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Size-Extensive Molecular Machine Learning with Global
Representations**
Hyunwook Jung+,[a, b] Sina Stocker+,[a] Christian Kunkel,[a] Harald Oberhofer,[a]

Byungchan Han,[b] Karsten Reuter,[a] and Johannes T. Margraf*[a]

Machine learning (ML) models are increasingly used in combi-
nation with electronic structure calculations to predict molec-
ular properties at a much lower computational cost in high-
throughput settings. Such ML models require representations
that encode the molecular structure, which are generally
designed to respect the symmetries and invariances of the
target property. However, size-extensivity is usually not guaran-
teed for so-called global representations. In this contribution,
we show how extensivity can be built into global ML models

using, e. g., the Many-Body Tensor Representation. Properties of
extensive and non-extensive models for the atomization energy
are systematically explored by training on small molecules and
testing on small, medium and large molecules. Our results show
that non-extensive models are only useful in the size-range of
their training set, whereas extensive models provide reasonable
predictions across large size differences. Remaining sources of
error for extensive models are discussed.

1. Introduction

In recent years, machine-learning (ML) methods are increasingly
applied to the prediction of molecular properties such as
atomization and orbital energies, dipole moments and ioniza-
tion potentials.[1–9] One of the main promises of ML in chemistry
is that it allows surpassing the size and time scales accessible to
accurate first-principles electronic structure calculations, e.g.
based on density-functional theory (DFT). This is particularly
relevant in a high-throughput setting, e.g. when a large
chemical reaction network with many intermediates and
transition states is to be explored, or a large chemical space is
of interest.[10–13]

The wide range of ML methods that have emerged in this
context raises the question which one should be used for a
given application. Since the atomization energy (AE) has a long
tradition as the foremost benchmark property to judge the
accuracy of quantum chemical approximations,[14–16] it has also
become one of the standard targets to illustrate the accuracy of

novel ML methods.[1,3] The most straightforward way to
construct a ML model for the AE is to use some vectorized
representation v of the molecule . Constructing the ML model is
then simply a regression task between v and the property of
interest y vð Þ.[17] While any general linear or non-linear regression
method (e.g. Kernel Ridge Regression, KRR or Artificial Neural
Networks) can be used, the choice of the representation is
critical. In particular, several physically motivated criteria such
as translational, permutational, and rotational invariance and
uniqueness should be fulfilled.[5,18]

The Coulomb matrix (CM) developed by Rupp et al.[4] was
one of the earliest (global) molecular representations used to
this end (see below for a specification of global in contrast to
local representations). However, it suffers from two notable
limitations, namely that the size of v depends on the number of
atoms in the system and that permutational invariance can only
be achieved through a canonical ordering of the vector
elements.[2] This led to several subsequent improvements of the
CM concept, such as the Bag-of-Bonds,[19] different histogram
based methods[1] and the Many-Body Tensor Representation
(MBTR).[6,18] These representations fix the main drawbacks of the
CM and can thus be used to construct more accurate and data-
efficient ML models of molecular properties, typically using KRR.

However, the combination of KRR with global representa-
tions still suffers from the problem that the resulting predictions
are typically not size-extensive. This should in principle be a
fundamental problem for predicting any extensive property like
the AE. In practice, this issue can be and has been overlooked
to some extent, as the databases that are hitherto typically
used to test ML models (e.g. QM9)[20] do not contain large size
differences. For example, ca. 97% of the molecules in QM9
contain 8 or 9 heavy atoms. Consequently, an approximate size-
extensivity of the model can be learned by simply including all
small systems in the training set explicitly.[17] However, this only
obscures the fundamental problem, and such a model will fail
when applied to significantly larger molecules. Similarly, the
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description of chemical reactions (where a large molecule can
decompose into smaller fragments) cannot be consistently
achieved when the predicted energies are non-extensive.[21]

The goal of the present paper is to address the size-
extensivity of ML models that use a global representation of the
molecular structure, using KRR models with the MBTR of Huo
and Rupp as an illustrative example.[18] We will discuss how
extensive ML models can be constructed with MBTR and
compare them with the conventional, non-extensive formula-
tion. Importantly, the performance of the models is compared
across different size-ranges both within the QM9 database and
between databases going up to molecules with more than 80
heavy atoms.[11,22]

2. Theory

Kernel Ridge Regression: In KRR, the target property y vð Þ (i. e.
here the AE) of an unknown molecule with the representation v
is calculated via:

yðuÞ ¼
X

i

wiKðu; uiÞ (1)

where vi are the representations of training data points and wi
are regression weights. Here, we introduced the kernel function
K v; v0ð Þ, which provides a similarity measure between two
representations v and v0. A common choice for K v; v0ð Þ is the
Gaussian kernel:

Kðu; u0Þ ¼ exp �
u � u0k k22
2s2

� �

: (2)

Here, σ is the kernel length scale, a hyperparameter that
governs how prone the kernel is to classify systems as similar.
Specifically, a large value of σ will indicate some degree of
similarity between most inputs, whereas a small value will only
find similarities for systems that are very close in feature space.
Below, we also use the linear kernel, which simply consists of
the dot-product of v and v0.

The optimal (in a least-squares sense) set of weights ω can
be obtained via the expression:

w ¼ ðKþ lIÞ� 1y, (3)

where K is the kernel matrix of the training set (with
Kij ¼ K vi; vj

� �
), λ is a regularization parameter and I is the

identity matrix. λ is another hyperparameter of the model,
which represents the uncertainty of the observations.

Training a KRR model is thus a simple linear algebra
operation. Obviously, the performance of the model critically
depends on the choice of representation and kernel function. In
analogy to the common notation of Functional/Basis-Set in DFT,
this choice is designated as Representation/Kernel in the
following.
Many-Body Tensor Representation: Herein, we use the MBTR

of Huo and Rupp as a prototypical global representation of

molecular structure.[18] Simply put, the MBTR provides a
measure of how often characteristic geometric features (corre-
sponding to different orders of a many-body expansion) occur.
Canonically, these features are atom counts (1-body), inverse
interatomic distances (2-body), angles (3-body), dihedrals (4-
body), etc. For each body-order and element combination, a
broadened distribution function of these features is constructed
as a sum of Gaussians, as shown in Figure 1 for the 2-body
terms in water. These Gaussians are additionally scaled by a
distance-dependent weighting function, which introduces a
characteristic length-scale to the representation. Beyond this
length-scale atoms or molecules are effectively non-interacting.

For a given body order k and Nspecies chemical species there
are in principle Nmax ¼ N

k
species such distribution functions.

Although some combinations can be excluded by symmetry
(i. e. C� H is equal to H� C), this means that the size of the MBTR
vector quickly explodes with the body order. In practice, the
MBTR is therefore usually limited to the lowest order terms, i. e.
including up to 2- or 3-body contributions. The final MBTR
vector is obtained by concatenating the discretized feature
distribution functions vk,i:

vMBTR ¼ v1;1 � v1;2 � :::� vkmax ;Nmax (4)

Figure 1. Sample illustration of 2-body MBTR output of a single water
molecule (solid) and two distant water molecules (dashed). Interatomic
interactions include: H� H (black), H� O (red), and O� O (blue). (Top) MBTR
(Bottom) iMBTR
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In this original formulation, the representation thus contains
absolute counts of the occurrence of a given feature. In
contrast, below, we also consider a normalized version of the
MBTR, where each distribution function is normalized according
to its l2-norm:

uiMBTR ¼
1

u1;1

�
�

�
�
� u1;1 �

1
u1;2

�
�

�
�
� u1;2 � :::�

1
ukmax ;Nmax

�
�

�
�
� ukmax ;Nmax (5)

For clarity, this normalized MBTR version is designated as
iMBTR (for intensive).
Size-Extensivity: According to eq. 1, the target property (here

the AE) is predicted as a linear combination of kernel functions.
Consequently, it is advantageous if the kernel can be
constructed in such a way that it adheres to conditions known
to be fulfilled by the target property. For example, the AE is
invariant to translations and rotations of a molecule. Conse-
quently, MBTR-based kernels are constructed to satisfy these
same invariances.

A less commonly imposed condition relates to the extensive
or intensive nature of the target property. As with the
invariances, the kernel should ideally reflect the extensivity or
intensivity of the property of interest. Specifically, for two non-
interacting molecules A,

K A; 2Að Þ ¼ 2� K A;Að Þ, (6)

for an extensive property (such as the AE) and

K A; 2Að Þ ¼ K A;Að Þ, (7)

for an intensive property (such as the ionization potential).
Unfortunately, the original MBTR/Gaussian kernel is neither

intensive nor extensive. While the distribution functions that
make up the representations for A and 2A have identical shapes,
the amplitude of each peak is twice as large for 2A (see
Figure 1, top). Since the norm of the difference between MBTR
vectors enters the Gaussian kernel, it will evaluate to approx-
imately zero (depending on the lengthscale σ). In contrast, the
combination iMBTR/Gaussian leads to an intensive kernel. This is
because the iMBTR for an arbitrary number of non-interacting
molecules becomes identical to the single molecule case due to
its normalization (see Figure 1, bottom). Finally, the combina-
tion MBTR/linear leads to an extensive kernel. This can easily be
verified by considering that each element in the MBTR of 2A
differs from the MBTR of A by a factor of two.

From this perspective, the MBTR/linear kernel appears to be
the most appropriate choice for learning AEs. However (as the
name implies) KRR with the linear kernel is simply linear
regression. As the main advantage of KRR is the introduction of
non-linearity (e.g. via the Gaussian kernel), this is not ideal.

Fortunately, we can resort to a simple trick to obtain an
extensive non-linear KRR model. Specifically, an iMBTR/Gaussian
model can be trained to predict the atomization energy per
atom (AE/N), which is an intensive quantity. Indeed, it has
already been suggested in the context of electronic structure

methods that AE/N may actually be a more appropriate target
for fitting and benchmarking.[21,23]

Note that this intensive atomization energy should not be
interpreted as a local atomic energy (see below). Instead it can
be understood as a generalization of the concept of cohesive
energy for extended crystals to finite systems.[23] In Figure 2, AE/
N is plotted for linear hydrocarbons (i. e., alkanes, alkenes, and
alkynes) of different sizes. All three curves converge to a
constant value (the cohesive energy of the corresponding 1D
crystal) for large systems and display a smooth dependence on
the number of atoms for smaller systems. To predict the AE
with the iMBTR/Gaussian model, we thus train on AE/N and
subsequently simply multiply the prediction by the number of
atoms. For comparison, the original MBTR/Gaussian and MBTR/
linear models are trained on the AE, as usual.
Global and Local representations: So far, we have focused on

the general case of a global representation v, which encodes
the entire structure of the molecule/system with the property
y vð Þ. A major advantage of global ML models is that the
assumed relationship between structure and property mirrors
the fact that any property can in principle be computed from
the Schrödinger equation.[24,25] Meanwhile, a significant draw-
back is that the cost of computing global representations does
not scale linearly with the size of the system. This inhibits the
use of global representation as universal descriptors applicable
to proteins or solids. Fortunately, this is not problematic for
molecular systems with tens to hundreds of atoms. A second,
more critical aspect is that global representations are not
automatically size-extensive, as discussed in the previous
section.

In contrast to this, a variety of local ML models have been
developed that guarantee size-extensivity and linear
scaling.[26–28] In the tradition of empirical interatomic potentials,
these models approximate the total property (here the AE) as a
sum of local (e.g. atomic) contributions:

Figure 2. Atomization energy per atom for linear alkanes (CnH2n+2), alkenes
(CnH2n) and alkynes (CnH2n� 2) from C1 to C13.
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y �
X

atom

yatom (8)

Here, the local properties yatom (e.g. atomic energies in the
case of AE) only depend on the immediate chemical environ-
ment of the atom. Importantly, these local energies result from
an optimal decomposition of the total property and are not
necessarily physically meaningful.

While the expression in Eqs. 8 is manifestly extensive, it also
generally introduces an approximation to the model. For
instance, in the case of total energies or AEs it effectively
neglects any long-range interatomic interactions. Furthermore,
the local properties (like a local energy) might not necessarily
be quantum mechanical observables. In practice, the severity of
this approximation is property and material dependent. For
example, in many cases excellent interatomic potentials based
on Eqs. 8 have been obtained.[29,30]

For kernel-based regression, there is an interesting con-
nection between global and local representations, as there are
several ways to convert local to global kernels. For example, as
noted by Bártok and coworkers, a ML potential based on the
local SOAP representation is equivalent to a global model using
the averaged kernel:[3]

KðA; BÞ ¼
X

i2A;j2B

1
NANB

kði; jÞ; (9)

where K A; Bð Þ is a global kernel comparing molecules A and B,
and k i; jð Þ is a local kernel comparing atoms i and j. Similarly, a
sum of local kernels can also form a global kernel:[31]

KðA; BÞ ¼
X

i2A;j2B

kði; jÞ; (10)

From the perspective taken in this paper, Eqs. 9 and 10 are
recipes to construct global kernels from local representations,
which conform to Eqs. 7 and 6, respectively. These kernels are
special cases of the general case discussed herein, in the sense
that local representations can be used to build extensive
kernels, but not all extensive kernels must be built from local
representations. Recently, Tamblyn and coworkers also sug-
gested semi-local, extensive ML models based on deep neural
networks.[32]

3. Methods

Datasets: In this paper, we use two reference databases of DFT
AEs, namely the QM9 and OE62 sets.[20,22] The QM9 set includes
over 134,000 drug-like organic molecules and is frequently used
as a benchmark for ML studies.[1,3,6] The molecules in QM9 have
a heavy atom count (HAC) of up to nine and are comprised of
the elements H, C, O, N, and F. As alluded to above, most of
these molecules (ca 97%) contain 8 or 9 heavy atoms. This
leaves a total of 3993 molecules with a HAC=1–7, which we
will use for training.

The OE62 dataset originates from a high-throughput screen-
ing study for organic semiconductors by Schober et al. and has
also been used for benchmarking different ML methods.[6,22]

While somewhat smaller than QM9 (61,489 molecules) it is
significantly more chemically diverse. For example, OE62
contains 16 different elements and much larger molecules, with
up to 174 atoms (max. HAC=92).

Predicting properties of the OE62 set is therefore a very
hard task for ML models trained on the small molecules
contained in QM9, but it should in principle be possible for a
size-extensive model. However, this can only work if both
datasets are consistent. We therefore focus here on a subset of
32,467 OE62 molecules that contain the same elements as QM9
(H, C, O, N, and F). Furthermore, the original QM9 data was
computed at the B3LYP/6-31G(2df,p) level, whereas the OE62
database is based on the Perdew-Burke-Ernzerhof (PBE) func-
tional with Tkatchenko-Scheffler Van-der-Waals correction (PBE-
vdW), tight integration grids and a “tier2” basis set of numerical
atomic orbitals.[33–35] To increase the consistency between both
datasets, the atomization energies for all QM9 molecules were
correspondingly recomputed with the OE62 settings (using the
original QM9 geometries). This new dataset is freely available
from the authors.
Hyperparameter Optimization: The hyperparameters σ and λ

(from Eqs. 2 and 3) were optimized through 4-fold cross
validation (CV). Specifically, the parameters that minimize the
average root mean square difference (RMSD) in CV were
obtained using the Nelder-Mead minimization algorithm[36,37] as
implemented in the scikit-learn package.[38] MBTR vectors were
obtained via the DScribe package, including only one- and two-
body terms.[39] Unlike σ and λ, the MBTR-specific hyperpara-
meters were not optimized, and the default values for broad-
ening and damping functions were used (see SI).

We note that using higher order terms and optimizing all
hyperparameters would certainly lead to somewhat lower
errors. However, the goal of this study is not to benchmark
MBTR itself but to understand the role of size-extensivity on ML
models with global representations. For this purpose, we found
the above choices to be adequate.

4. Results and discussion

As discussed in the theory section, we will focus on three KRR
models, namely the combinations MBTR/Gaussian, iMBTR/
Gaussian and MBTR/linear. In line with previous ML studies on
predicting AEs, we start by checking the predictive performance
of the models within a dataset.[2,6,18] Here, we focus on a subset
of QM9, containing all 3,993 molecules with up to seven heavy
atoms. The average RMSD from 4-fold CV on this set is shown in
Table 1.

The MBTR/Gaussian kernel performs best, followed by the
iMBTR/Gaussian and MBTR/linear models. This shows the
benefit of the non-linear Gaussian kernel, though the results of
the linear kernel are also respectable, in line with what was
reported by Huo and Rupp.[18] For consistency, all errors are
reported with respect to total AEs, even for the iMBTR/Gaussian
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model which is trained on AE/N. It is therefore not surprising
that iMBTR/Gaussian performs somewhat more poorly than
MBTR/Gaussian, given that it minimizes a different loss function.
Still, one might naively conclude from this analysis that the
conventional MBTR/Gaussian kernel is suitable for predicting
AEs, in spite of its lacking extensivity.

This picture changes radically when the models are forced
to extrapolate beyond the scope of their training sets, however.
To this end, we consider a separate test set of 2000 QM9
molecules with nine heavy atoms. In addition to the standard
HAC=1–7 training set, we thereby also consider training sets
containing only up to four, five, and six heavy atoms,
respectively, to specifically test the extrapolation capabilities of
the models. The results for all models are summarized in
Figure 3.

Contrary to the previous result, the original MBTR/Gaussian
method now shows the worst prediction performance among
the three models, which is a direct manifestation of its lacking
size-extensivity. Even the (extensive) MBTR/linear model shows
significantly lower RMSD compared to MBTR/Gaussian. Finally,
the iMBTR/Gaussian model combines proper extensivity with
the non-linearity of the Gaussian kernel and performs best.
Indeed, it even provides qualitatively useful predictions (with a
relative error of ca. 1–2%) for the smallest training set, which
consists of just 48 molecules with up to four heavy atoms.

An even more challenging test case is predicting the AEs of
the OE62 set while still training on QM9. As mentioned above,
the latter has a very narrow heavy atom distribution (peaking at

9) whereas the former has a wide distribution peaking around
20 (see Figure S1 in the SI). Furthermore, OE62 contains
chemical structures that are absent from QM9, such as
polycyclic aromatic compounds. As before, the models are
trained on the 3,993 QM9 molecules with up to seven heavy
atoms.

The correlations between predicted and reference AEs for
all KRR models are shown in Figure 4. Here, the most notable
feature is the abysmal performance of MBTR/Gaussian, with an
RMSD of 4,327 kcal/mol. While the model actually displays
reasonable accuracy up to AEs around ca. 2,500 kcal/mol (i. e.
for molecules similar to the training set), it completely fails
beyond this range. Indeed, as the kernel function vanishes for
large molecules, the model predicts an AE of zero for all large
molecules. This poor performance of MBTR/Gaussian vividly
demonstrates its lack of size-extensivity.

In contrast, the iMBTR/Gaussian and MBTR/linear models
both show good correlations with the reference across the full
range of systems (R2 =0.99), with dramatically lower RMSDs of
184.4 and 138.2 kcal/mol, respectively. At first glance, this is still
a large margin of error, compared to the results for QM9. It
should however be noted that the error of a predicted AE
should itself be size-extensive, so that larger errors are to be
expected for larger systems.[21] Given that the AEs of the OE62
set range up to ca. 18,000 kcal/mol, an RMSD of ca. 100 kcal/
mol is actually not that poor in relative terms. To quantify this,
the RMSD can be normalized by the standard deviation of the
Aes in the data set. This yields normalized RMSDs of 0.10
(iMBTR/Gaussian) and 0.08 (MBTR/linear), respectively (where
1.0 would be the performance of a random Gaussian model
with appropriate mean and standard deviation).

Furthermore, this error is quite systematic, with the AEs of
large systems being consistently underestimated. A linear fit of
the correlation plots reveals that this is a bit more pronounced
for iMBTR/Gaussian than for MBTR/linear (see Figure 4). Indeed,

Table 1. Averaged RMSD from 4-fold cross validation KRR models trained
on the 3,993 QM9 molecules with HAC=1–7.

MBTR
Normalization

Kernel Training
Target

RMSD
(kcal/mol)

iMBTR Gaussian AE/N 3.14
MBTR linear AE 4.09
MBTR Gaussian AE 2.30

Figure 3. Accuracy of KRR models trained on small QM9 molecules (max.
HAC=4–7) when predicting larger molecules from QM9 (HAC=9).

Figure 4. Correlation plots of predicted OE62 AEs for MBTR/Gaussian (!
green), iMBTR/Gaussian (* blue) and MBTR/linear (× orange). All models
were trained on 3,993 QM9 molecules with HAC=1–7. Prediction was
performed on 32,467 OE62 molecules consisting of C, H, O, N and/or F.
Linear regression lines and equations are shown for iMBTR/Gaussian (blue)
and MBTR/linear (orange).
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if the results of the linear regressions are subtracted from the
predictions, the corresponding RMSDs are reduced to
63.85 kcal/mol (iMBTR/Gaussian) and 61.33 kcal/mol (MBTR/
linear).

Of course, even in relative terms, the errors of these models
are still larger than what would be expected purely based on
the cross-validation RMSD of their training sets. This is because
extensivity is not the only relevant size-effect. For example,
long-range interactions like electrostatics and dispersion can
play a significant role in stabilizing large molecules. Further-
more, electronic effects like quantum confinement may occur
on the nanometer scale. These effects lead to a net stabilization
of larger molecules, reflected in the systematic underestimation
of the AEs mentioned above.

Consequently, AE/N is not converged for systems with
seven heavy atoms, even in the fairly simple case of linear
hydrocarbons (Figure 2). In Figure 5, the distribution of AE/N vs.
N is shown for the full QM9 and OE62 sets. Interestingly, the
basic features of this plot are remarkably similar to Figure 2. In
particular, it can be seen that the mean AE/N is approximately
constant for molecules with more than ca. 20 atoms. This
regime corresponds to the largest molecules in QM9. The figure
also provides an intuitive explanation of why the iMBTR/
Gaussian method works. By choosing AE/N as the target
quantity, the variability that the model must account for is
decreased from ca. 18,000 kcal/mol to ca. 80 kcal/mol.

5. Conclusion

In this contribution, we have explored the size-extensivity of
molecular ML models based on global representations such as
the MBTR. While the conventional MBTR/Gaussian model is not
ideal for either extensive or intensive properties, we showed
that there are appropriate kernels for both cases, namely the
MBTR/linear (extensive) and iMBTR/Gaussian (intensive). While
current extensive ML models are typically built from local

representations, our work shows that this is not strictly a
requirement. We also showed how an intensive kernel can be
used to predict an extensive property. To illustrate the
significance of these results, a highly challenging ML task with
large size differences between the molecules in the training
and test sets was devised. We found that properly extensive
models perform reasonably well in this setting, whereas the
conventional MBTR/Gaussian approach fails outright.

Importantly, we stress that a non-extensive model can still
be quite accurate if the size of the chemical space of interest is
limited. However, in those areas of chemistry where ML is
expected to have a large impact, this is not the case. In
particular, for the study of large reaction networks (e. g. within
systems chemistry or catalysis) a useful ML model must
adequately describe the transition from small molecules to
larger systems and even polymers (and vice versa). The present
work represents an important stepping stone to this end.

Finally, it should be noted that the present study was
purposefully designed to study the effects of size-extensivity in
the limit of large size differences between training and test
molecules. In practice, we expect that the systematic errors in
the extensive models could be mitigated by including a limited
number of larger molecules in the training set.
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