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Minimal surfaces with arbitrary topology in H2 � R

BARIS COSKUNUZER

We show that any open orientable surface S can be properly embedded in H2 �R
as an area-minimizing surface.

53A10; 53C42

1 Introduction

Minimal surfaces in H2 �R has been an attractive topic for the last two decades.
After Nelli and Rosenberg’s seminal results [15] on minimal surfaces in H2 �R, the
theory has flourished very quickly with substantial results on the existence, regularity
and other properties of minimal and CMC surfaces in H2 �R, from eg Collin and
Rosenberg [1], Coskunuzer, Meeks and Tinaglia [5], Hauswirth, Nelli, Sa Earp and
Toubiana [8], Kloeckner and Mazzeo [10], Martín, Mazzeo and Rodríguez [11], Mazet,
Rodríguez and Rosenberg [14], Nelli, Sa Earp, Santos and Toubiana [16], Rodríguez
and Tinaglia [17] and Sa Earp and Toubiana [18].

Here we are interested in the following question: hat type of surfaces can be embedded
into H2 �R as a complete minimal surface? Ros conjectured that any open orientable
surface can be properly embedded in H2 �R as a minimal surface (see Martín and
Rodríguez [12]). We prove this conjecture.

Theorem 1.1 Any open orientable surface S can be properly embedded in H2 �R

as a complete area-minimizing surface.

In particular, this implies that any open orientable surface S can be realized as an
complete, embedded, minimal surface in H2 �R. The key step is to show a vertical
bridge principle for tall curves in S1

1 �R (Section 3). Then, by using the positive
solutions of the asymptotic plateau problem, we give a general construction to obtain
complete, properly embedded minimal surfaces in H2 �R with arbitrary topology, ie
any (finite or infinite) number of genus and ends.
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3124 Baris Coskunuzer

The outline of the method is as follows: We start with a simple exhaustion of the
open orientable surface S, ie S1 � S2 � � � � � Sn � � � � , where S D

S1
nD1 Sn . In

particular, the surface S is constructed by starting with a disk D D S1 , and by adding
1–handles iteratively, ie SnC1� int.Sn/ is either a pair of pants or a cylinder with a
handle (see Figure 4). Hence, after proving a bridge principle at infinity for H2 �R

for vertical bridges in @1.H2�R/ (Theorem 3.2), we started the construction with an
area-minimizing plane †1 in H2�R. Then, by following the iterative process dictated
by the simple exhaustion, if SnC1 is a pair of pants attached to Sn , then we attach one
vertical bridge in @1.H2 �R/ to the corresponding component of @1†n . Similarly,
if SnC1 is a cylinder with a handle attached to Sn , then we attach two vertical bridges
successively to @1†n (see Figure 5) so that the number of boundary components
of @†n and @†nC1 are the same. By iterating this process, we inductively construct a
properly embedded minimal surface † in H2�R with the same topological type as S.

The organization of the paper is as follows. In the next section, we give some definitions,
and introduce the basic tools which we use in our construction. In Section 3, we show
the bridge principle at infinity in H2 �R for sufficiently long vertical bridges. In
Section 4, we prove the main result above. In Section 5, we discuss generalization of
our result to H –surfaces and the finite total curvature case. We postpone some technical
steps to the appendix, where we also prove a generic uniqueness result for tall curves.
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2 Preliminaries

In this section, we introduce our setup, and the basic tools which we use in our
construction.

Throughout, H2 �RDH2�RDH2�R[@1.H2�R/ represents the natural product
compactification of H2�R. In particular, @1.H2�R/D .S1

1�R/[ .H2�f˙1g/
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Minimal surfaces with arbitrary topology in H2 �R 3125

represents the asymptotic boundary of H2�R. Also, we call S1
1�R as the asymptotic

cylinder, and H2 � f˙1g as the caps at infinity.

Convention Throughout the paper, by curve we mean a finite collection of smooth
Jordan curves unless otherwise stated.

A curve � in @1.H2�R/ is finite if ��S1
1�R. If �\H2�f˙1g¤∅, we say � is

infinite. Throughout the paper, all the curves in @1.H2�R/ will be finite curves unless
stated otherwise. For the asymptotic plateau problem for infinite curves, see [10; 3].

Definition 2.1 A compact surface with boundary † is called an area-minimizing
surface if † has the smallest area among surfaces with the same boundary. A non-
compact surface is called an area-minimizing surface if any compact subsurface is an
area-minimizing surface.

For our construction, one of our key ingredients is the solutions of the following
problem:

The asymptotic plateau problem in H2 � R Let � be a collection of Jordan curves
in S1

1�R. Does there exist a complete , embedded minimal surface † in H2�R with
@1†D � ?

Here, † is an open, complete surface in H2 �R, and @1† represents the asymptotic
boundary of † in @1.H2�R/. Then † is the closure of † in H2 �R, then @1†D
†\ @1.H2 �R/. Here, we stated the most general version of this problem. There
are various results on this problem in the literature. For our construction, we need the
positive solutions in a special case: tall curves (Lemma 2.4).

Definition 2.2 (tall curves) Consider the asymptotic cylinder S1
1 �R with the coor-

dinates .�; t/ where � 2 Œ0; 2�/ and t 2R. We call a rectangle RD Œ�1; �2�� Œt1; t2��

S1
1 �R tall if t2� t1 > � .

We call a finite collection of disjoint simple closed curves � in S1
1�R tall if the region

�cDS1
1�R�� can be written as a union of open tall rectangles RiD .�

i
1
; � i

2
/�.t i

1
; t i

2
/,

ie �c D
S

i Ri .

We call a region � in S1
1 �R a tall region if � can be written as a union of tall

rectangles, ie �D
S

i Ri , where Ri is a tall rectangle.

Note that tall rectangles in S1
1 �R are very special. In a way, they behave like round

circles in S2
1.H

3/.
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Lemma 2.3 [4, Lemma 3.2] Let R be a tall rectangle in S1
1 �R. Then there exists

a unique minimal surface P in H2 �R with @1P D @R.

Furthermore, Sa Earp and Toubiana [18] gave an explicit description of the disk type
minimal surface P [4, Section 3].

The key component of our construction is the positive solution of following special
case of the asymptotic plateau problem:

Lemma 2.4 (tall curves are strongly fillable [4, Theorem 4.1]) Let � be a finite
collection of disjoint , smooth Jordan curves in S1

1 �R with h.�/¤ � . Then there
exists a complete , embedded , area-minimizing surface † in H2 �R with @1†D �
if and only if � is a tall curve.

The next lemma is an asymptotic regularity result for complete, embedded, area-
minimizing surfaces in H2 �R.

Lemma 2.5 [4, Lemma 7.6] Let † be a complete area-minimizing surface in H2�R.
Let † be the closure of † in H2 �R, and let � D @1†. If � is a tall curve , then †
is a surface with boundary.

Remark 2.6 In the lemma above, everything is in the C0 category. In [10, Section 3],
Kloeckner and Mazzeo proved a stronger asymptotic regularity result for complete,
embedded, minimal surfaces in H2 �R bounding Ck;˛ smooth curves in S1

1 �R.

The following classical result of geometric measure theory will be very useful for our
construction:

Lemma 2.7 existence and regularity of area-minimizing surfaces [6, Theorems 5.1.6
and 5.4.7] Let M be a homogeneously regular , closed (or mean convex) 3–manifold.
Let  be a nullhomologous smooth curve in  . Then  bounds an area-minimizing
surface † in M. Furthermore , any such area-minimizing surface is smoothly embed-
ded.

Now we state the convergence theorem for area-minimizing surfaces, which will be
used throughout the paper. Note that we use convergence in the sense of geometric
measure theory, ie the convergence of rectifiable currents in the flat metric.

Lemma 2.8 (convergence) Let f†ig be a sequence of complete area-minimizing
surfaces in H2 � R, where �i D @1†i is a finite collection of closed curves in
S1
1�R. If �i converges to a finite collection of closed curves y� in S1

1�R, then there
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exists a subsequence f†nj
g such that †nj

converges to an area-minimizing surface y†
(possibly empty) with @1 y†� y� . In particular , the convergence is smooth on compact
subsets of H2 �R.

Proof Let �nDBn.0/� Œ�C;C � be convex domains in H2�R, where Bn.0/ is the
closed disk of radius n in H2 with center 0 and y� �S1

1�.�C;C /. For n sufficiently
large, consider the surfaces Sn

i D†i \�n . Since the areas of the surfaces fSn
i ��ng

is uniformly bounded by j@�nj, and @Sn
i can be bounded by using standard techniques.

Hence, if fSn
i g is an infinite sequence, then we get a convergent subsequence of fSn

i g

in �n with nonempty limit Sn . This Sn is an area-minimizing surface in �n by the
compactness theorem for rectifiable currents (codimension-1) with the flat metric of
geometric measure theory (Lemma 2.7). By the regularity theory, the limit Sn is a
smoothly embedded area-minimizing surface in �n .

If the sequence fSn
i g is an infinite sequence for infinitely many n, we get an infinite

sequence of compact area-minimizing surfaces fSng. Then, by using the diagonal se-
quence argument, we can find a subsequence of f†ig converging to an area-minimizing
surface y† with @1 y† � y� as �i !

y� . Note also that for fixed n, the curvatures
of fSn

i g are uniformly bounded by curvature estimates for area-minimizing surfaces.
Hence, with the uniform area bound, we get smooth convergence on compact subsets
of H2 �R. For further details, see [13, Theorem 3.3].

Remark 2.9 In the lemma above, we can allow �i � S1
1 �R to be a collection of

closed curves which may not be simple. Let †i be an area-minimizing surface in
H2 �R with @1†i D �i . As †i is an area-minimizing surface in H2 �R, it must
be embedded by the regularity of area-minimizing surfaces. Hence, in such a case,
†i may not be an embedded surface with boundary in H2 �R, even though †i is an
open embedded surface in H2 �R. Similarly, the limit y† (if nonempty) is an open
embedded surface in H2 �R, even if @1 y†� y� is not embedded. For the case when
� � S1

1 �R is tall and embedded, see also Lemma 2.5.

3 Vertical bridges at infinity

In this section, we prove a bridge principle at infinity for sufficiently long vertical
bridges. Then, by using these bridges, we construct area-minimizing surfaces of
arbitrary topology in H2 �R in the next section.
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Figure 1: Here � D @�˙ consists of the green curves with two components.
Light shaded regions (in the right) represent �C . Left: the case when the
bridge ˛ (red vertical line segment) is in �C . Right: the case when ˛ is
in �� . The family f�tg (yellow curves) foliate yN (dark shaded region).
Here, �� � @ yN consists of the blue curves.

Definition 3.1 Let � be a collection of disjoint Jordan curves in S1
1�R. If � bounds

a unique area-minimizing surface † in H2 �R, we call † a uniquely minimizing
surface, and we call � a uni-curve.

Notation and setup Let L�0
be a vertical line in S1

1 � R, ie L�0
D f�0g � R.

Let K0 > � be as in Lemma A.7. Let � be a smooth tall uni-curve in S1
1 � R

with � \L�0
D ∅ and h.�/ > K0 . Let �˙ be the tall regions in S1

1 �R with
�c D�C[�� and @�˙ D � .

Let ˛ D f�1g � Œc1; c2� be a vertical line segment in S1
1 �R such that ˛ \� D @˛

and ˛ ? � . Notice that h.�/ >K0 implies c2 � c1 >K0 , and ˛\� D @˛ implies
˛ ��C or ˛ ��� .

Consider a small open neighborhood N.� [˛/ of � [˛ in S1
1 �R. If ˛ ��C , let

yN DN.� [˛/\�C . If ˛ ��� , let yN DN.� [˛/\�� . In other words, we only
take one side yN of the open neighborhood N.�[˛/. Foliate yN by the smooth curves
f�t j t 2 .0; �/g with �� � @ yN, and �0 D � [ ˛ (see Figure 1). By taking a smaller
neighborhood N.� [˛/ to start if necessary, we can assume that �t is a smooth tall
curve for any t .

Let S˛ be a thin strip along ˛ in S1
1�R. In particular, if N.˛/ is a small neighborhood

of ˛ in S1
1 � R, then S˛ is the component of N.˛/ � � containing ˛ , ie S˛ �

Œ�1� ı; �1C ı�� Œc1; c2�. In Figure 1, a tall curve � with two components is pictured.
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In the left figure, the bridge ˛ is in �C , while in the right, ˛ is in �� . Notice that if
@˛ is in the same component of � , then ].�t /D ].�/C 1, where ]. � / represents the
number of components (Figure 1, left). Similarly, if @˛ is in the different components
of � , then ].�t /D ].�/� 1 (Figure 1, right).

Now, consider the upper half-plane model for H2 ' f.x;y/ j y > 0g. Without loss
of generality, let �0 2 S1

1.H
2/ correspond to the point at infinity in the upper half-

plane model. We use the upper half-space model for H2 �R with the identification
H2 � R D f.x;y; z/ j y > 0g, where H2 corresponds the xy–half-plane and R

corresponds to the z–coordinate. Hence, the xz–plane will correspond to S1
1�R. By

using the isometries of the hyperbolic plane and the translation along the R–direction,
we assume that �1 2 S1

1.H
2/ will correspond to 0, and the vertical line segment

˛ � S1
1 �R above will have ˛ D f.0; 0/g � Œc1; c2� and S˛ � Œ�ı; ı�� f0g � Œc1; c2�

in .x;y; z/–coordinates.

With this notation, we can state the bridge principle at infinity for vertical bridges in
S1
1 �R as follows.

Theorem 3.2 (vertical bridges at infinity) Let � be a tall uni-curve with h.�/�K0

as above. Define ˛ , �t and S˛ accordingly, as described above. Let † be the uniquely
minimizing surface in H2 � R, where @1† D � . Assume also that † has finite
genus. Then there exists a sufficiently small t > 0 such that �t bounds a unique
area-minimizing surface †t , where †t is homeomorphic to †[S˛ , ie †t '†[S˛ .

Outline of the proof Let �t ! .� [ ˛/ as above. Let †t be the area-minimizing
surface in H2 �R with @1†t D �t . Intuitively, for sufficiently large n> 0, we want
to show that †tn

is just † with a thin strip along ˛ , where the thin strip vanishes as
n!1. We split the proof into four steps. In Step 1, we blow up the sequence f†tn

g

and show that the limit T D lim†tn
cannot contain the vertical segment ˛ . In Step 2,

we show that †t does not develop any genus near the asymptotic boundary. In Step 3,
we show that †t '†[S˛ for t sufficiently close to 0. Finally, in Step 4, by using
generic uniqueness, we show that we can choose t > 0 such that �t bounds a unique
area-minimizing surface †t .

Proof First, by Lemma 2.4, for any �t � S1
1 �R, there exists an area-minimizing

surface †t with @1†t D �t .

As tn& 0, �tn
! � [ ˛ . Since �tn

is a tall curve, there exists an area-minimizing
surface †tn

in H2�R with @1†tn
D �tn

by Lemma 2.4. By Lemma 2.8, there exists
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a convergent subsequence, say †n , converging to an area-minimizing surface T with
@1T � � [˛ . Since � [˛ is a tall curve, the limit T is nonempty by the proof of
Lemma 2.4.

Now, we claim that @1T D � . In other words, the limit area-minimizing surface T

with @1T � � [ ˛ cannot have the vertical segment ˛ in its asymptotic boundary.
Then, since � bounds a unique area-minimizing surface †, @1T D � would imply
T D†.

Step 1 @1T D � .

Proof By the above, we know that @1T � � [˛ . By Lemma 2.5, T D T [ @1T is
a surface with boundary in H2 �R. As H2 �R is topologically a closed ball, T is
separating in H2 �R.

Assume that there is a point p2˛�@˛ such that p2@1T . By using the notation and the
upper half-space model described before the theorem, recall that ˛D f.0; 0/g� Œc1; c2�,
and, without loss of generality, assume p D .0; 0; 0/ 2 ˛ � S1

1 �R. Consider the
hyperbolic plane P DH2�f0gD f.x;y; 0/ j y > 0g in H2�R. Let i be the geodesic
arc in P with @1iDf.�ri ; 0; 0/; .Cri ; 0; 0/g, where ri&0. Let UiDi�Œ��0;C�0�

for some fixed �0 . Then, since p 2 @1T , T \Ui ¤∅ for i >N0 for some N0 . Let
qi 2 T \Ui for any i >N0 .

Now, let 'i be the isometry of H2 � R with 'i.x;y; z/ D ..1=ri/x; .1=ri/y; z/.
Define a sequence of area-minimizing surfaces Ti D 'i.T /. Let y be the geodesic
in P with @1y D f.�1; 0; 0/; .1; 0; 0/g. Hence, by construction, 'i.i/ D y and
'i.Ui/D yU D y � Œ��0;C�0� for any i > 0. Let yqi D 'i.qi/ for any i > N0 . Then
yqi � Ti \ yU for any i > N0 . Again by using Lemma 2.8, we get a subsequence
of fTig which converges to an area-minimizing surface yT . Let RC and R� be two
tall rectangles in opposite sides of ˛ disjoint from � [˛ , and let P˙ be the unique
area-minimizing surfaces with @1P˙ D @R˙ . By Lemma A.1 and Remark A.2,
Ti \P˙ D∅ for any i . Let � be the finite segment in y with @�� PC[P� . Let
yV D �� Œ��0;C�0�. Then fyqig � yV � yU . As yV is compact, fyqig has a convergent
subsequence. This implies yT \ yV ¤ ∅. This proves that the limit area-minimizing
surface yT does not escape to infinity. Furthermore, in the above construction, we can
choose yU as close as we want to infinity f.0; 0/g� Œ��0; �0�, and we can choose �0 > 0

as small as we want, so we conclude that p 2 @1 yT , too.

Now, by the construction of the sequence fTig, yT and hence @1 yT are invariant by the
isometry '�.x;y; z/D .�x; �y; z/. Notice that the isometry '� fixes only the points
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.0; 0/ and 1 in S1
1 and the horizontal lines Li D f.t; 0; ci/ j t 2Rg in S1

1�R. This
implies @1 yT � y� , where y� � ˛ [L1 [ � � � [Lm1

[ ˇ1 [ � � � [ ˇm2
, where ǰ is

a vertical line segment with x–coordinate 0. In particular, in the cylindrical model
for H2 �R, y� � ˛ [

Sm1

iD1
ci
[
Sm2

jD1 ǰ [
Sm3

kD1
y̌

k , where ci
D S1

1 � fcig is
the horizontal circle corresponding to Li in S1

1 �R. Then ǰ D f�1g � Œc
�
j ; c

C
j � and

y̌
k D f�0g � Œd

�
k
; dC

k
�, where �0 �1 and �1 � .0; 0/ in the upper half-space model.

Since h.�/ >K0 , then cCj � c�j >K0 > � and dC
k
� d�

k
>K0 > � by construction.

This implies the area-minimizing surface yT satisfies the conditions of Lemma A.7. By
the lemma, we conclude that @1 yT �

Sm1

iD1
ci

, ie @1 yT is a collection of horizontal
circles in S1

1 �R, and cannot have any vertical line segments like ˛ . However, this
gives a contradiction as p 2 @1 yT . Step 1 follows.

Now, we show that †t does not develop genus near the asymptotic boundary.

Step 2 There exists a� > 0 such that for sufficiently large n, †n\Ra�
has no genus ,

ie †n\Ra�
' �n � .0; a�/.

Proof Assume on the contrary that for an& 0, there exists a subsequence †n\Ran

with positive genus. Recall that by Lemma 2.5, †nD†n[�n is a surface with boundary
in H2 �R and separating in H2 �R. Let �n be the component of H2 �R �†n

which contains the bridge ˛ . Since †n \Ran
has positive genus, then �n \Ran

must be a nontrivial handlebody, ie not a 3–ball. Hence, there must be a point pn in
†n \Ran

, where the normal vector vpn
D h0; 1; 0i is pointing inside �n by Morse

theory. By genericity of Morse functions, we can modify the 1 point in @1H2 if
necessary to get y –coordinate as a Morse function.

Let pn D .xn;yn; zn/. By construction, yn! 0 as yn < an . Consider the isometry
 n.x;y; z/D ..x�xn/=yn;y=yn; z� zn/, which is a translation by �.xn; 0; 0/ first
by a parabolic isometry of H2 , and translation by �.0; 0; zn/ in the R–direction. Then,
by composing with the hyperbolic isometry .x;y; z/! .x=yn;y=yn; z/, we get the
isometry  n of H2 �R. Then consider the sequence of area-minimizing surfaces
†0nD n.†n/ and p0nD n.pn/D .0; 1; 0/. Let � 0nD n.�n/D @1†

0
n . After passing

to a subsequence, we get the limits †0n!†0, p0n! p0 D .0; 1; 0/ 2†0 and � 0n! � 0.
Note also that by construction the normal vector to the area-minimizing surface †0 at
p0 is vpn

! v0p D< 0; 1; 0> pointing inside �0.

Consider � 0 D lim� 0n . Let lz be the z–axis in S1
1�R, ie lz D f.0; 0; t/ j t 2Rg. Let

� 0\lzDf.0; 0; c1/; .0; 0; c2/; : : : ; .0; 0; ck/g. Notice that as h.�/>K0 , jci�cj j>K0
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Lc6

Lc5

ˇ

Lc3

Lc4

c5

ˇ

c3

�
0

Figure 2: � 0�S1
1�R is pictured in the upper half-space model and cylinder

model for H2 �R .

for any i ¤ j. Recall that @˛ D f.0; 0; c1/; .0; 0; c2/g. Note that by Lemma A.7, � 0

cannot have a vertical line segment j̨ Df.0; 0/g� Œc
�
j ; c

C
j �. Hence, by the construction

of � 0n , we get � 0 D ˇ[Lc3
[ � � � [Lck

where Lci
is the horizontal line in S1

1 �R

with Lci
, and ˇ is the component of � 0 near ˛ (see Figure 2, left). In particular, in

cylinder model for H2�R, Lci
is the horizontal circle ci

DS1
1�fcig in S1

1�R, and
ˇ is a tall rectangle ˇD @R, where RD Œı; 2��ı��Œc1; c2� assuming ˛Df0g�Œc0

1
; c0

2
�

(see Figure 2, right). Note that as  n is only translating in the z–direction, c1� c2 D

c0
1
� c0

2
. Here, the limit area-minimizing surface †0 is nonempty, as .0; 0; 1/ 2†0 by

construction. Also, ı depends on the comparison between yn& 0 and d.�n; ˛/& 0.
As †0 does not escape infinity, we make sure that such a ı < � exists. Indeed, ı > 0

can be explicitly computed by using the fact that there is a unique minimal surface
Pˇ in H2 �R containing (0,0,1) with @1Pˇ D ˇ D @R by Lemma 2.3 as R is a tall
rectangle.

†0 bounds a unique area-minimizing surface with †0DPˇ[Pc1
[� � �[Pck

, where Pˇ

is the unique area-minimizing surface with @1Pˇ D ˇ by Lemma 2.3, and Pci
is the

horizontal plane H2�fcig in H2�R with @1Pci
D ci

. This is because jci�cj j>� ,
so there is no connected minimal surface with asymptotic boundary containing more
than one component of � 0. In particular, if there were a connected area-minimizing
surface Y with @1Y � c1

[ c2
with c2 � c1 > � , one could place a minimal

catenoid C with @1C D c0
1
[ c0

2
, where c0

1
> c1 and c0

2
< c2 with c0

2
� c0

1
D � � � ,

so that C \S D ∅ [4, Section 7.1]. Then, by using an hyperbolic isometry 't , one
could push C towards S horizontally. As S is connected, there must be a first point
of contact, which gives a contradiction with the maximum principle. This implies
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each component of � 0 bounds a component of †0. Since each component is uniquely
minimizing, †0 is a uniquely minimizing surface with @1†0 D � 0.

Hence, by construction, p0 D .0; 0; 1/ is on the Pˇ component of †0. Recall that the
normal vector v0pDh0; 1; 0i points inside of �0, which is the component of H2�R�†0

containing ˛ . However, Pˇ is a plane, and the normal vector v0p points outside of �0,
not inside. This is a contradiction. Step 2 follows.

Step 3 For sufficiently small t > 0, †t is homeomorphic to †[S˛ .

Proof Assume that for �n& 0 there exists 0< tn < �n such that †tn
, say †n , is not

homeomorphic to y†D†[S˛ . Since the number of ends are same, this means †n

and y† have different genus.

Let RaDf0�y�ag in H2 �R be as in Step 2. Let KaDfy�ag and let †aD†\Ka .
Then, since †n!† converges smoothly on compact sets, †a

n!†a smoothly. Hence,
by Gauss–Bonnet, †a

n and †a must have the same genus. By Step 2, this implies for
sufficiently large n, †n and † must have the same genus. However, this contradicts
with our assumption that †n and † have different genus for any n. Therefore, this
implies that for sufficiently small �0> 0, †t is homeomorphic to †[S˛ for 0< t <�0.
Step 3 follows.

Step 4 For all but countably many 0 < t < �0, �t bounds a unique area-minimizing
surface in H2 �R.

Proof We adapt the proof of Theorem A.5 to this case. The family of tall curves
f�t j t 2 .0; �/g foliates yN , where @ yN D �� [� and �0 D � [˛ . In particular, for any
0< t1 < t2 < � , �t1

\�t2
D∅. If †t is an area-minimizing surface in H2 �R, then

†t1
\†t2

D∅ too, by Lemma A.1. By Lemma A.3, if �s does not bound a unique
area-minimizing surface †s , then we can define two disjoint canonical minimizing †Cs
and †�s with @1†˙s D �s . Then, by the proof of Theorem A.5, for all but countably
many s 2 Œ0; �0�, �s bounds a unique area-minimizing surface. Step 4 follows.

Steps 1–3 imply the existence of �0>0 such that any †t with @1†t D�t for t 2 .0; �0/

is homeomorphic to †[ S˛ . Step 4 implies the generic uniqueness for the family
f�t j t 2 .0; �

0/g. Hence, Steps 1–4 together imply the existence of a smooth curve �t

with t 2 .0; �0/, where �t bounds a unique area-minimizing surface †t , and †t has
the desired topology, ie †t '†[S˛ . The proof of the theorem follows.
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4 Minimal surfaces of arbitrary topology in H2 � R

In this section, we prove that any open orientable surface can be embedded in H2 �R

as an area-minimizing surface. First, we show a simple construction for the finite
topology case. Then we finish the proof by giving a very general construction for the
infinite topology case.

4.1 Surfaces with finite topology

While our main result later applies to both finite and infinite topology orientable surfaces,
we start with a very simple construction for surfaces with finite topology as a warm-up.
In particular, by using vertical bridges as 1–handles, we give a construction of an
area-minimizing surface †g

k
of genus g with k ends.

Euler characteristics Recall that if T
g

k
is an orientable surface of genus g , and k

boundary components, then �.T g

k
/ D 2� 2g � k . Adding a bridge (a 1–handle in

topological terms) to a surface decreases the Euler characteristics by one. On the other
hand, if you add a bridge to a surface where the endpoints of the bridge are in the same
boundary component, then the number of boundary components increases by one. If
you add a bridge whose endpoints are in the different boundary components, then the
number of boundary components decreases by one (see Figure 1).

Now, adding a bridge to the same boundary component of a surface would increase
the number of ends. In other words, let SnC1 obtained from Sn by attaching a
bridge (1–handle) to Sn whose endpoints are in the same component of @Sn . Then
�.SnC1/D �.Sn/�1, g.Sn/D g.SnC1/ and ].@SnC1/D ].@Sn/C1, where ] is the
number of components.

If we want to increase the genus, first add a bridge ˛n whose endpoints are in the same
component of @Sn , and get S 0n ' Sn \ S˛n

, where Sn \ S˛n
represents the surface

obtained by adding a bridge (thin strip) to Sn along ˛n . Then, by adding another
bridge ˛0n whose endpoints are in different components of S 0n , one gets SnC1'S 0n\S˛0n .
Hence, �.SnC1/D�.Sn/�2, and the number of boundary components are same. This
implies that if Sn ' T

g

k
, then SnC1 ' T

gC1

k
. This shows that SnC1 is obtained by

attaching a cylinder with handle to Sn , ie SnC1�Sn is a cylinder with handle.

Construction for finite topology surfaces There is a very elementary construction
for open orientable surfaces of finite topology as follows: Let S be an open orientable
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Figure 3: Left: the tall curve �1 which bounds the area-minimizing surface
†1�PC[P� \S� . Right: We first add bridges ˇ1; : : : ; ˇk to † to increase
the number of ends by k (here for k D 3). Then we add g pairs of bridges
�1; �

0
1
; : : : ; �g; �

0
g to increase the genus (here g D 2). Hence, † is a genus 2

surface with four ends.

surface of genus g and k ends. Construct the area-minimizing surface †1 which
is topologically a disk as in Figure 3, left. For k C 1 ends, add k vertical bridges
ˇ1; ˇ2; : : : ; ˇk to †1 as in Figure 3, right. Then, for genus g , add g pairs of vertical
bridges �i and �0i successively as in Figure 3, right. Hence, the final surface † is an
area-minimizing surface of genus g and k C 1 ends. Furthermore, † is a compact
embedded surface with boundary in H2 �R by Lemma 2.5.

4.2 Surfaces with infinite topology

Now we prove any open orientable surface (finite or infinite topology) can be embedded
in H2�R as an area-minimizing surface. In this part, we mainly follow the techniques
in [13; 2]. In particular, for a given surface S, we start with a compact exhaustion of S,
S1 � S2 � � � � � Sn � � � � , and by using the bridge principle proved in the previous
section, we inductively construct the area-minimizing surface with the desired topology.

In particular, by [7], for any open orientable surface S, there exists a simple exhaustion.
A simple exhaustion S1 � S2 � � � � � Sn � � � � is a compact exhaustion with the
following properties: S1 is a disk, and SnC1�Sn contains a unique nonannular piece,
which is either a cylinder with a handle or a pair of pants, by [7] (see Figure 4).

First, we need a lemma which will be used in the construction.
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S1

S2
S3 S4 S5

Figure 4: In the simple exhaustion of S, S1 is a disk, and SnC1�Sn contains
a unique nonannular part, which is a pair of pants (eg S4�S3 ) or a cylinder
with a handle (eg S3�S2 ).

Lemma 4.1 Let RD Œ�1; 1�� Œ�4�; 4�� and Rc D Œ�c; c�� Œ�2�; 2�� be rectangles
in S1

1�R with 0< c < 1. Let  D @R, c D @Rc and �c D  [c . Then there exists
� > 0 such that , for any 0< c � � , the area-minimizing surface †c with @1†c D �c

is P [Pc , where P and Pc are the unique area-minimizing surfaces with @1P D 

and @1Pc D c .

Proof If the area-minimizing surface †c is not connected, then it must be P [Pc

because the rectangles  and c bound unique area-minimizing surfaces P and Pc ,
respectively, by Lemma 2.3. Hence, we assume on the contrary that the area-minimizing
surface †c is connected for any 0 < c < 1. We abuse notation and say †n D †1=n .
Consider the sequence f†ng. By Lemma 2.8, we get a convergent subsequence and
limiting area-minimizing surface † with @1†�  [ˇ , where ˇ is the vertical line
segment f0g � Œ�2�; 2��.

Let Q D
�
�

1
2
; 1

2

�
� Œ�3�; 3�� be another rectangle in S1

1 � R, and let T be the
unique area-minimizing surface in H2 �R with @1T D @Q. Since, by assumption,
†n is connected, and T separates the boundary components n and  of †n , then
T \†n ¤∅ for any n> 2. By construction, this implies †\T ¤∅.

As @1†�  [ˇ , we have two cases. Either @1†D  or @1†D  [ˇ . If @1†D  ,
then  bounds a unique area-minimizing surface P. In other words, † must be P and
P \T D∅. This is a contradiction.

If @1†D  [ˇ , we get a contradiction as follows. Let’s go back to cylinder model of
H2 �R. Then we can represent  D @R, where RD Œ��1; �1�� Œ�4�; 4�� for some
�1 2 .0; �/, and ˇ D f0g � Œ�2�; 2�� in S1

1 �R. Let 't be the isometry of H2 �R
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corresponding to 't .x;y; z/D .tx; ty; z/ in the upper half-space model of H2�R. In
particular, f�g�R represents the point at infinity, and 't pushes every point in H2�R

from f0g �R to f�g �R in the Poincaré disk model. Let †n D 'n.†/. Again, by
Lemma 2.8, we get a limit area-minimizing surface y† with @1 y†� �C[��[ˇ[˛ ,
where �˙ D S1

1 � f˙4�g and ˛ D f�g � Œ�4�; 4��.

We claim that y† is nonempty and, furthermore, @1 y†D �C[��[ˇ[˛ . Since the
original † is connected by assumption, †\H2�fcg contains an infinite curve lc with
@1lc D f.0; c/; .�1; c/g, where c 2 .�2�; 2�/. Then 'n.lc/D ln

c � †
n \H2 � fcg,

and ln
c converges to a line Olc � y†\H2�fcg with @1 Olc D f.0; c/; .�; c/g. This shows

@1†D �
C[��[ˇ[˛ .

Finally, let C be Daniel’s parabolic catenoid with @1C D �C[ ��[ � , where �C D
S1
1 �

˚
7�
2

	
, �� D S1

1 �
˚

5�
2

	
and � D f�g �

�
5�
2
; 7�

2

�
. As @1C is invariant by 't ,

Ct't .C/ is also a parabolic catenoid with @1Ct D @1C . Furthermore, for sufficiently
small � > 0, C� is very close to asymptotic cylinder S1

1 �R. Hence, we can choose
sufficiently small � > 0 with C� \ y† D ∅. Then, by pushing C� towards y† via
isometries 't , we get a first point of contact Ct0

with y† which contradicts to the
maximum principle. The proof follows.

Now we are ready to prove the existence result for properly embedded area-minimizing
surfaces in H2 �R with arbitrary topology.

Theorem 4.2 Any open orientable surface S can be embedded in H2 � R as an
area-minimizing surface †.

Proof Let S be an open orientable surface. Now, we inductively construct an area-
minimizing surface † in H2 �R which is homeomorphic to S. Let S1 � S2 � � � � �

Sn � � � � be a simple exhaustion of S, ie SnC1 � Sn contains a unique nonannular
piece, which is either a cylinder with a handle or a pair of pants.

By following the simple exhaustion, we define a sequence of area-minimizing surfaces
†n so that †n is homeomorphic to Sn , ie †n ' Sn . Furthermore, the sequence †n

induces the same simple exhaustion for the limiting surface †. Hence, we get an
area-minimizing surface † which is homeomorphic to the given surface S.

Now we follow the idea described in Section 4.1. Note that we are allowed to use only
vertical bridges.

Let R D
�
�
�
2
;C�

2

�
� Œ0;K0� be a tall rectangle in S1

1 � R, where K0 is as in
Theorem 3.2. Let †1 be the unique area-minimizing surface with @1†1 D @R.
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Clearly, †1 ' S1 . Note that throughout our construction, our curves need to be tall
curves f�ng of height �K0 in order to apply the vertical bridge principle (Theorem 3.2)
successively.

We define †n inductively as follows. We will add only vertical bridges to �n so that the
resulting curve �nC1 bounds a unique area-minimizing surface †nC1 by Theorem 3.2.

By Section 4.1, adding one bridge ˇnC1 to †n , where the endpoints of ˇnC1 are in the
same component of �n D @1†n , would suffice to increase the number of ends of †n

by one. This operation corresponds to adding a pair of pants to the surface. Similarly,
by Section 4.1, adding two bridges successively so that the endpoints of the first bridge
are in the same component and the endpoints of the second bridge are in different
components (components containing the opposite sides of the first bridge) increases the
genus, and keeps the number of the ends same. This operation corresponds to adding a
cylinder with handle to the surface.

Now we continue inductively to construct the sequence f†ng dictated by the simple
exhaustion (see Figure 4). There are two cases: SnC1 �Sn contains either a pair of
pants or a cylinder with handle.

Pair of pants case Assume that SnC1�Sn contains a pair of pants. Let the pair of
pants be attached to the component  in @Sn . Let  0 be the corresponding component
of �n D @1†n . By construction,  0 bounds a disk D in S1

1 �R with D\�n D 
0.

Let ˇnD fcng� Œ0;K0� be a vertical segment with ˇn �D. Since †n bounds a unique
area-minimizing surface by construction, and ˇn ? �n , we can apply Theorem 3.2, and
get an area-minimizing surface †nC1 , where †nC1 is homeomorphic to SnC1 .

Cylinder with handle case Assume that SnC1�Sn contains a cylinder with handle.
Again, let the pair of pants be attached to the component  in @Sn . Let  0 be the
corresponding component of �n D @1†n . By construction,  0 bounds a disk D in
S1
1 �R with D \ �n D 

0. Let ˇn be a vertical segment fcng � Œ0;K0� such that
.cn��n; cnC�n/�R\�n �D for some �n > 0. Again, we apply Theorem 3.2 for ˇn

and †n , and get an area-minimizing surface †0
nC1

. Say � 0
nC1
D @1†

0
nC1

. We can
choose the thickness of the bridge along ˇn as small as we want. So, we can assume
that the thickness of the bridge along ˇn is smaller than 1

4
�:�n , where � > 0 is the

constant in Lemma 4.1.

Now consider the rectangle QnD
�
cn�

1
2
�:�n; cnC

1
2
�:�n

�
�Œ�6��K0;�4��K0� (see

Figure 5). Let Tn be the unique area-minimizing surface in H2�R with @1TnD @Qn
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ˇ1 ˇ2 ˇ3

�4

@W C

2

@W �

2

@Q2

��

2
�C

2

Figure 5: Here S2�S1 is a pair of pants and S3�S2 is a cylinder with handle.
When constructing †3 , ˇ2 is attached to the corresponding component in �2 ,
then a hanger, the pair of vertical bridges �˙2 and a thin rectangle Qn are
added to obtain the cylinder with handle. Here @W ˙

2
is needed to show that

†02[T2 is a uniquely area-minimizing surface to apply Theorem 3.2.

by Lemma 2.3. Let y�nC1 D � 0
nC1
[ @Qn . We claim that y�nC1 bounds a unique

area-minimizing surface y†nC1 in H2�R and y†nC1D†
0
nC1
[Tn . Notice that †0

nC1

and Tn are uniquely minimizing surfaces. Hence, if we show that y�nC1 cannot bound
any connected area-minimizing surface, then we are done.

Assume that y�nC1 bounds a connected area-minimizing surface y†nC1 . Consider the
pair of rectangles

W Cn D Œcn� �n; cnC �n�� Œ�9� �K0;�� �K0�;

W �n D Œcn� �:�n; cnC �:�n�� Œ�7� �K0;�3� �K0�:

Let ‡n D @W Cn [ @W
�

n . Then, by Lemma 4.1, the uniquely minimizing surface
Fn with @1Fn D ‡n must be PCn [P�n , where P˙n is the unique area-minimizing
surface with @1P˙n D @W ˙n . As y�nC1 \ ‡n D ∅, the area-minimizing surfaces
y�nC1 and Fn must be disjoint by Lemma A.1 (see Figure 5). On the other hand, the
area-minimizing surface Fn D PCn [P�n separates the components, � 0

nC1
and @Qn ,

of y�nC1 . Since y�nC1\Fn D∅, this implies y†nC1 is disconnected. This proves that
y†nC1 D†

0
nC1
[Tn is the unique area-minimizing surface with @1 y†nC1 D

y�nC1 .
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Now let �Cn D
˚
cnC

1
4
�:�n

	
� Œ�4� �K0; 0� be the vertical arc segment in S1

1 �R.
When we apply Theorem 3.2 to the uniquely minimizing surface y†nC1 and the arc �Cn ,
we obtain a new uniquely minimizing surface y†0

nC1
. Similarly, let ��n D

˚
cn�

1
4
�:�n

	
�

Œ�4� �K0; 0�. Again, we apply Theorem 3.2 for y†0
nC1

and ��n ; we obtain another
uniquely minimizing surface †nC1 . Furthermore, we assume that both the bridges
along �Cn and ��n have thickness less than 1

4
�:�n . The pair of vertical bridges along �˙n

with the thin rectangle Qn looks like a hanging picture frame (see Figure 5).

By construction, †nC1 is homeomorphic to SnC1 . In particular, we have added a
cylinder with handle to †n along the corresponding component  0 in �n . This finishes
the description of the inductive step, when SnC1�Sn contains a cylinder with handle.

The limit and the properly embeddedness Notice that in the bridge principle at
infinity (Theorem 3.2), as the thickness of the bridge ˛ goes to 0, the height of the
strip S˛ goes to 0, too. In particular, let � , †, ˛ , �t and †t be as in the statement of
Theorem 3.2. Let S t

˛D†t\N�.˛/, where N�.˛/ is the sufficiently small neighborhood
of ˛ in the compactification H2 �R. Then, as t & 0, d.Lz;S

t
˛/!1, where Lz is

the vertical line through the origin in H2 �R, ie Lz D f0g �R. This is because, as
t & 0, †t !†.

Let yBr D Br .0/� Œ�2K0; 2K0� be a compact region in H2 �R, where Br .0/ is the
r –ball around the origin in H2 . As tn& 0; then the thickness of the bridge in †n

near ˇn (or �˙n ) goes to 0. Hence, by choosing tn < 1=10n2 sufficiently small, we
can make sure that d.Lz;S

tn

ˇn
/ > rn and d.Lz;S

tn

�˙n
/ > rn for a sequence rn%1.

This implies that, for m� n, yBrn
\†m ' Sn as the thickness (and hence height) of

the bridges ˇn and �n goes to 0.

Now, †n is a sequence of absolutely area-minimizing surfaces in H2 � R. Let
†0n D

yBrn
\†n . By Lemma 2.8, by using a diagonal sequence argument, we get a

limiting surface † in H2�R where the convergence is smooth on compact sets. † is
an area-minimizing surface in H2 �R as it is the limit of area-minimizing surfaces.
Notice that for m � n, yBrn

\†m ' Sn and the convergence is smooth on compact
sets. This implies †\ yBrn

' Sn for any n, and hence †' S.

We also note that the bridges do not collapse in the limit as, for every bridge along ˇn

and �˙n , we can place a thin, tall rectangle Rn “under” the bridge disjoint from the
minimizing sequence. In other words, the area-minimizing plane Pn with @1PnDRn

Algebraic & Geometric Topology, Volume 21 (2021)



Minimal surfaces with arbitrary topology in H2 �R 3141

(Lemma 2.3) will be a barrier for bridges to collapse, as, for any m> n, Pn\†mD∅
since �m\Rn D∅ by Lemma A.1.

Finally, † is properly embedded in H2 �R as, for any compact set K � H2 �R,
there exists rn > 0 with K � yBrn

and yBrn
\†' Sn , which is compact. The proof of

the theorem follows.

5 Final remarks

5.1 H –surfaces

The constant mean curvature surfaces could be considered as a natural candidate to
generalize our results. Hence, consider the following question:

Question What kind of surfaces can be embedded in H2�R as a complete H –surface
for 0<H < 1

2
?

In other words, is it possible to embed any open orientable surface S in H2 �R as a
complete H –surface for 0 <H < 1

2
. A positive answer to this question would be a

generalization of Theorem 4.2 to H –surfaces.

Unfortunately, it is hardly possible to generalize our methods to this problem. By [16],
for H > 0, if † is an H –surface with @1†¤∅ and †[@1† is a C 1 surface up to
the boundary, then @1† must be a collection of vertical line segments in S1

1 �R. In
particular, this implies the asymptotic plateau problem practically has no solution for
H –surfaces in H2 �R, since, if � is a C 1 simple closed curve in S1

1 �R, there is
no H –surface † in H2�R where †[� is a C 1 surface up to the boundary. Hence,
because of this result, our methods for Theorem 4.2 cannot be generalized to this case.
However, it might be possible to construct a complete H –surface † of any finite
topology with only vertical ends, ie @1† consists of only vertical lines in S1

1 �R.

5.2 Finite total curvature

Our construction of area-minimizing surfaces in H2 �R produces surfaces of infinite
total curvature. In [11], Martín, Mazzeo and Rodríguez recently showed that for any
g � 0, there exists a complete, finite total curvature, embedded minimal surface †g;kg

in H2�R with genus g and kg ends for sufficiently large kg . Even though this result
is great progress to construct examples of minimal surfaces of finite total curvature, the
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question of existence (or nonexistence) of minimal surfaces of finite total curvature
with any finite topology is still a very interesting open problem.

It is well known that a complete, properly embedded, minimal surface in H2 �R with
finite total curvature also has finite topology [9]. On the other hand, there are surfaces
with finite topology which cannot be embedded in H2 �R as a complete minimal
surface with finite total curvature. For example, by [8], a twice-punctured torus cannot
be embedded as a complete minimal surface with finite total curvature into H2 �R.
Hence, the following question becomes very interesting:

Question For which g � 0, and k � 0, does there exist a complete embedded minimal
surface S

g

k
in H2 �R with finite total curvature , where S

g

k
is an orientable surface of

genus g with k ends?

Appendix

In this section, we prove some technical steps used in our construction. Basically, we
prove two technical result in this section. The first one is the generic uniqueness result
(Theorem A.5), which is needed in our construction in the main theorem (Theorem 4.2,
Step 4). In particular, to apply the bridge principle, we needed unique curves, and this
generic uniqueness result give us the desired curve with a slight modification of the
original curve. The second result is an important technical step (Lemma A.7), which is
needed to prove the vertical bridge principle (Theorem 3.2).

A.1 Generic uniqueness of area-minimizing surfaces

In this part, we prove a generic uniqueness result for tall curves in S1
1 �R. We start

with a lemma which roughly says that disjoint curves in S1
1 � R bounds disjoint

area-minimizing surfaces in H2 �R.

Lemma A.1 (disjointness) Let �1 and �2 be two closed regions in @1.H2 �R/,
where @�i D �i is a finite collection of disjoint simple closed curves. Further assume
that �1\�2 D∅ or �1 � int.�2/. If †1 and †2 are area-minimizing surfaces in
H2 �R with @1†i D �i , then †1\†2 D∅.

Proof Assume that †1\†2 ¤∅. As both surfaces are minimal, by the maximum
principle, the intersection cannot contain isolated points. As �1 \ �2 D ∅, then
†1\†2 D ˛ , which is a collection of closed curves.
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Since H2 �R is topologically a ball, any surface would be separating. Let �i be the
components of H2�R�†i with @1 x�i D�i . In other words, as †i [�i is a closed
surface in the contractible space H2 �R, it bounds a region �i in H2 �R.

If �1 � int.�2/, let S1 D†1��2 and let S2 D†2\
x�1 . Then, as �1 � int.�2/,

with this operation, we cut the surfaces Si from the noncompact parts in †i . Therefore,
@1S1 D @1S2 D∅ and both S1 and S2 are compact surfaces with @S1 D @S2 D ˛ .

If �1\�2 D∅, let S1 D†1\
x�2 and let S2 D†2\

x�1 . Again, as �1\�2 D∅,
@1S1 D @1S2 D∅ and both S1 and S2 are compact surfaces with @S1 D @S2 D ˛ .

As †1 and †2 are area-minimizing surfaces, so are S1 �†1 and S2 �†2 . Hence,
as @S1 D @S2 , jS1j D jS2j, where j � j represents the area. Let T1 be a compact
subsurface in †1 containing S1 , ie S1 � T1 � †1 . Consider T 0

1
D .T1 �S1/[S2 .

Since T1 is area-minimizing and jT 0
1
j D jT1j, so is T 0

1
. However, T 0

1
is not smooth

along ˛ , which contradicts the regularity of area-minimizing surfaces (Lemma 2.7).
The proof follows.

Remark A.2 In the lemma above, �1\�2D∅ or �1� int.�2/ are indeed equivalent
conditions. This is because we can always replace �2 with �c

2
. Notice also that the

proof above is simply a swapping argument (S1 and S2 ) for area-minimizing surfaces,
and the proof actually works for the more general case. In particular, we do not need �i

to be a collection of simple closed curves, but only to be �iD@�i , where �1� int.�2/

for the swapping argument. So, with the same proof, the lemma above can also be
stated as follows: Let �1 and �2 be two open regions in @1.H2�R/ with �1��2 .
If †1 and †2 are area-minimizing surfaces in H2 � R with @1†i D @�i , then
†1\†2 D∅.

Now we show that if a tall curve � �S1
1�R does not bound a unique area-minimizing

surface in H2 �R, it bounds two canonical area-minimizing surfaces †˙ , where any
other area-minimizing surface †0 with @1†0 D � must be “between” †C and †� .

Lemma A.3 (canonical surfaces) Let � be a tall curve in S1
1�R. Then either there

exists a unique area-minimizing surface † in H2 �R with @1† D � , or there are
two canonical disjoint extremal area-minimizing surfaces †C and †� in H2 �R with
@1†

˙ D � .

Proof We mainly adapt the techniques of [2, Lemma 4.3] (a similar result for H3 ) to
the H2�R context. Let � be a tall curve in S1

1�R, and let �c D�C[�� , where
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�˙ are two tall regions in S1
1�R with @�CD @��D� . Let N�.�/ be a small open

neighborhood of � in S1
1 �R. Let NC DN�.�/\�

C and let N� DN�.�/\�
� .

Let the family of curves f�˙t j t 2 Œ0; �/g foliate the region N˙ with �0 D � . Let
�˙n D �

˙
tn

for tn& 0. By choosing � > 0 sufficiently small, we can assume �˙n is tall
for any n> 0. Let †˙n be an area-minimizing surface in H2 �R with @1†˙n D �

˙
n

by Lemma 2.4.

By replacing the sequence †n with yBn \†
˙
n in the proof of Lemma 2.4, we can

show that †Cn converges (up to a subsequence) to an area-minimizing surface †C

with @1†C D � . Similarly, †�n converges to an area-minimizing surface †� with
@1†

� D � .

Assume that †C ¤ †� and they are not disjoint. By the maximum principle, they
cannot have isolated points in the intersection. Therefore, nontrivial intersection implies
some part of †� lies above †C , ie some part of †� separated by †D . Then, since
†CD lim†Cn , †� must also intersect some †Cn for sufficiently large n. However, by
Lemma A.1 (swapping argument), †Cn is disjoint from †� as @1†Cn D�

C
n is disjoint

from @1†
� D � . This is a contradiction. This shows †C and †� are disjoint. By

using similar techniques to [2, Lemma 4.3], it can be shown that †˙ are canonical, ie
independent of the sequences f†˙n g.

Similar arguments show that †˙ are disjoint from any area-minimizing hypersurface †0

with @1†0 D � . As the sequences of †Cn and †�n form a barrier for other area-
minimizing hypersurfaces asymptotic to � , any such area-minimizing hypersurface
must lie in the region bounded by †C and †� in H2�R. This shows that if †CD†� ,
then there exists a unique area-minimizing hypersurface asymptotic to � . The proof
follows.

Remark A.4 If a finite collection of simple closed curves � is not assumed to be tall
in the lemma above, the same proof is still valid. Hence, for any such � , either there
is no solution (À†), or a unique solution (9!†), or two canonical solutions (9†˙ ) for
the asymptotic plateau problem for � (@1†D � ).

Now, by using the lemma above, we show a generic uniqueness result for tall curves.

Theorem A.5 (generic uniqueness) A generic tall curve in S1
1�R bounds a unique

area-minimizing surface in H2 �R.

Proof Let �0 be a tall curve in S1
1 �R. Let N.�0/ be a small open neighborhood

of �0 in S1
1 �R which is a finite collection of annuli. Let f�t j t 2 .��; �/g be a
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foliation of N.�0/. In particular, for any �� < t1 < t2 < � , �t1
\�t2

D ∅. We can
assume N.�0/ is sufficiently thin that �t is a tall curve for any t 2 .��; �/. Let †t be
an area-minimizing surface in H2 �R with @1†t D �t .

As in the proof of the lemma above, let �c
t D�

C
t [�

�
t with @�Ct D @�

�
t D �t . Then

�Ct ��
C
s for t < s . Hence, by Lemma A.1, †t \†s D ∅ for t < s . Furthermore,

by Lemma A.3, if �s does not bound a unique area-minimizing surface †s , then we
can define two disjoint canonical minimizing surfaces †Cs and †�s with @1†˙s D �s .
Hence, †Cs [ †

�
s separates a region Vs in H2 � R. If �s bounds a unique area-

minimizing surface †s , then let Vs D †s (say Vs is a degenerate neighborhood).
Notice that, by Lemma A.1, †t \†s D∅ for t ¤ s , and hence Vt \Vs D∅ for t ¤ s .

Now consider a short arc segment � in H2�R with one endpoint in †t1
and the other

endpoint in †t2
, with �� < t1 < 0< t2 <�� . Hence, � intersects all area-minimizing

surfaces †t with @1†t D �t , where t1 � t � t2 . Now, for t1 < s < t2 , define the
thickness �s of Vs as �s D j�\Vsj, ie �s is the length of the piece of � in Vs . Hence,
if �s bounds more than one area-minimizing surface, then the thickness is �s > 0. In
other words, if �s D 0, then �s bounds a unique area-minimizing surface in H2 �R.

As Vt\VsD∅ for t ¤ s , we have
Pt2

t1
�s < j�j. Hence, as j�j is finite, �s > 0 for only

countably many s 2 Œt1; t2�. This implies that, for all but countably many s 2 Œt1; t2�,
�s D 0, and hence �s bounds a unique area-minimizing surface. Similarly, this implies
that, for all but countably many s 2 .��; �/, �s bounds a unique area-minimizing
surface. Then, by using the techniques in [2, Lemma 3.2], generic uniqueness in the
Baire sense follows.

Remark A.6 (generalization to minimal surfaces) The results in this section are
mostly for area-minimizing surfaces, and may not be true for minimal surfaces in general.
This is mostly because the disjointness lemma (Lemma A.1) uses the surgery argument,
which only holds for area-minimizing surfaces. Because of this, the generic uniqueness
result above may not be true for minimal surfaces in general. On the other hand, for
short curves, there is a trivial counterexample as follows: Let �t DS1

1�fc0; c0C tg be
a pair of round circles in S1

1�R for t 2 .0; �/. Then fCtg gives a continuous family
of nonuniqueness curves in S1

1 �R as follows: Let Ct be the minimal horizontal
catenoid of height t with @1Ct D �t [16]. Let †t DH2 � fc0; c0C tg be the pair of
horizontal geodesic planes with @1†t D �t . Therefore, any curve in the continuous
family f�tg bounds at least two minimal surfaces. As this is a continuous family, it
gives a counterexample to the generic uniqueness result above.
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A.2 Nonexistence results for the vertical bridge principle

The following lemma rules out some special cases the for asymptotic plateau problem,
and used in the proof of the bridge principle.

Lemma A.7 Let c D S1
1 � fcg represent the round circle in S1

1 �R with fz D cg.
Let � D

SN
iD1 ci

[
SM

jD1 j̨ , where j̨ D f�j g � Œcj1
; cj2

� for some �j 2 S1
1 , and

ci < ciC1 . Then there exists a K0>� such that the following holds: if ciC1�ci >K0

for any i and † is an area-minimizing surface in H2�R with @1†� � , then † is a
collection of horizontal planes , ie M D 0 and †DH2 � fci1

; ci2
; : : : ; cik

g.

Notice that the statement implies that, for such K0 > 0, the asymptotic boundary of
such an area-minimizing surface cannot contain any vertical line segment.

Proof Without loss of generality, we assume N D 2 as the other cases are similar.
We divide the proof into two cases: M D 1 and M > 1.

Case 1 Assume M D 1, ie � D c1
[ c2

[˛1 , where ˛1 D f�1g� Œc1; c2� for some
�1 2 S1

1 . Let † be the area-minimizing surface in H2 �R with @1†� � . Recall
that c2� c1 >K0 > � . Let Ri be a sequence of tall rectangles exhausting the region
bounded by � , ie Ri D @.Œ�1C�i ; �1��iC2��� Œc1C�i ; c2��i �/ in S1

1�R, where
�i& 0 and �i& 0. Clearly, Ri is disjoint from � for any i , and Ri! � as i!1.

Let Pi be the unique area-minimizing surface in H2�R with @1PiDRi (Lemma 2.3).
By Lemma A.1 and Remark A.2, †\Pi D∅ for any i . On the other hand, the explicit
description of Pi in [18] shows that Pi is foliated by horizontal equidistant curves
ˇt

i DPi\H2�ftg to the geodesic �i with @1�iDf�1C�i ; �1��iC2�g. In particular,
for di.t/ D d.ˇt

i ; �i/, di.t/!1 as t ! c1 or t ! c2 , while di.c�/ < C0 , where
c� D 1

2
.c1C c2/ (see the discussion before Lemma 2.3). Hence, as i !1, �i and

hence ˇc�
i escape to infinity. This shows Pi converges to two horizontal geodesic

planes H2�fc1; c2g. However, this implies †\Pi ¤∅ for sufficiently large i unless
@1†� c1

[ c2
. Hence, the M D 1 case follows.

Case 2 Now assume M > 1. By using a simple trick, we reduce this case to M D 2.
Let �0 2 S1

1�f�1; �2; : : : ; �M g. Let � be the geodesic in H2 with @1� D f�0; �1g.
Let ' be the hyperbolic isometry fixing � pushing from �1 to �0 with translation
length l > 0. Let y' be the isometry of H2 �R with y'.x; t/D .'.x/; t/. Then define
the sequence of area-minimizing surfaces †n D y'

n.†/. Then, by Lemma 2.8, there
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exists a subsequence of f†ng converging to an area-minimizing surface y† in H2 �R.
Let y� D @1 y†. By construction, y† is invariant under y' , then so is y� . As f�0; �1g are
the fixed points of ' , this implies y� � c1

[ c2
[˛0[˛1 , where ˛i D f�ig� Œc1; c2�.

We claim that y� D c1
[ c2

[ ˛0 [ ˛1 . Clearly, y� � c1
[ c2

by construction.
Now consider a component S of † with @1S � ˛1 (possibly † D S ). Since we
assumed M > 1, @1S must contain another j̨0

for some j0 > 1. By Lemma 2.5,
S DS[@1S is a surface with boundary in H2 �R. Consider the collection of curves
�c D S \H2 � fcg for c 2 .c1; c2/. As S is connected, there exists a c 2 .c1; c2/

such that �c contains a infinite line lc in H2 � fcg with @1lc D f�1; �j g. Let ln
c D

y'n.lc/�†n\H2 � fcg. Then, by construction, ln
c converges to Olc � y†\H2 � fcg,

where @1 Olc D f�1; �0g. This proves that ˛0[˛1 �
y� . Hence, we reduce the M > 1

case to the M D 2 case.

Now we finish this case. Recall that, by construction y† is invariant by y†, ie y'.y†/D y†.
Because of this invariance, we first claim that y†D P0[P1 , where Pi is the unique
area-minimizing plane with asymptotic boundary a rectangle Ri , ie @1P0 DR0 D

@.Œ�0; �1� � Œc1; c2�/ and @1P1 D R1 D @.Œ�1; �0 C 2�� � Œc1; c2�/. In order to see
this, let �2 D

1
2
.�0 C �1/ and �3 D �2 C � in S1

1 . Let � be the geodesic in H2

with @1� D f�2; �3g. Let W D � �R be the vertical plane in H2 �R. Consider
ZDW\ y†. By construction, Z is a collection of curves with @1Z is the four points,
.�2; c1/, .�2; c2/, .�3; c1/ and .�3; c2/. Invariance of y† by y' implies that Z is the
generating curves for y†. Assuming y† ¤ H2 � fc1; c2g, by [18], we conclude that
ZD�0[�1 , where �0 is the generating curve for P0 and �1 is the generating curve
for P1 such that @1�0 D f.�2; c1/; .�2; c2/g and @1�1 D f.�3; c1/; .�3; c2/g. Now,
even though the union P0[P1 is a minimal surface in H2 �R, we show that it is not
an area-minimizing surface, and finish the proof of Case 2.

Claim P0[P1 is not an area-minimizing surface.

We show that a sufficiently long annulus A between P0 and P1 has less area than the
sum of the areas of the corresponding disks D0 in P0 and D1 in P1 , ie @AD@D0[@D1

(see Figure 6).

Without loss of generality, let c1 D�K and c2 DK, and �0 D 0 and �1 D � in S1
1 .

By [18, Proposition 2.1(1)] and Lemma 2.3, we have a very good understanding of the
area-minimizing planes P0 and P1 . By the symmetry, we work with only P0 . Let � be
the geodesic in H2 with @1� D

˚
�
2
; 3�

2

	
. Recall that P0 has the generating curve c0
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K

�K
� D 0

� D �

@D1

@D0

H
2 � fkg

�C

0

�

�C

1

�C

C

�C
�

�C

Figure 6: Left: the red curve represents y� in S1
1 �R; blue curves represent

@Di in Pi . Right: the domain �C is depicted in the banana region between
equidistant lines to � .

in the vertical plane � �R, where @1c0 D
˚�
�
2
;�K

�
;
�
�
2
;K
�	

. The parametrization
of the generating curve c0 has explicitly been given in the proof of [18, Proposition 2.1]
as �.�/ for d > 1 (Case 1). Now recall that @1P0 DR0 D @.Œ0; ��� Œ�K;K�/. Let
t 2 Œ�K;K� represent the height in H2 �R. Parametrize c0 as �.t/ D .�.t/; t/ in
� �R, where �.t/ is the distance of .0; t/ to c0\H2 � ftg.

Recall that � is the geodesic in H2 with @1� D f0; �g. Parametrize � so that �.s/
is the signed distance from the origin for s 2 .�1;C1/. In particular, �.C1/D �
and �.C1/D � in S1

1 . Let 't be the hyperbolic isometry fixing � with translation
length t 2 R. Then, by [18], 't .P0/ D P0 for any t 2 R. Let Po \H2 � ftg D �t .
Then, by construction, �t is the equidistant line to � with distance �.t/. Parametrize
�t so that the closest point to �.s/ in �t is �t .s/ for s 2 .�1;C1/.

Now we describe Di in Pi by defining its boundary @Di . Like P0 and P1 , D0

and D1 will be symmetric with respect to T D � �R, so let’s only consider D0 .
The boundary @D0 is a rectangle in P0 with the following four edges. Fix k > �

2
be

half the height of the rectangle with k�K. Let the upper edge �C
0

be the segment
in �k between the points �k.�l/ and �k.l/, where l � 0 will be determined later.
Similarly, let the lower edge ��

0
be the segment in ��k between the points ��k.�l/

and ��k.l/. Let the short edges be the vertical paths �C
0

and ��
0

in P0 with endpoints
f�k.l/; ��k.l/g and f�k.�l/; ��k.�l/g, respectively. Hence, D0 is the rectangle in P0

with @D0D �
C

0
[�C

0
[��

0
[��

0
. Similarly, define D1 in P1 as @D1D �

C

1
[�C

1
[��

1
[��

1

as the symmetric rectangle with respect to the vertical plane T (see Figure 6, left).
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Now we define the competitor annulus A with @A D @D0 [ @D1 . Let �CC be the
geodesic between �k.l/ and its reflection with respect to T . Let �C� be the reflection
of �CC with respect to � �R. Let ��C be the reflection of �CC with respect to the
horizontal plane H2 � f0g. Similarly, let ��� be the reflection of �C� with respect to
the horizontal plane H2 � f0g.

Now let �C be the region in the horizontal plane H2 � fCkg such that @�C D
�C

0
[�CC [ �

C

1
[�C� (see Figure 6, right). Let �� be the reflection of �C with respect

to the horizontal plane H2�f0g. Let �C be the region in the vertical plane containing
�CC and ��C such that @�CD�CC[�

C

0
[��C[�

C

1
. Similarly, define �� in the opposite

side. Hence, AD�C[��[�C[�� . Then we have @AD @D0[ @D1 .

Let j � j represent the area. We claim that jAj< jD0jCjD1j for sufficiently large l > 0

and K > 0. First note that jDi j > 4kl as 2k is the height of the rectangle Di , and
any horizontal segment �t \Di has length greater than 2l by construction.

Consider jAj. Note �C belongs to the banana region in H2 � fkg bounded by �k

and its reflection. Let ˇ.t/ be the asymptotic angle between the geodesic � and
the equidistant line �t . Note that there is a one-to-one correspondence between the
equidistance �.t/ and the angle ˇ.t/. Let ˇ0 D ˇ.k/. In this setting, if t !K, then
�.t/!1 and ˇ.t/! �

2
. Then a simple computation shows that j�Cj D 4l tanˇ0 .

Furthermore, j�˙j< 2kk�CCk as �C is a rectangle in the vertical plane with height 2k

and all horizontal segments have length 2�.t/ for t 2 Œ0; k�. As k�CCk D 2�.k/, we
have j�˙j< 4k�.k/.

Hence, we have jAj D 2j�jC 2j�j< 4l tanˇ0C 8k�.k/.

Since jDi j> 4kl , jAj< jD0jC jD1j is equivalent to

8k�.k/ < 4l:.2k � tanˇ0/:

Now fix k > �
2

. Notice that, by the explicit description of Pi in [18], if the height
of Pi is K !1 then ˇ0 ! 0 and �.k/! 0. Hence, by choosing K sufficiently
large, we can make sure that tanˇ0 < 2k . Then, for sufficiently large l > 0, we have
the desired inequality. The proof of the claim and Case 2 follows.

Now we finish the proof of the lemma. So far, we have shown that if † is an area-
minimizing surface in H2 � R with @1† �

SN
iD1 ci

[
SM

jD1 j̨ , then @1† �SN
iD1 ci

. In other words, we prove that the asymptotic boundary of such an area-
minimizing surface cannot have any vertical segments. Now we show that every
component of † is a horizontal plane. In particular, assume that a component S of †
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contains more than one horizontal circle, say c1
[ c2

. By assumption, jc1 � c2j >

K0 > � . Let Œd1; d2� � .c1; c2/ with d2 � d1 D � . Then consider the parabolic
catenoid C with @1C D d1

[ d2
[˛ , where ˛ is the vertical segment corresponding

to f0g � Œd1; d2� in upper half-space model. In particular, in the upper half-space
model, C D � �R, where � is the generating curve in xy–plane H2 with @1� D
f.d1; 0/; .d2; 0/g. Let '�.x;y; z/D .�x; �y; z/ be the isometry of H2�R in the upper
half-space model. Then C� D '�.C/ is another parabolic catenoid with generating
curve � � � . Now, for sufficiently small � > 0, C \ S D ∅. On the other hand,
when �!1, C converges to H2 � fd1; d2g. This means that if @1S � c1

[ c2
,

by increasing �, for some �0 > 0, we can find the first point of contact between S

and C�0
. However, this contradicts the maximum principle.

Finally, we show that if � D
SN

iD1 ci
(M D 0), then † is indeed a collection of

horizontal planes. Assume that there is a component S in † with @1S D cj
[ ck

.
Since h.�/DK0 > � , let Œe�; eC�� .cj ; ck/ with eC� e� D � . Let C be Daniel’s
parabolic catenoid with @1C D eC [ e� . We can push C towards S1

1 �R as much
as we want by using isometries, so that we can assume C \S D∅. Then, by pushing
C towards S by using the isometries, we get a first point of contact, which contradicts
the maximum principle. This proves that † must be a collection of horizontal planes,
ie †D

SN
iD1 H2 � fcig. The proof follows.

Remark A.8 (bridge height K0 ) The above lemma is the only reason we need
large K0 for the vertical bridge principle. However, the constant K0 in the lemma
above might be highly improved (conjecturally K0 D � ) by using similar ideas. In
particular, the estimates we use in Lemma A.7 are very rough, and by using the explicit
description of the generating curve for Pi in [18], one can choose k 2 .�; h.�//

more elegantly. Then, by choosing l sufficiently large, one might get a vertical bridge
principle for all tall curves (h.�/ > � ), not just curves with h.�/ >K0 . Furthermore,
it might also be possible to prove a similar result for any collection of arcs f˛ig without
the verticality condition on ˛i .
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