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ABSTRACT

(Semi)local density functional approximations (DFAs) are the workhorse electronic structure methods in condensed matter theory and sur-
face science. The correlation energy density e.(r) (a spatial function that yields the correlation energy Ec upon integration) is central to defining
such DFAs. Unlike E, e.(r) is not uniquely defined, however. Indeed, there are infinitely many functions that integrate to the correct E. for
a given electron density p. The challenge for constructing useful DFAs is thus to find a suitable connection between e.(r) and p. Herein, we
present a new such approach by deriving e.(r) directly from the coupled-cluster (CC) energy expression. The corresponding energy densities
are analyzed for prototypical two-electron systems. As a proof-of-principle, we construct a semilocal functional to approximate the numerical
CC correlation energy densities. Importantly, the energy densities are not simply used as reference data but guide the choice of the functional
form, leading to a remarkably simple and accurate correlation functional for the helium isoelectronic series. While the resulting functional
is not transferable to many-electron systems (due to a lack of same-spin correlation), these results underscore the potential of the presented

approach.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5094788

. INTRODUCTION

There is no doubt that density functional theory (DFT) has
had an unrivaled impact on computational chemistry and physics.' *
This is because modern realizations of DFT (density functional
approximations, DFAs) tend to offer the best compromise between
accuracy and computational cost for most applications.” * This is
especially true for semilocal DFAs, where E. only depends on
properties of the electron density, such as the local density and
its gradient. Such methods are sometimes referred to as “pure”
density functionals, as opposed to, e.g., hybrid functionals which
are based on a generalized Kohn-Sham scheme.’ Indeed, the early
adoption of semilocal DFAs in the quantum chemistry commu-
nity can be largely attributed to the remarkable accuracy with
which, e.g., the semilocal BLYP'”!! functional describes energy dif-
ferences in molecules at a much lower cost than post-Hartree Fock
methodls such as second-order Moller-Plesset perturbation theory
(MP2)."”

Even though BLYP and other popular semilocal functionals
based on the generalized gradient approximation (GGA) were devel-
oped in the 1980s-1990s, they are still widely used. More recent func-
tionals like those of the wB97 and Minnesota families (both based
on Becke’s 1997 power-series approximation) are also commonly
applied in chemistry, although mostly in their hybrid variants."”"”
Similarly, in the solid-state community, the ubiquitous semilocal
PBE'® functional is still the most frequent choice. Here, more recent
alternatives, like the constraint-based SCAN'” functional of Perdew
and co-workers and the Bayesian (m)BEEF'®" methods are also
gaining traction.

Of course, there have been highly significant developments
beyond semilocal methods. Most prominently, the already men-
tioned hybrid functionals (e.g., B3LYP or PBE(O) complement
semilocal DFA exchange with “exact” Hartree-Fock exchange.”””'
This makes the functional depend on the occupied Kohn-Sham
(KS) orbitals and not just on the electron density. Particularly
in their more recent range-separated variant, these methods are
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able to extend the applicability of DFT into areas where “pure”
DFAs have difficulties, e.g., charge-transfer states or reaction bar-
rier heights.””** In (gas-phase) molecular chemistry, these meth-
ods have become the de facto standard, whereas they are still too
computationally demanding for routine application to condensed
matter or nanosized systems. The higher computational demand of
hybrids is a direct consequence of the fact that the exchange energy
now depends on the occupied KS orbitals, and not just on the total
electron density.

This is even more critical for correlation functionals beyond
the semilocal approximation, which depend on the unoccupied (vir-
tual) KS orbitals as well. Such “higher-rung” functionals are typically
based on the random-phase approximation (RPA) or second-order
perturbation theory (double-hybrid functionals).” ™ This strongly
improves their thermochemical accuracy and allows for the descrip-
tion of van der Waals interactions. The virtual orbital dependence
of these methods translates to a quite unfavorable formal scaling
with the basis-set size [typically O(N ®) or worse, compared to O(N %)
for GGAs]. This is further aggravated by the fact that they addi-
tionally require larger (correlation consistent) basis sets, though
this deficiency is less critical for the more recent range-separated
correlation approaches.”’”” Such DFAs are consequently not really
comparable with “lower-rung” GGAs, in terms of applicability.
Instead, they compete with wavefunction methods such as MP2
or CC.

Improving correlation functionals without resorting to virtual
orbitals is therefore an exciting prospect and the focus of this work.
To this end, we adhere to a purist approach to DFT. In general, the
exchange-correlation energy is only dependent on the electron den-
sity p and can be determined via numerical integration of a spatial
function,

Eulp] = [ exlpl(r)dr 0

Here, exc[p](r) is the exchange-correlation energy density. The
notation ex[p](r) implies that the energy density is both a spatial
function (i.e., it has a single scalar value at a given point in space)
and a functional of the electron density. In the most general case,
the exchange-correlation energy density on a given point r depends
on the electron density at all other points. Semilocal approxima-
tions like the GGA use a more convenient formulation, where ex(r)
only depends on local quantities like the local electron density p(r)
or its gradient Vp(r). Furthermore, the exchange and correlation
components are usually treated separately, leading to expressions for
ex[p)(r) and ec[p](r). We will focus on the latter.

Within this paradigm, there are two classic approaches to
designing DFAs. On the one hand, there is the constraint-based
philosophy championed by Perdew, Burke, Levy, and others.” ™’
Here, exact conditions for the DFA are derived from theoretical
considerations of model densities such as the homogeneous elec-
tron gas or spherical two-electron densities.”””” On the other hand,
the property-based approach postulates a parametric form for the
exchange-correlation energy density, which is then fitted to accurate
reference properties of real molecular or condensed phase systems
(often based on higher level calculations).'® 2094

In this contribution, we follow a new route to constructing
“pure” DFAs, namely, by deriving a correlation energy density
from ab initio coupled cluster (CC) wavefunctions. This can be
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thought of as an intermediate strategy between the constraint and
property-based philosophies. On the one hand, the DFA is con-
structed to reproduce high quality benchmark calculations, as in the
property-based approach. On the other hand, it is not based on a
predefined fit function. Instead, the functional form emerges natu-
rally from the shape of the correlation energy densities of meaningful
model systems, as in the constraint-based approach.

This paper is organized as follows: In Sec. II, we discuss the
meaning of the exchange and correlation energies in DFT and wave-
function theory (WFT) and motivate why we expect the CC corre-
lation energy density (¢5€) to be a useful model for a correlation
functional. Then, the formalism for computing e is presented.
In Sec. I1I, we analyze the properties of €S for prototypical two-
electron systems. The usefulness of these energy densities is then
illustrated by constructing an accurate DFA to the CC correlation
energy of the He isoelectronic series.

Il. THEORY

We denote occupied molecular orbitals [MOs, ¢(r)] with the
indices i, j, k,..., virtual MOs by 4, b, c,..., and general MOs by
P> g 1. ... All calculations are performed in a one-electron basis
of atom-centered, normalized basis-functions y,.(r), with indices
U, v, 0. ... Following common practice in the CC community, the
basis-functions are referred to as atomic orbitals (AOs).

For clarity, it should be noted that the term “exchange-
correlation energy density” is often used in the literature for the
correlation energy per particle. The exchange-correlation energy per
volume (as used in this paper) is in that case often referred to as
the exchange-correlation kernel. The latter can be converted into the
former by dividing through the electron density.

A. Exchange and correlation in WFT and DFT

The concepts of exchange and correlation are fundamental
to both WFT and DFT. In WFT methods, the correlation energy
E. is defined with respect to the Hartree-Fock (HF) energy and
simply describes the difference between HF and the exact non-
relativistic energy (i.e., the full configuration interaction limit) in
a given basis.”” Meanwhile, the exchange energy Ex emerges nat-
urally from the HF formalism due to the antisymmetry of the
wavefunction.”’

In DFT, exchange and correlation in principle describe the
same physical phenomena, but the energies are not referenced to
HEF. Instead, the KS equations use the variational principle to obtain
(given the exact functional) the exact density.” Accordingly, the
exact exchange and correlation energies are referenced to that den-
sity and not to the HF one. One would thus not expect the WFT
and DFT Ex. to be numerically identical unless the HF density is
exact, which is only true in some special cases like the homoge-
neous electron gas and for one-electron systems like the hydrogen
atom. From a DFT perspective, the WFT correlation energy thus
contains implicit corrections to the classical and exchange ener-
gies, which otherwise carry some error due to the approximate HF
density.

To understand these differences in detail, it is helpful to con-
sider the individual components to the DFT and CC total energies.
In DFT, all energy contributions are written as functionals of the
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exact ground state density py,

= Ts[po] + Ulpo] +J[po] + Exc[po], 2

with the noninteracting kinetic energy functional T and the contri-
butions of the external (U) and the Hartree (J) potentials. Equiva-
lently, these terms can be expressed as functionals of the occupied
KS orbitals {¢°}, which is particularly useful for the kinetic energy.

In CC, similar components are computed in terms of the HF
orbitals {(],’)?F},

Bl = T[{e"}] + U[{e )] +J[{6™)}]
+K[{¢"}] + E[{9," ], 3)
where K[{¢F}] is the HF exchange energy.
Given the exact exchange-correlation functional and full CC
expansion, both expressions lead to the same energy (EPFT = By 1t

is therefore tempting to equate the last term in the DFT expression
with the last two terms of the CC formula leading to

E[{¢y"}] » Exe[p] - K[{¢i"}]. (4)

DFT
Etot

However, this is an approximation because ¥, | |* does not
yield the exact ground-state density. Accordingly, for Egg to be
exact, EEC must also contain corrections to all other terms in the

energy expression,
E[{¢," }] = Ex[p] - K[{$i" }] + AT+ AU+ 4], (5)

where AT, = Ts[po] - T<[{"* }] and s0 on.

When constructing a correlation functional based on CC refer-
ence data, we are essentially hoping for a high accuracy of Eq. (4). In
particular,

E[p] ~ K[{¢}"}] (6)

and
D1~ o 7)

Indeed, these conditions are related since the exact DFT
exchange can be computed analogously to the HF case but using
{@X} instead of {¢!'"'}, leading to

E[{#, }] = Ec[m] + AK + AT+ AU + AJ. 8)

The difference between the WFT and DFT correlation ener-
gies thus boils down to the difference between {d);fs} and {q,');m}.
While the exact KS orbitals are generally not available (because a
general expression for the exact Ey[po] is unknown), it has been
observed that Brueckner theory offers an excellent approximation to
{5117 Very briefly, the idea behind the Brueckner CC approach
is to rotate the HF orbitals in such a way that the T contribution to
the correlation energy vanishes. This is equivalent to introducing a
(nonlocal) correlation potential into the HF equations.*

If the chosen CC expansion is exact (see below), the total ener-
gies of the canonical and Brueckner CC methods are identical. How-
ever, the individual components on the r.h.s. of Eq. (3) change.
Specifically, the sum of the first four terms (the reference energy)
becomes less negative, while the last term (the correlation energy)
becomes more negative by the same amount.
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In the following, we apply the CC singles and doubles expan-
sion (CCSD) to two electron systems. We can use canonical and
Brueckner CC calculations to numerically estimate the accuracy of
Eq. (4) for this case. For the He atom, the correlation energy dif-
ference between a canonical CCSD and Brueckner CCD calculation
is 2.6 x 107> E;, (see the supplementary material, Table S1). Con-
sequently, the approximation made in Eq. (4) is very good in this
particular case.

In a more general vein, it can be noted that HF electron densi-
ties are often surprisingly good. Indeed, they are often better than
self-consistent GGA densities as observed by Bartlett, Burke, and
others.”

Note, however, that the above discussion is no longer valid if
semilocal exchange functionals are used (in particular, for molecular
systems). Semilocal correlation functionals cannot describe the type
of static (left-right) correlation that is evident, e.g., when dissociat-
ing the hydrogen molecule in a spin-restricted calculation. As was
observed by Handy and others, this contribution is instead emulated
by GGA exchange functionals.”

The case is different for atomic systems, however. Many clas-
sic GGA functionals are based on the approximate equivalence of
exchange and correlation in DFT and WEFT for atoms. For example,
Becke’s 1988 exchange functional was fitted to HF exchange ener-
gies of atoms, and the Lee-Yang-Parr (LYP) correlation functional
is derived from the Colle-Salvetti formula, which expresses the WFT
correlation energy of the helium atom in terms of the correspond-
ing HF density matrix."”'' Even functionals which are not based on
WEFT at all (such as the already mentioned SCAN functional and the
“nearly correct asymptotic property” NCAP functional) show rea-
sonably good numerical agreement with the WFT based exchange
and correlation energies of noble gas atoms.'””'

It has also been found empirically that WFT and DFT corre-
lation energies are compatible, as reflected in the success of double
hybrid functionals, which describes E. as a linear combination of
GGA and MP2 correlation.”

B. Correlation energy densities from WFT

The connection between WFT and DFT has long been the sub-
ject of intensive research. Most prominently, such efforts have been
directed at the exchange-correlation potential, V.7 These stud-
ies have underscored the limitations of most semilocal approxima-
tions to Vy, particularly those that are the functional derivatives
of common DFAs.””* Such ab initio potentials are also essential
components of some of the higher-rung DFA methods mentioned
above.”

Knowledge of V. does not provide a route to the correspond-
ing functional Ex., however. The latter requires an expression for
the exchange correlation energy density exc(r), as given in Eq. (1).
Unfortunately, an inherent difficulty with defining exc(r) is that it
is not unique. In principle, the only condition is that integrating
this function over all space yields the exchange-correlation energy.
Adding any function that integrates to zero to an ansatz for ex.(r)
therefore yields equally valid energy densities that may look com-
pletely different (see Fig. 1).°* In this sense, exc(r) is arbitrary. How-
ever, not all possible energy densities are mappable to the electron
density in an efficient way. A systematic way for defining ex(r) for
different systems from ab initio calculation allows exploring this
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FIG. 1. Schematic depiction of correlation energy densities (blue and green) that
differ by a function that integrates to zero over the integration domain (dashed
orange line).

mapping and therefore represents a promising starting point for
designing new DFAs.

One strategy to this end is relating exc(r) to the exchange-
correlation hole potential.”** This offers a systematic route to
calculating exc(7), given that the one- and two-particle density matri-
ces are known. This has, e.g., been done for configuration inter-
action wavefunctions with single and double excitations (CISD).”®
More recently, Vyboishchikov used modified “local” two-electron
integrals to calculate the correlation energy density e.(r) at the
MP2 and the CISD level.”” These functions were used to con-
struct a simple local correlation functional for spherically confined
atoms.

C. CC correlation energy densities

In the following, we introduce a new method to calculate an
ec(r) from first principles, namely, one that integrates to the CC
correlation energy. The approach has several advantages: (1) By
virtue of being CC-based, it is automatically size-extensive (unlike
truncated CI). (2) Only integrals and amplitudes that are available
in any standard CC code are required. (3) The e.(r) obtained in
this manner is by construction topologically similar to the elec-
tron density, making it amenable to semilocal approximations (see
below).

In CC, the ground-state wavefunctlon Wcc is defined with
respect to a reference determinant g as’

Yee = e’ yo, 9)

T=Ty+-+T,. (10)

By truncating T at double (N = 2), triple (N = 3), or quadruple
(N = 4) excitations, one obtains specific CC methods, abbreviated
as CCSD, CCSDT, and CCSDTQ, respectively.(”' " An important
feature of these methods is that they are exact for systems with a
number of electrons smaller or equal to the highest excitation level
(i.e., CCSD is exact for two-electron systems).

Irrespective of the truncation, the CC correlation energy only
depends on the single and double amplitudes (¢ and tf‘jb), while
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higher than double excitations contribute to the energy indi-
rectly, by coupling with T; and T,. The correlation energy is
calculated as

E.= 12(1‘ + 1tatb) ij||lab) = ZT,] (ij||ab) (11)

4 ijab Uub

with Tg»b = tf}b +1f t}’ and the antisymmetrized two-electron integrals
in MO basis defined as

(ifllab) = (ijlab) - (ijlba),

Gilab) = [ $,()d(r) () (m)dndre. (12

These integrals are obtained from the corresponding AO inte-
grals and the MO coefficients which define v, formally via
(iflab) = 3> CuCl(uv]oA)CiCh. (13)
uvod

We are now looking to transform the coupled cluster correla-
tion energy into a form resembling the DFT expression

E[p] = / ee[p](r)dr. (14)

We start from the AO-CC approach of Ayala and Scuse-
ria, which is based on an MO to AO transformation of the
T-amplitudes,”’

gl

Tuy

—Zc c ,]CCA (15)
ijab

Given these AO amplitudes, the correlation energy can be
calculated as

7 (uvl|oh). (16)

1
EC:ZZ

uvod
We now partition the energy into atomic or AO contributions,

using
EC:ZEA:ZZEA”“ (17)
A A ueA
ZT {uv||or). (18)
VJA

Because the AO basis-functions are normalized, the CC corre-
lation energy can now be written as an integral over space,

E.= eulyu () dr. (19)
J Sex

This defines the CC correlation energy density as

e (r) = Z%\Xu(fﬂ (20)

As noted above, - (r) is topologically similar to the electron
density, in the sense that it is a linear combination of atomic densi-
ties. As shown in Fig. 1, the shape of the correlation energy density
is in principle arbitrary. However, an energy density that is similar
to the electron density can be much more easily approximated by a
(semi)local approach.
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Using Egs. (15), (16), (18), and (20), €°(r) can be calculated
for any system, as long as a standard CC calculation is possible. In
the following, some exemplary calculations for atomic two-electron
systems are performed at the CCSD level, using a custom Python
program interfaced with the Psi4 program package.”"’* Calculations
for two-electron ions were performed with a modified uncontracted
cc-pV5Z basis set for helium, where the scaling factor of the orbital
exponents was optimized individually for each ion (abbreviated
u-57).” In all other DFT calculations, the pcseg-3 basis set of Jensen
is used.” Additional CCSD calculations on He-Zn were performed
with the core-polarized cc-pwCV(5 + d)Z basis.”” DFT correla-
tion energies are calculated by numerical quadrature on Lebedev-
Treutler (75302) grids.'f{’ All DFT calculations (also for PBE) are
performed non-self-consistently using HF densities with the same
code.

lll. RESULTS

As model systems, we calculate e (r) for the two-electron ions
from H™ to Ne®" (see Fig. 2). In all cases, the correlation energy den-
sity decays in an approximately exponential fashion as a function
of the distance from the nucleus, with the individual curves being
highly system dependent. Specifically, e-“(r) decays slowly for the
very diffuse H™ ion and quickly for Ne®**. It is furthermore notable
that the correlation energy density for He is quite similar to the one
obtained by Vyboishchikov’s “local 2e-integral” approach, despite
the different mathematical ansatz.”

In the supplementary material, we also include the respective
plots for the PBE and local-density approximation (LDA) correla-
tion functionals (Figs. S1 and S2). While both energy densities are
qualitatively similar to Fig. 2, there are important differences. In
the LDA case, the functions decay at approximately the same rate
as €S°(r), but they are less curved and display larger values at the
nuclear cusp. By contrast, the PBE curves overall decay more quickly
and display a more complex shape, with a fast initial decay close to
the nucleus followed by a slower asymptotic decay.

From a DFT perspective, the more interesting dependence is
between ¢ (r) and p (Fig. 3). As the atomic electron densities are
monotonically decaying, there is a unique mapping between the two

102
—_—H —_— 4t
10t He N5+
— 5L
100 — Be?* F7+
— B3+ — Net+
< 1]
) 10
O 10-2J
Qo 10
.
10-3 4
104 4
107° T T T T T

00 05 10 15 20 25 30 35 40
r/ag

FIG. 2. Plot of correlation energy density against the distance from the nucleus for
the helium isoelectronic series.
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FIG. 3. Plot of correlation energy density against the HF/u-5z electron density for
the helium isoelectronic series.

for each ion. Specifically, [¢5“(r)| increases approximately parabol-
ically with p. Unsurprisingly, the curves are again somewhat system
dependent, however. This simcply means that a LDA-like correlation
functional cannot represent e-“(r) exactly for all systems.

If it is to be useful for defining DFAs, it should at least be
approximately possible to effectively map 5 () to p, however. Fur-
thermore, this mapping should ideally only use readily available local

features of the electron density, such as p(r) or the reduced den-

sity gradient s = %.

in the presented formalism, we construct a simple GGA functional
to approximate - (r). To this end, only datapoints with s < 5 were
taken into account, following the observation of Burke, Perdew, and
co-workers that the energetically relevant range is 0 < s < 3.

As can be seen in Fig. 4, a simple linear fit allows an accu-
rate description of all datapoints with s < 0.1 (i.e., those with
approximately “homogeneous electron gas”-like conditions). This
is reminiscent of the Wigner functional,”®”” which is linear in p to
leading order but allows some more flexibility in the low density

To explore whether this is possible

0 100 200 300 400 500 600
p

FIG. 4. Plot of €S€(r) against p for the helium isoelectronic series (blue).
Datapoints where the reduced density gradient s < 0.1 are shown in orange.
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regime,
cup(r)

&' [p(r)] = T
1+cp(r)”3

@1

where ¢; and c;, are coefficients to be defined. Equation (21) forms
the local baseline functional for our GGA (with ¢; = —0.0468 and
¢ =0.023).

As shown in Fig. 5, the residual error of €)' [p(r)] is strongly
dependent on the reduced gradient s. The largest errors are found in
the regime between 0 < s < 2.

For the full GGA functional, we now choose the enhancement-
factor ansatz,

ec p(r).s] = €' [p(r)] * E(s)- (22)

Plotting €5 /e vs s gives insight into the numerical distribu-
tion of an ideal enhancement factor (Fig. 6). Interestingly, all ions
from He to Ne®* approximately fall on a curve, whereas the H™ data-
points deviate significantly. This reflects the well-known inability of
GGAs to adequately describe atomic anions.” Specifically, semilo-
cal DFAs only attach a fractional electron to an atom in a complete
basis-set due to the self-interaction error.”"** This is an inherent lim-
itation of the GGA functional form, not of the CC reference calcula-
tions.”” We therefore exclude H™ when fitting parameters, though it
is retained in the analysis, for comparison.

The distribution of the numerical enhancement factor in Fig. 6
suggests that F(s) should have a sigmoidal form with the asymptotic
behavior,

lirr& F(s)=1 (23)
and
lim F(s) ~ 0.5. (24)
§— 00

We therefore base F(s) on the “complementary” logistic func-

tion,
C3

F(S) =1- 1+ e—CA(S—CS) ’

(25)
with coefficients c3_s.

Combining Egs. (21), (22), and (25), the final functional, which
we call ccDF, thus has the simple 5-parameter form,

| [E]

cC

C

e TR ¢ @) o ® @

0 1 2
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EN
w

S

FIG. 5. Plot of residual errors of the €X' [p(r)] baseline functional against the
reduced density gradient s.

ARTICLE scitation.org/journalljcp

1.4 A

1.2 A1

0.2 1

FIG. 6. Numerical (symbols) and analytical (line) enhancement factors for
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One could optimize these parameters to directly reproduce the
numerical F(s) as closely as possible. However, this strategy is not
optimal, as F(s) only enters the energy expression as a scaling factor
for €X' [p(r)]. Consequently, it has little effect on the total energy,

whenever €' [p(r)] is small. A more promising approach is therefore
to use total correlation energies (E.) as reference data.

A least-squares fit of the GGA parameters to the correlation
energies of He to Ne®" yields

c3 = 0.544, ¢4 = 23.401, ¢c5 = 0.479.

The resulting enhancement factor is a good fit to the numerical

F(s) (solid line in Fig. 6), and the ccDF functional accurately repro-

duces the CCSD correlation energies of He to Ne®* (Fig. 7). This
figure also includes the PBE correlation energies. Unsurprisingly,
ccDF more closely reproduces the CCSD correlation energies than
PBE, given that it was fitted to these data. It is, however, notable that

— ccsb
—0.030 1 ® ccDF
PBE
~0.035
— e
= \
=) N
Lﬁj 00T \\‘\s‘g
~0.045 —eo—e—o
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FIG. 7. Correlation energies for He isoelectronics, computed with CCSD, ccDF,
and PBE.
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this functional achieves very high total accuracies of 107°E;, or bet-
ter (except for H™, see above), given its simple functional form. More
importantly, both functionals display the correct qualitative behav-
ior: As Z increases, the correlation energy converges to a constant
value.

As discussed in Sec. II, exact numerical agreement between
DFT and WFT correlation energies should generally not be
expected. Neither is it necessary for chemical applications. For
example, both MP2 and PBE correlation energies will often deviate
from more accurate CC values by 10% or more, yet both methods
are still quite accurate in terms of energy differences. In fact, even
the CCSD/u-5Z values we used for fitting ccDF are only converged
to within several milli-Hartree since the complete basis-set limit for
absolute correlation energies of isolated atoms is notoriously diffi-
cult to reach.”” Still, a useful DFA should reproduce the qualitative
behavior of accurate WFT reference values.

Having established the accuracy of ccDF for two-electron sys-
tems, the question arises whether this functional form can also be
applied in the many-electron case. To this end, we computed the
correlation energies for the closed-shell neutral atoms from He to
Kr (Table I), for which highly accurate reference energies are avail-
able.***” Here, ccDF and PBE show qualitatively different behavior.
For He and Be, both functionals recover >90% of the correlation
energy. For all other systems, PBE continues to recover 85%-100%
of the correlation energy, while the ccDF values range from 60% to
70%.

This behavior can readily be explained by considering the
spin-polarized form of the Wigner functional, upon which ccDF is
based,”

pa(r)ps(r)  4c
p(r) 1+ czp(r)7%

e [pa(r),ps(r),p(r)] = (27)

Here, p, and pg are the up- and down-spin densities, respec-
tively. By construction, this functional only describes correlation
between electrons of opposite spin (ie., the correlation energy
for fully spin-polarized systems is zero). Although this is not
widely appreciated, the LYP functional actually suffers from the
same prob}em since the first term in its expansion is exactly
Eq. (27).7°

Obv1ously, closed shell two-electron systems like He only dis-
play opposite spin correlation. Similarly, Be possesses filled 1s and 2s
orbitals so that there is only weak core-valence correlation between

TABLE I. Exact and DFA correlation energies (in Ej) for closed shell atoms and the
percentage of correlation energy recovered.

Element  Exact ESPF EPBE % (ccDF) % (PBE)
He 0.0453  0.0415  0.0406 91.6 89.7
Be 0.0943  0.0898  0.0861 95.2 91.2
Ne 0.3905 02708  0.3476 69.3 89.0
Mg 0.4383  0.3184  0.4120 72.6 94.0
Ar 0.7222  0.5265  0.7088 72.9 98.2
Ca 0.8271  0.5741  0.7778 69.4 94.0
Zn 1.6206  0.9334  1.3979 57.6 86.3
Kr 1.8496  1.1515  1.7640 62.3 95.4
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FIG. 8. ccDF vs opposite-spin CCSD correlation energies for the closed-shell
atoms He-Zn.

same-spin electrons, and the bulk of the correlation energy is of
opposite-spin nature. ccDF describes these systems quite accurately.

For all other systems, ccDF underestimates the total correlation
energy by about one third, presumably due to the missing same-spin
contribution. Importantly, this is in good agreement with the rela-
tive contribution of same-spin correlation for general many-electron
systems, as estimated by Grimme and Head-Gordon in the con-
struction of the spin-component-scaled (SCS) and scaled-opposite-
spin (SOS) MP2 methods.”"” For instance, SOS-MP2 simply scales
the opposite-spin correlation energy by 1.3 to approximate the full
correlation energy.

To further corroborate this interpretation, we turn to the
spin component decomposition of the CC energy, which allows
computing the opposite-spin contribution to the CC correlation
energy as

Ecos” = > 73 {ijlab). (28)
ijab

As shown in Fig. 8, E€PF indeed correlates with ECGe” quite

well. This indicates that the physics of opposite-spin correlation
are essentially transferable between two- and many-electron sys-
tems. However, neither this transferability nor the GGA approxi-
mation should be expected to be perfect. Future work will therefore
focus on developing general correlation functionals based on CC.
We consider the presented results to be very encouraging for this
endeavor.

IV. CONCLUSIONS

In this paper, we have introduced anew approach to calculating
CC correlation energy densities eC°(r) for atomic systems. These
densities are derived from an AO-based formulation of CC and
exactly 1nte rate to the respective CC correlation energy. The prop-
erties of eC“(r) were discussed for a range of atomic two-electron
systems.

As these energy densities are by construction topologically sim-
ilar to the electron density, they are well suited to be approxi-
mated by DFAs. As a proof-of-principle, a CCSD based GGA func-
tional was constructed for the He isoelectronic series. By analysis of
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the numerical CCSD functional, we find that a remarkably simple
enhancement-factor formula can be fitted to yield highly accurate
correlation energies for these systems. Despite only being fitted to
two-electron systems, we find that the ccDF functional also pro-
vides reasonable estimates of the opposite-spin correlation energies
of many-electron atoms. This indicates that e () provides a robust
physical basis for the design of DFAs and that the He isoelectronics
form an interesting set of model densities.

However, it should be emphasized that the proposed GGA
functional is intended as a proof-of-principle and should not be
applied to general systems as is. Most importantly, it should at
least be augmented with a corresponding same-spin functional.”
Nonetheless, we consider this first attempt to be quite encouraging.

It should also be noted that the proposed form of eS(r) is
only one possible choice. An expression based on the one- and
two-particle density matrices may in fact be preferable, as it would
allow using the “gold-standard” CCSD(T) method as reference,
which includes perturbative triple contributions. By contrast, our
current approach can only be used with full coupled cluster meth-
ods (CCSD, CCSDT, CCSDTQ, etc.), of which all but CCSD dis-
play prohibitive computational scaling for all but the simplest sys-
tems. Moving beyond CCSD is a prerequisite to obtain a good
description of electron correlation from systems with more than two
electrons.

Importantly, the present framework is general enough to be
applied to more complex functional forms (e.g., truly nonlocal
functionals), and this will be the subject of future work. An espe-
cially promising route lies in the use of CC energy densities to
train “machine-learned” functionals.” The fact that eC°(r) can
guide the design of a simple and accurate functional form like the
GGA indicates that it contains the necessary information to this
end.

SUPPLEMENTARY MATERIAL

See the supplementary material for canonical and Brueckner
CC energies, and PBE/LDA correlation energy densities for the
helium isoelectronics.
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