chemical reaction of MDN. If MDN is left in liquid 

ammonia for two days at room temperature, followed by evaporation of the ammonia, acid 

neutralisation and extraction yields unreacted MDN, indicating that MDN is stable in liquid 

ammonia.  

Malonodinitrile (8) undergoes fast H-D exchange in D2O to give the mono- and then the di-

deuterated compound, as shown from 
1
H NMR and 

13
C NMR spectra in D2O (Table 1.17). 

MDN is not significantly ionised in water as shown by 
13

C NMR spectra (Table 1.18), which 
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is consistent with its low acidity in water (aqueous pKa = 11.2) however, the very small 

negative carbon signal (-2.94 ppm) is probably due to the partial formation of the monoanion.  

Although the evidence appears to support the formation of a stable carbon dianion formed by 

the removal of two hydrogens from a single methylene in MDN, it seems difficult to believe. 

The removal of one proton from MDN in water to form the carbon monoanion is associated 

with pKa of 11.2, so the ability of liquid ammonia to increase the acidity of MDN to such an 

extent that it forms the dianion is unexpected. For example, although the effect of the solvent 

on the acidity of carbon acids is well known the pKa of dimedone is 5.3 in water but is 

increased to11.2 in dimethyl sulfoxide. We can compare the data for MDN with that for a 

monoalkylated MDN, benzyl malonodinitrile, (4), which contains only one ionisable hydrogen 

and in DMSO (4) is unionised but in liquid ammonia it loses a proton to form the carbon 

monoanion. There is no proton signal associated with the CH in the 
1
H NMR spectrum of (4) 

in liquid ammonia and the 
13

C NMR spectrum shows this carbon to have moved upfield in 

liquid ammonia to 11.5ppm from 24.8ppm for neutral (4) in dimethyl sulfoxide (Table 1.14) 

which is consistent with the addition of a negative charge. The DEPT spectrum of (4) in liquid 

ammonia shows that the methine carbon CH is no longer attached to H whereas the other 

carbons show their expected environment. As with MDN, the cyano carbons of benzyl 

malonodinitrile in liquid ammonia shift downfield to 145ppm compared with 114ppm in the 

neutral compound in dimethyl sulfoxide.   

There are also some reactions of MDN in liquid ammonia that are consistent with, but not 

proof of, the formation of a carbon dianion. MDN reacts with one equivalent of benzyl 

chloride C6H5CH2Cl in liquid ammonia to form the dialkylated product (C6H5CH2)2C(CN)2 

and with 1,2-dibromoethane (BrCH2CH2Br) to form the cyclic product 1,1-

dicyanocyclopropane in excellent yields.  

_LNH3

98

_LNH3
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Scheme 1.6 
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It still does not seem clear that MDN actually forms a carbon dianion in liquid ammonia or 

simply forms a monoanion with unusual NMR properties. Consequently we decided to make 

the mono-anion (9) independently (Scheme 1.6) and compare its NMR spectra with those in 

other typical dipolar aprotic solvents, such as DMSO and HMPT.  

The negative 
13

C NMR chemical shift of the central carbon in MDN (-3.12 ppm) certainly is 

indicative that it does not exist in its neutral undissociated form in liquid ammonia. There is 

also a significant cyano carbon downfield shift of MDN in liquid ammonia compared with 

those in DMSO and HMPT (Tables 1.17 and 1.18). However, the 
1
H NMR data for the 

monoanion 9 in other dipolar aprotic solvents also shows apparently the absence of any 

hydrogens (Table 1.19), similar to that seen in liquid ammonia. The 
13

C NMR spectrum of the 

MDN monoanion in HMPT shows an upfield shift to 2.6ppm for the central carbon from 

7.1ppm in neutral MDN, but not as much as the -3.12ppm seen in liquid ammonia (Tables 

1.18 and 1.20), which, as already stated, is significantly further upfield compared with that 

(11.5ppm) of benzylmalonodinitrile anion (4a) in liquid ammonia (Table 1.14). It does appear 

therefore that the carbon shift of MDN in liquid ammonia is unusually low, but this could still 

be due to a poorly solvated monoanion with consequently a relatively larger negative charge 

density on the central carbon in liquid ammonia compared with other solvents.  

Table 1.19 
1
H NMR of malononitrile monoanion (9) in various solvents at 25 

o
C 

solvent 
1
H NMR shift (ppm) 

D2O
a
 4.78 (s,HOD) 

HMPT
b
 not observed 

DMSO-d6
c 

not observed 

LNH3
d
 not observed  

a 
40% wt NaOD was used to generate the monoanion (9), the molar ratio between 8 and NaOD was 1:1. 

b 
NaH 

was added into 8 in HMPT solution, the molar ratio between NaH and 8 is 1:1, benezene-d6 as deuterium lock, 

benzene or biphenyl is also added as internal reference. It is worth noting that 
1
H NMR spectrum of NaH with 

HMPT blank shows a broad single peak at 3.86 ppm, and chemical shift of protons of HMPT move upfield. 
1
H 

NMR of HMPT with NaH: δH (HMPT, ppm): 2.46 (d, 18H), J = 8.4 Hz. 
c 
A broad single peak with chemical shift 

of 3.40-3.50 ppm is observed for DMSO-d6 blank with NaH. 
d 

2 eq. of NaNH2 to 8 is added into the ammonia 

solution, with benzene-d6 as deuterium lock (Appendix C: Figure N25).   
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The carbon chemical shifts of MDN with 2 equivalents of NaH2 in liquid ammonia are similar 

to those without the added base which does not distinguish between mono- and di-anion 

formation in both cases (Appendix C: Figures N24 and N25). 

Table 1.20 
13

C NMR of malonodinitrile monoanion (9) in various solvents at 25 
o
C

a
 

solvent 
13

C NMR shift (ppm) DEPT 135 

D2O
b
 -1.37; 117.7; 124.2; 126.6; 165.1 not observed 

HMPT
c
 2.56; 122.75 not observed 

DMSO-d6
 

not observed not observed 

LNH3
d
 -3.27; 131.37 not observed 

a 
Small amount of Cr(acac)3, is added in order to shorten the spin-lattice relaxation times (T1) of quaternary 

carbon nuclei.
190

 
b 13

C NMR of 8 in a molar ratio of 1:2 with NaOD in D2O: -1.58; 117.9; 124.2; 126.5; 134.2; 

170.1. 
c 

NaH is added into 8 in HMPT solution, the molar ratio between NaH and 8 is 1:1, benezene-d6 as 

deuterium lock, benzene or biphenyl is also added as internal reference.
 13

C NMR of HMPT with NaH: δC 

(HMPT, ppm): 36.13; 36.46. 
d 

2 eq. of NaNH2 to 8 is added into the ammonia solution, with benzene-d6 as 

deuterium lock (Appendix C: Figure N26).   

 

Very highfield carbon shifts are seen for carbon dianions or quasi-dianons in other solvents, 

for example, carbon suboxide (10) has a very negative carbon shift of -14.6 in CDCl3 at -40 

o
C,

191
 while iminopropadienones 11 and 12 have shifts, respectively, of -6.8  and -3.8 ppm in 

CDCl3 at room temperature.
192

     

10

129.7

-14.6

O=C=C=C=O

10

129.7

-14.6

O=C=C=C=O

 11 12

132.6107.6111.6 132.5

-6.8 -3.8

N=C=C=C=ON=C=C=C=O

11 12

132.6107.6111.6 132.5

-6.8 -3.8

N=C=C=C=ON=C=C=C=O

 

If MDN does exist as its dianion (13) in liquid ammonia it must be stabilised by delocalisation 

of the charges formally on the central carbon to give 13a, in which the two negative charges 

are separated to reduce electrostatic repulsion (Scheme 1.7). Such delocalisation would result 

structures not too dissimilar from the allene type derivatives 10, 11 and 12. 
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__ _

_

13a

N=C=C=C=N

13  

Scheme 1.7 

In conclusion, it does not seem possible at present for NMR studies to unambiguously rule out 

the formation of the malonodinitrile dianion in liquid ammonia. However, it is clear that at 

least the monoanion is formed spontaneously from MDN in liquid ammonia, but the NMR 

studies of the monoanion in other aprotic polar solvents do seem to indicate that what we 

observe is more likely to be due to the unusual NMR properties of the monoanion rather than 

due to the formation of the malonodinitrile dianion. 

The structure of monoanion 9 in liquid ammonia is itself of interest, because of the potential 

equilibrium between the delocalised anion and its tautomer 9a (Scheme 1.8). In principle, 

structure 9a should show C-H coupling which should be determined by DEPT 135, while 9b 

has an imine motif with a characteristic NH but it could potentially rapidly exchange its proton 

with ammonia solvent so that no proton would be seen in 
1
H NMR. To test the latter, the 

1
H 

NMR of benzophenone imine in liquid ammonia shows a distinct sharp single peak for the the 

imine proton (Appendix C: Figure N27),
193

 indicating slow exchange. This indicates that the 

malonodinitrile monoanion does not exist as its tautomer 9b, because there is no signal 

observed in its 
1
H NMR spectrum.  

CNNC

H

H

_ __

NC C=C=N

9

HN=C=C=C=N

9b9a

 

Scheme 1.8 

Richard and Gao
194

 investigated deprotonation rate of several cyanoalkanes in D2O, and 

proposed that the significant resonance stabilisation of α-cyano carbanions is attributed to the 

differential solvation of cyanoalkanes and cyanocarbanions. The theoretical calculation of the 
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free energy change for the highly unfavorable tautomerisation of acetonitrile to ketenimine in 

water is computed as high as ΔGT = 30.7 kcal/mol. Based on the experimental and calculation 

results, they also concluded that the large instability of the ketenimine cumulative double bond 

favours the valence bond resonance form of the α-cyanocarbanion in which there is a formal 

carbon-nitrogen triple bond and the negative charge is localised at the α-carbon. This may 

explain why there is such a highfield signal for MDN anion in liquid ammonia – there is a 

large negative charge density on the central carbon.           

Another interesting observation is that there are two singlet peaks in the 
1
H NMR spectrum of 

MDN 8 in DMSO-d6 (H,DMSO4.42 and 3.37ppm) and HMPT (HHMPT5.34 and 3.86ppm), 

the ratio between these two peaks is 4:1 in both solvents (Table 1.17). The 
13

C NMR of MDN 

in HMPT shows the central carbon with a chemical shift at 112 ppm being a methylene CH2 

structure, whereas that at 7 ppm has a CH structure (Table 1.17) as shown by DEPT 135 

spectrum. This can be explained by the tautomerisation of 8 and 8c in those solvents as 

described in Scheme 1.9 with an equilibrium constant, Keq., for the tautomerisation in these 

solvents of 0.25 at 25 
o
C, corresponding to a ΔG

o
298K = 3.4 kJ mol

-1
. These observations 

suggest that perhaps the difference calculated by Richard for the tautomerisation of 

acetonitrile to ketenimine is overestimated (vide supra).
194
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Scheme 1.9 

In summary, due to the basic properties of liquid ammonia, the ionisation of some carbon 

acids occurs spontaneously to form the corresponding anions.  It appears that carbon acids 

with a pKa in DMSO of <15 are ionised in liquid ammonia (Table 1.21) but there is not a 

simple correlation with their aqueous pKa. An obvious anomaly is nitropropane, which is also 

shown by its deviation from a reasonably linear plot of the pKa of carbon acids in water and 

DMSO (Figure 3.10) which will be discussed in the following section. Liquid ammonia 
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appears to behave like a typical dipolar aprotic solvents in its effects on ionisation and 

solvation of organic acids. 

Table 1.21 The ionisation of carbon acids in liquid ammonia at 25 
o
C by NMR compared with pKa values in 

water and DMSO 

carbon acid pKa (aq.)
a
 pKa (DMSO)

b
 ionisation in LNH3 

malononitrile 11.2 11.1 Yes 

dimedone 5.25 11.2 Yes 

HCN 9.21 12.9 Yes 

acetylacetone 9.0 13.3 Yes 

2-acetylcyclohexanone 10.1 14.1 Yes 

diethyl malonate 12.9
c
 16.4

c
 No 

1-nitropropane 9.0 17.2 No 

benzyl cyanide 21.9
d
 21.9 No 

a 
Aqueous pKa is from reference 10c except otherwise noted. 

b
 pKa in DMSO is from reference 195 except 

otherwise noted. 
c 
reference 196. 

d
 pKa in DMSO. 
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2. Solvolysis in liquid ammonia 

Solvolysis and hence stability of organic compounds in liquid ammonia needs to be studied 

first before synthetic work and kinetic measurement of nucleophilic substitution reactions are 

undertaken. Due to the strong electron donating character of ammonia and its constant high 

concentration (36M/25 
o
C), when used as a solvent, ammonia can compete with nucleophiles 

to react with substrates in nucleophilic substitution reactions in liquid ammonia, The rates of 

these processes are especially important for the accurate determination of the rates of those 

reactions in which weak nucleophiles are involved. 

From a synthetic point of view, solvolysis in liquid ammonia also can be very useful for the 

synthesis of amines, amides and imines, etc. and kinetic and product analysis enables the 

evaluation of rate and selectivity of these amination reactions. Strictly speaking, solvolysis in 

liquid ammonia is a ‘special’ case of nucleophilic substitution in which the nucleophile is 

ammonia which may have an effective constant concentration if it is in vast excess of the 

substrate concentration. 

For solvolysis in liquid ammonia, the solvent, in addition to its role as a nucleophile, could act 

as a general base in an SN3 type process,
197

 and influence the mechanism of substitution by its 

effects on the stability of any intermediate and on its solvation of the leaving group. These 

solvent effects are also present for substitutions by other nucleophiles, especially by solvation 

of the nucleophile and leaving group in determining the extent of ‘push and pull.’ 

2.1 Solvolysis of alkyl halides  

Previous investigations of the solvolysis of organic compounds in liquid ammonia have been 

described earlier (Introduction 3.3). In order to determine the solvent effect on the transition 

state of the aliphatic nucleophilic substitution reactions and how the solvent may modify 

substituent effects, we investigated the rates of solvolysis of substituted benzyl chlorides in 

liquid ammonia. 

The solvolysis of substituted benzyl chlorides in liquid ammonia give the corresponding 

benzylamines (Scheme 2.1) and the rates of appearance of the product and the disappearance 

of the reactant, followed by GC analysis, change exponentially with time. The derived pseudo 
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first order rate constants show little or no dependence of on the substituent (Table 2.1). This is 

very different from hydrolysis in water where the hydrolysis rates increase by about 7 orders 

of magnitude on going from 4-nitrobenzyl chloride to 4-methoxybenzyl chloride (Table 2.1). 

The rates of solvolysis in liquid ammonia are generally faster than those in water, but the 

difference decreases with electron-donating substituents, so that 4-methoxybenzyl chloride is 

more reactive in water than in liquid ammonia. 

 

25°C

 

Scheme 2.1 

Table 2.1 Pseudo first order rate constants (k0) for the solvolysis of substituted benzyl chlorides in LNH3 and 

water at 25
 o
C 

substrate k0, LNH3(s
-1

) k0, water(s
-1

) 

4-methylbenzyl chloride 7.85×10
-4

 
a
 2.91×10

-4
 

benzyl chloride 8.89×10
-4

 
a
 1.33×10

-5
 

4-chlorobenzyl chloride 9.81×10
-4

 
a
 7.56×10

-6
 

4-carbomethoxybenzyl chloride 11.0×10
-4

 N.A. 

4-cyanobenzyl chloride  13.3×10
-4

 N.A. 

4-nitrobenzyl chloride 15.3×10
-4

 
a
 3.38×10

-7
 

3-methoxybenzyl chloride 7.82×10
-4

 N. A. 

4-methoxybenzyl chloride 19.1×10
-4

 3.70 
b
 

α-methyl benzyl chloride 6.71×10
-6

 0.48 
c
 

α-methyl 4-methoxybenzyl chloride 9.68×10
-4

 1.55 
d
 

a 
The solvolysis rates were extrapolated data from ref. 198. 

b
 ref. 199. 

c
 ref. 34c. 

d
 ref. 200, the data is for 80% 

(v/v) ethanol in water. 
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There is no clear consensus on the mechanism of hydrolysis of benzyl halides in water and 

aqueous binary solvents, although that for 4-methoxybenzyl halides is described as an SN1 

mechanism with the intermediate formation of a carbocation,
201

 and that for the 4-nitro 

derivative is claimed to be SN2.
202

 The rate of solvolysis in liquid ammonia is retarded 

dramatically when one of methylene hydrogen of benzyl chloride in the α-position is replaced 

by a methyl group, α-methyl benzyl chloride is solvolysed about 130 times slower than benzyl 

chloride. This is strong evidence for solvolysis occurring by an SN2 mechanism due to a more 

sterically hindered transition state. It is also worth noting that the solvolysis rate of t-butyl 

chloride in liquid ammonia at 25 
o
C is very slow, the half life of the reaction was reported as 

long as 146 days,
203

 which is in stark contrast with that for the hydrolysis and is indicative of a 

bimolecular process in liquid ammonia. Furthermore, α-methyl 4-methoxybenzyl chloride, 

which undergoes solvolysis by the unimolecular mechanism in protic solvents,
204

 is solvolysed 

nearly at the same rate as benzyl chloride in liquid ammonia, but about 1600 and 400 times 

slower than in 80% (v/v) ethanol/water and 100% methanol at 25 
o
C, respectively.

200
 This 

indicates that, even with activated benzyl chloride derivatives, the solvolysis of these 

compounds in liquid ammonia proceeds through a concerted bimolecular mechanism. The 

activation parameters for the solvolysis of substituted benzyl halides in liquid ammonia are 

significantly different from those in water (Table 2.2, Appendix A: Tables A14 to A18, 

Figures A16 to A20).  

Table 2.2 Activation parameters for the solvolysis of substituted benzyl chlorides in LNH3 and water at 25 
o
C 

a
 Activation parameters for 4-substituted benzyl chlorides were extrapolated from refs.198, 199 and ref.205; the 

data for 4-methoxybenzyl chloride were for 20% (v/v) methanol in water; the data for α-methyl benzyl chloride 

were from ref.34c. 

 

 LNH3 Water 
a
 

substrate ΔH
‡ 

(
 
kJ mol

-1
) ΔS

‡ 
( J K

-1
 mol

-1
) ΔH

‡  
(kJ mol

-1
) ΔS

‡ 
(J K

-1
 mol

-1
) 

benzyl chloride 39.9 -200 83.1 -38.0 

4-chlorobenzyl chloride 40.2 -197 85.9 -37.2 

4-nitrobenzyl chloride 37.8 -202 87.6 -50.1 

4-methoxybenzyl chloride 41.3 -188 70.6 -5.10 

α-methyl benzyl chloride 67.7 -147 71.0 -50.2 
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Very large negative entropies of activation (ΔS
‡
) are observed for the solvolysis of all 

substituted benzyl chlorides in liquid ammonia, indicative of a restricted activated complex 

relative to the reactant and a bimolecular concerted SN2 mechanism for all derivatives. 

Bimolecular nucleophilic substitution processes are usually characterised by large negative 

entropies of activation of -90 and -120 J K
-1

 mol
-1

 due to the loss of translational and rotational 

entropy of the reactants and the development of charge in the transition state leading to solvent 

restriction.
206

 By contrast the ΔS
‡ 

for typical hydrolytic reactions which follow the SN1 

mechanism are often positive, e.g. the ΔS
‡
 of the hydrolysis of t-butyl chloride

34f 
is about 50 J 

K
-1

 mol
-1

. The additional methyl group on the α-position of benzyl chloride increases ΔH
‡
 of 

the reaction significantly in liquid ammonia (Table 2.2), as expected from a more sterically 

hindered reaction in a bimolecular process. This is distinctly different from the hydrolysis in 

water, where the additional methyl group causes a decrease in ΔH
‡
, presumably due to the 

formation of a more stable carbocation. 

The C-Cl bond of benzyl halide has a dipole moment of 1.85D in gas phase.
207

 Compared with 

liquid ammonia, the C-Cl bond of benzyl chloride is presumably more polarised in water due 

to the latter’s greater hydrogen bond donating ability and so the fission of the C-Cl bond may 

be expected to be easier in water than in liquid ammonia. Although liquid ammonia is 

generally described as a protic solvent,
1
 like water, with good hydrogen bond donor (HBD) 

and acceptor (HBA) ability, there is very little evidence to support this assertion. It actually 

has a very limited HBD ability, not only in the gas phase but also in the condensed phase,
56

 

and anions are poorly solvated in liquid ammonia. Expulsion of the chloride anion is thus 

expected to be more difficult in liquid ammonia than in water and so the probability of a 

unimolecular mechanism is less with the necessity of more ‘push’ required from the incoming 

nucleophile. In addition, ammonia is a better nucleophile than water, all of which indicate a 

more likely bimolecular process in liquid ammonia. Finally, based on a comparison of the 

effect of solvents on the rates of reactions, and, contrary to commonly accepted views, it 

appears that liquid ammonia acts more like a dipolar aprotic solvent in nucleophilic 

substitution reactions.
208

  

There is surprisingly little or no dependence of the rate of solvolysis of benzyl chlorides in 

liquid ammonia upon ring substituents, again in contrast to that in water (Table 2.1). 
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Consequently the Hammett plot for the solvolysis in liquid ammonia is very different from 

that in water (Figure 2.1), the ρ value for the reaction in liquid ammonia is zero, while that in 

water, although not ideally linear, shows ρ = -4.32. It is worth noting that the data for 

solvolysis in liquid ammonia is effectively zero whether σp
+ 

or σp is used. These different 

values suggest that for the solvolysis of benzyl chlorides in liquid ammonia there is little or no 

charge developed on the central carbon atom in the transition state with any charge developed 

due to partial fission of the bond to the leaving group being counterbalanced by an equal 

transfer of charge from the incoming nucleophile.  

A typical SN1 solvolysis reaction generally has a high sensitivity to the solvent polarity and the 

rate constants tend to be accelerated by increasing the ionising power of the solvent. However, 

whether salts increase or decrease the rate of a solvolysis reaction depends on the substrate 

structure. For example, addition of halide ions decreases the rate of hydrolysis for 

diphenylmethyl in water but not of t-butyl halides.
209

  

 

Figure 2.1 The Hammett plot for the solvolysis of 4-substituted benzyl chlorides in LNH3 (◊) 

and water (×) at 25 
o
C. 

-8.5

-4.5

-0.5

-1.3 -0.3 0.7

lo
g
(k

o
b
s/

s-1
)

σp
+



 

 

 

Results and Discussion  

112 

 

Normally, the more stable the intermediate formed in an SN1 process, the greater is the 

selectivity towards nucleophilicity of the nucleophile in the product determining step, but the 

similar is the sensitivity towards solvent polarity on the rate limiting step.
210

 On the other 

hand, the salt effect normally has a positive effect on the rate of a SN2 process when a neutral 

nucleophile attacks a neutral substrate,
211

 due to the generation of charge in the transition state. 

Despite the difficulty of interpretation, salt effects on the rates of reaction have been used to 

distinguish between SN1 and SN2 processes.
212

 

The pseudo first order rate constants for the rate of the solvolysis of 4-methoxybenzyl chloride 

in liquid ammonia increases linearly with increasing concentration of KClO4 (Table 2.3, 

Figure 2.1), but the positive effect is not as marked as that for a typical SN1 reaction, for 

which the rate often increases exponentially.
213

 The solvolysis rate of 4-methoxybenzyl 

chloride is also increased both by adding NH4Cl and KClO4 in liquid ammonia (Table 2.4, 

Figure 2.1), but not significantly more than that with potassium perchlorate. Even though 

chloride ion is not a particularly good hydrogen bond acceptor, it may have been anticipated 

that ammonium ions may facilitate chloride ion expulsion but its effect is simply that of a 

simple salt effect. In addition, the solvolysis rate is also accelerated the same amount by 

adding NaCl or ammonium chloride which excludes the possibility of specific aid from the 

ammonium cation (Table 2.4). The smaller salt effect on the rate of solvolysis of 4-

methoxybenzyl chloride in liquid ammonia compared with observed for typical SN1 reactions 

in aqueous or aqueous binary organic solvents is also indicative of a bimolecular SN2 process.  

Table 2.3 Solvolysis rates of 4-methoxybenzyl chloride in presence of KClO4 in LNH3 at 25 
o
C 

concentration of KClO4(M) 0 0.5 1.0 1.5 

solvolysis rate, k0 (10
3
s

-1
) 1.91 2.69 3.94 4.70 

 

Table 2.4 Solvolysis rates of 4-methoxybenzyl chloride in presence of NH4Cl and NaCl
a
 in LNH3 at 25 

o
C 

concentration of NH4Cl (M) 0 0.2 0.5 0.8 1.0 

solvolysis rate,k0 (10
3
s

-1
) 1.98 2.54 3.37 3.91 4.66 

a
 Solvolysis rate of 4-methoxybenzyl chloride in liquid ammonia at 25 

o
C in presence of 0.2M NaCl is 2.54×10

-3  

s
-1

, identical to that for NH4Cl, however, the poor solubility of NaCl in liquid ammonia at 25 
o
C (3.02g/100g)

44
 

prevents the kinetic measurement at higher NaCl concentration.  
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Figure 2.2 Changes in the solvolysis rate constants of 4-methoxybenzyl chloride with the 

addition of various salts in LNH3 at 25 
o
C: (Δ) KClO4; (□) NH4Cl. 

Due to the poorer solvation of the leaving group the chloride anion, in the solvolysis of benzyl 

chlorides in liquid ammonia, compared with that in water, the unimolecular SN1 mechanism is 

unfavourable. The expulsion of the leaving group chloride ion is facilitated by increasing its 

solubility in liquid ammonia by increasing solvent ionising power, similar to the effect of 

increasing ionic strength on increasing the ionisation constants for phenols, described in the 

previous section. 

Unlike the ammonium ion (NH4
+
), quaternary ammonium cations (R4N

+
) are permanently 

charged, independent of the pH of the solution. The quaternary ammonium group can exert 

strong electron withdrawing and field effect as a substituent, as shown by its large positive 

Hammett sigma constant derived from its effect on the ionisation of benzoic acids.
214

 It is also 

a good leaving group in elimination
215

 and nucleophilic substitution
216

 reactions. However, 

despite all of this, there is no solvolysis of benzyltriethyl ammmonium chloride observed in 

liquid ammonia at 25 
o
C for days (Scheme 2.2), and there is also no elimination product 
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detected. This is probably due to the bulky triethyl ammonium group prevents the attack from 

ammonia molecule on either the benzylic or the ethyl methylene.  

Cl

LNH3, 25°C  

Scheme 2.2 

The stereochemical consequences of aliphatic nucleophilic substitutions are classic criteria for 

mechanisms. Based on a racemised product, Ingold claimed that the solvolysis of α-methyl 

benzyl chloride in liquid ammonia at room temperature occurs completely through a 

unimolecular path.
217

 However, in our hands the synthesis of enantiomerically pure α-methyl 

benzyl chloride proved to be difficult; α-methyl benzyl alcohol racemises during the 

chlorination process and also during the silica gel purification step.
217,218

 The best result we 

achieved was only about 40% ee chloride and enantiomeric synthesis via tosylation, 

mesylation, phosphorylation of α-methyl benzyl alcohol all proved to be unsuccessful. α-

Methylbenzyl acetate proved to be very inert towards nucleophilic attack by ammonia and no 

reaction was observed after 2 hours at 45 
o
C in liquid ammonia, and the lack of formation of 

acetamide is also consistent with our observation
219

 that alkyl esters solvolyse slowly in liquid 

ammonia (vide infra).  

Complete inversion of configuration of 40% ee S-α-methyl benzyl chloride was observed 

during the solvolysis to give 40% ee R-enriched α-methyl benzylamine (Scheme 2.3) with 

almost 100% yield after the reaction reached completion and no elimination product was 

found. This is another strong indication that the solvolysis of primary and secondary aliphatic 

halides in liquid ammonia follows an SN2 mechanism.  

LNH3

25°C

 

Scheme 2.3 
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It is of interest to determine the degree of inversion not only in liquid ammonia but also in 

aqueous liquid ammonia solutions to see if any adventitious water would compromise the use 

of liquid ammonia as a solvent for large scale enantiomeric synthesis. However, there is little 

indication that significant racemisation occurs with increasing water content. The solvolysis of 

41% ee S-α-methyl benzyl chloride gives a barely detectable reduction in the ee of R-α-methyl 

benzylamine in 10%, 20% and 30% water-ammonia solution (Table 2.5). The increasing 

water content could facilitate the expulsion of chloride due to better solvation from water and 

the rate of solvolysis does increase exponentially with the increasing of water content the half 

life decreases from 29 hours in pure liquid ammonia to 3.7 hours in 10% water, however, even  

Table 2.5 Solvolysis of enantiomerically rich S-α-methyl benzyl chloride in aqueous ammonia at 25 
o
C 

H2O volume fraction 0% H2O 10% H2O 20% H2O 30% H2O 

ee% of reactant chloride(S) 37.8 40.8 40.8 40.8 

ee% of product amine(R) 37.8 36.6 36.5 35.9 

 

Table 2.6 The rate and product analysis for the solvolysis of α-methyl benzyl chloride in aqueous ammonia at 25 

o
C. 

H2O volume fraction 0% H2O 10% H2O 20% H2O 30% H2O 

rate/s
-1    

 6.71×10
-6

 1.93×10
-5

 5.2×10
-5

 1.40×10
-4

 

molar ratio (amine/alcohol) 
______ 

110 :1 42:1 12:1 

krel.  1 2.9 7.7 21 
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Figure 2.3 The increase in the solvolysis rate of α-methyl benzyl chloride with increasing 

volume fraction of water in water-ammonia solution at 25 
o
C. 

in 10% water-ammonia there is little or no competing hydrolysis, with less than 1% of alcohol 

produced (Table 2.6). The rate of solvolysis of α-methyl benzyl chloride dramatically 

increases with increasing content of water in liquid ammonia (Figure 2.3), as is generally 

observed in aqueous binary organic solvents,
34c,220

 presumably the driving force coming from 

the differences in solvation of the leaving chloride anion, as shown by the large positive Gibbs 

transfer energy of chloride anion from water to ammonia or DMSO.
221
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Figure 2.4 Jencks-More O’Ferrall reaction coordinate-energy diagram for the solvolysis of 

benzyl chloride derivatives in liquid ammonia at 25 
o
C 

In summary, the solvolysis of alkyl halides in liquid ammonia is a concerted bimolecular 

process which follows a distinct SN2 mechanism, as indicated by the substituent effects, 

activation parameters, salt effects and stereochemistry for the solvolysis of benzyl halides. The 

solvolysis of alkyl halides proceeds through a symmetrical transition state structure that has 

little charge development on the incoming nucleophile and the departing nucleofuge and little 

or no change in charge on the central benzylic carbon compared with that in the initial state 

(Schemes 2.4 and Figure 2.4).  

2.2 Solvolysis of aromatic compounds 

Aryl halides and aromatic heterocyclic halides undergo solvolysis in liquid ammonia to give 

the corresponding aromatic amines. The rates of these reactions were determined by 

monitoring the exponential appearance of product and disappearance of reactant using GC or 

HPLC normalised area as a function of time to give the first order rate constants for solvolysis 

which are dependent on the nature of the leaving group and aromatic substituents and show 

the expected trends (Table 2.7). 
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As expected, the rates of solvolysis of aryl halides in liquid ammonia are slower than those for 

aliphatic benzyl halides
222

 but the reactivity of halobenzenes can be dramatically activated 

through the introduction of electron-withdrawing groups (Table 2.7). In liquid ammonia, there  

Table 2.7 Solvolysis rate constants of some aromatic compounds in liquid ammonia 

Substrate Temp (
o
C) 10

6
k0(s

-1
) t1/2 

2-NFB  25 2.15×10
2
 54mins 

3-nitrofluorobenzene 
a
 100 no reaction  

______ 

4-NFB 20 7.86 24.4hrs 

2,4-DFNB 25 6.72×10
3
 1.7mins 

2,4-dinitrofluorobenzene  25 >1.4×10
5
 <5s 

4-nitrochlorobenzene  25 no reaction 
______

 

2,4-dinitrochlorobenzene  25 6.18×10
3
 1.9mins 

3-nitroiodobenzene 
b
 25 no reaction 

______
 

2-NAB 20 5.81 33.1 hrs 

4-NAB
 

25 5.11 37.7hrs 

2,4-dinitroazidobenzene  25 >1.4×10
5
 <5s 

2-chloropyrimidine 20 14.2 13.3hrs 

2-chlorobenzthiazole 20 5.33 36.1hrs 

2-fluoropyridine 
a
 25 no reaction 

______
 

a
 Stable for days at 100 

o
C, no reaction observed. 

b 
Stable for days at 25 

o
C.  

is no reaction of unsubstituted halobenzenes and 3-nitrohalobenzenes at ambient temperature, 

but as expected, the 2- and 4-nitro activated derivatives and the substituted aryl fluorides are 

much more reactive.
223

 The introduction of additional fluoro or nitro groups increases the 

solvolysis rates by more than 4 orders of magnitude. The solvolysis rate of 4-NAB, in the 

absence of salts, are similar to those for 4-NFB, but that for 2-NFB is nearly two orders of 

magnitude greater than that for 2-NAB.  

Given the demonstration that nitro substituted aromatic compounds without a leaving group 

reversibly form Meisenheimer complexes in liquid ammonia (Scheme 1.1), it seems 

reasonable to postulate the complexes as intermediates in solvolysis and nucleophilic 
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substitution reactions of analogous compounds that do contain a leaving group (Scheme 2.5). 

The first formed intermediate (A) will have a charged ammonium ion but product formation 

probably requires deprotonation to form the anionic intermediate (B) before the leaving group 

can be expelled, especially as liquid ammonia is a poor solvent for anions. We have shown 

that aminium ions in liquid ammonia are invariably deprotonated by the vast excess of basic 

solvent and so exist in their free base form (chapter 1). It is therefore likely that the 

zwitterionic intermediate (A) is rapidly converted to the thermodynamically more stable 

anionic intermediate (B) by proton transfer to the solvent (k2 step in Scheme 2.5 where B = 

NH3). In fact the intermediate (B) may be formed directly from the reactants by general base 

catalysis by solvent ammonia. The rate-limiting step for solvolysis is therefore likely to be the 

breakdown of the intermediate (B), step k3 (Scheme 2.5) which is also compatible with the 

observations for other aromatic nucleophilic substitutions in liquid ammonia (vide infra). 

- - - -

k1

k-1 k-2

k2 k3(B)
Lg

-

A B  

Scheme 2.5 

The solvolysis rates of 4-NFB and 2-NFB show relatively small salt effects (Figures 2.5 and 

2.6), however, it worth noting that 2M salt increases the rate for the 4-isomer nearly 3-fold but 

by only 28% for the 2- isomer (Appendix A: Table A19).  
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Figure 2.5 The first order rate constants for the solvolysis of 4-NFB as a function of added 

salt concentration in LNH3 at 25 
o
C. (Δ) NH4Cl; (□) NaNO3 
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Figure 2.6 The first order rate constants for the solvolysis of 2-NFB as a function of added 

salt concentration in LNH3 at 25 
o
C 

The solvolysis rate of 4-nitroazidobenzene (4-NAB), in the absence of salts, is similar to that 

for 4-NFB, but that for 2-NFB is nearly two orders of magnitude greater than that for 2-NAB 

(Table 2.7). As well as a significant difference in salt effects, 2-NFB is nearly 30 times more 

reactive towards solvolysis than its 4-substituted isomer, whereas the reactivities of 2- and 4-

nitroazidobenzenes are similar. This ortho effect for 2-NFB, but not 2-NAB, is also seen in the 

solvolysis of the more reactive di-substituted 2,4-DFNB which gives almost exclusively the σ-

substituted derivative (14) as product in liquid ammonia at 25 
o
C (Scheme 2.6). The product 

ratio of ortho to para isomers is compatible with the rate differences observed between 2-NFB 

and 4-NFB (Table 2.7). Interestingly, the product analysis of the solvolysis of 2,4-DFNB in 

liquid ammonia shows that the solvolysis product ratio between 14 and 15 increases with, 

2

2.5

3

0 0.5 1 1.5 2 2.5

1
0

4
k

o
b
s/

s-1

NaNO3 concentration/M 



 

 

 

Results and Discussion  

122 

 

although not very pronounced, the decreasing of the reaction temperature (Table 2.8, 

Appendix C: Figures N28-N29).  

14 15

98% 2%

NH3

25°C

 

Scheme 2.6 

Table 2.8 Product analysis (
19

F NMR) for the solvolysis of 2,4-DFNB in liquid ammonia under various 

temperature 

temperature(K) molar ratio 12/13 

288.2 52:1 

295.2 49:1 

308.2 43:1 

 

Preferential substitution ortho to the nitro group is sometimes observed in the reactions of 

halonitrobenzenes with neutral nucleophile, and even with sterically hindered nucleophiles.
224

 

Bunnett indicated that a halogen atom ortho to a nitro group could lead to the rotation of the 

nitro group out of benzene plane which weakens the conjugation due to the secondary steric 

effect, thus the reduced ratio between ortho and para would be expected.
225

 On the contrary, 

Miller stated that although the nitro group ortho to the halogen atom is not coplanar to the ring 

in the initial state, it can be so in the transition state, so the reduction in activating power due 

to absence of coplanarity has little or no importance in determining the para and ortho 

ratios.
226

  

The reason for the higher reactivity of ortho over para position for nitrofluorobenzenes in 

nucleophilic substitution is unlikely to be attributable to the steric effect of fluorine, given the 
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Van Der Waals radius of fluorine is relatively small (1.47 A).
227

 It is therefore likely that the 

enhanced reactivity of 2-NFB over 4-NFB is due to a transition state effect. In support of this, 

entropy of activation for the ortho-isomer is less negative than that for the para-isomer (Table 

2.9, Appendix A: Tables A21 to A23 and Figures A21 to A23). Although this is compatible 

with some interaction between the ortho substituents such as the formation of an 

intramolecular hydrogen bond within the activated complex to stabilise the intermediate 

(16),
228 

 it would not explain why this favourable interaction cannot occur with 2-NAB. The 

generation of negative charge on the nitro group oxygens in the σ-adduct formed from 4-NFB 

requires solvation and restriction of solvent molecules giving rise to a slightly more negative 

entropy of activation. 

Table 2.9 The rates and activation parameters of the solvolysis of 2-NFB, 4-NFB and 2,4-DFNB in LNH3 at 25 

o
C  

substrate 10
6
kobs / s

-1
 krel. ΔG

‡ 
/ kJ mole

-1 
ΔH

‡ 
/ kJ mole

-1 
ΔS

‡ 
/ J K

-1
mole

-1 

4-NFB 7.86 1 101.1 53.0 -161.3 

2-NFB 215 27.1 94.1 51.3 -143.4 

2,4-DFNB 6717 852 87.7 40.0 -151.6 

 

1616  

The additional fluorine in 2,4-DFNB compared with 2-NFB increases the solvolysis rate by 

about 30-fold presumably due to the inductive effect of fluorine which normally shows an 

additive effect on the reactivity of the polyfluorobenzenes.
229

 Introduction of a second nitro 

group causes the solvolysis of 2,4-DNFB in liquid ammonia to be too fast to measure with our 

present equipment. The solvolysis of 4-nitrochlorobenzene does not occur at room 

temperature, unless under forcing conditions,
230

 while the solvolysis of 2,4-
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dinitrochlorobenzene completes within minutes, but much slower than that for 2,4-DNFB 

(Table 2.7) 

2.3 Solvolysis of epoxides, esters and sulfonyl chloride 

LNH3

25°C

90% 10%

 

Scheme 2.7 

Table 2.10 Pseudo first order rate constants (k0) for the solvolysis of epoxides, esters and ketones in LNH3 at 25
 

o
C 

substrate k0, LNH3(s
-1

) t1/2 

styrene oxide  3.06×10
-6

 62.9hrs 

styrene oxide/1M NH4Cl 6.89×10
-6

 27.9hrs 

phenyl acetate >0.14 <5s 

4-nitrophenyl acetate >0.14 <5s 

4-nitrophenyl pivolate >0.14 <5s 

phenyl benzoate 7.70×10
-3

 1.5mins 

methyl-4-nitrobenzoate 1.44×10
-5

 13.4hrs 

ethyl-4-nitrobenzoate 5.29×10
-6

 36.4hrs 

methyl-3-hydroxybenzoate no reaction 
______

 

triphenylphosphate 3.5×10
-6

 54.4hrs 

triethylphosphate no reaction 
______

 

benzenesulfonyl chloride >0.14 <5s 

 

The solvolysis of styrene oxide is slow in liquid ammonia at 25 
o
C (Table 2.10), but smoothly 

to give the corresponding β-hydroxyamine as the major product, together with a small amount 

of bis-β-hydroxyamine as the minor product (Scheme 2.7). No oxygen-benzylic carbon bond 
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fission of styrene oxide is found by GC or HPLC analysis, which would lead to the formation 

of 17. This is in stark contrast with the hydrolysis of styrene oxide in water at 25 
o
C. Although 

the rate of hydrolysis (4.18×10
-6

s
-1

) is similar to that in liquid ammonia, the diol product is 

mainly formed by the attacking of the benzylic carbon from water molecule.
231

 The solvolysis 

rate for styrene oxide in liquid ammonia does not significantly accelerated by added NH4Cl, 

which is also in stark contrast with that for acid catalysed hydrolysis process of styrene oxide 

(Table 2.10).
231

Obviously, the hydrolysis of styrene oxide involves a process that the O-C 

bond dissociation ahead of N-C bond formation (DN+AN), on the contrary, the solvolysis in 

liquid ammonia probably follows a concerted mechanism (ANDN). It worth noting that, with 

1M NH4Cl as Lewis acid catalyst for the solvolysis of styrene oxide in liquid ammonia, the 

major products are bi- and tri-β-hydroxyamine.   

1717  

In liquid ammonia, esters with aryl groups solvolyse much faster than those with alkyl groups 

as leaving group (Table 2.10). The solvolysis of esters gives the corresponding amide and 

alcohol or phenol, and follows a classical addition-elimination mechanism (ANDE) in liquid 

ammonia. The solvolysis of triphenyl phosphate is slow and gives only mono-substituted 

amide (18) in liquid ammonia (Scheme 2.8), surprisingly, the less bulky triethyl phosphate 

fails to react with ammonia at 25 
o
C. 

25°C

18

NH3

 

Scheme 2.8 
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The rate for the solvolysis of benzenesulfonyl chloride in liquid ammonia is so fast that the 

accurate measurement is beyond our current experimental condition (Scheme 2.9). 

Interestingly, the solvolysis rate of benzenesulfonyl chloride in liquid ammonia is much faster 

than the hydrolysis rate at 25 
o
C,

232
 although the leaving chloride anion is better solvated by 

water than liquid ammonia.    

NH3

25°C

 

Scheme 2.9 

2.4 Solvolysis of ketones with ammonium salt as catalyst 

In the absence of ammonium salts or other Lewis acids, aromatic ketones, such as 

acetophenone and benzophenone, are very stable in liquid ammonia at room temperature or 

even higher. However, they can be smoothly converted into the corresponding ketimines in the 

presence of ammonium salts at room temperature with good to excellent yields in liquid 

ammonia (Scheme 2.10 and Table 2.11).  

NH4Cl

LNH3

R1,R2 = aryl or alkyl  

Scheme 2.10 

Table 2.11 Ketimine yields for the solvolysis of ketones in the presence of various concentration of NH4Cl in 

liquid ammonia at 25 
o
C

a
  

 ketimine yield 
b
 

ketone 0.1M NH4Cl 0.5M NH4Cl 1M NH4Cl 

acetophenone 95.2% 97.4% 98.5% 

benzophenone 82.2% 86.9% 92.7% 

a
 Reaction condition: 0.1M ketones with ammonium salt in 10ml liquid ammonia for 12hours. 

b 
GC yield. 
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The yield of the solvolysis of ketone is dependent on the concentration of NH4Cl added, but 

reaction temperature is much lower and the yields are higher than previously reported.
233

 

Catalytic ammonium salts may have two functions in the solvolysis process, firstly it acts as a 

Lewis acid to activate the carbonyl group of ketones, which facilitates the attack from 

ammonia molecule; secondly it also can remove the resulting water from the system, thus 

significantly change the equilibrium towards the formation of ketimine (Scheme 2.11). 

+

+
+ +

+

NH3

NH4NH4

..

..

-

proton transfer -NH4OH -H

 

Scheme 2.11 

The solvolysis of ketones also can be efficiently catalysed by other Lewis acids in liquid 

ammonia, such as TiO2, and gives excellent yields in a high temperature flow system using 

liquid ammonia as eluent.
234

 These ketimines are very useful intermediates for the synthesis of 

primary amines though reduction in liquid ammonia.  
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3 Aliphatic nucleophilic substitution reactions 

Nucleophilic displacement reactions at saturated carbon centres occur either with simultaneous 

breaking and forming of the involved bonds (SN2 or ANDN) or by a mechanism where 

breaking the old bond precedes formation of the new bond (SN1 or DN+AN).  It is well known 

that the nature of the solvent used for these reactions can influence the mechanism adopted 

and the transition state structure with, for example, a gradation of transition states between the 

SN1 and SN2 extremes with varying degrees of participation by the solvent.
235

 However, some 

theoretical calculations indicate that changes in solvent should not lead to significant changes 

in transition state structure.
29

 An additional complication, particularly in solvents of low 

polarity, is the possible intervention of ion pairs. There are many examples of reactions of 

various nucleophiles with benzyl derivatives that show a mixed rate law compatible with the 

occurrence of simultaneous SN1 and SN2 mechanisms. There have also been attempts to 

predict when the change from one mechanism to the other occurs by variation in the structure 

of the reactants or solvent.  

3.1 Nucleophilic substitution with oxygen-nucleophiles 

RO

LNH3

 

Scheme 3.1 

Generally, in nucleophilic substitution reactions, oxygen-nucleophiles act as hard bases having 

a small polarisability.
236

 In protic solvents, these hard nucleophiles and oxygen anions are 

highly solvated to solvent molecules through hydrogen bonding, therefore the nucleophilicity 

of oxygen-nucleophiles are greatly decreased as bond formation to oxygen will require at least 

partial desolvation. On the contrary, due to the poor solvation of anions in dipolar aprotic 

solvents, the nucleophilicity of these oxygen-nucleophiles are generally greater than in protic 

solvents.
237

 Aliphatic nucleophilic substitution reactions between anionic oxygen-nucleophiles 

and a neutral substrate are generally regarded as charge dispersion processes, and so the rates 

of these reactions should have a little or no sensitivity to the change of solvents according to 
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the Hughes-Ingold rules, However, the specific solvation of nucleophiles and nucleofuges 

could be crucial for the kinetics and mechanisms of these reactions. 

 

Figure 3.1 The dependence of the pseudo first rate constant on the concentration of sodium 

phenoxide for the reaction of benzyl chloride with phenoxide anion in LNH3 (I = 0.3 M, 

KClO4) at 25 
o
C 

A variety of anionic oxygen-nucleophiles react with benzyl chloride in liquid ammonia to give 

the corresponding substitution products (Scheme 3.1), although solvolysis is sometimes 

competitive with these reactions and a mixture of products is obtained. The kinetics of 

nucleophilic substitution was determined under pseudo first order conditions with excess of 

nucleophile over substrate concentration. A typical plot of the rate constants against the 

concentration of the nucleophile shows an intercept corresponding to the rate constant for 

solvolysis under constant ionic strength (Figure 3.1, Appendix A: Table A24). The slope of 

these plots gives the corresponding second order rate constants for alkoxide ions reacting with 

benzyl chloride in liquid ammonia. This first order dependence of the pseudo first order 
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constants on the concentration of the nucleophile supports the conclusion from solvolysis 

kinetic data that these reactions follow a bimolecular SN2 type mechanism.  

There is a large rate enhancement of about 10
4
-fold for the reaction of benzylalkoxide ion with 

benzyl chloride in liquid ammonia compared with that in methanol (Table 3.1). The second 

order rate constants for the nucleophilic substitution of benzyl chloride by phenoxide ion are 

similar in liquid ammonia and DMF, a typical dipolar aprotic solvent, and are about 5000 

times greater than that in methanol (Table 3.2). 

Table 3.1 The second order rate constants of the reactions between alkoxides and benzyl chloride in different 

solvents at 25 
o
C  

nucleophile temp/
o
C solvent k2/M

-1
s

-1
 krel. reference 

BnONa/BnOH
a
 25 LNH3 0.456 12500 this work 

MeONa/MeOH
a
 25 LNH3 0.201 5500 this work 

MeONa 25 MeOH 3.61×10
-5

 1 238 

MeOLi 25 MeOH 2.41×10
-5

 0.68 239 

a
 The solubility of sodium alkoxides in liquid ammonia at room temperature is very poor. The rate for methoxide 

and benzylalkoxide with benzyl chloride was measured by adding 2.5 equivalents of the corresponding alcohol 

(the total alcohol volume added is less than 3.5%v/v) in order to give a homogeneous solution. There is no 

reaction between the alcohols and benzyl chloride in liquid ammonia at 25 
o
C.  

 
Table 3.2 The second order rate constants of the reactions between phenoxide and benzyl chloride in different 

solvent  

nucleophile temp/
o
C solvent k2/M

-1
s

-1
 krel. reference 

PhONa 20 MeOH 8.02×10
-6

 1 240 

PhONa 25 LNH3 2.01×10
-2

 2500 this work 

PhONa  20 DMF 4.15×10
-2

 5100 240 

 

These rates increase on going from protic to dipolar aprotic solvents are attributable to the 

specific solvation though hydrogen bonding of anionic nucleophiles in protic solvents, which 

decreases their activity as nucleophiles due to the large desolvation energy required on going 

from initial state to the transition state.
241

 This is also shown by the large positive Gibbs 

transfer energies of anions from protic solvents to non-polar and dipolar aprotic solvents.
57

 On 
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the other hand, some dipolar aprotic solvents strongly favour the solvation of cations due to 

the availability of electron donation from a solvent molecule’s lone pair, which can lead to the 

destruction ion pairs and thus an increased nucleophilicity of the counter-anion. One of main 

reasons for dipolar aprotic solvents favouring bimolecular concerted over a unimolecular 

mechanisms lies in their poor solvation of the leaving anion.  

There is a small decrease in the second order rate constant of the reaction of benzyl chloride 

with phenoxide ion with increasing ionic strength by adding non-nucleophilic inorganic salts, 

e.g., NaNO3, KClO4. This is in line with the Hughes-Ingold rules,211 
that the increasing 

polarity of the medium will cause a small decrease of rate if the transition state involves 

charge dispersion between nucleophile, substrate and leaving group. Similarly, increasing 

ionic strength in liquid ammonia decreases the pKa of the phenol leading to a weaker 

nucleophilic phenoxide ion. 

The second order rate constants for substituted phenoxide ions reacting with benzyl chloride in 

liquid ammonia vary significantly with substituents (Table 3.3). The rate difference between 

4-cyano and 4-methoxy phenoxide ion reactions is about 40-fold in liquid ammonia, whereas, 

in methanol or alcoholic solvent, the rate is insensitive to the substituent.242 The Brønsted plot 

for the rate constants in liquid ammonia using the aqueous pKa of the phenol shows a very 

good linear free energy relationship (Figure 3.2a) with a βnuc = 0.66. 

Table 3.3 The second order rate constants of the reactions between 4-substituted phenoxide and alkoxide ions 

with benzyl chloride in LNH3 at 25 
o
C 

phenoxide/alkoxide ion pKa (aq.)
 a
 pKa (LNH3)

 
10

2
k2,LNH3 (M

-1
s

-1
) 

4-cyanophenoxide  7.95 2.71 0.077 

4-carbomethoxyphenoxide  8.47 4.04 0.273 

4-chlorophenoxide 9.20 4.69 0.95 

phenoxide  9.99 6.02 2.01 

4-methoxyphenoxide 10.27 6.62 3.97 

4-
t
butylphenoxide 10.31 6.67 3.19 

a 
Corresponding aqueous pKa of phenols and alcohols are from ref.243.  
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Figure 3.2a The Brønsted plot for the reaction of para substituted phenoxides with benzyl 

chloride in LNH3 at 25 
o
C using the aqueous pKa of the phenols 

As shown in chapter 1, there is a linear relationship between the ionisation of substituted 

phenols in liquid ammonia and those in water, the slope of a plot of the pKa of the former 

against the corresponding aqueous pKa is 1.68 (Figure 1.5). Hence a more meaningful 

Brønsted βnuc for the substituted phenoxides reacting with benzyl chloride in LNH3 is 0.40 

(Figure 3.2b). The latter value indicates the transfer of some negative charge from the 

attacking phenoxide anion to the benzyl group and the leaving chloride ion and partial bond 

formation between the phenoxide oxygen and the benzylic carbon in the transition state. The 

βnuc of the analogous reaction in methanol is 0.28,244 suggesting an earlier type of transition 

state with a smaller fraction of charge transferred from oxygen to carbon in this solvent. The 

solvation ability of a solvent is not only a function of its dielectric constant and dipole 

moment, but also of its ability to donate protons or electrons. Although the dielectric constant 

and dipole moment of liquid ammonia are much less than those for common dipolar aprotic 

and protic solvents, the enhanced rate of reaction between anionic O- nucleophiles and alkyl 

βnuc= 0.66
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halides in liquid ammonia compared with alcoholic solvents is probably due to the poor 

solvation of anions in the former compared with the latter and good solvation of the anion’s 

counter-cation from the ammonia lone pair, thus decreasing ion-pair formation. 

 

Figure 3.2b The Brønsted plot for the reaction of para substituted phenoxides with benzyl 

chloride in LNH3 at 25 
o
C using the pKa of the phenols in liquid ammonia 

In order to obtain a more detailed picture of the transition state structure the rates of phenoxide 

ion reacting with substituted benzyl chloride were measured. A plot of the second order rate 

constants for this reaction against the Hammett constant for the substituent (Figure 3.3, 

Appendix A: Table A25) is linear apart from the typical deviation for 4-methoxybenzyl 

chloride.
245

 The latter is not due to a change in mechanism from SN2 to SN1 as the kinetics are 

still clearly first order in phenoxide ion (Figure 3.4, Appendix A: Table A26). The most 

likely explanations are either: (i) a change in the structure of the transition state for a single 

mechanism but with a differing degree of bond formation and cleavage, so that the 4-methoxy 

derivative causes a shift to a transition state with more positive charge on the central carbon 
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atom
245a

 or (ii) a single transition state structure but with the 4-methoxy substituent stabilising 

the transition state with a different balance of polar and resonance effects.
245b,c

  Further 

investigation shows that 3-methoxy derivative behaves normally, as expected, and fits the 

linear relationship well.
246

 The ρ value of 1.11 for the reaction of phenoxide ion with 4-

substituted benzyl chlorides, excluding the 4-methoxy derivative (Figure 3.3), suggests that 

appreciable charge has been transferred from phenoxide oxygen to benzylic carbon in the 

transition state and which is more than that lost to the departing chloride ion. The ρ value of 

1.11 contrasts markedly with that of zero for the solvolysis reaction (Figure 2.1). Overall the 

transition state structure for phenoxide-ion substitution is negatively charged compared with a 

neutral one for solvolysis so it is not surprising that the rate with phenoxide-ion is enhanced by 

electron-withdrawing groups. 

 

Figure 3.3 The Hammett plot for the reaction between 4-substituted benzyl chloride with 

phenoxide anion in LNH3 at 25 
o
C, triangle ( ) shows the positive deviation of 4-

methoxybenzyl chloride, while round circle (  ) shows 3-methoxybenzyl chloride fits the linear 

relationship. 
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Figure 3.4 The dependence of the pseudo first order rate constant on the concentration of 

sodium phenoxide for the reaction of 4-methoxybenzyl chloride with phenoxide anion in 

LNH3 (I = 0.1 M, KClO4) at 25 
o
C 

_
_

C

H

Cl Cl
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Relative large negative charge on the benzylic carbon

PhOPhO
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Scheme 3.2 

The Hammett and Brønsted plots indicate that most of the negative charge is distributed 

between the attacking phenoxide oxygen and the benzylic methylene and aromatic ring with 

little transferred to the leaving chloride anion, therefore, there is relatively little C-Cl bond 
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fission in the transition state (Scheme 3.2). The changes in transition state structure can be 

envisaged on a Jencks-More O’Ferrall reaction coordinate-energy diagram (Figure 3.5) with 

separate axes for O-C and C-Cl bond formation and cleavage, respectively. 

 

Figure 3.5 Jencks-More O’Ferrall reaction diagram for the reaction between phenoxide anion 

and benzyl chlorides in LNH3 at 25 
o
C 

Phenoxide ion is a well known ambident nucleophile
247 and it can undergo both C- and O-

alkylation (Scheme 3.3) and which reaction dominates depends very much on the medium. 

Under homogeneous conditions in liquid ammonia, with 0.3M sodium phenoxide and 0.1M  
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Scheme 3.3 
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benzyl chloride there is less than 0.5% solvolysis product and no C-alkylated product (19) 

formed, giving a selectivity for O-alkylation (20) of almost 100% within half an hour. In 

diethyl ether as solvent, under heterogeneous conditions, the reaction between benzyl bromide 

and phenoxide ion, after 3 days at 35 
o
C, the major product (75%) is the C-alkylated one.

247
 

Presumably, the differing solvation of the phenoxide anion, including tight ion-pair formation, 

affects the relative negative charge density on oxygen and the ring carbons as well as the 

stability of the two transition states leading to C-alkylation in ether and protic solvents. 

The nucleophilic substitution reaction between 0.01M styrene oxide and 0.1M phenoxide in 

liquid ammonia is slow (t1/2 ≈ 35 hours) but faster than that for the solvolysis and gives 21 as 

the major product (Scheme 3.4).  

_

PhO
LNH3

25oC

80% 20%

21  

Scheme 3.4 

3.2 Nucleophilic substitution with nitrogen-nucleophiles 

The background solvolysis reaction in liquid ammonia obviously involves nucleophilic attack 

by a nitrogen nucleophile, but benzyl chloride also reacts with secondary amines in liquid 

ammonia to give predominantly the substituted product (Scheme 3.5). The pseudo first order  

 

LNH3

 

Scheme 3.5 
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rate constants for the aminolysis of benzyl chloride and the reactions of benzyl chloride with 

nitrogen anionic nucleophiles were obtained by the general sampling method and measuring 

the formation of the product and the disappearance of the reactant by GC analysis (Table 3.4). 

The reaction between benzyl chloride and neutral amines may give neutral or charged 

products depending on the pKa of the product relative to the ammonia solvent; although, as 

was shown in chapter 1, all amines exist in their free base form in liquid ammonia. The 

reaction between two neutral reactants will have a transition state structure in which the 

overall charge is neutral, but charge is created on the N-nucleophile during the formation of 

the activated complex, assuming no general base catalysis by the solvent. The differences in 

solvation of the reactant amines by aprotic and dipolar aprotic solvents is not as marked as for 

anions and the rate differences between protic and dipolar aprotic solvents is not so 

pronounced as that seen for anionic oxygen nucleophiles. 

There is a first order dependence of the pseudo first order rate constant on the concentration of 

the amine for the aminolysis of benzyl chloride by morpholine (Figure 3.6, Appendix A: 

Table A27), which again confirms that these reactions follow a bimolecular SN2 type 

mechanism. The rate constant for hydrazine was obtained by adding 1M hydrazine 

dihydrochloride to liquid ammonia to generate the free base and so to correct for the effect of 

2M NH4Cl produced from 1M N2H6Cl2, the rate of solvolysis of benzyl chloride with was 

measured in the presence of 2M NH4Cl (kobs = 3.42 × 10
-3

s
-1

) and so the derived second order 

rate constant (Table 3.4) is that for ionic strength 2.0M. There is no reaction of neutral 

imidazole or triazole with benzyl chloride in liquid ammonia, but there is with their anionic 

salts, indicating that these anions remain deprotonated in liquid ammonia.  
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Figure 3.6 The dependence of the pseudo first order rate constant on the concentration of 

morpholine for the reaction of benzyl chloride with morpholine in LNH3 at 25 
o
C  

The second order rate constants for the aminolysis of benzyl chloride with various amines 

(Table 3.4) generate a reasonable Brønsted plot using the aqueous pKa of the amine to give a 

βnuc of 0.21 (Figure 3.7). This plot includes both neutral and negatively charged amines and 

yet both types give a reasonable single plot. Given the work described earlier which showed 

that all amines exist in their free base unprotonated form in liquid ammonia it is not possible 

to evaluate a Brønsted plot using the pKa of the aminium ions in this solvent. Nonetheless, the 

apparent value of 0.21 using the aqueous pKa does indicate that there is some dependence on 

the basicity of the amine nucleophile, but much less than that for oxygen nucleophiles 

suggesting a transition state with little charge developed on the amine nitrogen in the transition 

state or charge removal in the case of negatively charged amine anions.  
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Table 3.4 The second order rate constants for the aminolysis of benzyl chloride with various N-nucleophiles in 

LNH3 at 25 
o
C 

nucleophile pKa (aq.) 
a
 10

2
k2(M

-1
s

-1
) 

pyrrolidine 11.4 2.67 

piperidine 10.4 1.70 

morpholine 8.5 0.324 

sodium azide 4.7 0.773 

sodium triazolate 10.3 0.942 

sodium benzotriazolate 8.37 0.261 

sodium imidazolate 14.5 5.56 

hydrazine
b
 8.1 0.514 

a  
Corresponding aqueous pKa of amines are from and ref. 248. 

b 
1M hydrazine dihydrogen chloride was used.  

 

Figure 3.7 The Brønsted plot for the substitution of benzyl chloride by various amines in 

LNH3 at 25 °C, ammonia (   ) is negatively deviated from the line, but the positive deviation of 

azide anion is not shown. 
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The second order rate constant for ammonia shows a large negative deviation from the 

Brønsted plot explaining why aminolysis by amines is easily observed in liquid ammonia. This 

could result from the formation, in the transition state, of only one possible hydrogen bond 

donor on the attacking nucleophile from secondary amines compared with three from 

ammonia, resulting in either a considerable energetic cost in terms of solvent reorganisation or 

a lack of hydrogen bond stabilisation/solvation, making ammonia less reactive. The rate 

constant for azide ion reacting with benzyl chloride in liquid ammonia shows a positive 

deviation of about 15 fold from the Brønsted plot (Figure 3.7 and Table 3.4). It is not known 

if there is a similar deviation in the plot of the pKa of aminium ions in liquid ammonia against 

their corresponding values in water and so it is not known if this deviation is a consequence of 

a higher basicity than ‘expected’ of azide ion in liquid ammonia or an enhanced reactivity. The 

other anionic nitrogen nucleophiles studied may be subject to more steric hindrance compared 

to azide ion.  The rate constant for azide ion reacting with benzyl chloride in liquid ammonia 

is only about 150-fold
241a greater than that in methanol and this relatively modest rate 

difference is in stark contrast to the 2500-fold rate enhancement for phenoxide anion reacting 

with benzyl chloride in liquid ammonia compared with that in methanol. Presumably, the 

difference in solvation energies of azide anion in liquid ammonia and methanol is relatively 

smaller than that of phenoxide ion. 

_

X = Cl or Br

BnX

Solvents

Bn

22 23

Bn

 

Scheme 3.6 

1,2,4-Triazolate and benzotriazolate anions are widely used in agriculture and pharmaceutical 

industries249 and, as they are ambident nucleophiles,
250

 the regioselectivity of their nucleophilic 

reactions is important of interest. In liquid ammonia, within a few hours, the major product of 

equimolar reaction between benzyl chloride and sodium triazolate is 1-benzyl-1,2,4-triazole 

(22) rather than 4-benzyl-1,2,4-triazole (23) in a ratio of 12 : 1 (Scheme 3.6). Previous studies 

of this reaction in other solvents, often under heterogeneous conditions, also preferentially 
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gives 1-substituted triazole products, but with much lower selectivity and longer reaction 

times.
251  

BnCl

LNH3

24

75% 25%

 

Scheme 3.7 

Also 1-benzyl-1,2,3-benzotriazole (24) is the main product of the reaction of 0.1M 

benzotriazolate and benzyl chloride in liquid ammonia at 25 
o
C (Scheme 3.7), however, the 

background solvolysis reaction strongly competes with that of benzotriazolate anion. The rate 

of reaction between hydrazine and benzyl chloride with 2M NH4Cl does not show a 

pronounced α-effect, in common with its general reactivity for nucleophilic attack at sp
3
 

carbon centres.
252

 

In order to see if the difference in the susceptibility of the rate of nucleophilic substitution to 

the substituent in substituted benzyl chlorides for solvolysis (Hammett ρ = 0) and with 

phenoxide-ion (ρ = 1.11) is a function of the basicity, charge or nature of the attacking 

nucleophilic element (O vs N), the rate constants for the reaction of piperidine and triazolate 

with 4-substituted benzyl chloride were determined. A Hammett plot of the second order rate 

constants (Figure 3.8, Appendix A: Tables A28 and A29) shows that the reaction with the 

neutral amine piperidine is insensitive to the para-substitutent in benzyl chloride, similar to 

that seen for solvolysis. By contrast, the ρ value for the triazolate anion with 4-substituted 

benzyl chloride is 0.93, similar to that seen with phenoxide anion. It appears that the increased 

sensitivity to aromatic ring substituents is due to the requirement to accommodate a negative 

charge in the transition state. Interestingly, the rate constant for triazolate anion shows the 

typical deviation for 4-methoxybenzyl chloride, similar to that seen with phenoxide ion. 
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Figure 3.8 The Hammett plot for the reaction of 4-substituted benzyl chloride with piperidine 

(    ) and triazolate anion (    ) in LNH3 at 25 
o
C. 

There is no nucleophilic reaction observed between 0.1M aniline and 0.01M benzyl chloride 

in liquid ammonia at 25 
o
C, except for the solvolysis reaction product benzylamine, and the 

rate of the solvolysis is not significantly changed by the added aniline. The predicted second 

order rate constant determined by extrapolation of the Brønsted plot for amines (Figure 3.7) 

for an aminium ion of pKa 4.6 (i.e. that corresponding to anilinium ion) is 5.50 × 10
-4

 M
-1

s
-1

, 

so 0.1M aniline would be predicted to have a pseudo first order rate constant of 5.50 × 10
-5

 s
-

1
compared with 8.89 × 10

-4
 s

-1 
for the solvolysis. 

High regioselectivity for the reaction between 0.1M 1,2,4-triazolate anion and 0.01M styrene 

oxide is found in liquid ammonia (Scheme 3.8). The reaction was complete after 85 hours at 

room temperature, and the total yield of the reaction is 95% according to GC and HPLC 

analysis. The ratio between 25 and 26 is 30:1, which is much higher than those previously 

reported in conventionally used solvents.
253
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LNH3

25°C

25 26

Total yield 95%, 25:26 = 30 : 1  

Scheme 3.8 

3.3 Nucleophilic substitution with sulfur-nucleophiles 

Thiophenoxide is a good nucleophile in many reactions with electrophilic centres largely due 

to the ‘softness’ of the sulfur anion.
254

 The rate for the reaction between thiophenoxide and 

benzyl chloride in liquid ammonia is again much faster than that in typical protic solvents 

under the same conditions (Table 3.5). 

Table 3.5 Second order rate constants for reaction of thiophenoxide with benzyl chloride in various solvents 

nucleophile temp/
o
C solvent 10

2
k2/M

-1
s

-1
 reference 

PhSNa 25 MeOH 2.42 239 

PhSNH4
a
 20 LNH3 3.15×10

3
 this work 

PhSNa 25 DMSO ~10
8
 255 

a
 Thiophenol (aqueous  pKa = 6.5) is fully ionised in liquid ammonia, see ref. 256 for details. 

3.4 Nucleophilic substitution with carbon-nucleophiles 

_

CR2CH

(PhCH2)2CR2

LNH3, 25°C

 

Scheme 3.9 

The nucleophilic substitution reactions of benzyl chloride by carbanions in liquid ammonia are 

complicated by self-ionisation, dibenzylisation and instability of these carbon nucleophiles 

(Scheme 3.9). For examples, as shown earlier by NMR studies, carbon acids with a pKa 

(DMSO) < 15, such as malonodinitrile, and 2-acetylhexanone, will be deprotonated in liquid 
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ammonia at room temperature, hence the nucleophilic substitution reactions between these 

carbon acids and benzyl chloride can occur without the aid of strong bases in liquid ammonia 

as is often required in other solvents. The reaction between 0.2M malonodinitrile and 0.01M 

benzyl chloride gives both mono-benzylated and dibenzylated products, but with the former 

dominant (Scheme 3.10), and with 0.5M malonodinitrile as nucleophile, less than 1% 

dibenzylated product is formed. The reaction between 0.2M 2-acetylhexanone with 0.01M 

benzyl chloride in liquid ammonia at 25 
o
C forms the corresponding mono-benzylated 

product, and also a small amount of 2-iminocyclohexyl ethanone, which is due to the 

solvolysis of the 1,3-diketone in liquid ammonia (Scheme 3.11).  

LNH3

25°C

90% 10%

 

Scheme 3.10 

LNH3

25°C

 

Scheme 3.11 

Malonate diethyl ester and benzyl cyanide remain in their neutral forms and are stable in 

liquid ammonia at room temperature, however, their anionic conjugate bases can be generated 

in situ by using sodium amide in liquid ammonia and these carbanions react readily with 

benzyl chloride to give only mono-benzylated products. 

The second order rate constants for cyanide ion reacting with benzyl chloride in various 

solvents are given in Table 3.6 which shows that its reactivity is similar to that in DMF. The 

second order rate constants for carbanions reacting with benzyl chloride in liquid ammonia are 

given in Table 3.7. The rates of reactions which involve different types of carbanions as 

nucleophiles are often found to be poorly correlated with the corresponding pKa of their 
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conjugate acids in various solvents.
196,257

 Some specific factors for a certian types of 

carbanion, such as solvent reorganisation and rehybridisation of nitroalkanes carbanions,
258

 

cyano carbon acids,
194,259

 must be considered in order to rationalise the abnormal reactivities 

of these carbanions in nucleophilic substitution reactions.  

Table 3.6 Second order rate constants for reaction of carbanions with benzyl chloride in various solvents 

nucleophile temp/
o
C solvent 10

3
k2/M

-1
s

-1
 reference 

NaCN 25 LNH3 2.18 this work
 

Et4NCN 30 DMF/water=95:5 3.20 260 

Et4NCN 30 DMF/water=80:20 0.57 260 

KCN 30 DMF/water=95:5 5.3 260 

KCN 25 [bmim][PF6] 0.022 261 

 

Table 3.7 Second order rate constants for various carbanions reacting with benzyl chloride in liquid ammonia at 

25 
o
C and their corresponding pKa in water and DMSO 

carbon acid pKa(aq) pKa(DMSO) 10
3
k2(M

-1
s

-1
) 

malonodinitrile
a
 11.2 11.1 8.88 

HCN 9.21 12.9 2.18 

2-acetylhexanone
b
 10.1 14.1 6.44 

diethyl malonate
c
 12.9 16.4 2.27 

acetophenone
d
 19.1 19.8 256 

benzyl cyanide
d 

 21.9
e
 21.9 1400 

a 
0.5M malonitrile and 0.01M benzyl chloride. 

b
 0.2M 2-acetylhexanone and 0.01M benzyl chloride. 

c
 Sodium 

malonate anion was generated in situ by reacting diethyl malonate(1.25eq.) with NaNH2 (1eq.) in liquid ammonia 

until all the solid (NaNH2) disappeared. The reaction was studied under the pseudo first order conditions. The 

product was confirmed by GC-MS. The tests showed that without adding NaNH2 diethyl malonate does not react 

with benzyl chloride and diethyl malonate is stable in liquid ammonia at 25 
o
C for days.

d
 0.15M carbon acids and 

0.1M NaNH2, then 0.01M benzyl chloride injected into the reaction vessel. The excess carbon acids do not react 

with benzyl chloride. 
e
 pKa in DMSO, no aqueous pKa data available.  

 

The Brønsted plot for the reactions between various common carbanions and benzyl chloride 

in liquid ammonia at 25 
o
C gives an apparent βnuc = 0.30, using pKa of their corresponding 

carbon acids in DMSO. However, the exact pKa of these carbon acids in liquid ammonia are 
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unknown (Table 3.7 and Figure 3.9). The positive deviation of malonodinitrile anion from the 

correlation line is observed in other systems,
262

 and reason for this is probably due to the 

negative charge mainly resting on the central carbon as charge delocalisation is accompanied 

by an unfavourable structure,
194,196

 thus makes malonodinitrile a better nucleophile compared 

with strongly delocalised carbanions. 

 

 

Figure 3.9 Brønsted plot for the reactions of some carbanions with benzyl chloride in liquid 

ammonia at 25 
o
C using the pKa of their conjugate acids in DMSO. (   ) Shows malonodinitrile 

positively deviated from the line, and (  ) shows malonate diethyl ester negatively deviated 

from the line.  
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Figure 3.10 pKa of carbon acid in DMSO against its aqueous pKa. (   ) nitroalkanes; (   ) 1,3-

dicarbonyl derivatives;  (   ) cyano carbon acids.     

Interestingly, the aqueous pKa of some common used carbon acids, except for nitroalkanes, 

correlate well with their corresponding pKa in DMSO, and has a slope of 1.05 (Figure 3.10, 

for details, see: Appendix A: Table A31). This is very different from the similar plots seen 

previously for phenols (Figure 1.5), and this slope of 1.05 indicates that the pKa of carbon 

acids are insensitive to the solvation effects of dipolar aprotic and protic solvents. Presumably 

this is due to the majority of the stabilisation coming from the delocalised carbanion structures 

which do not require substantial stabilisation from the solvent. The small βnuc = 0.30 observed 

in the Brønsted plot, for carbanions reacting as nucleophiles in liquid ammonia, using their 

corresponding pKa of carbon acids in DMSO, therefore becomes more meaningful, even 

without the knowledge of the pKa of these carbon acids in liquid ammonia. Thus, similar to 

that seen for nitrogen anionic nucleophiles, the reactions between carbanions and benzyl 

Slope =1.05 for 1,3-dicarbonyl derivatives 

Slope = 1.05 for cyano carbon acids
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chloride occur with a transition state in which only a small amount of charge is removed from 

the carbanion to the benzylic carbon and leaving group and transferred in liquid ammonia.  

In order to see if there is much charge development on the benzylic carbon in the transition 

state, the rates of nucleophilic substitution of malonate diethyl ester carbanion with substituted 

benzyl chlorides were determined. The Hammett plot the second order rate constants for the 

reaction of malonate diethyl ester carbanion with 4-substituted benzyl chlorides in liquid 

ammonia at 25 
o
C (Figure 3.11) is scattered, but an apparent ρ = 0.87 is obtained excluding 4-

methyl and 4-methoxy benzyl chlorides. This ρ value, is smaller compared to those observed 

for the reaction of substituted benzyl chlorides reacting with phenoxide anion (ρ = 1.11) and 

nitrogen anionic nucleophiles (ρ = 0.93).  

 

Figure 3.11 Hammett plot for the reaction of malonate diethyl ester carbanion with 4-

substituted benzyl chlorides in liquid ammonia at 25 
o
C. (  ) 4-methoxy benzyl chloride and (    

) 4-methyl benzyl chloride show positive deviations from the line. 
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Interestingly, both 4-methyl and 4-methoxy benzyl chloride derivatives show a positive 

deviation from the correlation. The Hammett plot could be seen as two parts, showing the ‘V’ 

shape (Figure 3.11, Appendix A: Table A30) often seen in other correlations.
245c

 This is again 

probably not because of a change in the reaction mechanism from SN2 to SN1, as the reaction 

rates all show a first order dependence on the concentration of malonate carbanion. This 

behaviour probably reflects a single transition state structure but with the 4-methoxy 

substituent stabilising the transition state with a different balance of polar and resonance 

effects.   
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4. Aromatic nucleophilic substitution reactions 

A significant proportion of reactions carried out by the pharmaceutical and agrochemical 

industries involve aromatic nucleophilic substitution reactions. The nature of the solvent used 

for these reactions influences both the kinetics and mechanisms of the process,1 and when 

solvents are used in large quantities on an industrial scale, their efficiency, cost and 

environmental impact are major factors involved in their selection.  

The rates of some SNAr reactions are much faster in dipolar aprotic solvents than aprotic 

solvents largely due to the special solvation effects on these reactions. Generally speaking, due 

to the large dissociation energies for sp
2
 C-X bond of aryl halides,

263
 unsubstituted aryl halides 

are often inactive towards nucleophiles in aromatic substitution reactions, therefore electron 

withdrawing groups are often required for the activation of aryl ring. As described previously, 

4-NFB solvolyses rather slowly but is active enough to react with various nucleophiles in 

liquid ammonia. For this reason, 4-NFB is chosen as a representative substrate to study the 

kinetics and mechanisms of SNAr reactions in liquid ammonia. 

4.1 Nucleophilic substitution with oxygen-nucleophiles 

RO

LNH3

 

Scheme 4.1 

Oxygen nucleophiles, such as alkoxide and phenoxide ions, react readily with 4-NFB in liquid 

ammonia to give the corresponding substitution product (Scheme 4.1). There is little 

solvolysis product formed as the background rate of reaction of 4-NFB with ammonia is too 

slow to compete with the rates of substitution by anionic O-nucleophiles. With excess 

nucleophile, the rate of substitution shows pseudo first order kinetics and the associated rate 

constants show a first order dependence on the concentration of the anion and the derived 



  

 

 

      Results and Discussion  

154 

 

second order rate constants (Table 4.1, Appendix A: Table A32) were obtained from the slope 

of these plots (Figure 4.1). 

The rates of reactions of 4-NFB with O-nucleophiles in liquid ammonia are are similar to 

those in DMSO and are 4-5 orders of magnitude faster than in methanol and. This large rate 

enhancement is probably due to the differences in solvation of the nucleophilic anions in 

dipolar aprotic and protic solvents, giving rise to enhanced nucleophilicity of anions in liquid 

ammonia. 

Table 4.1 The second order rate constants for the nucleophilic substitution of 4-NFB by oxygen anions in 

different solvents at 25
 o
C  

O-nucleophile solvent k2/M
-1

s
-1

 krel. reference 

MeO
-
 LNH3 >3.5

a
 >20,000 this work 

MeO
-
 DMSO-MeOH

b
 3.77×10

-1
 2,106 264 

MeO
-
 MeOH 1.79×10

-4
 1 265 

PhO
-
 LNH3 0.0528 41,000 this work 

PhO
-
 DMSO

c
 0.52 400,000 266  

PhO
-
 MeOH 1.29×10

-6
 1 28 

a 
Rate is too fast to be measured accurately. 

b
 80% (%v/v) DMSO-MeOH solution. 

c 
20

 o
C  

 

The second order rate constant for the reaction of phenoxide with 4-nitrochlorobenzene, 

2.51×10
-7 

M
-1

s
-1

 at 25 
o
C, is 5 orders magnitude smaller than that of 4-NFB (Table 4.1), which 

probably reflects the less favourable formation of the σ-complex. It is usually assumed that the 

mechanism of SNAr reactions involves a charge delocalised Meisenheimer intermediate, the σ-

complex, (Scheme 2.5) in which negative charge of an incoming nucleophile is spread into the 

aromatic ring and substituents through resonance, and so any stabilising influence of the 

solvent is expected to be less in the transition state than in the relatively localised reactant 

anion. Liquid ammonia, in common with dipolar aprotic solvents and unlike protic ones,
267,219 

increases the rate of aromatic nucleophilic substitution by anions by several orders of 

magnitude primarily due to the less solvated but more reactive nucleophile.  
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There are some interesting differences in the activation parameters for oxygen anions reacting 

with 4-NFB in liquid ammonia compared with those in methanol. The lower free energies of 

activation in liquid ammonia appear as much lower enthalpies of activation which more than 

compensate for unfavourable large negative entropies of activation compared with those in the 

protic solvent methanol (Table 4.2, Appendix A: Table A32). 

 

Figure 4.1 The dependence of the pseudo first order rate constants on the concentration of 

phenoxide ion for the reaction between 4-NFB and sodium phenoxide in LNH3 at 25 
o
C (I = 

0.3M, KClO4). 

Table 4.2 Activation parameters for the nucleophilic substitution of 4-NFB by oxygen anions in LNH3 and 

methanol 

nucleophile solvent ΔH
‡
 / kJ mol

-1
 ΔS

‡
 / J K

-1
 mol

-1 
reference 

PhO
-
 LNH3 38.1 -141.3 this work 

PhO
-
 MeOH 102.9 -19.7 224d,e 

MeO
-
 MeOH 88.6 -27.6 224a,268 
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This suggests that the oxygen anions are strongly hydrogen-bonded to the solvent molecules in 

methanol so that the large negative entropy loss expected for the bimolecular process
269

 is 

partially compensated by the release of solvent molecules on going from the initial reactant 

state to the transition state. By contrast, in liquid ammonia, the poor solvation of the oxygen 

anions leads to a smaller contribution to the entropy of activation from the solvent and 

consequently there is a large negative loss of entropy as a result of covalently linking two 

molecules together.
9
 The good solvation of metal cations in liquid ammonia through electron 

donation from ammonia presumably also increases the nucleophilicity and reactivity of the 

counter anion in this solvent, which is reflected in the low enthalpy of activation compared 

with that in methanol.  

A rigorous interpretation of linear free-energy relationships for reactions in liquid ammonia 

requires a knowledge of the effect of substituents on equilibria in this solvent. In chapter 1 the 

ionisation constants for substituted phenols in liquid ammonia and that these show a linear 

relationship with the corresponding values in water (Figure 1.5). The Brønsted plot for the 

reaction of 4-NFB with para-substituted phenoxides in liquid ammonia using the aqueous pKa 

for the phenols gives an apparent βnuc of 1.49, but a more meaningful βnuc of 0.91 is obtained 

using the pKa of the substituted phenols in liquid ammonia (Figures 4.2a and 4.2b, Appendix 

A: Table A34). These values are much larger than those for the similar reaction of 4-NFB 

with phenoxides or thiophenoxides in protic solvents which are around 0.5.
270

 The large value 

is indicative of significant, if not total, removal of the negative charge on the oxygen anion 

and complete bond formation in the transition state and therefore suggests that the 

decomposition of σ-complex is the rate limiting step. This is probably due to the difficulty of 

expelling and solvating the leaving fluoride anion from the Meisenheimer σ-intermediate 

(Scheme 2.5) in liquid ammonia.
271

 As stated earlier, the second order rate constant for the 

reaction of phenoxide with 4-nitrochlorobenzene is 5 orders magnitude smaller than that of 4-

NFB,
272

 which probably reflects the less favourable formation of the σ-complex and expulsion 

of chloride ion. 
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Figure 4.2a Brønsted type plot for the second order rate constants for the reaction between 

para-substituted phenoxides and 4-NFB in LNH3 against the aqueous pKa of the phenol 

 

Figure 4.2b Brønsted type plot for the second order rate constants of the reaction between 

para-substituted phenoxides and 4-NFB in LNH3 against the pKa of the phenol in LNH3 
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An alternative interpretation of the large Brønsted βnuc for nucleophilic substitution of 4-NFB 

by phenoxide ion is a single electron transfer (SET) mechanism which would convert the 

phenoxide ion to a radical and the 4-NFB to an aromatic radical anion.
278 

 

As described earlier (chapter 2), the solvolysis rates of 4-NFB shows a relatively small salt 

effect with 2M salt increasing the rate by nearly 3-fold but, by contrast, the rate of substitution 

of 4-NFB by phenoxide ion shows a decrease in rate with increasing salt concentration 

(Figure 4.3). Presumably, this reflects a greater dispersion of the negative charge in the 

transition state.  

 

Figure 4.3 Dependence of the pseudo first order rate constant for the on the reaction of 4-NFB 

with phenoxide anion upon the concentration of added salt in LNH3 at 25 
o
C 

Interestingly, the rate of the reaction between 2-NFB and phenoxide anion is only less than 2 

times faster than that for 4-NFB in liquid ammonia at 25 
o
C,

273
 which is in stark contrast with 

the 30-fold rate difference in the solvolysis of NFBs in liquid ammonia. It was postulated that 

the difference in solvolysis rates was due to stabilisation of the Meisenheimer σ-intermediate 

1.5

2.5

3.5

4.5

5.5

0 0.5 1 1.5 2

1
0

3
k

o
b
s/

s-1

concetration of sodium nitrate/M



  

 

 

      Results and Discussion  

159 

 

by intramolecular H-bonding between the ortho nitro group and the ammonium ion, but this is 

not possible with the reaction of 4-NFB and phenoxide (27). The small rate enhancement for  

_

_

_

_

27  

the reaction of 2-NFB with phenoxide anion in liquid ammonia, compared with that for 4-NFB 

as the substrate, is probably due to the net result of a stronger inductive and unfavourable 

steric effect of the neighbouring ortho nitro group. 

The reaction between 0.01M 2,4-DFNB and 0.1M phenoxide gives exclusive di-substituted 

derivative (28) within minutes (Scheme 4.2), with less than 1% solvolysis product (14) 

observed. 

28

LNH3

PhO
-

 

Scheme 4.2 

4.2 Nucleophilic substitution with nitrogen nucleophiles 

The kinetics and mechanisms of secondary amines reacting with activated aryl halides have 

been well studied.
274

 The solvent effects on those reactions are often complicated by base 

catalysis and the extent of which depends on the reaction medium and substrate structure. 

Normally, general base catalysis occurs in non-polar aprotic solvents especially when proton 

removal is required from the attacking nucleophile before the leaving group is expelled, 
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although it may also occur coupled with the decomposition of the σ-complex.
275

 However, in 

dipolar aprotic solvents the general base catalysis is generally not observed.
274e-g 

 

R2NH NH4F
LNH3

 

Scheme 4.3 

Secondary amines react with 4-NFB in liquid ammonia to form the corresponding nitroaniline 

and ammonium fluoride (Scheme 4.3). The reaction progress was determined by monitoring 

the appearance of the product using GC analysis which followed an exponential change with 

time, from which the pseudo first order rate constants were calculated. 

 

Figure 4.4 The dependence of the pseudo order rate constant for the reaction between 4-NFB 

and morpholine on the concentration of morpholine in LNH3 at 25 
o
C. 
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These observed pseudo first order rate constants increase linearly with increasing amine 

concentration (Figure 4.4, Appendix A: Table A36), indicating just a first order dependence 

on amine concentration and the absence of general base catalysis by a second molecule of 

amine. The corresponding second order rate constants for secondary amines and other nitrogen 

nucleophiles are shown in Table 4.3.  

Table 4.3 The second order rate constants for the substitution of 4-NFB by nitrogen nucleophiles in LNH3 at 25 

o
C 

N-nucleophile pKa (aq.) 10
3
k2 (M

-1
s

-1
) 

sodium azide 4.70 0.382
a
 

morpholine 8.50 0.401 

1,2,4-triazolate 10.3 0.560 

piperidine 10.4 2.23 

pyrrolidine 11.4 5.01 

imidazolate 14.5 5.73 
a 
Reaction conditions: 0.1M 4-NFB with 0.01M sodium azide. 

 

As discussed in the solvolysis section, aminium ions exist only in their free base unprotonated 

form in liquid ammonia i.e. the latter is more basic than amines. The anionic Meisenheimer σ-

intermediate (D) (Scheme 4.4) therefore is thermodynamically more stable than its conjugate 

acid (C) in liquid ammonia and other amines are unlikely to be able to compete with solvent 

ammonia in converting (C) to (D) and so the absence of general base catalysis by amines is 

not surprising. 



- - - -

k1

k-1 k-2

k2 k3(B)
Lg -

C D  

Scheme 4.4 

There is no nucleophilic substitution of 4-NFB with aniline, with DABCO [(1,4-

diazabicyclo(2.2.2)octane] and triethylamine in liquid ammonia and only the solvolysis 
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product, 4-nitroaniline, is formed. The rate of solvolysis is not significantly increased by these 

amines, again indicating no general base catalysis by these amines. The rates of reaction of 

sodium azide and piperidine with 4-NFB are similar to those in some typical dipolar aprotic 

solvents such as acetonitrile, DMSO, DMF (Appendix A: Tables A37 and A38).
276

 The 

reaction between 1,2,4-triazolate and 4-NFB in liquid ammonia gives only the 1-substituted 

product 29.  

29  

As already stated all amines exist in their free base unprotonated form in liquid ammonia
 
and 

so it has not been possible to evaluate the pKa of aminium ions in this solvent. Nonetheless, 

the second order rate constants (Table 4.3) do increase with increasing aqueous basicity of the 

amine, and there is actually a reasonable correlation between the second order rate constants 

for aminolysis of 4-NFB in liquid ammonia and aqueous pKa values of the amines which 

generates an apparent Bronsted βnuc = 0.36 (Figure 4.5).  

 

Figure 4.5 Brønsted type plot for the substitution of 4-NFB by nitrogen nucleophiles in LNH3 

using the corresponding aqueous pKa of the aminium ion. 
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A plot of the pKa values of aminium ions in acetonitrile against those in water is linear of 

slope = 1.0 
277

 and so using the pKa values in this aprotic solvent would generate the same 

Brønsted βnuc. It seems reasonable to conclude that a similar or even smaller value of Brønsted 

βnuc would be seen if the pKa of aminium ions in liquid ammonia could be used. The small 

Brønsted βnuc contrasts with the βnuc of 0.91 observed with phenoxide anion which was 

obtained using pKa values for phenols determined in ammonia. Without the knowledge of the 

relative pKa in liquid ammonia it is not possible to interpret this value with any certainty, but it 

is indicative of only a small amount of positive charge development on the amine nitrogen 

nucleophile in the transition state. This small value is compatible with rate limiting breakdown 

of the σ-complex (D), following the deprotonation of the aminium ion in the Meisenheimer 

intermediate (C) (Scheme 4.4). This proton transfer step to the solvent ammonia is probably 

thermodynamically favourable given the effect of the adjacent fluorine in reducing the pKa of 

the aminium ion and the fact that all aminium ions are deprotonated in liquid ammonia. This 

suggestion is further supported by the lack of reactivity of tertiary amines, discussed earlier, 

which may well be due to the lack of a removable proton. An alternative mechanism could 

involve, proton transfer to solvent being coupled to expulsion of the fluoride ion in a concerted 

breakdown of the σ-complex. The small Brønsted βnuc value is incompatible with a SET 

mechanism in which an electron is transferred from the amine to the aromatic residue 

generating a positive charge on the amine to give a radical cation and a full positive charge on 

the amine nitrogen.
278

 

In addition to the enhanced reactivity of azide-ion compared with its aqueous basicity (Table 

4.3), there are some unusual observations with the reactions of this nucleophile with 4-NFB in 

liquid ammonia. The reaction between sodium azide and 4-NFB in other solvents affords, as 

expected, the corresponding 4-NAB. However, in liquid ammonia the reaction is very 

complicated giving no 4-NAB after the 4-NFB has completely reacted. The final reaction 

products are 4-nitroaniline, nitrobenzene (30), diazene (31) and nitrogen (Scheme 4.5). The 

molar ratio of 30 and 31 in the products is independent of whether the reaction vessel is 

covered in aluminium foil or not. In the absence of air, with control of ionic strength (I = 3M, 

NaNO3) the rate of the disappearance of 4-NFB in liquid ammonia is proportional to the azide 

concentration at 25 
o
C (Figure 4.6, Appendix A: Table A39).  
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70% 15% <5%

LNH3

NaN3

30 31

 

Scheme 4.5 

 

Figure 4.6 The dependence of the pseudo first order rate constant concentration for the 

reaction between 4-NFB and sodium azide on sodium azide in LNH3 at 25 
o
C (I = 3M, 

NaNO3).  

A careful investigation, by GC and HPLC, of the reaction of azide ion with 4-NFB shows that 

4-NAB is, in fact, a reactive intermediate and its concentration initially increases, reaches a 

maximum and then decreases (Figure 4.7).  
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Figure 4.7 The reaction profile for 4-NFB reacting with sodium azide in LNH3 at 25
o
C (    : 4-

NFB;    : 4-nitroaniline;    : 4-NAB;     : nitrobenzene) 

Consequently, we investigated, in separate experiments, the solvolysis of 4-NAB in liquid 

ammonia. In the absence of salts, 4-NAB has a half life of 38 hours and yields the same 

products as does 4-NFB with azide anion (Scheme 4.5). Furthermore, unlike the other 

aromatic substitution reactions, the rate of decomposition of 4-NAB in liquid ammonia is very 

dependent upon salt concentration. For example, it is 35 fold faster in the presence of 1.0 M 

perchlorate and the observed pseudo first order rate constant for the decomposition of 4-NAB 

is proportional to the concentration of potassium perchlorate (Figure 4.8, Appendix A: Table 

A40). The rate of decomposition of 4-NAB in liquid ammonia is independent of the nature of 

salt, whether sodium nitrate, sodium azide or potassium perchlorate. The nitrogen gas formed 

originates from 4-NAB and not from ammonia solvent as shown by using 
15

N enriched liquid 

ammonia for the solvolysis of 4-NAB.
279
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Figure 4.8 The dependence of the observed pseudo first order rate constant for the 

decomposition of 4-NAB in LNH3 at 25 
o
C on potassium perchlorate concentration. 

The unusual products, nitrobenzene (30) and diazene (31) formed from 4-NFB and azide ion 

(Scheme 4.5) could be explained by the formation of an intermediate nitrene which is trapped 

by ammonia to form 4-nitrophenyl hydrazine. Interestingly, the reaction of hydrazine with 4-

NFB in liquid ammonia gives, after work-up with sodium hydroxide and extraction with 

dichloromethane, a mixture of nitrobenzene, 4-nitroaniline and aniline in a molar ratio of 

12:5:1.
280

 The formation of nitrobenzene and aniline in this reaction suggests that 4-

nitrophenyl hydrazine could be an unstable intermediate formed in the reaction of 4-NFB with 

azide ion in liquid ammonia. 

So a possible origin of nitrobenzene (30) and diazene (31) from the reaction of azide ion with 

4-NFB in liquid ammonia is the decomposition by the loss of nitrogen of the initially formed 

azide, 4-NAB, to give 4-nitrophenyl nitrene which is trapped by ammonia to form 4-

nitrophenyl hydrazine. The generation of the nitrene from 4-NAB by the release of nitrogen 

does occur under thermal and photolytic conditions and also electrochemically,
281 and singlet 
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aromatic nitrenes with electron-withdrawing groups are known to undergo insertion into the 

N-H bonds of amines to give the corresponding hydrazines.
282

 The major product of 4-

nitrophenyl nitrene trapped by diethylamine is 4-nitroaniline, with the minor product being 4-

nitrophenyl hydrazine under photo irradiation, but no diazene (31) is found whether the 

reaction is under high or low power photo irradiation.
282a,b

  

32 33  

The formation of the diazene (31) is perhaps surprising given the expected low concentration 

and stability of the nitrene and its formation may require the triplet state 4-nitrophenyl 

nitrene.
282b

 No possible ring enlargement products, such as 5-nitro-1,2-didehydroazepine (32) 

or its amination derivative (33) were found from the solvolysis of 4-NAB in liquid ammonia,  

31

30

N2
_

:

-

- -

 

Scheme 4.6 
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and the molar ratio between 4-nitroaniline and nitrobenzene is about 5:1 in the product 

mixture. The diazene compound (31) is quite stable in liquid ammonia at room temperature. 

The possible routes for the decomposition of 4-NAB in liquid ammonia are therefore 

summarised as in Scheme 4.6. 

The nitrene could undergo insertion into the N-H bond of solvent ammonia to form 4-

nitrophenylhydrazine, which decomposes into nitrobenzene and a small amount of 4-

nitroaniline. The nitrene could also dimerise to form the diazene (31). Some of the 4-

nitroaniline formed may also come from the direct solvolysis of 4-NAB. Interestingly, the 

similar results were observed when 4-NAB was dissolved in DMSO together with excess of 

tetraethylammonium azide, followed by passing ammonia gas into the solution for several 

hours, however, no reaction was observed in methanol. 

The reaction between equal molar of 2,4-difluoronitrobenzene (2,4-DFNB) and secondary 

amines in liquid ammonia at 25 
o
C forms ortho substituted derivative (34) as the predominant 

product, together with samll amount of para substituted derivate (35) and solvolysis product 

14 (Scheme 4.7).  

LNH3

25°C

90% 5% 3%

34 35 14

 

Scheme 4.7 

4.3 Nucleophilic substitution with sulfur nucleophiles 

4-NFB reacts rapidly with thiophenoxide anion in liquid ammonia to give 4,4'-dinitrodiphenyl 

disulfide and a trace amount of diphenyl thioether, probably due to the oxidation of 

thiophenoxide by air during the sample processing stage (Scheme 4.8). The second order rate 
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constant for the reaction between thiophenoxide and 4-NFB in liquid ammonia is significantly 

greater than that in methanol, and is similar to that in DMSO (Table 4.4).  

_

PhS

LNH3

_

PhS

LNH3

 

Scheme 4.8 

Table 4.4 The second order rate constants for the reaction of thiophenoxide ion with 4-NFB in various solvents at 

25 
o
C 

nucleophile solvent k2/M
-1

s
-1

 krel. reference 

PhSNa DMSO 10.4 5×10
4
 283 

PhSNH4  LNH3 3.1 1.5×10
4
 this work 

PhSNa MeOH  2.1×10
-4

 1 284 

 

4.4 Nucleophilic substitution with carbon nucleophiles 

To investigate aromatic nucleophilic substitution in liquid ammonia, the reactions of some 

typical carbanions, i.e., cyanide and diethyl malonate anions, with 4-NFB were studied at 25 

o
C. However, only the solvolysis product of 4-NFB is observed. Interestingly, orange or red 

colours are observed for the reactions of 4-NFB in liquid ammonia in the presence of these 

carbanions, but, upon the vapourisation of ammonia, followed by the general work up 

procedure, only 4-nitroaniline  is found.  

The colour may be due to the reversible formation of an anionic Meisenheimer σ-intermediate 

however, possibly carbanions do not attack the carbon 1 of 4-NFB attached to the fluoride 

atom, but they attack the α-position to the nitro group (Scheme 4.9). 
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CHR1R2
-

-LNH3

25°C

 

Scheme 4.9 

In summary, the rates of SNAr reactions in liquid ammonia are much greater than those in 

protic solvents and are similar to those in dipolar aprotic solvents. In many cases the 

nucleophilic substitution reactions are sufficiently faster than the background solvolysis 

reaction so that useful synthetic procedures are possible in liquid ammonia. The rates of SNAr 

reactions with neutral amines in liquid ammonia are slower than those for anionic O- and S-

nucleophiles of similar aqueous basicity. Liquid ammonia can increase the regioselectivity of 

some reactions compared with more conventional solvents. These results indicate that liquid 

ammonia has potential as an easily recoverable solvent in many reactions usually carried out 

in dipolar aprotic solvents by the chemical industry. 
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5.1 Copper (I) catalysed amination of aryl halides  

Primary aromatic amines are widely used in the manufacture of pharmaceuticals, 

agrochemicals, dyes, polymers and thus are very important intermediates in the chemical 

industry.
285

 In recent years, transition metal catalysed C-N bond formation has become a 

powerful and reliable method for the synthesis of a variety of aromatic amines under mild and 

convenient conditions.
286

  However, these metal catalysed reactions are rarely carried out 

directly with ammonia in industry or for synthetic purpose due to: 1) the difficulty of forming 

the metal complexes without ammonia displacing the chelating ligands and thus causing the 

deactivation of the catalyst.
287

 2) the amination products, primary aromatic amines, could be 

more reactive than ammonia and potentially further react with starting aryl halides to form di- 

and triaryl amines in conventionally used solvents.
288

 Despite the disadvantages mentioned 

above, the investigation of metal catalysed direct amination of aryl halides using ammonia 

itself rather than ammonia surrogates
286a,b,d, 289

 has been investigated by several research 

groups.
290

 Recent results have shown that, although using palladium or copper as metal 

catalyst with auxiliary chelating ligands for the amination of aryl halides with ammonia in 

conventional solvents are promising, there are still many problems associated with their 

application in industry. For example, the use of expensive palladium catalysts and toxic 

ligands; the unavoidable formation of di- and triaryl amines as by-products; the need to 

incorporate a deprotection step in the overall transformation for those reactions involving 

ammonia surrogates, which is not an atom economic process, and the relatively high loading 

of copper catalyst, etc. are all barriers yet to be overcome.  

As reported elsewhere in this thesis, we have been trying to combine the unique solvent 

properties of liquid ammonia and the potential benefit of using ammonia as a direct nitrogen 

source, instead of using ammonia surrogates, to realise a number of amination reactions in 

liquid ammonia. Ideally this would be under catalytic conditions and would be applicable to a 

range of reactions such as the reductive amination of ketones, and the direct amination of aryl 

halides.  
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5.1.1 Copper (I) catalysed amination of aryl iodides 

Aryl iodides are stable in liquid ammonia at room temperature for days, however, in the 

presence of a catalytic amount (1mol%) copper (I) iodide and 1mol% of ascorbic acid, 

iodobenzenes react with ammonia smoothly to give the corresponding anilines with excellent 

yields (Scheme 5.1, Table 5.1). No further coupling reactions between starting iodobenzenes 

and product anilines are found. Presumably, the product anilines are unable to compete with 

ammonia in forming the necessary complexes with copper ion due to the high effective 

concentration (35.5M at 25 
o
C) and good nucleophilic properties of liquid ammonia.  

LNH3,25°C

1mol% Cu(I)

 18hrs  

Scheme 5.1 

Table 5.1 Amination of a variety of aryl iodides with copper (I) iodide (1mol%) and ascorbic acid (1mol%)  in 

liquid ammonia at room temperature
a
 

entry substrate product   Yield(%)
b
 

1 
  

97.3(95
c
) 

2 
  

94.5 

3 
  

97.2 

4 
  

99.0 

5 

  

97.8(96
c
) 

6 
  

98.0 

7 
  

90.5 

8 
  

97.6 
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a
 General conditions except otherwise noted: 1mmol iodobenzenes, 1mol% CuI, 1eq. ascorbic acid to the catalyst 

and 1ml liquid ammonia at 25
o
 C for 18 hours. 

b
 GC or HPLC yield unless otherwise noted. 

c
 Isolated yields. 

e
 36 

hours.  

 

Upon optimisation of the reaction conditions, we were pleased to find that the copper (I) 

catalysed amination of iodobenzene in liquid ammonia at room temperature requires only 1 

mol% copper catalyst, which is much lower than that generally reported.
291

 Also the reaction 

does not require the presence of a strong base, such as tert-butoxide, which is widely used in 

similar reactions in other conventional solvents. Furthermore, the product separation is much 

easier with liquid ammonia as reaction medium, as the product can be simply collected by the 

evaporation of ammonia.   

It appears that electron-withdrawing groups increase the yields of the amination of aryl iodides 

in liquid ammonia (Table 5.1, entries 4, 5, 6, 8 and 10), although given the high yields and 

fixed reaction time, this data is not a clear indicator of the effect of substituents. The reaction 

yields also seem to be independent of the position of the substituent to the iodo group, for 

example, 3-nitro and 4-nitroiodobenzne give similar yields under same reaction conditions 

entry substrate product   Yield(%)
b
 

9 
  

96.8 (94
c
) 

10 
  

96.5 

11 

  

96.0 

12 

  
98.6 

13 

  

77.4 (93.6
e
) 

14 
  

57.2 

15 
  

99.3 

16 
  

98.2 
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(Table 5.1, entries 4 and 5). Some heterocyclic iodides can also be converted to corresponding 

amines with excellent yields (Table 5.1, entries 9 and 15). Furthermore, under the present 

conditions, amination occurs preferentially with iodide as the leaving group compared with 

other aryl halides (Table 5.1, entries 3, 12 and 16). Lower yields are observed when the ring 

substituents of aryl iodides are hydroxyl (Table 5.1, entry 14) or amino group, although the 

latter gives an excellent yield after a prolonged reaction time (Table 5.1, entry 13). Currently, 

the palladium catalysed amination of aryl halides that contain free N-H or O-H bonds still 

remain problematic.
300b 

To our knowledge, there has been no previous report on the metal 

catalysed amination of iodophenols, although Buchwald has reported a yield of 62% for the 

copper (I) catalysed (5mol%) amination of 4-iodoaniline by benzylamine in isopropanol, after 

38 hours at 90 
o
C.

295a
 
 

Table 5.2 Amination of iodobenzene with various copper salts as catalyst in liquid ammonia at 20 
o
C

a
 

entry copper (I) salt yields(%)
b
 

1 CuI (99.999%) 97.3 

2 CuCl (99%) 97.3 

3 Cu(OAc) (97%) 97.6 

4 Cu(CH3CN)4BF4 (97%) 98.5 

entry copper (II) salt yields(%)
b
 

5 Cu(OAc)2 (98%)
c
 trace 

6 Cu(OAc)2 (98%)
d
 95.2 

entry copper (0) yields(%)
b
 

7 copper powder 88.4 

a 
Reaction conditions: 1mmol iodobenzene, 1 mol% copper catalyst, 1eq. ascorbic acid to the catalyst and 1ml 

liquid ammonia, 18 hours. 
b 
GC yields. 

c 
In the absence of ascorbic acid. 

d 
2eq. Ascorbic acid to the catalyst.   

 

Different copper (I) salts can be used to catalyse the amination of iodobenzene in liquid 

ammonia, and the yields of the reaction appear to be independent of the source of copper (I) 

(Table 5.2, entries 1 to 4). Copper (II) shows no catalytic activity in liquid ammonia, but can 

be active in the presence of 2 equivalents of ascorbic acid (Table 5.2, entries 5 and 6). 

Presumably, copper (II) is reduced to an active copper (I) species by the ascorbic acid.
292

 The 

stability of Cu (I) relative to Cu(II) is very dependent on solvent and so, for example, Cu(I) is 
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more stable than Cu(II) in acetonitrile and the tetrahedral ion [Cu(MeCN)4]
+
 is well 

established (Table 5.2 entry 4). Surprisingly, under the same conditions, copper (0) shows 

reasonable catalytic ability, even though the reaction conditions are apparently heterogeneous 

in liquid ammonia (Table 5.2, entry 7).  

Normally,
293

copper catalysed C-N bond formations involve ancillary ligands, such as 1,2-

diamines (L1 and L2),
 294

 1,2-diols (L3-L5), 
290e,295

amino acids (L6 and L7),
 296

 2,2‟-biprydine 

(L8)
297

 or 1,10-phenanthroline (L9),
286c,298

  which can effectively reduce the amount of copper 

(I) catalyst required, and achieve benign reaction conditions in some conventionally used 

solvents. 

Consequently, we measured the kinetics of the copper (I) catalysed amination of iodobenzene 

in liquid ammonia at 25 
o
C, with and without some of these ancillary ligands (L1-L9) (Table 

5.3). There is no nucleophilic displacement by any of the ligands (L1 to L9) in the copper (I) 

catalysed reaction of iodobenzene in liquid ammonia at room temperature, also the addition of 

nucleophiles, such as morpholine and phenoxide ion, give no substitution products other than 

aniline. The reaction rates are significantly hampered by added amino acids (L6 and L7) as 

ligands (Table 5.3, entries 8 and 9) which is very different from that observed in other 

conventional solvents,
 296

 while 1,2-diamines (L1 and L2), 1,2-diols (L3 and L4), bipyridine 

(L8) and phenanthroline (L9) slightly enhanced the reaction rate. 

L1 L2  L3 L4 L5  

L6

H

L7        L8 L9  

Only L5 leads to a marked rate enhancement (Table 5.3, entry 7). Given that 1,2-diols do not 

significantly increase the activity of the catalyst, presumably the reaction rate increase in the 

presence of ascorbic acid is due to its ability to keep copper (I) in its reduced state and its 

concentration constant. The use of ascorbic acid or its sodium salt as an additive in copper 
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catalysed organic reactions is known, and its function is to retain the catalytic ability of copper 

(I) by providing a redox system which effectively reduces copper (II) or (III) back to copper 

(I).
299

 The amino acids alanine (L6) and proline (L7) inhibit the reaction (Table 5.3, entries 8 

and 9), but there was no sign of precipitation although the reaction solutions turned blue 

indicative of oxidation of Cu (I) to Cu (II). The inhibitory effect of the amino acids may 

simply be due to stabilisation of Cu (II) by the ligands and reduction of the electrode potential 

(E0). 

Table 5.3 The pseudo first order rate constant of copper (I) catalysed amination of iodobenzene with ligands in 

liquid ammonia at 25 
o
C

a
 

entry Cu(I) source  ligands 10
5
kobs/s

-1
 

1 CuI 
__ 

3.26
b
 

2 Cu(CH3CN)4BF4 
__ 

3.63 

3 CuI L1 4.32 

4 CuI L2 3.95 

5 CuI L3 4.00 

6 CuI L4 4.92 

7 CuI L5 19.6
b
 

8 CuI L6 0.037 

9 CuI L7 0.025 

10 CuI L8 5.23 

11 CuI L9 4.91 

a 
Kinetics conditions: 50mM iodobenzene, 10mM Cu (I) salt, 10mM ligand, 40mg biphenyl as internal standard, 

10ml LNH3 at 25 
o
C. 

b
Average of 2 runs. 

 

In an attempt to distinguish between the role of ascorbic acid as a ligand and as a general 

reductant, the kinetics of the reaction were determined as a function of the concentration of 

ascorbic acid. With a constant copper (I) catalyst concentration, the rate of the amination of 

iodobenzene significantly increases with added ascorbic acid in liquid ammonia, but when the 

concentration of ascorbic acid reaches about twice of catalyst concentration, the rate levels out 

and becomes independent of further added ascorbic acid (L5) and (Table 5.4, Figure 5.1).  
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This rate saturation phenomenom implies some sort of association between copper (I) and 

ascorbic acid – in particular one or two moles of ascorbate may be complexed with copper (I).  

These observations also indicate the optimum ratio of ascorbic acid to copper (I) that is 

required for a relatively fast reaction rate. However, the rate enhancement is not great (ca. 5-

fold) and rather than complex formation with Cu (I), the rate of ascorbic acid may simply be to 

reduce any copper (II) formed back to active copper (I). 

Table 5.4 The effect of ascorbic acid concentration (L5) on the rate of the copper (I) CuI catalysed amination of 

iodobenzene in liquid ammonia at 25 
o
C.

 

[Iodobenzene]m/M [CuI]/mM [L5]/mM 10
4
kobs/s

-1
 

50 10 0 0.326 

50 10 10 1.96 

50 10 20 2.15 

50 10 40 2.22 

50 10 50 2.23 

 

 

Figure 5.1 The effect of ascorbic acid concentration (L5) on the rate of the copper (I) CuI 

(10mM) catalysed amination of iodobenzene in liquid ammonia at 25 
o
C.
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Further investigations of the kinetics of the amination of iodobenzene in liquid ammonia 

indicates that the rate of the reaction shows a first order dependence on the concentration of 

the copper (I) salt, both at lower and higher catalyst concentrations relative to the iodobenzene 

concentration (Table 5.5, Figure 5.2). This is consistent with a previous study of the copper 

(I) catalysed amidation of aryl iodides.
300

   

Table 5.5 The dependence of the pseudo first order rate constants for the amination of iodobenzene on the copper 

(I) catalyst concentration in liquid ammonia at 25 
o
C 

a
[Cu

I
]/mM 10

4
kobs/s

-1
 

b
[Cu

I
]/M 10

4
kobs/s

-1
 

5 1.25 25 5.50 

10 2.23 40 8.64 

20 3.82 50 10.7 

40 9.60 70 13.1 

a 
50mM iodobenzene, 50mM ascorbic acid (L5) and various CuI concentration. 

b
 10mM iodobenzene, 50mM 

ascorbic acid (L5) and various CuI concentration. 

 

 

Figure 5.2 The first order dependence of kobs of the amination of iodobenzene on copper (I) 

concentration in liquid ammonia at 25 
o
C 
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The first order rate constants for the copper (I) catalysed amination of 4-substituted phenyl 

iodides in liquid ammonia increase with electron withdrawing substituents (Table 5.6) and 

generate a Hammett ρ value of 0.49 (Figure 5.3). The small positive value of ρ indicates the 

generation of negative charge in the aryl ring in the transition state. 

Table 5.6 The rate of copper (I) catalysed amination of 4-substituted phenyl iodide in liquid ammonia at 25 
o
C

a
 

substituent σp 10
4
kobs(s

-1
) 

4-MeO -0.27 0.83 

4-Me -0.17 1.12 

4-H 0 1.25 

4-Cl 0.23 1.55 

4-NO2 0.78 2.95 

a   
Reaction conditions: 50mM 4-substituted phenyl iodide, 5 mM CuI and 5mM ascorbic acid (L5) in 10ml liquid 

ammonia. 
 

 

Figure 5.3 The Hammett plot for the copper (I) catalysed amination of iodobenzene in liquid 

ammonia at 25 
o
C. Reaction conditions: 0.05M iodobenzene, 5mM CuI and 5mM ascorbic 

acid in 10ml liquid ammonia. 
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The relatively small Hammett ρ = 0.49 contrasts with the much larger ρ = 2.3 for the 

analogous reactions catalysed by palladium (0) with phosphine ligands in toluene
301

 

suggesting that the C-I bond is not significantly broken in the transition state for the copper (I) 

catalysed amination of 4-substituted phenyl iodides in liquid ammonia. 

The activation parameters provide a further characterisation of the copper (I) catalysed 

amination of aryl iodides in liquid ammonia. Linear Erying type plot (Table 5.7, Figure 5.4) 

gives ΔH
‡ 

= 65.6 kJ mol
-1

, ΔS
‡ 

= -101.0 J K
-1

 mole
-1

 and ΔG
‡ 

= 95.7 kJ mol
-1

. The entropy of 

activation is not as negative as one would expect for a termolecular reaction or one generating 

a charged transition state requiring heavy solvation. 

 

Figure 5.4 The Erying plot for the copper (I) catalysed amination of iodobenzene in liquid 

ammonia. Reaction conditions: 50mM iodobenzene, 5mM CuI and 5mM ascorbic acid in 

10ml liquid ammonia. 

Iodide anion is better solvated by liquid ammonia than the other halides, as showed by its 
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values for chloride and bromide anions.
302

 Therefore it is less likely that the expulsion of 

iodide anion from the active complex would be the rate-limiting step as occurs with the 

nucleophilic substitution of nitrofluorobenzenes by phenoxide anions in liquid ammonia 

(chapter 4).  

Table 5.7 The rate for the copper (I) catalysed amination of iodobenzene in liquid ammonia at various 

temperature
a
 
 

temperature(K) 10
4
kobs(s

-1
) 

318.2 6.11 

308.2 2.35 

298.2 1.25 

288.2 0.39 

a  
50mM iodobenzene, 5mM CuI and 5mM ascorbic acid (L5) in 10ml liquid ammonia. 

To understand the mechanism of these catalysed reactions, it is important to know the active 

coordination state of copper (I) under our reaction conditions. The rate of the reaction appears 

generally insensitive towards several potential copper (I) ligands, except for the apparent 

inhibitory effects of amino acids, and the enhancement brought about by ascorbic acid (Table 

5.3). With the large and effectively constant concentration of ammonia (35.5M, 298.2 K), 

copper (I) ion is presumably coordinated to ammonia and the added ligands do not compete 

with ammonia to form complexes with copper (I) cation.  

Based on EXAFS and 
63

Cu NMR spectroscopy it is claimed that copper (I) ion is three-

coordinated in liquid ammonia, [Cu(NH3)3]
+
, possibly with a coplanar trigonal geometry. By 

contrast, in aqueous ammonia solution, the linear diamminecopper (I) complex, [Cu(NH3)2]
+
, 

is the dominant species relative to [Cu(NH3)3]
+
,
303

 and even in highly concentrated aqueous 

ammonia solution, only 27% of copper (I) ion adopts three-coordinated coplanar 

structure.
304,305 

Copper (I) ion undergoes disproportionation (Scheme 5.2) in liquid ammonia 

but with a small disproportion constant KD = 0.044M
-1

, the copper (I)-ammonia complex is the 

dominant species (>99%) at low concentration of copper (I) liquid ammonia solution (< 

0.1M).
305

   

 



 

 

 

Results and Discussion 

183 

 

   

Cu+2

LNH3

KD=0.044 M -1

Cu Cu2+

 

Scheme 5.2 

Copper (I) catalysed amination of iodobenzene in concentrated aqueous ammonia (30% w/w), 

at room temperature is much slower than that in liquid ammonia at 25 
o
C.

306
 The pseudo first 

order rate constant, kobs = 5.0× 10
-6

s
-1

 for the copper (I) catalysed amination of iodobenzene in 

10ml 30% w/w aqueous ammonia at 25 
o
C, using 0.5mmol iodobenzene, 1%mole CuI, 1 

equivalent ascorbic acid to the copper catalyst. This 40 fold smaller than the analogous 

reaction under similar conditions in liquid ammonia (Table 5.3 entry 7). Although the 

triamminecopper (I) is apparently the dominant species in liquid ammonia whereas the 

diamminecopper (I) is the major complex in aqueous ammonia, it is not known which has the 

greater catalytic activity.  

In principle Cu
+
 can act as either an electron donor or acceptor, but based on the importance of 

the presence of ascorbic acid, it seems likely that in liquid ammonia Cu
+
 is acting as a 

reducing agent and so is itself oxidised to a state that at the end of the reaction requires 

reduction for catalysis to continue.  Theoretical studies on the cation-π interactions of Cu
+ 

and 

benzene indicate that, in the gas phase, Cu
+ 

forms a η
2
 complex with benzene, especially if a 

counter-ion is present.
307

  Another theoretical study
300,301, 308

 on the copper (I) catalysed 

amidation of aryl halides, suggested a mechanism involving rate-limiting oxidative addition 

through a penta-coordinated copper (III) intermediate. 

oxidative

dissociation

-

 

Scheme 5.3 
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A traditional view of this aromatic nucleophilic substitution reaction would regard the likely 

mechanism to involve initial copper (I)-π complex formation to be followed by dissociative or 

addition-elimination steps (Scheme 5.3). The latter seems intrinsically unlikely given the 

relative weak Lewis acid character of copper (I) and its ability to stabilise the negative charge 

on the aromatic ring. However, the dissociation of iodide ion effectively leaves what would 

normally be an unstable aromatic carbocation, but in this instance one which could be 

stabilised by electron transfers from Cu (I) to form a Cu (II) complex.   

Comparison of previous mechanistic studies
300,301,309

 on the copper (I) catalysed amidation of 

aryl halides and current kinetic data, a possible mechanism for the amination of aryl halides is 

proposed as in Scheme 5.3. The formation of triamminecopper (I)-aryl ring complex is rate 

determining step, small Hammett ρ value and activation parameters support this assumption.  

The difference between this mechanism (Scheme 5.3) and the type usually proposed for Pd (0) 

catalysed reactions are the timing of bond making and breaking. If Cu (I) is regarded as a 

nucleophile then catalysis could occur by a „normal‟ type of addition step to generate a 

Meisenheimer type of -complex with negative charge distributed around the aromatic ring 

with copper now in the +2 oxidation state, followed by cleavage of the bond to the leaving 

group and then a repeat process involving nucleophilic displacement of the Cu
2+

 by reductive 

elimination and regeneration of the Cu (I) catalyst (Scheme 5.4).  

oxidative

addition
-

-
reductive

elimination

 

Scheme 5.4 
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In liquid ammonia, the product of iodide expulsion from the Meisenheimer type intermediate 

may well be strongly bound to copper and is represented as a possible trigonal bipyramidal 

intermediate. The relatively small Hammett ρ = 0.49 suggests that the C-I bond is not 

significantly broken in the transition state and that there is a small generation of negative 

charge in the aryl ring which is compatible with the oxidative addition of the copper ion being 

rate limiting.  

5.1.2 Copper (I) catalysed amination of aryl bromides and chlorides (Scheme 5.5)  

18 to 35hrs

X = Br or Cl
LNH3,100°C

1mol% Cu(I)

 

Scheme 5.5 

With 1 mol% CuI as catalyst in liquid ammonia at room temperature, less than 1% of 

bromobenzene is converted into aniline after 18 hours, however, under the elevated 

temperature, for example, 100 
o
C, the yield of the reaction increases to 96% after 18 hours 

(Table 5.6, entry 1) and the other substituted aryl bromides also can be smoothly converted to 

the corresponding anilines with good to excellent yields in liquid ammonia (Table 5.6).  

Using the copper (0) powder as a catalyst for the amination of bromobenzene in aqueous 

ammonia it was reported that 5mol% of copper (0) was required at 100 
o
C for 24 hours and 

gives a lower yield of aniline (85%), compared with our method.
310

 Some bromopyridine 

derivatives give excellent yields in liquid ammonia (Table 5.6, entries 12 and 13). 4-t-Butyl 

phenyl bromide gives a slightly lower yield (Table 5.6, entry 10), but is still compatible with 

that of palladium (II), (Pd[P(o-tol)3]2) catalysed  amination with ammonia in 1,4-dioxane (65 

o
C, 15 hours, 88% yield).

290b
 Interestingly, the amination of 3-fluoro-4-bromotoluene occurs 

only to displace bromide ion (Table 5.6, entry 13).  

No diaryl or triaryl amine derivatives, which can occur as a result of further reaction of the 

product, are found under elevated temperatures for the copper (I) catalysed amination of aryl 

bromides in liquid ammonia. By contrast, these di and triaryl amines by-products are often 
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unavoidable when the strong bases are utilised for the palladium catalysed amination of aryl 

bromides or chloride in some conventional solvents, especially under high temperature.
288c,290a 

At a similar temperature, the yields of the copper (I) catalysed amination of aryl bromides in 

liquid ammonia are generally higher than those previously reported by using aqueous 

ammonia solution or ammonia surrogates as nitrogen source. Furthermore, the amination of 

aryl bromides requires only 1% copper (I) catalyst in liquid ammonia, which is much lower 

than those demanded in conventionally used solvents.
 

Table 5.8 Amination of variety of aryl bromides and chlorides with copper (I) iodide catalyst in liquid ammonia 

at elevated temperature in liquid ammonia
a
 

entry substrate product yield(%)
b
 

1 
  

96 

2 

  

95 

3 

  

97 

4 
  

94 

5 

  

86 

6 

  

                      91 

7 
  

80 

8 

  

96 

9 
  

97 

10 

   
85 
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entry substrate product yield(%)
b
 

11 
  

99 

12 
  

96 

13 

  

92 

14 
  

5< 

15 
  

74
c
 

16 

  

88
c
 

17 
  

63
c
 

a 
General reaction conditions unless otherwise noted: 1mmol aryl halides, 1 mole % CuI, 1eq. ascorbic acid to the 

copper catalyst,  in 1-1.5ml liquid ammonia at 100
 o
C for 18 hrs. 

b
 GC yields, except otherwise noted. 

c
 36 hours, 

isolated yields.  

 

Unactivated chlorobenzenes are very inert under similar conditions to that used for the 

amination of aryl bromides in liquid ammonia (Table 5.8, entry 5). For example, even at 120 

o
C, with 10mol% copper (I) catalyst, less than 5% chlorobenzene is converted into aniline 

after 12 hours in liquid ammonia. This is as expected, based on the large dissociation energy 

of a sp
2
 carbon-chlorine bond.

311
 However, electron-withdrawing groups are activating so that 

nitrochlorobenzenes can be smoothly converted into corresponding aniline with only 1mol% 

copper (I) catalyst to give moderate yields in liquid ammonia (Table 5.8, entries 15 to 17).   

In summary, we have developed a method for the amination of aryl halides in liquid ammonia 

using copper (I) catalysis which enables direct synthesis of a number of primary amines with 

excellent yields. This method does not require strong base and ligands as additives, which are 

often used for the similar metal catalysed amination of aryl halides in the conventionally used 

solvents. Most importantly, the amination in liquid ammonia has exclusive selectivity for the 

formation of primary amines, even under relative higher temperature. The amount of catalyst 

required for the reaction is relatively lower than that generally used, and the convenience of 
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products separation with liquid ammonia as reaction medium indicate its potential industrial 

application. The preliminary mechanistic investigation indicates that the rate of the amination 

is first order dependence on the concentration of copper (I) catalyst, and the formation of 

triamminecopper (I)-aryl ring intermediate is probably the rate limiting step in liquid 

ammonia. Due to strong coordination of solvent molecules to the copper (I) ion, the kinetics of 

the reaction are generally insensitive to the addition of other conventional ligands in liquid 

ammonia.   

5.2 Copper (I) catalysed azide-alkyne cycloaddition (Cu
I
AAC) 

The 1,3-dipolar cycloaddition between azide and alkyne [3+2] was first discovered in 1893 by 

Michael and 70 years later thoroughly developed by Huisgen (and subsequently widely 

recognised as Huisgen 1,3-dipolar cycloadditions).
312

 The reaction has a high activation 

barrier and consequently demanding reaction conditions are usually required, such as elevated 

temperature and pressure, and, in addition, the reaction gives a mixture of 1,4- and 1,5-

substituted 1,2,3-triazoles (36 and 37, respectively, Scheme 5.6).  

36 37

36

R1,R2 = Alkyl, aryl

Huisgen cycloaddition

CuAAC reaction

 

Scheme 5.6 

In 2002, Sharpless
313

 and Meldal
314

 independently improved the 1,3-Huisgen cycloaddition by 

using copper catalysts and successfully achieved amiable reaction conditions and exquisite 

regioselectivity. This variation of the Huisgen cycloaddition, was later described as CuAAC 

reactions standing for Cu-catalysed Azide-Alkyne Cycloaddition, or more commonly as “click 

chemistry”,
315

 which proceeds under ambient temperature and pressure to give exclusively 

1,4-substituted 1,2,3-triazoles (36) (Scheme 5.6). This method has become a powerful and 

reliable tool for the synthesis of 1,2,3-triazole derivatives which are widely used in 
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pharmaceutical and agrochemical industry.
316

  Recently, copper-free click chemistry between 

some strained alkynes, such as cyclooctynes, and azides has been reported.
317

 

CuAAC reactions can be carried out in a variety of solvents, such as aqueous alcohol solvents, 

pure water, dipolar aprotic solvents or their aqueous solutions, but are often carried out under 

a basic atmosphere or, a strong base, such as Et3N or DIPEA (N,N-diisopropylethylamine), 

which is required to facilitate the deprotonation of the terminal alkynes.  

Liquid ammonia is a basic solvent and we have shown in this thesis that it behaves like a 

typical dipolar aprotic solvent in its solvent effects on organic reactions. One of the potential 

advantages of using liquid ammonia as reaction medium in the chemical industry is relative 

ease in separating the solvent from the products by vapourisation of ammonia.  

When phenyl acetylene and benzyl azide are charged together in liquid ammonia at room 

temperature without a copper catalyst, there is no reaction even after several days. 

Furthermore, in the absence of a copper (I) catalyst, even at elevated temperatures (100 
o
C), 

and after 10 hours agitation, less than 20% of the starting material is converted into a mixture 

of 1,4- and 1,5-disubstituted 1,2,3-triazoles (38 and 39, respectively) (Scheme 5.7) in a molar 

ratio of 2:1. However, the copper (I) catalysed 1,3-dipolar cycloaddition of phenyl acetylene 

and benzyl azide occurs smoothly at ambient temperature in liquid ammonia to give the 

regioselective 1,4-disubstituted product (38). This „click reaction‟ in liquid ammonia requires 

only 0.5 mol% of copper (I) catalyst and the yields of these reactions are extraordinarily high. 

The amount of copper catalyst required for the Cu
I
AAC reactions in liquid ammonia is much 

lower than those previously reported in conventionally used solvents
318

 and both aromatic and 

aliphatic alkynes give excellent yields (Table 5.9). In addition, no acetylene dimer (RC≡C)2 

is found for the Cu
I
AAC reactions in liquid ammonia, which is often observed when the 

reaction is performed in some conventionally used solvents. The 
1
H NMR spectra of the 

products for the equi molar reaction of azides and acetylenes in liquid ammonia show that 

pure 1,4-disubstituted 1,2,3-triazoles (38) are obtained quantitatively by the vapourisation of 

ammonia after the reactions is complete, and there is no need for the further purification or 

additional separation procedures (Appendix C, Figures N30). 
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38

38

39

~100%

<20% 

LNH3, 100°C

LNH3, 25°C, 12hrs

10 hrs

0.5mol% CuI, 1eq. ascobic acid

 

Scheme 5.7 

Table 5.9 Copper (I) catalysed „click reactions‟ of a variety of azides and acetylenes in liquid ammonia at room 

temperature
a
 

entry acetylene azide product(37)
b
 yield

c
 

1 
  

 

98 

2 
  

 

99 

3 
   

97 

4 
   

99 

5 
 

  

98 

a 
General conditions unless otherwise noted are: 1mmol starting azides and 1mmol acetylenes, 0.5 mol% CuI and 

1.0 eq. ascorbic acid to the catalyst, 1ml liquid ammonia, at 20
 o
C for 10hrs. 

b
 Products were confirmed by GC-

MS and 
1
H NMR. c. Isolated yields. 

A variety of copper (I) salts can be used as catalyst for the click reaction in liquid ammonia 

(Table 5.10). In addition, copper (0) powder can also act as the catalyst, although this appears 

to be under heterogeneous conditions and gives a much lower yield (Table 5.10, entry 6), it is 

possible that some of the copper(0) dissolves in liquid ammonia to give ammonia solvated 

copper(I).  
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Table 5.10 Various copper salts catalysed „click reactions‟ in liquid ammonia at room temperature
a
 

entry copper source yields of 38(%)
b
 

1 CuI(99.999%) >99 

2 CuCl(99%) >99 

3 Cu(OAc)(97%) >99 

4 Cu(CH3CN)4BF4 (97%) >99 

5 Cu(OAc)2(98%)
c
 >99(40

d
) 

6 copper powder 36.9 

a
 General condition unless otherwise noted are: 1mmol phenyl azide, 1mmol phenyl acetylene, 0.5mol% copper 

catalyst, 1eq. ascorbic acid to the copper catalyst, 1ml liquid ammonia for 12 hrs, the product precipitated as 

white short crystal in needle form.  
b
 GC yields. 

c 
2eq. ascorbic acid to the copper catalyst. 

d
 Without ascorbic 

acid. 

 

Figure 5.5 The observed pseudo first order rate constant as a function of the mass of copper 

(0) powder added for the CuAAC reaction in liquid ammonia. (Reaction conditions: 1mmol 

phenyl azide, 1mmol phenyl acetylene in 10ml liquid ammonia at 25 
o
C)  
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The rate of the copper (0) catalysed „click reaction‟ in liquid ammonia is proportional to the 

amount of copper powder added, which is compatible with either some copper(0) dissolving or 

possibly the reaction occurring on the surface of the copper (0) catalyst in liquid ammonia 

(Figure 5.5, Appendix A, Table A44 ).  

Generally, copper (II) salts that are used as the catalyst for CuAAC reactions are often done in 

aqueous binary solvents, such as in t-butyl alcohol-water system. This process often requires 

additional ancillary ligands to avoid the dimerisation of activated acetylene-copper complexes 

which occurs under air. In liquid ammonia, with 2 equivalent amount of ascorbic acid, Cu (II) 

catalysed CuAAC reaction does not need ancillary ligands and yields the same product as the 

Cu
I
AAC reaction (Table 5.10, entry 5). Presumably, copper (II) is reduced to copper (I) by 

ascorbic acid in liquid ammonia, as in the absence of ascorbic acid, copper (II) catalysed „click 

reactions‟ are slow and the starting materials are partially converted to the 1,4-disubstituted-

1,2,3-triazole in liquid ammonia at room temperature,  together with significant amounts of the 

acetylene dimer (RC≡C)2.     

Some preliminary mechanistic investigations of Cu
I
AAC reaction of benzyl azide and phenyl 

acetylene in liquid ammonia show that the observed pseudo first order rate constant for the 

reaction has an apparent second order dependence on the copper (I) concentration (Table 

5.11).  
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Figure 5.5a The dependence of the observed rate constant on the concentration of copper (I) 

catalyst for the Cu
I
AAC reaction in liquid ammonia at 25 

o
C (Reaction conditions: 50mM 

phenyl azide and 50mM phenyl acetylene, fixed ascorbic acid concentration at 15mM, copper 

iodide concentration varies from 2.5-15mM) 

The nonlinear relationship between kobs and [Cu
I
] in Figures 5.5a indicates that the reaction in 

liquid ammonia has a greater than first order dependence on the catalyst concentration. 

Therefore the observed pseudo first order rate constant (kobs) could possibly be expressed by 

Equation 5.1. 

kobs = k1[Cu
I
] + k2[Cu

I
]
2  

Thus, kobs/[Cu
I
] = k1 + k2[Cu

I
] 

Equation 5.1 

The plot of kobs/[Cu
I
] vs. [Cu

I
] shows that there is no significant intercept which indicates 

there is no significant first order term in [Cu
I
] in the rate law. The slope of the plot gives the 

apparent second order rate constant k2 = 17.4M
-1

s
-1

 (Figures 5.5b). 
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Figure 5.5b The dependence of the observed rate constant on the concentration of copper (I) 

catalyst for the Cu
I
AAC reaction in liquid ammonia at 25 

o
C (Reaction conditions: 50mM 

phenyl azide and 50mM phenyl acetylene, fixed ascorbic acid concentration at 15mM, copper 

iodide concentration varies from 2.5-15mM) 

Table 5.11 The dependence of the observed rate constant on the concentration of copper (I) catalyst for the 

Cu
I
AAC reaction in liquid ammonia at 25 

o
C

a
 

[Cu
I
]/mM 10

4
kobs./s

-1
 

2.5 1.30 

5 4.33 

10 15.2 

15 41.2 

a
 Reaction conditions: 50mM phenyl azide and 50mM phenyl acetylene, fixed ascorbic acid concentration at 

15mM, copper iodide concentration was varied from 2.5-15mM.   

 

The azide only „clicks‟ with terminal (CH) acetylene groups and there is no CuAAC reaction 

between internal alkynes and azide,
319

 so, for example, no reaction is observed between 

y = 0.1738x + 0.0036

R² = 0.9735
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diphenylacetylene (PhC≡CPh) or 2-iodoethynylbenzene (PhC≡C
_
I) with benzyl azide in the 

presence of a copper (I) catalyst in liquid ammonia at room temperature. These observations 

suggest that the CuAAC reaction in liquid ammonia is a stepwise process involving two metal 

centres for the cycloaddition of azides and acetylenes, which is consistent with previous 

mechanistic studies of CuAAC in some conventional solvents.
320

  

As described earlier in the copper (I) catalysed amination section, copper (I) salts mainly exist 

as tri-coordinated coplanar species, [Cu(NH3)3]
+
, in liquid ammonia.

305
 Acetylenes normally 

have pKa range from 20 to 25 in water,
9
 and are neutral in liquid ammonia at room 

temperature, as shown by the 
1
H NMR spectrum of phenylacetylene in liquid ammonia 

(Appendix C, Figure N31).  However, the theoretical calculations show that copper (I) 

coordination to the acetylene increases its acidity by up to 10
10

-fold in water.
320a

 Compared 

with other solvents, the basic nature of liquid ammonia facilitates the deprotonation of 

acetylene in the presence of copper (I) ions. Therefore, the formation of a coordinated copper 

(I)-acetylide ion complex in liquid ammonia could enhance the rate of reaction. However, it is 

worth noting that currently the exact structure of the copper-acetylene complex in liquid 

ammonia is still not clear, and we are not sure whether this complex exists in a copper 

monomer (E) or dimer form (F) which is crucial for the elucidation of the detailed reaction 

mechanism in liquid ammonia.  

As stated earlier, the kinetic studies show that the Cu
I
AAC process in liquid ammonia requires 

two copper (I) ions, which implies that one of these coordinated with the azide and the other to 

the acetylene. The reaction could then proceed via a six- or seven-membered copper-

containing intermediate (H and G, respectively) to give a triazole-copper derivate I, which is 

followed by the fast protonation of I by ammonium ion to give the product 36 and the 

regenerated copper (I) catalyst (Scheme 5.8). 
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I

G H

36

NH4

-NH4

NH3 NH3

or

__

R2N3

or

or

FE

 

Scheme 5.8 

In order to prove the existence of copper-acetylene complexes (E or F) in the Cu
I
AAC 

reactions, deuteriated phenylacetylene (PhC≡C
_
D)

321
 is used to „click‟ with benzyl azide in 

liquid ammonia under the same conditions as introduced in Table 5.9. The 
1
H NMR spectrum 

of the reaction product shows that there is no deuterium in the 1,4-disubstituted-1,2,3-triazole. 

In addition, the NMR results also show that there is no deuterium exchange between product 

(38) and D2O, together with 0.5% CuI and 1eq. ascorbic acid to the copper catalyst, at room 

temperature for overnight (Scheme 5.9).  

D2O, room temperature, overnight 

38

38

LNH3, 25°C, 12hrs

0.5mol% CuI, 1eq. ascobic acid

0.5mol% CuI, 1eq. ascobic acid

 

Scheme 5.9 
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These experimental observations described in Scheme 5.9 indicate that the acetylene is 

deprotonated and copper atom substitutes the acetylene hydrogen to form E or F as the 

possible intermediate for the Cu
I
AAC reactions in liquid ammonia.   

In conclusion, the copper (I) catalysed 1,3-Huisgen cycloaddition reaction of azide and   

alkynes (Cu
I
AAC) in liquid ammonia requires less catalyst than those in conventionally used 

solvents. The excellent yield, exclusive selectivity, and most importantly, the ease of 

separation of the product indicate the potential advantages of using liquid ammonia as the 

solvent for this reaction. The preliminary mechanistic investigation suggests that Cu
I
AAC 

reaction in liquid ammonia is a stepwise process with the initial formation of copper (I)-

acetylide ion complex, followed by its combination with copper (I) coordinated azide.   
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Table A1 The UV absorbance of 3-chlorophenol (10
-4

M) under various concentration of 

KClO4 in LNH3 at room temperature 

CKClO4(M) absorbance (317nm) absorbance (257nm) 

0 0.0528 0.240 

0.005 0.150 0.467 

0.01 0.239 0.675 

0.05 0.360 0.920 

0.1 0.379 1.022 

0.2 0.385 1.025 

0.3 0.392 1.026 

0.4 0.399 1.027 

 

 

Figure A1 The UV absorbance of 3-chlorophenol (10
-4

M) under various concentration of 

KClO4 (0.005 to 0.4M) in LNH3 at room temperature 
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Figure A2 Various concentration of KClO4 (0.005 to 0.4M) as salt effect on the ionisation 

of 3-chlorphenol (10
-4

M) in LNH3 at room temperature 

 

 

Table A2 The UV absorbance of 3-chlorophenol (10
-4

M) under various concentration of 

NaCl in liquid ammonia at room temperature 

CNaCl(M) absorbance (317nm) absorbance (257nm) 

0.01 0.218 0.608 

0.05 0.348 0.945 

0.1 0.401 1.062 

0.15 0.401 1.063 

0.2 0.401 1.066 
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Figure A3 The UV absorbance of 3-chlorophenol (10
-4

M) under various concentration of 

NaCl (0.01 to 0.2M) in LNH3 at room temperature 

 

 

Figure A4 Various concentration of NaCl (0.01 to 0.2M) as salt effect on the ionisation of 

3-chlorphenol (10
-4

M) in LNH3 at room temperature 
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Figure A5a The UV absorbance of 2.5 × 10
-4

M 4-nitorphenol with and without salt effects 

(0.1M NaClO4) in LNH3 at room temperature 

 

 

 

 

 

 

 

 

 

 

With 0.1M NaClO4 
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Table A3 Linear relationship of pKa of 4-methoxyphenol (3×10
-4

M) with the square root 

of ionic strength (I, KClO4) in LNH3 at room temperature 

I=CKClO4(M) I
1/2

(M
1/2

) Absorbance at max  pKa 

0 0.00 0.035 6.59 

0.1 0.32 0.063 6.07 

0.2 0.45 0.109 5.58 

0.3 0.55 0.127 5.44 

0.4 0.63 0.168 5.18 

0.5 0.71 0.205 4.99 

0.8 0.89 0.264 4.74 

 

 

Figure A5 Linear relationship of pKa of 4-methoxyphenol (3×10
-4

M) with the square root 

of ionic strength (I, KClO4) in LNH3 at room temperature 

y = -2.190x + 6.622

R² = 0.9833
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Table A4 Linear relationship of pKa of phenol (3×10
-4

M) with the square root of ionic 

strength (I, KClO4) in liquid ammonia at room temperature 

I=CKClO4(M) I
1/2

(M
1/2

) Absorbance at max pKa 

0 0.00 0.000 6.02 

0.1 0.07 0.140 5.01 

0.2 0.10 0.246 4.66 

0.3 0.22 0.321 4.16 

0.4 0.45 0.349 4.07 

0.5 0.54 0.369 4.00 

 

 

Figure A6 Linear relationship of pKa of phenol (3×10
-4

M) with the square root of ionic 

strength (I, KClO4) in LNH3 at room temperature 

y = -2.996x + 6.023

R² = 0.9822
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Table A5 Linear relationship of pKa of 1-naphthol (1×10
-4

M) with the square root of ionic 

strength (I, KClO4) in liquid ammonia at room temperature 

I=CKClO4(M) I
1/2

(M
1/2

) Absorbance at max pKa 

0 0.00 0.152 6.02 

0.005 0.32 0.288 5.01 

0.01 0.45 0.431 4.66 

0.05 0.55 0.681 4.16 

0.2 0.63 0.756 4.07 

0.3 0.71 0.833 4.00 

 

 

 

Figure A7 Linear relationship of pKa of 1-naphthol (1×10
-4

M) with the square root of ionic 

strength (I, KClO4) in LNH3 at room temperature 

y = -3.501x + 4.972

R² = 0.8628
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Table A6 Linear relationship of pKa of 4-chlorophenol (1×10
-4

M) with the square root of 

ionic strength (I, KClO4) in liquid ammonia at room temperature 

I=CKClO4(M) I
1/2

(M
1/2

) Absorbance at max pKa 

0 0.00 0.056 4.49 

0.05 0.07 0.155 3.91 

0.1 0.10 0.220 3.48 

0.2 0.22 0.281 2.86 

0.3 0.32 0.304 2.05 

    
 

 

Figure A8 Linear relationship of pKa of 4-chlorophenol (1×10
-4

M) with the square root of 

ionic strength (I, KClO4) in LNH3 at room temperature 

y = -4.344x + 4.691

R² = 0.9483
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Table A7 Linear relationship of pKa of 3-chlorophenol (1×10
-4

M) with the square root of 

ionic strength (I, KClO4) in liquid ammonia at room temperature 

I=CKClO4(M) I
1/2

(M
1/2

) Absorbance at max pKa 

0 0.00 0.053 4.56 

0.005 0.07 0.150 4.12 

0.01 0.10 0.239 3.72 

0.05 0.22 0.360 2.87 

0.1 0.32 0.379 2.56 

 

 

 

  

 

Figure A9 Linear relationship of pKa of 3-chlorophenol (1×10
-4

M) with the square root of 

ionic strength (I, KClO4) in LNH3 at room temperature 
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Table A8 Linear relationship of pKa of 4-carbomethoxy phenol (5×10
-5

M) with the square 

root of ionic strength (I, KClO4) in liquid ammonia at room temperature 

I=CKClO4(M) I
1/2

(M
1/2

) Absorbance at max pKa 

0 0.00 1.41 4.04 

0.01 0.10 1.57 3.84 

0.05 0.22 1.71 3.56 

0.1 0.32 1.78 3.40 

    
 

 

Figure A10 Linear relationship of pKa of 4-carbomethoxy phenol (5×10
-5

M) with the 

square root of ionic strength (I, KClO4) in LNH3 at room temperature 
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Table A9 Linear relationship of pKa of 3-nitrophenol (1×10
-4

M) with the square root of 

ionic strength (I, KClO4) in liquid ammonia at room temperature 

I=CKClO4(M) I
1/2

(M
1/2

) Absorbance at max pKa 

0 0.00 0.123 3.63 

0.005 0.07 0.136 3.38 

0.01 0.10 0.150 2.98 

0.05 0.22 0.157 2.60 

    
 

 

Figure A11 Linear relationship of pKa of 3-nitrophenol (1×10
-4

M) with the square root of 

ionic strength (I, KClO4) in LNH3 at room temperature 
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Table A10, Figure A12 Titration of 4-carbomethoxy phenol (5×10
-5

M) with NH4Cl salt in 

liquid ammonia at room temperature 

[NH4Cl]/M Absorbance 

0 1.500 

1.00×10
-5

 1.420 

2.50×10
-5

 1.318 

5.00×10
-5

 1.176 

1.25×10
-3

 0.927 

2.50×10
-3

 0.846 

3.75×10
-3

 0.757 

5.00×10
-3

 0.734 

1.00×10
-2

 0.781 

5.00×10
-2

 0.782 
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Figure A12
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Table A11, Figure A13 Titration of 4-carbomethoxyphenol (5×10
-5

M) with NH4Cl salt 

(I=0.2M, NaCl) in liquid ammonia at room temperature 

[NH4Cl]/M [NaCl]/M Absorbance 

0 0.20 1.89 

0.01 0.19 1.41 

0.03 0.17 1.29 

0.04 0.16 1.10 

0.05 0.15 1.03 

0.10 0.10 0.914 

0.15 0.05 0.872 

0.20 0 0.874 
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Figure A13
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Table A12, Figure A14 Titration of 4-nitrophenol (2.5×10
-5

M) with NH4Cl salt in liquid 

ammonia at room temperature 

[NH4Cl]/M Absorbance 

0 0.942 

0.01 0.889 

0.02 0.875 

0.05 0.815 

0.10 0.796 

0.50 0.792 

1.00 0.790 

2.00 0.799 
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Figure A14
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Table A13, Figure A15 Titration of 4-nitrophenol (2.5×10
-5

M) with NH4Cl salt (I=0.2M, 

NaCl) in liquid ammonia at room temperature 

[NH4Cl]/M [NaCl]/M Absorbance 

0 0.20 1.085 

0.005 0.195 1.079 

0.03 0.17 0.988 

0.05 0.15 0.914 

0.07 0.13 0.905 

0.10 0.10 0.902 

0.15 0.05 0.819 

0.20 0 0.811 
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Figure A15
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Table A14 Solvolysis rate of benzyl chloride in liquid ammonia at different temperature 

temperature(K) 10
4
kobs(s

-1
) 10

5
k2(M

-1
s

-1
) 

   268.2 1.28 0.338 

283.2 3.25 0.881 

298.2 8.89 2.48 

308.2 13.3 3.79 

  

 

Figure A16 Erying plot for the solvolysis of benzyl chloride in LNH3 
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Table A15 Solvolysis rate of 4-chlorobenzyl chloride in liquid ammonia at different 

temperature 

temperature(K) 10
4
kobs(s

-1
) 10

5
k2(M

-1
s

-1
) 

   268.2 1.48 0.391 

283.2 4.36 1.18 

298.2 9.81 2.74 

308.2 16.8 4.78 

 
 
 

 

Figure A17 Erying plot for the solvolysis of 4-chlorobenzyl chloride in LNH3 
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Table A16 Solvolysis rate of 4-nitrobenzyl chloride in liquid ammonia at different 

temperature 

temperature(K) 10
4
kobs(s

-1
) 10

5
k2(M

-1
s

-1
) 

   268.2 2.42 0.636 

283.2 6.71 1.82 

298.2 15.3 4.27 

308.2 22.9 6.52 

 

 

Figure A18 Erying plot for the solvolysis of 4-nitrobenzyl chloride in LNH3 

 

 

y = -4.841x + 6.129

R² = 0.9969

-12.5

-11.5

-10.5

-9.5

3.2 3.4 3.6 3.8

ln
(k

2
/M

-1
s-1

)

1000/T(K-1)



 

 

 

Appendix A: Tables and Figures 

216 

 

Table A17 Solvolysis rate of 4-methoxybenzyl chloride in liquid ammonia at different 

temperature 

temperature(K) 10
4
kobs(s

-1
) 10

5
k2(M

-1
s

-1
) 

   268.2 2.72 0.717 

283.2 7.99 2.16 

298.2 19.1 5.33 

308.2 32.3 9.23 

 

 

Figure A19 Erying plot for the solvolysis of 4-methoxybenzyl chloride in LNH3 
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Table A18 Solvolysis rate of α-methyl benzyl chloride in liquid ammonia at different 

temperature 

temperature(K) 10
5
kobs(s

-1
) 10

7
k2(M

-1
s

-1
) 

   298.2 0.671 1.87 

308.2 1.62 4.53 

318.2 3.98 11.1 

 

 

Figure A20 Erying plot for the solvolysis of α-methyl benzyl chloride in LNH3 

 

 

 

y = -8.443x + 12.816

R² = 0.9995

-16

-15

-14

-13

3.1 3.2 3.3 3.4

ln
(k

2
/M

-1
s-1

)

1000/T(K-1)



 

 

 

Appendix A: Tables and Figures 

218 

 

Table A19 Salt effects on the solvolysis rates of 4-NFB and 2-NFB in LNH3  

substrate temperature salt   salt concentration/M 10
5
kobs/s

-1
 

4-NFB
 
 20 NaNO3 0 0.79 

   0.5 1.32 

   1 1.55 

   2 2.32 

   3 3.17 

4-NFB
 
 20 NH4Cl 1 1.42 

   2 1.88 

   3 2.28 

2-NFB 25 NaNO3 0 21.5 

   0.5 22.7 

   1 24.7 

   2 27.3 

 

 

Table A20 Calculated ground state free energy of solvation for 4-NFB and 2-NFB in 

different solvents
a
 

substrate 
computational 

method 

water ethanol DMSO DMF 

4-NFB 
HF/6-31+G* -15.97 -28.02 -24.52 -26.84 

DFT/B3LYP
b
 -16.88 -28.71 -24.80 -27.12 

2-NFB 
HF/6-31+G* -23.98 -35.40 -32.26 -34.47 

DFT/B3LYP
b
 -25.05 -36.13 -32.45 -34.66 

a 
Energy unit: kJ/mol. 

b 
basis set: 6-31+G*. 

 

 

 



 

 

 

Appendix A: Tables and Figures 

219 

 

Table A21 Solvolysis of 4-NFB in LNH3 at different temperature 

T(K) kobs/s
-1

 

293.2 7.86×10
-6

 

333.2 1.24×10
-4

 

353.2 3.90×10
-4

 

373.2 1.51×10
-3

 

393.2 2.06×10
-3

 

  
 

 

Figure A21 Erying plot for the solvolysis of 4-NFB in LNH3 
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Table A22 Solvolysis of 2-NFB in LNH3 at different temperature 

T(K) kobs/s
-1

 

  263.2 1.16×10
-5

 

298.2 2.13×10
-4

 

308.2 4.02×10
-4

 

318.2 8.32×10
-4

 

  
 

 

Figure A22 Erying plot for the solvolysis of 2-NFB in LNH3 
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Table A23 Solvolysis of 2,4-DFNB in LNH3 at different temperature 

T(K) kobs/s
-1

 

288.2 4.14×10
-3

 

296.2 6.29×10
-3

 

308.2 1.30×10
-2

 

318.2 2.15×10
-2

 

 

 

Figure A23 Erying plot for the solvolysis of 2,4-DFNB in LNH3 

 

y = -5.1032x + 12.201

R² = 0.9986

-6

-5.5

-5

-4.5

-4

-3.5

3.1 3.2 3.3 3.4 3.5

ln
(k

o
b
s/

s-1
)

1000/T(K-1)



 

 

 

Appendix A: Tables and Figures 

222 

 

Table A24 The rate for benzyl chloride with different concentration of phenoxide in liquid 

ammonia at 25 
o
C (I = 0.3 M, KClO4) 

[phenoxide]/M [KClO4]/M 10
3
kobs/s

-1
 

0 0.3 1.18 

0.05 0.25 2.41 

0.1 0.2 3.23 

0.2 0.1 4.38 

0.3 0 5.30 

    

Table A25 Second order rate constant for 4-substituted benzyl chloride with phenoxide 

anion in liquid ammonia at 25 
o
C  

substituent  σp 10
2
k2(M

-1
s

-1
) 

   4-MeO -0.27 4.02 

4-Me -0.17 1.48 

4-H 0 2.01 

3-MeO 0.12 2.22 

4-Cl 0.23 4.93 

4-COOMe 0.45 5.28 

4-CN 0.66 13.4 
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Table A26 The rate for 4-methoxybenzyl chloride with different concentration of 

phenoxide in liquid ammonia at 25 
o
C (I = 0.1 M, KClO4) 

[PhO
-
]/M [KClO4]/M 10

3
kobs/s

-1
 

0 0.1 2.07 

0.05 0.05 4.18 

0.075 0.025 5.52 

0.1 0 7.19 

 

Table A27 The rate for the benzyl chloride with different concentration of morpholine in 

liquid ammonia at 25 
o
C  

[morpholine]/M 10
3
kobs/s

-1
 

  0 8.89 

0.1 1.30 

0.2 1.60 

0.4 2.38 

0.75 3.62 

1.0 4.18 

 

Table A28 Second order rate constant for 4-substituted benzyl chloride with sodium 

triazolate in liquid ammonia at 25 
o
C  

substituent  σp 10
2
k2(M

-1
s

-1
) 

4-MeO -0.27 0.917 

4-Me -0.17 0.863 

4-H 0 0.942 

4-Cl 0.23 1.58 

4-COOMe 0.45 1.70 

4-NO2 0.78 6.59 
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Table A29 Second order rate constant for 4-substituted benzyl chloride with piperidine in 

liquid ammonia at 25 
o
C  

substituent  σp 10
2
k2(M

-1
s

-1
) 

4-Me -0.17 1.79 

4-H 0 1.70 

4-Cl 0.23 1.34 

4-COOMe 0.45 1.27 

4-CN 0.66 1.96 

4-NO2 0.78 2.06 

 

Table A30 Second order rate constant for 4-substituted benzyl chloride with diethyl 

malonate anion in liquid ammonia at 25 
o
C  

substituent  σp  10
3
k2(M

-1
s

-1
) 

4-MeO -0.27 6.92 

4-Me -0.17 3.04 

4-H 0 2.27 

4-Cl 0.23 6.67 

4-CN 0.66 10.93 

4-NO2 0.78 12.76 
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Table A31 pKa’s of carbon acids in water and DMSO at 25 
o
C 

acid pKa(aq.) pKa(DMSO) 

acetone 19.3 26.5 

dimedone 5.25 11.2 

acetoacetone 9.0 13.3 

2-acetylcyclohexanone 10.1 14.1 

CH3COCHMeCOCH3 11 15.1 

ethyl acetylacetate 10.7 14.2 

diethyl malonate 12.9 16.4 

CH3COCH2COPh 9.4 14.2 

EtCH(CO2Et)2 15.0 18.7 

meldrum’s acid 4.8 7.3 

ethyl acetate 25.6 29.5 

nitroethane 8.6 17.0 

1-nitropropane 9.0 17.2 

2-nitropropane 7.74 16.8 

nitromethane 10.29 17.2 

PhCH2NO2 6.88 12.2 

(4-MePh)CH2NO2 7.11 12.33 

(4-NO2Ph)CH2NO2 5.89 8.62 

(3-NO2Ph)CH2NO2 6.3 10.04 

(4-CNPh)CH2NO2 6.17 9.31 

acetonitrile 28.9 31.3 

malononitrile 11.2 11.1 

EtO2CCH2CN 11.2 13.1 

benzyl cyanide 22.0 21.9 

CH3CH2CN 30.9 32.5 
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Table A32 The rate for reaction between 4-NFB and various concentration of sodium 

phenoxide in LNH3 at 25 
o
C (I=0.3M, KClO4) 

concentration of phenoxide(M) 10
3
kobs/s

-1
 

  0 1.66×10
-2

 

0.05 2.52 

0.1 4.81 

0.2 6.87 

0.3 9.71 

 

Table A33 Solvolysis of 4-NFB in LNH3 at different temperature 

T(K) kobs/s
-1

 

293.2 7.86×10
-6

 

333.2 1.24×10
-4

 

353.2 3.90×10
-4

 

373.2 1.51×10
-3

 

393.2 2.06×10
-3
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Figure A24 Erying plot for the solvolysis of 4-NFB in LNH3 

 

Table A34 The second order rate constant for the reaction between 4-NFB and 4-

substituted phenoxide in LNH3 at 25 
o
C 

4-substituted phenoxide pKa(aq.) pKa(LNH3) k2(M
-1

s
-1

) 

4-MeO 10.27 6.62 0.330 

4-t-Bu 10.31 6.67 0.108 

4-H 9.99 6.02 0.0528 

4-Cl 9.20 4.69 0.0237 

4-COOMe 8.47 4.04 5.31×10
-4

 

4-CN 7.95 2.71 4.22×10
-5
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Table A35 Salt effect on the rate of reaction between 4-NFB and phenoxide anion in 

LNH3 at 25 
o
C 

[NaNO3]/M 10
3
kobs/s

-1
 

0 5.28 

0.2 3.33 

0.5 2.90 

1 2.38 

1.5 1.93 

 

Table A36 The rate for the reaction between 4-NFB and various concentration of 

morpholine in LNH3 at 25 
o
C 

morpholine concentration(M) 10
4
kobs(s

-1
) 

0 0.0786 

0.2 0.967 

0.5 2.275 

0.75 3.058 

   

Table A37 A comparison of the second order rate constant for the reaction between 

sodium azide and 4-NFB in various solvents 

solvent temperature(
o
C) k2(M

-1
s

-1
) krel. 

methanol 25 6.3×10
-8

 1 

nitromethane 25 2.0×10
-4

 3100 

liquid ammonia
b
 25 3.8×10

-4
 6000 

acetonitrile 25 5.0×10
-4

 8000 

DMSO 25 5.0×10
-4

 8000 

DMF 25 2.0×10
-3

 31000 

a  
Except the rate in liquid ammonia, all the other data is from ref. 28. 

b
 The rate of the reaction was measured 

under pseudo first order conditions by using excess of 4-NFB, following the increasing of 4-NAB. The 

ratio between 4-NFB and sodium azide was 10:1, less than 1% 4-NAB decomposed under such condition. 
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Table A38 A comparison of the second order rate constants for the reaction between 

piperidine and 4-NFB in various solvents 

solvent temperature(
o
C) k2(M

-1
s

-1
) krel. reference 

benzene
a
 25 7.8×10

-6
 1 322 

liquid ammonia 25 2.3×10
-3

 300 this work 

tetrahydrofuran
b
 25 3.9×10

-3
 500 323 

DMSO 25 9.0×10
-3

 1150 276d 

a
 The reaction is base catalysed, the second order rate constant increases exponentially with increasing of 

piperidine concentration, the rate cited here is when the concentration of piperidine equals 0.92M.  
b
 Base 

catalysis mechanism was also observed, the rate cited is when the concentration of piperidine equals 1.0 M. 

 

Table A39 The rate for the reaction between 4-NFB and various concentration of sodium 

azide in LNH3 at 25 
o
C (I=3M, NaNO3) 

concentration of sodium azide(M) 10
4
kobs/s

-1
 

  0 0.248 

0.5 0.559 

1 0.869 

1.5 1.223 

2.5 1.810 

3 2.158 

 

Table A40 The rate for the solvolysis of 4-NAB under various concentration of KClO4 in 

LNH3 at 25 
o
C 

concentration of potassium perchlorate(M) 10
4
kobs/s

-1
 

0 0.0511 

0.5 0.848 

1 1.78 

1.5 2.53 
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Table A41 pKa of phenol in acetonitrile (AN) against its aqueous pKa at 25 
o
C 

phenol pKa(aq.) pKa(AN) 

3.5-dinitrophenol 6.66 20.50 

4-nitrophenol 7.14 20.90 

4-cyanophenol 7.95 22.77 

3-nitrophenol 8.35 23.85 

3,4-dichlorophenol 8.51 24.06 

4-bromophenol 9.36 25.53 

3-chlorophenol 9.02 25.04 

3-trifluoromethylphenol 9.04 24.90 

4-chlorophenol 9.20 25.44 

phenol 9.99 27.20 

4-methylphenol 10.28 27.45 

4-tert-butylphenol 10.31 27.48 
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Table A42 pKa of phenol in DMSO against its aqueous pKa at 25 
o
C 

phenol pKa(aq.) pKa(DMSO) 

3,5-dinitrophenol 6.66 10.60 

4-nitrophenol 7.14 11.00 

4-cyanophenol 7.95 13.01 

4-acetylphenol 8.05 13.68 

3-nitrophenol 8.36 13.75 

3-chlorophenol 9.02 15.83 

3-trifluoromethylphenol 9.04 14.30 

3-acetylphenol 9.19 15.14 

3-fluorophenol 9.28 15.88 

4-bromophenol 9.36 15.50 

phenol  9.99 16.47 

3-methylphenol 10.1 16.86 

4-methoxyphenol 10.27 17.58 

4-methylphenol 10.28 16.96 
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Table A43 pKa of phenol in methanol against its aqueous pKa at 25 
o
C 

phenol pKa(aq.) pKa(Methanol) 

3,4-dinitrophenol 5.42 9.46 

3,5-dinitrophenol 6.66 10.20 

4-nitrophenol 7.14 11.24 

4-cyanophenol 7.95 13.27 

3,5-dichlorophenol 8.18 12.94 

3-nitrophenol 8.36 12.40 

3-bromophenol 9.01 13.30 

3-chlorophenol 9.02 13.10 

4-chlorophenol 9.20 14.88 

4-bromophenol 9.36 14.93 

phenol 9.99 14.76 

3-methylphenol 10.10 14.48 

3,5-dimethylphenol 10.20 14.62 

4-tert-butylphenol 10.31 14.52 
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Figure A25 pKa of phenol in methanol against its aqueous pKa at 25 
o
C. 

Table A44 The observed rate constant increases linearly with the increasing mass of 

copper power added for the CuAAC reaction in liquid ammonia at 25 
o
C

a 

Cu
0
/mg 10

4
kobs./s

-1
 

60 0.48 

90 0.70 

120 1.06 

150 1.23 

a
 Reaction conditions: 1mmol phenyl azide, 1mmol phenyl acetylene in 10ml liquid ammonia at 25 

o
C.   
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Derivation 1: 

Modeling the influence of added ammonium ion on the ionisation and ion-pairing 

behaviour of phenols in liquid ammonia 

Two simultaneous equilibria need to be considered: deprotonation of the phenol by 

ammonia to give the ion pair, and dissociation of the ion pair to give the free phenolate and 

ammonium ions.  

ArOH   +   NH3     iK
  {ArO

-
NH4

+
}ip     dK

   ArO
-
   +   NH4

+
 

These equilibria can be defined by the equilibrium constants Ki and Kd. 

[ArOH]

    ]NH[ArO ip4

- 

iK   
ip4

-

4

-

]NH[ArO

]][NH[ArO




dK  

We require a smooth function that describes the ionisation process at low (spectroscopic) 

concentration, where the only ammonium ion present is that produced by dissociation of 

the ion pair, through to conditions where ammonium ion is added to the solution. Solutions 

containing stoichiometric initial concentrations of phenol (c) and ammonium ion (Z) 

(added as ammonium chloride) are made up. Both equilibria must be satisfied, and from 

the mass balance across the phenol/ion pair equilibrium alone. 

[ArOH]T    =  [ArOH] +  [IP], so 
iT KArOH

ArOH
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Proceeding as usual for a dissociation process: 
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This transforms to the quadratic:  

c(1 + Ki)x
2
 + x(Z + KiZ  + KiKd)  - KiKd = 0 

which can be implemented on Excel with Z as the variable. 

For the modeling the influence of added ammonium ion on the ionisation and ion-pairing 

behaviour of phenols in liquid ammonia under constant ionic strength (NaCl), the 

modeling was based on the approximation that the extinction coefficient of ion pair for 

ionised phenol does not change with the nature of counter-ion. 

Derivation 2: 

The pKa of aminium cations are less than -1 in liquid ammonia at room temperature 

The conclusion is based on that the UV absorbance of 1mM 3-chlorophenol in liquid 

ammonia at its λmax increases less than 5% when 0.1M triethylamine is added as base.  

Consider the equilibrium of ionisation of triethylamine in liquid ammonia: 

Et3N

Et3N

Et3NH

Et3NH

NH4

NH4NH3

Ka(aminium) =
[             ]

[         ][         ]

Et3N

Et3N

Et3NH

Et3NH

NH4

NH4NH3

Ka(aminium) =
[             ]

[         ][         ]

 

If the added 0.1M triethylamine has little effect on the ionisation of 1mM 3-chlorophenol 

as observed, therefore the total ammonium ion concentration can be calculated from the 

known initial concentration of 3-chlorophenol and its pKa in liquid ammonia, which is 1.65 

× 10
-4

M.  

The NMR results show that amine hydrochloride salts are fully deprotonated in liquid 

ammonia at room temperature, therefore, the ratio between free amine and protonated 

amine must more than 10
3
 in liquid ammonia. Therefore the pKa (aminium) must less than 

-1 in liquid ammonia at room temperature.     
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Figure N1 
1
H NMR Spectrum of 0.1M benzylamine in liquid ammonia at 25 

o
C  

 

Figure N2 
1
H NMR Spectrum of 0.1M benzylamine hydrochloride in liquid ammonia at 

25 
o
C  

0.1M in LNH3  

_

0.1M in LNH3  



 

 

 

Appendix C: NMR Spectra 

237 

 

 

Figure N3 
1
H NMR Spectrum of 0.1M triethylbenzylammonium chloride in liquid 

ammonia at 25 
o
C  

 

Figure N4 
1
H NMR Spectrum of 0.1M piperidine in liquid ammonia at 25 

o
C  

_

0.1M in LNH3  

0.1M in LNH3 
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Figure N5 
1
H NMR Spectrum of 0.1M piperidine hydro chloride  in liquid ammonia at 25 

o
C  

 

Figure N6 
1
H NMR Spectrum of 1 M piperidine in liquid ammonia at 25 

o
C  

0.1M in LNH3  

 HCl

0.1M in LNH3  

1M in LNH3  
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Figure N7 
1
H NMR Spectrum of 1M piperidine hydrochloride in liquid ammonia at 25 

o
C  

 

Figure N8 
1
H NMR Spectrum of 0.1M dimedone (5,5-dimethylcyclohexane-1,3-dione) in 

liquid ammonia at 25 
o
C  

 HCl

1M in LNH3  

1  
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Figure N9 
13

C NMR Spectrum of 0.1M dimedone (5,5-dimethylcyclohexane-1,3-dione) in 

liquid ammonia at 25 
o
C  

 

Figure N10 DEPT 135 Spectrum of 0.1M dimedone (5,5-dimethylcyclohexane-1,3-dione) 

in liquid ammonia at 25 
o
C  

1  

1  
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Figure N11  
1
H NMR Spectrum of 0.1M 1-nitropropane in liquid ammonia at 25 

o
C  

 

Figure N12  
1
H NMR Spectrum of 0.1M diethyl malonate ester in liquid ammonia at 25 

o
C  
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Figure N13  
1
H NMR Spectrum of 0.1M benzylmalonodinitrile ester in liquid ammonia at 

25 
o
C  

 

Figure N14  
13

C NMR Spectrum of 0.1M benzylmalonodinitrile ester in liquid ammonia at 

25 
o
C  

4  4  

4
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Figure N15 DEPT 135 Spectrum of 0.1M benzylmalonodinitrile ester in liquid ammonia 

at 25 
o
C  

 

Figure N16  
1
H NMR Spectrum of 0.1M benzyl cyanide in liquid ammonia at 25 

o
C, 

integration aromatic H : methylene H = 5:3, relaxation time = 1s 
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Figure N17  
1
H NMR Spectrum of 0.1M benzyl cyanide in liquid ammonia at 25 

o
C, 

integration aromatic H : methylene H = 5:2.4, relaxation time = 5s 

 

Figure N18  
1
H NMR Spectrum of 0.1M benzyl cyanide in liquid ammonia at 25 

o
C, 

integration aromatic H : methylene H = 5:2.2, relaxation time = 10s 
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Figure N19  
13

C NMR Spectrum of 0.1M benzyl cyanide in liquid ammonia at 25 
o
C  

 

Figure N20  
1
H NMR Spectrum of 0.1M malonodinitrile in liquid ammonia at 25 

o
C 

88  

DMSO peak 

5  
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Figure N21  
13

C NMR Spectrum of 0.1M malonodinitrile in liquid ammonia at 25 
o
C 

 

Figure N22  
1
H NMR Spectrum of 0.1M malonodinitrile in liquid ammonia at -40 

o
C 

DMSO 

peak 

88  

88

 

the partial frozen of solvent 

proton exchange at -40
o
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Figure N23  
1
H NMR Spectrum of 0.1M malononitrile with 0.1M NH4Cl and acetonitrile 

as internal reference in liquid ammonia at 25 
o
C 

 

Figure N24  
1
H NMR Spectrum of 0.1M malononitrile with 1M NaNO3 in liquid ammonia 

at 25 
o
C 

88  

internal standard 

acetonitrile peak 

88
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Figure N25  
1
H NMR Spectrum of 0.1M malononitrile with 2 eq. NaNH2 in liquid 

ammonia at 25 
o
C 

 

Figure N26  
1
H NMR Spectrum of 0.1M malononitrile with 2 eq. NaNH2 in liquid 

ammonia at 25 
o
C 

99  

99  
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Figure N27  
1
H NMR Spectrum of 0.1M benzophenone imine in liquid ammonia at 25 

o
C 

 

Figure N28 
19

F NMR Spectrum of 2,4-difluoronitrobenzene in DMSO-d6 at 25 
o
C 
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Figure N29 The products analysis for the solvolysis of 2,4-difluoronitrobenzene in liquid 

ammonia at 25 
o
C by 

19
F NMR spectrum (DMSO-d6) 

  

Figure N30 The 
1
H NMR spectrum for the reaction product of Cu

I
AAC in liquid ammonia 

at room temperature [benzyl azide with phenyl acetylene (1:1), after the vapourisation of 

ammonia,  no purification procedure was performed, the product was directly dissoved in 

DMSO-d6 for the NMR study]   

14

 

15  

38  
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Figure N31 The 
1
H NMR spectrum of phenylacetylene in liquid ammonia at 25 

o
C 

 

Figure N32 The 
1
H NMR spectrum of phenylacetylene-d in DMSO-d6 at 25 

o
C, 87% 

duterium incorporation (ca.) 

PhC≡CH 

PhC≡CD, 87% deuterium 

incorporation 
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OPERATING PROCEDURE AND RISK ASSESSMENT 

 

Equipment  

Several glass pressure vessels of different volume capacity (3 to 35ml); a 30ml glass burette, a 

40ml glass tank; a SGE 10ml pressure syringe; several Omnifit
TM

 2-way valves and 3-way 

valves; a pressure UV cell; a pressure NMR glass tube. 

General procedure 

As described in Experiment section 

Properties of liquid ammonia 

Vapor pressure of liquid ammonia at 25 
o
C, 9.89 bar; at 30 

o
C, 11.7 bar. 

Flammability limits in air 15 - 25% v/v (can explode). 

Perceived hazards 

 Catastrophic failure of vessel with ejection of glass and liquid/vapour into the working 

area. 

 Splashing with ammonia liquid could lead to burns; inhalation of ammonia vapour at 

high concentration will cause unconsciousness. 

 Unexpected pressure increase due to gas evolution in unvented vessels. 

 

Risk mitigation 

The glassware used is purpose made and the glassblower is aware of the intended use and 

required operating pressure. Glassware is pressure tested before use to at least twice the 

working pressure. A limit of 20 mm diameter is applied to new glassware. 

Glassware under pressure is shielded at all times by Perspex sheet of at least 8 mm thickness. 
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The inventory of liquid ammonia in any glass reaction vessel is restricted to 12 ml., and to 20 

ml in feed vessels. 

There will be no lone working with pressurised glassware.  

All reactions will be assessed for possible exothermicity and generation of permanent gases as 

part of the individual experimental risk assessment, and appropriate measures taken e.g., 

control of reactant concentrations and methods of reactant addition. 

PPE 

Goggles will be worn at all times when manipulating liquid ammonia. A full face shield will 

always be available and will be used when judged appropriate. 

Pressure Test Standard Procedures 

1. Pressure test below 10 bar. 

 Connect the vessel to the Omnifit parts and the lid. 

 Connect the vessel to an air or nitrogen cylinder with pressure gauges.  

 Submerge the vessel in a bucket filled with water  

 Gradually increasing the pressure to about 8-10 bar, see if any bubble comes out from 

the vessel (MUST WEAR PROTECTION GOGGLES WHEN DOING THIS!). 

If  no obvious bubbling  is observed, close all the Omni valves connected to the vessel, leave 

the vessel in water for overnight, and monitor the pressure through a pressure gauge 

2. Pressure test above 10 bar. 

 Connect the vessel to Omnifit parts and the lid. 

 Connect the vessel to an HPLC pump, and make the water as eluent. 

 Submerge the vessel in a steel bucket filled with water.  

 Set the flow rate of the HPLC pump to 0.5-1ml/min. 

 Set the pump pressure up-limit to certain value, generally 20 bar. 
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If the pump automatically shut-down after reaching the up-limit, then the vessel is safe under 

that pressure. 

Repeat the procedures described above after 2-3 months, keep the records routinely. 

 

 

 

 

Date                                                               Signature (Research student) 

 

                                                                      Signature (Supervisor) 
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