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Abstract

The kinetics and thermodynamics of chemical processes such as heterogeneous catalytic
reactions often depend on tremendously complex reaction networks, whose exploration
quickly exceeds computational possibilities. The usage of first principle methods to iden-
tify and calculate the relevant reaction steps therefore becomes unfeasible, requiring new
methods to overcome these challenges. Over the last decade, different machine-learning
methods have been developed and applied to chemical problems. These methods range
from neural networks to kernel-based methods such as kernel ridge regression or the train-
ing of Gaussian approximation potentials (GAPs), which is the machine-learning method
used in this work.

Besides the usage of machine-learning to overcome computational barriers, another as-
pect in the handling of complex reaction networks is their reduction to the most important
reaction steps and intermediates. Prerequisite for the reduction of network complexity is
the knowledge of the appropriate energy landscape. Finding the global minimum of a
chemical system can give deep insights into the relevant conformations for each involved
structure bridging the gap to build up the energetic environment of a catalytic reaction.

Therefore, in this work a method is developed to pool forces of both machine-learning
and a distinct approach to find the global minima of the involved adsorbates in the syn-
gas conversion on catalytic rhodium surfaces. As part of the work, an iterative training
workflow for the training of a GAP is developed. Using this workflow, a system-specific
potential is trained for the syngas conversion on Rhodium surfaces. The developed poten-
tial is then applied to the global optimization of the involved educts, intermediates and
products emerging in this specific system - the syngas conversion on Rhodium.
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Chapter 1

Introduction

Heterogeneous catalysis is one of the main drivers in industrial chemical processes and
also one of the central aspects towards more sustainable chemicals. As most of the chem-
icals produced and used nowadays are in contact with at least one catalyst during their
lifetime, catalytic efficiency plays an important role in the reduction of energy consump-
tion. Therefore, exploring the most active and selective catalysts remains one of the major
tasks in designing a sustainable future. [1, 2]

One key reagent in industrial chemistry is synthesis gas (also named syngas) which is
a mixture of carbon monoxide and hydrogen that is used to synthesize many basic chem-
icals and synthetic fuels with the help of catalysts [3]. Whereas several catalysts are able
to convert syngas to different products with high activity, many of them lack in catalytic
selectivity, characterising the catalysts affinity towards a specific product. Rhodium has
been identified as one of the most promising catalysts with selectivity towards ethanol,
which is one of the favored products, although the rationale of this selectivity is still de-
ficient. [4] Therefore, computational methods such as density functional theory (DFT) are
broadly used to gain theoretical insights about the energetic properties of these systems,
represented by their potential energy surface (PES) [5].

However, the accurate determination of the mechanisms leading towards the desired
products is a major barrier. The reason is that even simple heterogeneous catalytic re-
actions depend on tremendously complex reaction networks, whose exploration quickly
exceeds computational possibilities when approached with DFT. In particular, not all
of the individual steps in the network contribute to the overall mechanism, leading to
the need of systematic network reduction approaches differing from traditional chemical
intuition. Thermochemistry can facilitate the reduction by calculating reaction energies
between educts and products showing up the most likely reaction path and identify-
ing thermodynamically inaccessible network regions with only little impact on the actual
mechanism. [6–8]

Nonetheless - even after focusing on the main parts of the network - the simulation of
rare events and reaction dynamics on a first principle level by ab-initio molecular dynam-
ics (MD) is impossible. Therefore, empirical potential based MD simulations as well as
statistical, coarse-grained microkinetic models like kinetic Monte Carlo simulations have
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been widely employed in this field. These methods are able to represent more complex,
dynamical systems on large timescales, whereby a loss in accuracy has to be accepted. [9]

In order to overcome this loss in accuracy, different machine learning (ML) approaches
have been developed and successfully applied to a broad field of chemical problems.
These approaches range from neural networks to regression models, whereby particu-
larly the coupling of quantum chemistry and ML is a promising technique, striving for
ML-accelerated simulations with chemical accuracy. [10–13] Within the field of regression
models, ML interatomic potentials such as Gaussian approximation potentials (GAPs) have
been developed and applied to many different chemical systems in literature [14, 15]. In
this way, for instance the geometry optimization and dynamics simulation of catalytic
systems is enabled at a fraction of cost of a full DFT calculation [16].

To further reduce the computational complexity within a catalytic network, the knowl-
edge of the global minima of the different adsorbates on the catalytic surface is important
in order to reveal the most important adsorption sites and conformations as well as their
appropriate energies. Therefore, several algorithms have been developed aiming to find
the global minimum, including the minima hopping method (MHM). [17]

This work aims to develop a method to find the global minimum of the involved educts,
intermediates and products of the syngas conversion on Rhodium in order to develop a
reduced reaction network for this catalytic system. For this purpose, the method of GAP is
used to train a system-adapted interatomic potential, which is then applied to the minima
hopping of single adsorbates on plain Rhodium(111) and stepped Rhodium(211) surfaces.

First, the scientific context and significance of the syngas conversion on Rhodium is
outlined. Second, the relevant theoretical background is introduced. Afterwards, the de-
velopment of the GAP training workflow is depicted. This is followed by the application of
the trained potential towards the exploration of the global minimum landscape of the syn-
gas conversion system. At the end, the results are summarized and remaining questions
are pointed out.

2



Syngas conversion on Rhodium

The conversion of syngas into liquid fuels such as ethanol has a considerable potential
when striving to create sustainable chemical and energy supply [18]. Syngas is a mixture
of carbon monoxide and hydrogen, which is, at present, primarily produced from fossil
resources as coal or natural gas and converted into different products required in industrial
chemistry. Some of the industrially most relevant processes utilize syngas for example
for the synthesis of liquid hydrocarbons in the Fischer-Tropsch process, as a hydrogen
supply in the production of ammonia via the Haber-Bosch process or the synthesis of
methanol [19].

Figure 1.1: Simplified visualization of the industrial production and utilization of synthe-
sis gas.

Besides syngas production from natural, non-renewable feedstock, different production
routes arose using renewable feedstock such as biomass [20] or CO2 [21]. This makes
syngas remain an important building block for a sustainable chemical future, further am-
plified by its ability to convert into various products.

One of the most favored products is ethanol, especially because of its possible utilization
as a fuel [22]. As bioethanol synthesis from sugar fermentation suffers from scalability
due to its competition with the usage as nourishment, alternative synthesis strategies are
demanded [23]. Through coupling of syngas production from renewable feedstock on
the one hand and conversion into ethanol and other higher alcohols on the other hand,
the production of a biofuel - also called synfuel due to its origin from syngas - becomes
possible. This builds up a broad opportunity for partial or even overall substitution of
petroleum-derived fuels [24].

However, in order to specifically produce a certain product from syngas conversion,
knowledge on the reaction mechanism is required. This knowledge is gained by coupling
of experiments and theoretical calculations. It has been early found, that the three most
relevant steps in the syngas conversion towards C2+ oxygenates are first the CO activation,
second the C-C coupling and third the hydrogenation reaction [25]. Thereby, different
catalysts dissimilarly promote one or more steps resulting in different favored products.

Rhodium has shown significant selectivity towards C2+ oxygenates compared to other
catalysts such as copper [26]. Selectivity, in general, is a catalysts affinity towards the
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production of a specific product. Most of the chemical reactions possibly yield various
products, whereas the thermodynamically stable ones prevail. By the usage of catalysts,
reaction barriers are lowered and intermediates are stabilized, which reasons the selectivity
of different catalysts towards different prevailing products. [27]

In case of the syngas conversion on Rhodium, Yang et al. [4] revealed an intrinsic struc-
ture sensitive selectivity of the catalyst. Thus, different Rhodium surfaces show up dif-
ferent selective products. The researchers found a high selectivity of Rh(111) towards C2+

products with acetaldehyd instead of ethanol as the prevailing one. However, by addition
of co-atoms such as Iron, the selectivity could possibly be shifted towards ethanol [28].
The more active Rh(211) surface did in contrast show up a selectivity towards methane.

For the above named study, Yang et al. refined reduced reaction mechanisms for syngas
conversion on Rh(111) and Rh(211) surface facets, which build up the basis of this work’s
reaction network development. The mechanisms are depicted in appendix A.1.
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Chapter 2

Theoretical background

In this chapter, the theoretical background of this work is introduced. In line with the
overall goal of this work, the fundamentals required to fit an interatomic potential as a
surrogate model to perform global optimizations of the potential energy surface (PES)
are focused. Therefore, this introduction is divided into the description, exploration and
representation of the PES. For the description of the PES, the methods density functional
theory and machine learned interatomic potentials, especially the applied method of Gaus-
sian approximation potentials, are emphasized. The exploration of the PES is divided into
local and global optimization techniques including the minima hopping method. In the
PES representation, training set generation by farthest point sampling and system visual-
ization and simplification by kernel principal component analysis are focused.

2.1 Description of potential energy surfaces

The PES represents the energetic landscape of a system as a function of parameters, most
commonly Cartesian coordinates. The energy can be expressed in terms of the following
time-independent, non-relativistic Schrödinger equation, whereby Ĥ defines the Hamilto-
nian, Ψ(riσi, Rv) the many-body wavefunction, E the energy , ri and σi the spatial and spin
coordinates of the electrons and Rv the spatial coordinates of the nuclei

ĤΨ(riσi, Rv) = EΨ(riσi, Rv). (2.1)

Solving this many-body Schrödinger equation yields the respective energy, what quickly
becomes a complex, analytically unsolvable task even for small systems. This is reasoned
in multiple correlation effects such as electron-electron and electron-nucleus correlation,
requiring approximations, for example the Born-Oppenheimer (BO) approximation. As
the nuclei’s mass remarkably exceeds the electrons’ mass, the electronic velocity surpasses
the velocity of the nuclei. Thus, the latter are considered stationary, which enables the
neglection of the electron-nuclei coupling and the reduction of the problem to its elec-
tronic part only. In order to solve the many-body Schrödinger equation within the BO
approximation, the Hartee-Fock (HF) method was established. [29]
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However, since electron-electron correlations are still neglected in HF theory, a lack in
accuracy is the consequence. Therefore, HF nowadays serves as the starting point for other
developments approaching a more accurate solution of the many-body problem. In gen-
eral, two approaches can be distinguished: wavefunction based post-HF methods such as
Møller-Plesset perturbation theory or Coupled Cluster on the one hand and density based
methods such as density functional theory (DFT) on the other hand. DFT has been estab-
lished as the workhorse for a broad field of applications including catalysis and surface
science due to its lower computational costs compared to wavefunction based methods.

Although DFT facilitates calculations for periodic systems in contrast to wavefunction
methods, ab initio molecular dynamics simulations are still very limited in system size and
simulation time, when approached with DFT. For this reason, empirical interatomic po-
tentials are still the mainly used physical basis for the dynamics of multi-element systems
with heavy and non-systematic losses in accuracy. ML methods such as GAP therefore
emerge for the description of the PES, allowing larger systems and longer simulation
times than ab initio methods on the one hand, coupled with higher accuracy than empiri-
cal potentials on the other hand.

In the following, the methods of DFT and GAP are further elucidated, as these are the
methods applied in this work. The introduction to DFT is based on [30–32] and to GAP
on [14, 33, 34], unless otherwise specified.

2.1.1 Density functional theory

Density functional theory (DFT) is a method to calculate the electronic structure of a sys-
tem, first primarily used in solid state physics with broad applications in the chemical
context nowadays. In contrast to wavefunction based solutions to the many-body prob-
lem, where the wavefunction serves as the central quantity, DFT uses the electron density
for this purpose.

According to the first Hohenberg-Kohn theorem [35], the electron density ρ and the
external potential νext of a system are mapping to within a constant:

ρ → νext → Ψ0. (2.2)

As a consequence, the ground state energy can be expressed as a functional of the electron
density

E[ρ] =
∫

ρ(r)νextdr + FHK[ρ], (2.3)

where the Hohenberg-Kohn functional FHK[ρ] is defined as the sum of the kinetic energy
functional T[ρ] and the electron-electron energy Eee[ρ]

FHK[ρ] = T[ρ] + Eee[ρ]. (2.4)
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In addition to that, Hohenberg and Kohn [35] were able to prove the validity of the
variation principle, which is expressed in their second theorem:

E[ρ] ≥ Eexact
0 . (2.5)

Solving this minimization problem by finding the density, that minimizes the energy, fi-
nally approaches the ground state energy. However, in the expression of the ground state
energy in equation 2.3, only the first part is exactly expressible. In contrast, there is no
simple way to determine a suitable expression for the Hohenberg-Kohn functional FHK

consisting of the kinetic energy functional T and the electron-electron energy Eee. Though,
the knowledge of the Hohenberg-Kohn functional FHK is crucial.

Kohn and Sham [36] approached this problem by specifying and dividing the kinetic
energy part of the Hohenberg-Kohn functional T in an exactly expressible part Ts and a
remaining part T − Ts. Also the electron-electron interaction can be parted in two terms: a
classical Coulomb term J and unknown non-classical electrostatic contributions Encl

Eee = J[ρ] + Encl [ρ]. (2.6)

Thus, the exchange-correlation functional Exc can be introduced, which is defined as

Exc[ρ] = (T[ρ]− Ts[ρ]) + (Eee[ρ]− J[ρ]). (2.7)

This finally leads to the following reformulation of the energy as a function of electron
density,

E[ρ] = Ts[ρ] +
∫

ρ(r)νextdr + J[ρ] + Exc[ρ], (2.8)

which is the total energy expression in the so-called Kohn-Sham DFT.
As all of the other parts of the total energy are explicitly defined, finding an accu-

rate expression for the exchange-correlation functional Exc is the main task in DFT nowa-
days. Therefore numerous functionals have been developed to approach this task and an
overview is given in the following.

Approach to chemical accuracy

The main developments in DFT nowadays strive to find a more accurate expression to the
exchange-correlation functional. Over the years, chemical accuracy was more and more
approached, which is visualized by John Perdew’s Jacob’s ladder [37] in figure 2.1. In
contrast to wavefunction based approaches, in DFT improvement is not achieved system-
atically, but the Jacob’s ladder enables sequencing of the different, solitary approximations.
Starting from the HF level, numerous non- and semi-empirical functionals have been de-
veloped striving for chemical accuracy.
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Figure 2.1: Jacob’s ladder of exchange-correlation functionals for DFT [37]. Each rung
represents a class of exchange-correlation functionals. Starting from the Hartee-
Fock level, each rung reaches more and more towards chemical accuracy, which
is the overall goal.

The simplest description of the exchange correlation potential only uses the energy den-
sity itself and is classified as the local density approximation (LDA), including its extension
to the local spin density approximation (LSDA). The generalized gradient approxima-
tion (GGA) additionally includes the gradient of the density, which leads to an improve-
ment over LDA. The third rung is build by the metageneralized gradient approximation
(meta GGA). In meta GGA, either the second derivative of the density or the kinetic en-
ergy density is used further approaching chemical accuracy. The upper two rungs pursue
another idea and treat the exchange term explicitly, coming from Hartee-Fock theory. A
specific subclass of these are hybrid functionals, which are widely employed. The next
step towards chemical accuracy is the introduction of full non-locality.

For all of the above mentioned approximations, various specific functionals have been
designed. The revised Perdew–Burke–Ernzerhof (revPBE) functional [38], an extension of
the Perdew–Burke–Ernzerhof (PBE) functional, is a GGA functional, which is commonly
applied in catalysis and also in this work.

Despite its broad utilization, (semi-)local functionals as PBE lack in predicting non-
covalent dispersion interactions. Therefore, several dispersion correction methods have
been developed, for example pairwise van der Waals (vdW) corrections [39] or the Lifshitz-
Zaremba-Kohn theory for the interactions of atoms and solid surfaces. Ruiz et al. [40]
combined these two approaches in the DFT+vdWsurf method. Due to inclusion of the
corresponding DFT+vdWsurf parameters, the description of vdW interactions of adsorbates
on surfaces can be enhanced. [41] Thus, DFT+vdWsurf parameters are also considered in
this work.
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Although DFT facilitates the calculation of periodic surface systems, it is still limited
in system size and simulation timescale. Therefore, interatomic potentials are widely em-
ployed and a new field of potentials is rising, the ML interatomic potentials. An introduc-
tion to a special type of ML potentials, GAP, is given in the following.

2.1.2 Gaussian approximation potentials

Gaussian approximation potentials (GAPs) are a special form of ML interatomic poten-
tials, which demonstrate good applicability in the chemical context [42–45]. Due to their
potential in the prediction of complex chemical networks [46], they are also applied in this
work. In contrast to many empirical force fields, GAP does not require a previous def-
inition of a parametric function, a particular physical model or specific interactions [47].
Instead, it is solely based on the given input data, which is used to approximate the PES
by non-linear regression.

Figure 2.2: Visualization of the GAP approach based on [48, 49]. In order to fit a GAP
model, three essential parts are required: 1. the reference database consisting of
geometric data with corresponding DFT energies, 2. the system representation
by different descriptors (e.g. by 2-, 3- or multi-body descriptors), 3. machine
learning part in form of Gaussian process regression.

In more detail, the GAP approach can be divided into three essential components, as
depicted in figure 2.2. These are the reference database consisting of chemical geometries
with their associated energies and forces, the system representation by their atomic envi-
ronments and third, the ML part in form of Gaussian process regression (GPR). The three
components are subsequently elaborated.

Construction of a training database

The basis of training a GAP is a database consisting of a representative set of configurations
with its corresponding quantum mechanical energies and forces obtained via a high level
reference method, e.g. DFT calculations. These geometries build up the input data for the
subsequent regression, whereby the energies and forces serve as fit properties.
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Figure 2.3: The first component of the Gaussian approximation potential (GAP) approach
[48,49]: the reference database consisting of geometries with its corresponding
DFT energies and forces iteratively updated by generation of new data via a
certain simulation method and sampling of the generated data.

The GAP training represents an iterative process as implied by figure 2.3. During the
process, the aim is to improve the prediction by an iterative update of the training data
and relearning with this data ahead. This requires the iterative generation of new training
data unknown to the potential. The data eneration is done by using a certain simulation
method, for example MD or optimization, in each iteration and sampling by a chosen sam-
pling technique, for example by farthest point sampling (FPS) later introduced in section
2.3.1. Due to the sampling and choice of new data, the training set is updated and a new
training iteration can be started.

Representation of atomic environments

The system representation portrays the second component required to train a GAP, as
depicted in figures 2.2 and 2.4. The central measure to represent a system is its total
energy in dependency of parameters, for which predicting the total energy is also the
target in the GAP approach. The total energy can be divided in short-range and long-
range interactions,

E = ∑
d
(δ(d))2 ∑

i∈d
ε(d)(q(d)

i )︸ ︷︷ ︸
short-range

+long-range contributions, (2.9)

whereby the long-range contributions stem from electrostatics interactions. The short-
range contributions consist of local, scaled (δ) energies ε, which are summed over the
different descriptor types d. The single local energy contribution ε(d) is a function of
the input configuration represented by its descriptor vector q(d). It is defined as a linear
combination of weighted (α) Kernel functions K(d), measuring the similarity of a given
local environment q(d)

i to the local environment of Nu training configurations q(d)
u :
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ε(d)(q(d)
i ) =

N(d)
u

∑
u=1

α
(d)
u K(d)(q(d)

i , q(d)
u ). (2.10)

As mentioned above, atomic structures serve as inputs for the ML method. Therefore,
one central need in the GAP approach is the representation of the atomic environment, as
the energy of an atom is influenced by interactions with its neighborhood. This description
should be designed such that it remains invariant to translations and rotations, which
excludes the usage of Cartesian coordinates.

Therefore, descriptors, which fulfill these requirements, have been developed. Exem-
plary descriptors are the 2-body and the smooth overlap of atomic positions (SOAP) de-
scriptor, pictured in figure 2.4. The 2-body descriptor regards all the 2-body contributions
of a central atom a to its surrounding atoms within a cutoff radius rcut. In contrast to
this, the SOAP descriptor is a multibody descriptor, which does not regard just a single
scalar like the 2-body descriptor vector in the squared exponential kernel. It regards all
the multibody contributions due to the overlap of atomic positions within a cutoff radius.

Figure 2.4: The second component of the Gaussian approximation potential (GAP) ap-
proach [48, 49]: the system representation by different descriptors, e.g. the
2-body or smooth overlap of atomic positions (SOAP) descriptor.

For these descriptors, kernels or covariance matrices are constructed, which serve as a
similarity measure between structures and are capable of representing multivariant atomic
environments. Dependent on the descriptor, different types of kernels are typically uti-
lized. In case of the 2-body descriptor, a squared exponential kernel is capable of describ-
ing the similarity of two local environments i and u:

K(2b)(q(2b)
i , q(2b)

u ) = exp

−1
2 ∑

ν

(q(2b)
ν,i − q(2b)

ν,u )2

θ2
ν

, (2.11)

where θ denotes the length scale, which is a smoothness parameter, and ν indexes all
the different descriptor vector components. In case of describing 2-body contributions
between atoms a and b, the 2-body descriptor vector is then given by the natural distance
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rab between these atoms
q(2b) = |rb − ra| ≡ rab. (2.12)

For SOAP, another approach is followed: SOAP is based on the environment density of
an atom a, which is expressed in a Gaussian, to a sum over atoms b with a Gaussian width
of σab within fixed boundaries of a seceding cutoff function fcut

ρa(r) = ∑
b

exp

[
− (r − rab)

2

2σ2
ab

]
× fcut(rab). (2.13)

For the sake of simplicity, the explanation here is restricted to one atomic species only. The
extension due to the expansion to different atomic species, can be found elsewhere [50].
For numerical reasons, the density is expanded in terms of spherical harmonic functions
Ylm,

ρa(r) = ∑
nlm

c(a)
nlmgn(r)Ylm(r̂), (2.14)

within a local basis of orthogonal basis functions gn. The expansion coefficients cnlm form
the following power spectrum

p(a)
nn′ l =

√
9π2

2l + 1 ∑
m
(c(a)

nlm)
∗c(a)

n′ lm (2.15)

with limited elements l ≤ lmax and n ≤ nmax, whereas lmax and nmax refer to hyperpa-
rameters, which are defined in table 3.2. Building the dot product of the power spectrum
and exponentiating with zeta ζ in order to sensitise to changes in atomic positions finally
yields the definition of the SOAP kernel:

K(SOAP)(q(SOAP)
a , q(SOAP)

u ) = | ∑
nn′ l

p(a)
nn′ l p

(t)
nn′ l |

ζ

= |q(SOAP)
a · q(SOAP)

u |ζ .
(2.16)

Coming back to the expression of the total energy, as defined in equation 2.9, the previ-
ously defined kernels can be used to summarize the total energy. In this work, a 2-body
descriptor was combined with two SOAP descriptors with different cutoff radii, which by
summation of the different kernels for each descriptor [51] yields the final total energy
term consolidating this work’s approach:

E = (δ(2b))2 ∑
i

∑
u

α
(2b)
u K(2b)(q(2b)

i , q(2b)
u )

+ (δ(SOAP1))2 ∑
j

∑
u

α
(SOAP1)
u K(SOAP1)(q(SOAP1)

j , q(SOAP1)
u )

+ (δ(SOAP2))2 ∑
k

∑
u

α
(SOAP2)
u K(SOAP2)(q(SOAP2)

k , q(SOAP2)
u ).

(2.17)
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From this functional form of the total energy, predictions of the PES are impossible due
to the lack of knowledge on the regression coefficients. The above definitions are rather
prerequisites for the ML, which is briefly explained in the following.

Gaussian process regression

At the heart of machine-learning interatomic potentials naturally is the learning. In the
GAP method, the supervised learning is done by Gaussian process regression (GPR),
which is a non-parametric regression method.

Figure 2.5: The third component of the Gaussian approximation potential (GAP) approach
[48, 49]: machine learning by Gaussian process regression (GPR). The solid,
red line represents the true potential energy curve, the dotted lines possible fit
functions and the dashed line the mean fit function. x are the datapoints and
the bar reflects the uncertainty of the prediction.

Splitting the name of the method Gaussian process regression to Gaussian process and
regression, gives an explanation to the method itself. In regression, an unknown function
y is fitted to a given data set. In case of the well-known linear regression, the functional
form is known, resulting in an easy calculation of the linear regression coefficients with the
lowest mean-square error. For multivariant data, such as molecular systems and energies,
the describing parameters should not be limited to a specific number, and more than one
function might be able to represent the data set. Therefore non-parametric regression is
required.

A Gaussian process represents the probability distribution of different functions, which
are able to fit to the given data set. As indicated in figure 2.5, the uncertainty of the
prediction of a GPR is high in regions with no or limited data points and becomes low for
regions with many data points. [52]

Coming back to the prediction of the total energy or any other observation t of an atomic
configuration, the covariance is given by the scalar product

C ≡ t · tT, (2.18)
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whereby the values of the covariance matrix correspond to the kernel or covariance func-
tions K(d) previously defined in equation 2.11 and 2.16. The probability P of the observa-
tions t of the known data point is assumed to be normal distributed (N ) with zero mean
and a variance given by the covariance C, such that

P(t) = N (t; 0, C) ∝ exp
(
−1

2
tTC−1t

)
. (2.19)

The probability of an unknown data point y is likewise Gaussian distributed and given by

P(y|t) = P(t, y)
P(t)

. (2.20)

Taking the mean of the latter distribution with k denoting the covariance vector of the
predicted value y,

k = y · t, (2.21)

then defines the regression model

y = kTC−1t, (2.22)

whereby C−1 are the coefficients, that have been evaluated by the training. Therefore,
it is possible to predict the total energy of unknown configurations from the kernel of
given observations t. This makes GPR a powerful and widely applied method in ML. For
highly correlated data sets, for example structures with only slight perturbation with sim-
ilar atomic neighborhoods, ’sparse’ approximations become reasonable in order to reduce
computational costs. In the GAP approach, sparsification is introduced by setting a num-
ber of sparse configurations nsparse, which are randomly chosen from the overall training
set and build the representative atomic neighborhood. [13]

With this enhanced and accelerated description of the PES by the usage of GAP, the
consideration of larger systems and the simulation of longer dynamics is facilitated. This
enables for example the systematic exploration of the PES, which is focused in the follow-
ing.
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2.2 Exploration of potential energy surfaces

The PES of a system constitutes a 3N-dimensional surface, whose exploration quickly
exceeds computational possibilities with increasing N. The three dimensions refer to the
spatial coordinates of the N atoms. Thus, the complexity rises with system size and explor-
ing the PES of bigger systems requires the usage of computationally efficient optimization
methods. While analysing the PES of a chemical system, illustrated in figure 2.6, many
midpoints and stationary points such as saddlepoints and extrema are detected. Thereby,
saddle points and minima receive special interest, as the saddle points represent transition
states and the minima are (meta-)stable states, whose locations have the greatest impact
on a chemical reaction’s path. [53]

Figure 2.6: Illustration of a potential energy surface (PES) as energy E versus Cartesian co-
ordinates x and y, consisting of (1) maxima, (2) saddle points, (3) local minima
and (4) one global minimum.

However, many local but only one global minimum can be found, which is the most
stable configuration of the system [54], also referred to as geometric ground state. As the
number of local minima rises exponentially with system size [55], finding a local minimum
of a system is a rather straightforward task, whereas the demanding one is to find the
global minimum [17]. Several methods have been developed coming up with local minima,
saddle points, transition states as well as the global minimum. As this work applies local
optimization using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm as well as
global optimization by the minima hopping method (MHM), these methods are elaborated
in the following.
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2.2.1 Local optimization

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is a quasi-Newton optimization
method, which is commonly applied to local optimization problems. Local optimizations
in the chemical context mostly indicate geometry optimizations. Starting from an initial
structure, the surrounded, most stable configuration is approached, which is the one with
the lowest energy. In contrast to global optimization, local optimization strives to quickly
find the next optimum, without evaluating the presence of other optima further afield.
This distinction is illustrated in the following figure 2.7.

Figure 2.7: Comparison of local (solid arrow) and global optimization (dotted arrow) in a
1D potential energy plot (green curve) as energy E vs. reaction coordinate x.

Local optimization methods can be differentiated in first and second order optimization
methods, whereby first means the first derivative of the objective function, for example
the potential energy, and second the second derivative. More precisely, second order
optimization methods, also classified as Newton optimization methods, make use of the
Hessian matrix, which is a square matrix of second-order partial derivatives of a function.
By usage of the second order, not only the slope but also the curvature of the objective
function is accounted, which provides the direction for optimization and additionally the
possible step size. [56]

Quasi-Newton methods circumvent the computationally expensive calculation of the
inverse of the Hessian matrix by calculating the first order derivative explicitly and ap-
proximating the Hessian. This approximation significantly reduces the computational cost
compared to the regular Newton optimization [56, 57]. In case of the BFGS method, the
approximation to the Hessian is iteratively updated instead of recalculated, which addi-
tionally reduces the computational cost of the BFGS steps. A detailed description of the
BFGS approach can be found in the literature [58–61].

The BFGS method serves as the local optimization method in geometry optimizations
as part of the MHM method, which is introduced below.
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2.2.2 Global optimization by minima hopping

The minima hopping method (MHM) is a non-thermodynamics-based method to explore
the PES of a system in order to find its global minimum [62]. As finding the global
minimum of a system is a challenging task due to the complexity of the PES, a number
of methods has been developed striving to find it. For example, these methods include
genetic algorithms [63], basin hopping [64] and simulated annealing [65], whereas all of
the methods have its applicability and limitations, especially in system size or revisiting
of local minima [66]. A detailed description of the various global minimization techniques
exceeds the scope of this work, wherefore the reader is referred to [67–71].

Many global optimization methods, for example stochastic global optimization, are
based on thermodynamics, which is achieved by introduction of a Boltzmann distribution.
The Boltzmann distribution is designed such that lower energies of a structure result in
higher weights in the distribution. Therefore, the global minimum has the highest weight.
This can be amplified by lowering the temperature leading to an even higher weight of
the global minimum, which is favorable. However, low temperatures increase the prob-
ability of basin trapping, because the crossing of high-energy regions is hampered [62].
As the global minimum is surrounded by those high-energy regions, the introduction of
a Boltzmann distribution does not guarantee the quick detection of the global minimum.
Consequently, the usage of a thermodynamic distribution might lead to failure in finding
the global minimum at all [17].

In contrast, the MHM, which is the global optimizer used in this work, makes limited
use of thermodynamics. Instead, it aims to quickly explore the low energy regions of
the PES through coupling of MD and local geometry relaxations with a distinct feedback
mechanism and the dynamical adjustment of parameters. [66]

Figure 2.8 illustrates the MHM algorithm, which is dividable into an inner and an outer
part. The method starts with an initial local geometry optimization step with the BFGS
method, yielding the initial local minimum Mcur. From this local minimum, the inner loop
starts with a first escape trial. This escape trial consists of a short MD simulation followed
by a local relaxation to the minimum M. If the initial local minimum Mcur is the same as
the local minimum M found in the escape trial, the kinetic energy is increased by a factor
of βs > 1 and the inner loop is restarted with random velocities initialed from a Boltzmann
distribution.

Otherwise, the newly found local minimum M is proposed to the outer part, reviewing,
whether it differs from the current minimum Mcur. If the difference in energy of the new
minimum E(M) to the energy of the current local minimum E(Mcur) is higher than a
threshold Ediff, the minimum gets rejected and the threshold gets increased by a factor
αr. If the energy difference is lower than the threshold Ediff, the current minimum gets
updated to the new one Mcur = M and the threshold is lowered by αa < 1. This feedback
ensures the algorithm’s preference towards lower energies.
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Figure 2.8: Flowchart of the minima hopping method (MHM) algorithm [54]. The MHM
consists of an inner part performing molecular dynamics based escape trials
and an outer part introducing a feedback mechanism to the visited minima.
Explanations of all given variables are given in the text.

Notwithstanding of the outcome, the history of visited minima is updated. If the min-
imum M is already known in the history, the kinetic energy is increased by β0 to explore
other parts of the PES. If not, the minimum is added to the history and the kinetic energy
is lowered by a factor βn. [54] This procedure is repeated for a distinct number of loops
nhops and outputs several MD and local relaxation trajectories, the conformations of the
found minima as well as their history.

Especially due to the adjustment of the kinetic energy, jumps into different minima
basins are enabled and therefore new low energy regions of the PES are explored. During
the MD simulation, the kinetic energy is fixed and due to energy conservation only barriers
lower than Ekin can be overcome [72]. This leads to low energy transitions for adequate
Ekin. In case the system is not able to get out of the current local minimum, the kinetic
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energy is increased, allowing also to overcome high barriers and prevent the system from
getting trapped [73]. In the outer part of the algorithm, the adaption of Ekin allows on the
one hand the quick exploration of new regions, in case the minimum already exists in the
history. On the other hand, if a new minimum is found, the decrease of the kinetic energy
allows to transition over low barriers into even lower minima. This is in accordance to the
Bell-Evans-Polanyi principle, which says that exothermic reactions have a low activation
energy [17], and therefore transitioning from one minimum over a lower barrier into a new
minimum might revel an even lower one.

Hence, the MHM is a powerful method to find the global minimum of a system.
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2.3 Representation of potential energy surfaces

In this work, there are two main aspects of representing the PES. The first deals with
choosing relevant and representative configurations to build up a database for the training
of the GAP, which predicts the PES. Therefore, the statistical method of farthest point
sampling (FPS) is applied to generate an appropriate training set. Second, the visual-
ization and analysis of the PES is not straightforward due to its complexity. Therefore,
principal component analysis (PCA) can be applied to perform dimensionality reduction,
where visualization and analysis of the specific data is re-enabled. An introduction to the
theoretical background of these two methods is given in the following.

2.3.1 Farthest point sampling

Farthest point sampling (FPS) is a sampling method widely applied in various parts of data
science, for exampe image processing, and likewise in ML. In the latter, it is for example
utilized to effectively sample a representative training set from given data. Thereby, every
new data point is compared to the already existing data set with distance as a measure.

Figure 2.9: Flowchart of the FPS approach adapted to this work [49]. The green/ rose
points refer to the existing/ new data and the lines to the distances between
new and existing data points with different line types (solid/ dashed) for each
new data point.

The approach, adapted to this work, is visualized in figure 2.9. Starting from an existing
data set A and a new data set B, a normalized average kernel [7] is calculated, which serves
as a similarity measure of the structures within and between the data sets. The average
kernel differs from the previously defined kernels (compare section 2.1.2) such that it
measures the similarity of structures and not atomic environments. Using this kernel K,
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the distances between all points from the existing A and new B data sets are computed
and summarized in a distance matrix D, defined as

D(A, B) =
√

K(A, A) + K(B, B)− 2K(A, B). (2.23)

For each of the new data points, the nearest point of the existing data is chosen. These
nearest distances are maximized and the farthest point, which is the point with the maxi-
mized distance towards the existing data, is chosen and added to the training set. Using
this approach, the most significant new data points, which differ most from each other, are
chosen and an appropriate, diverse training set is constructed. [74]

2.3.2 Kernel principal component analysis

In order to interpret large, multidimensional data sets, principal component analysis
(PCA) can be used. In PCA, the data set is transformed into another space in order to
reduce dimensionality. By linear projection of the data onto principal components instead
of remaining with the initial dimensions, visualization becomes possible and thus patterns
and trends might be revealed. [75] Thereby, the principal components are chosen to be
perpendicular to each other and target towards the directions of the largest variance.

Kernel principal component analysis (kPCA) is the non-linear subform of PCA, which
makes use of the ’kernel-trick’. By usage of kernel functions, linear methods such as
PCA or regression, as introduced before, are attuned towards non-linear data sets. [76]
As a kernel for example an average SOAP kernel can be used, which is centralized to the
number of points N such that

K̂ = K − 1NK1N + 1NK1N, (2.24)

whereby a matrix 1N is introduced with the same dimensions as the kernel matrix and
the value 1/N for every element. By solving the eigenvalue problem with v denoting the
eigenvectors and λ the eigenvalues,

K̂vi = λivi, (2.25)

the ith principal component PCi can be constructed via

PCi = Kvi. (2.26)

Due to this, the data are projected into a lower dimensional space, allowing further analysis
and visualization. [7]

All of the previously introduced methods are applied in this work, which is elaborated
in the subsequent main parts of this thesis, chapters 3 and 4.
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Chapter 3

Development of a machine-learned
interatomic potential

As specified in chapter 1, the goal of this work is to first train an interatomic potential using
ML to secondly apply this potential to the syngas conversion on Rhodium surfaces. In this
chapter, the first part - the development of the system-specific GAP - is enlightened. The
chapter starts with an introduction to the methods and its computational details. This is
followed by a description and discussion of the results, including both the tested variations
as well as the final training.

3.1 Methods and computational details

The development of interatomic potentials is a key approach to enable dynamic simula-
tions of atomistic systems on relevant timescales. Because of the well-investigated inac-
curacies of empirical force-fields, other methods emerged, for example ML interatomic
potentials. The GAP method, as introduced in 2.1.2, is the class of potentials machine-
learned in this work.

Thereby, the research is focused on the development of a GAP tailored to adsorbate-
surface systems occurring in heterogeneous catalysis. The specific system of interest is the
syngas conversion on Rhodium. Special emphasize is on the alignment of adsorbates on
the catalytic surfaces. The goal of this work is to use the GAP to explore the minimum
space of the different involved adsorbates coming up with the global minimum of each.
Thus, only low-coverage systems - single molecules adsorbed to the surface - are consid-
ered. An iterative training approach is applied, coupling the learning of a potential with
the generation of new training data by global optimization.

The first step towards the goal of this work is the development of a training workflow for
the GAP later applied to the syngas conversion on Rhodium. Therefore, the development
of the training workflow is constituted in the following.
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3.1.1 Workflow development

The centerpiece of training a GAP is the development of an appropriate training workflow.
This work uses an iterative training process, coupling the ML to an iterative training data
generation. This enables an iterative update of the training set and due to relearning
with this updated set a further improved prediction. This work’s iterative GAP training
workflow is illustrated in figure 3.1.

Figure 3.1: Illustration of the GAP training workflow developed and applied as part of
this work. The iterative training is split in the training of a potential based on
DFT level data on the one hand and the generation of new training data by
constrained minima hopping as well as unconstrained local optimization on
the other hand. The choice of appropriate structures for updating the training
set is based on three consecutive farthest point sampling (FPS) steps.

The first step of training a GAP is the assembly of the initial training data, in accordance
to the requirements previously depicted in figure 2.2. The reference database is specific
for the system of interest. For our system, it includes the relevant educts, intermediates
and products appearing in the syngas conversion on Rhodium. This choice is based on
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the reaction mechanisms deduced by Yang et al. [4], given in appendix A.1. The molecules
are included as optimized gasphase molecules and adsorbates on surfaces. As the special
interest of this work is in finding the global minimum of the adsorbates on surfaces, a
low-coverage approach is pursued, meaning that one periodic cell only contains a single
adsorbate on top of the surface. Single atoms are used as a baseline correction in the GAP
code. Thererfore, they are included in the training set. To properly consider the different
interactions, also dimers are added to the training set. Moreover, the set comprises relaxed,
empty Rhodium surfaces, whereas Rh(111) was chosen to represent the plane catalyst
surface and Rh(211) to also regard surface steps. All the stated structures are included as
geometric data together with their energies and forces on DFT level.

With this data set ahead, the zeroth training iteration is started. The zeroth training
iteration is split in two stages, in order to calculate the required fit parameters. In stage one,
a 2-body potential with a descriptor cutoff radius of 5Å is fitted and complemented via a
baseline potential consisting of the relevant dimer interactions. The baseline potential is
depicted in figure A.4. During the second training stage, two SOAP kernels with different
cut-off radii, 3 and 6Å, are calculated. The double SOAP approach is pursued in order to
consider a broader length scale of interactions. Based on the 2-body potential, the 2-body
plus double SOAP (2b+dSOAP) GAP is then fitted.

With this previously trained potential, a constrained minima hopping simulation is
started for all the different surface-adsorbate conformations included in the initial training
set. Thereby, the Rhodium atoms are fixed and a Hookean spring force is applied to all
the bonds in the adsorbate molecule to prohibit bond breaking. This minima hopping
step serves to generate new training data in the iterative process. In a second step, the
lowest minimum for each structure is chosen and the Hookean constraints are rescinded,
allowing the adsorbates to relax and possibly dissociate during a local optimization.

In order to choose the most relevant structures from the data generated by the con-
strained minima hopping and the unconstrained local optimization, the data are sampled
via three consecutive FPS steps. First, all the minima found in the constrained minima
hopping are subjoined to the current training set and the 25 farthest conformations are
chosen. Second, out of all the MD simulations generated in the MHM, one structure for
each adsorbate-surface system is randomly chosen and subjoined to the current training
set plus the previously chosen 25 farthest minima. Out of this group, the ten farthest
points are chosen. Last, all minima resulting from the unconstrained local optimization
are sampled with the current data plus the previously chosen structures and a third FPS
is performed outputting the five farthest conformations.

For all of the 40 chosen geometries, the related energies and forces are calculated at the
DFT level and these data are added to the training set. With this updated training set, the
next training iteration is started, beginning with the GAP fitting.

The process is repeated until sufficient accuracy is obtained. This accuracy is on the one
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hand assessed by qualitative analysis of the obtained structures. On the other hand, the
accuracy is quantified by validation, whereby a recursive validation mechanism is applied.
The structures chosen via the three consecutive FPS steps in iteration n also serve as the
validation set of iteration n. This validation set is later on added to the current training set,
which then builds up the new training set for iteration n + 1. By doing so, it is ensured,
that the validation set is not involved in the data set, which the current GAP in iteration n
is trained on.

Using this iterative process, a system-specific GAP is trained. The results of the training
are depicted in section 3.2. In the following, the computational realization of the workflow
is detailed.

3.1.2 Computational details

This section gives the computational details for the main building blocks of the previously
explained iterative GAP training. The different blocks are implemented via the python

programming language. Overall, three different GAPs have been trained accompanied by
a workflow refinement, which are referred to as GAP1, GAP2 and GAP3 in the following.

Settings for DFT reference calculations

DFT calculations are performed for the initial training set as well as the new structures pro-
duced via the iterative training approach. The FHIaims software [77] is used in the Atomic

Simulation Environment (ASE) [78]. The revPBE exchange-correlation functional is used
with the ’light’ default settings as defined by FHIaims and a Gaussian smearing of 0.1 eV. In
order to model atoms and molecules on a surface, Tkatchenko-Scheffler dispersion correc-
tions with screened vdW interactions are applied. Previous to application, the parameters
were approved. The testing can be found in figure A.2.

The surface and surface+adsorbate systems are build with the CatKit tool [79]. For the
surface and surface+adsorbate systems, periodic boundary conditions are applied and the
periodic cell size is set to 3x3x4, consistent to literature [8], with an additional 10Å vacuum
layer. A lattice constant of 3.85Å is chosen. This choice is based on a preceding relaxation
of bulk Rhodium atoms in a 3x3x4 periodic cell with fixed angles and a force threshold of
10−2 eV/Å. The Brillouin zone is sampled with a k-grid of (4x4x1). For these settings, the
energy converges, which is visualized in figure A.3.

The DFT singlepoint calculations are performed with a charge density based conver-
gence criterion automatically set depending on the number of atoms in the system. Up to
6 atoms, a value of 10−6e/a3

0 and in systems with 6 to 60 atoms in one periodic cell, a value
of 10−6 · natoms e/a3

0 is set. The gasphase molecules are optimized with a force threshold
of 10−2 eV/Å and collinear spin setting set according to table A.4. The upper two layers of
the clean Rhodium surfaces are optimized with a force threshold of 10−2 eV/Å, whereas
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the lower two Rhodium layers are fixed as those represent the bulk Rhodium within the
previously optimized lattice. The adsorbate+surface systems are optimized with a force
criterion of 10−1 eV/Å and constraints, such that the Rhodium atoms are fixed and the ad-
sorbate bonds are limited to a length of 1.05 · lgasphase with lgasphase relating the optimized
gasphase bondlength for each molecule.

The above defined DFT settings are applied to the initial training set as well as to the
DFT singlepoint calculations of the 40 conformations chosen via the FPS steps in each
iteration.

Settings for GAP training

The iterative GAP training is performed using the QUIP program package [80] and the
quippy interface. The inital training set for GAP2 and GAP3 encompasses 175 geometries
and specifically involves the components summarized in table 3.1. In the initial training
trial GAP1, the training set involves 68 geometries as listed in table A.1.

Table 3.1: List and specification of the different components included in the initial training
set of GAP2 and GAP3, classified into five groups.

Class Components Specification
atoms C, O, H, Rh /
dimers CC, CO, CH, HH, OH, OO dimers with varied distances (in Å)

d = (rcovalent, 1 + rcovalent, 2 + n · 0.1)
with n ranging from 0 to 4, taken
from [81]

gasphase
molecules

CO, H2, H2O, OH, CH, CH2, CH3,
CH4, COH, CHO, CHOH, CHCO,
CH2CO, CH3CO, CH3CHO,
CH3CHOH, CH3CH2OH

selected optimized gasphase
molecules relevant for the syn-
gas conversion on Rhodium

surfaces Rh(111), Rh(211) periodic cell consisting of 36 Rh
atoms in 4 layers and a 10 Å vacuum
layer

surface +
adsorbate

single atoms or molecules adsorbed
to Rh(111) or Rh(211) surfaces

periodic cell consisting of 1 adsor-
bate attached to a Rhodium surface
on different adsorption sites, as de-
fined in table A.3 and visualized in
figure 3.2

For GAP2 and GAP3, three adsorption sites for each Rh(111) and Rh(211) are considered,
which are visualized in figure 3.2 and defined in table A.3. The initial training trial of
GAP1 just considered one adsorption site per adsorbate as defined in table A.2.
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(a) Rh(111), top site (b) Rh(111), bridge site (c) Rh(111), hollow face centered
cubic (fcc) site

(d) Rh(211), step bridge site (e) Rh(211), hexagonal closed
packed (hcp) terrace site

(f) Rh(211), 4-fold site

Figure 3.2: Illustration of adsorption sites for Rh(111) (a) to (c) and Rh(211) (d) to (f) sur-
faces considered for the surface + adsorbate systems in the initial training set.

For the training, multiple hyperparameters need to be preset. Those hyperparameters
requiring presetting are listed and described in table 3.2. By the default energy sigma,
the accuracy of the fit is determined, which is claimed via the energy percentage such
that

default energy sigma = SD(FP) ∗ energy percentage, (3.1)

whereby SD refers to the standard deviation and FP is the fit property. For the calculation
of the default energy sigma, internal fit properties need to be defined. For the 2-body
fit, the fit property is the energy per bond and for the SOAP it is the energy per atom.
The energy percentage then gives the fraction of the standard deviation of this certain
fit property taken into account to calculate the default energy sigma. As the default

energy sigma represents the fit accuracy, it is sought that the training and validation errors
during the iterative training level with the default energy sigma.

The second regularisation parameter, the force atom sigma, describes the accuracy of
the fitted atomic forces. The force atom sigma is scaled, such that higher forces have a
higher force atom sigma, according to the following equation

force atom sigma = sigmamin +
C

A
log(1 + A ∗ F + A ∗ f ). (3.2)

Thereby, sigmamin is the lower threshold for the force atom sigma, C and A are additional
hyperparameters, F is the normed force and f is the normed force per atom. In order
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to lower the weighting of the predominating Rhodium atoms, the parameter values for
the Rhodium versus the non-Rhodium atoms are differently set. For the Rhodium atoms,
sigmamin is set to 0.1eV/Å, C to 0.1 and A to 0.01. For the non-Rhodium atoms, the sigmamin

is set to 0.05eV/Å, C to 0.05 and A to 0.01.

Table 3.2: List and short description of the preset hyperparameters for the GAP training.
Hyperparameter Short description
default energy sigma regularisation parameter of the fit property energy repre-

senting the accuracy of the energy data & relative weight
of them in fit

force atom sigma regularisation parameter of the fit property force repre-
senting the accuracy of the force data & relative weight of
them in fit

atom sigma Gaussian smearing width σab of atom density for SOAP as
given in the density expression in equation 2.13

nsparse number of representative points
theta width of gaussians in the squared exponential kernel ex-

pression for the 2-body descriptor, as defined in equation
2.11

zeta power, which the SOAP kernel is raised to in order to sen-
sitise to changes in atomic positions (equation 2.16)

delta scaling/ partitioning of kernel per descriptor
cutoff radial cutoff, which represents the highest distance each

descriptor takes into account
cutoff transition width distance across which the SOAP kernel is smoothly taken

to zero
lmax, nmax maximum number of radial (nmax) and angular (lmax) in-

dices summed over in the spherical harmonic expansion
of the neighbour density in equation 2.14

The initial guess for the hyperparameter values is based on previous work [81]. The
zeroth training iteration is splitted in two stages: first, a 2-body potential is fitted and sec-
ond, a double SOAP potential. This is done, as during the zeroth iteration hyperparameter
such as the delta values are calculated and taken into account during the following itera-
tions. The delta, which is previously described as the scaling of the kernel per descriptor,
describes the standard deviation of the Gaussian process. It is calculated in the zeroth
training iteration via the following equations:

delta2b =
1
3

SD (ae − aebaseline) (3.3)

deltaSOAP = SD (ae − ae2b) . (3.4)
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Thereby, SD refers to the standard deviation and ae to the vector of the atomisation en-
ergies (AEs) per atom for the surface+adsorbate structures involved in the training set,
aebaseline are the energies calculated by the baseline potential and ae2b the energies calcu-
lated by the 2-body potential. Note that the heuristics of the delta calculation are adjusted
during a hyperparameter finetuning, which is detailed in section 3.2.2.

The regularisation parameters default energy sigma and force atom sigma are based
on the given input data, which are iteratively updated. Therefore, these parameters are
calculated at the beginning of each training iteration and vary during the iterative process.
The other hyperparameter values are given in table 3.3 and are kept the same over all
iterations in the three training trials GAP1 to GAP3, if not stated otherwise in the result
section 3.2.

Table 3.3: List of initial hyperparameters kept constant during the iterative GAP training.
Hyperparameter Unit 2-body Double SOAP

1. SOAP 2. SOAP

atom sigma Å - 0.3 0.6
nsparse 1 15 2000 2000
theta Å 1.0 - -
zeta 1 - 4 4
cutoff Å 5.0 3.0 6.0
cutoff transition width Å - 0.5 1.0
lmax 1 - 3 3
nmax 1 - 9 9
energy percentage % 15 1 1
deltaGAP1 eV 0.55 0.22 0.22
deltaGAP2 eV 0.16 0.032 0.032
deltaGAP3 eV 0.16 0.032 0.032

For the third training round, GAP3, a hyperparameter test is performed during the last
training iteration. The results build up the final hyperparameter set for the final potential
and are given in section 3.2.2.

Settings for constrained minima hopping and unconstrained local optimization

For the generation of new training data, constrained minima hopping and unconstrained
local optimizations are performed in the Atomic Simulation Environment (ASE) using
the previously trained GAP as a calculator.

In every iteration, the constrained minima hopping is simulated for the initial sur-
face+adsorbate geometries, in the following referred to as start geometry and as listed
in table 3.1. Similar to the initial geometry optimizations using DFT, as described before,
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the structures are constrained so that the Rhodium atoms are fixed and the bonds of the
adsorbates are restricted to break. This is ensured by applying a Hookean constraint on
every occuring adsorbate bond, which responds with a Hookean force with an spring con-
stant of 10 eV/Å2 once the bondlength exceeds 1.05 · lstart geometry. As the bondlength of
the start geometry is at the maximum elongated to 1.05 · lgasphase, the maximum possi-
ble bondlength for the resulting conformations from the constrained minima hopping is
restricted to 1.1025 · lgasphase.

The minima hopping is repeated for nhops loops and different start conditions are ap-
plied for the three different GAP trainings, which are summarized in table 3.4. For the
other parameters, the default values are kept.

Table 3.4: List of MHM conditions for the three different training approaches GAP1, GAP2
and GAP3 with N denoting the iteration number.

Name Short description nhops Ediff0 in eV T0 in K
GAP1 soft 5 · 20 0.5 1000
GAP2 hard 40 5 2000
GAP3 increasing 40 0.5 + N · 1 1000 + N · 200

(Ediff0,max = 5eV) (T0, max = 2000K)

The local optimization is done using the BFGS method as implemented in ASE for the
global minima of each adsorbate-surface pair found in the prospective minima hopping
simulation, evaluated by the GAP potential energy. The Hookean constraints on the ad-
sorbate molecules are repealed. The optimization is conducted with a force criterion set to
5 × 10−2eV/Å.
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3.2 Results and discussion

In this section the results of this work’s GAP training are depicted and discussed. First, the
initial training approaches with its required adjustments and refinements are enlightened.
Afterwards, the final training approach is discussed and related.

3.2.1 Initial training approaches

In this work, three detached training rounds are performed, named GAP1, GAP2 and
GAP3. This section summarizes the results of the initial approaches with the hyperparam-
eters given in section 3.1.2. The training progressions of the three rounds are illustrated in
figure 3.4. The mean absolute error (MAE) of the AE per atom serves as the pictured error
measure.

The first training trial, GAP1, is started with an initial training set size of 68 struc-
tures and stopped after eight iterations. At the beginning, the validation and training er-
rors quickly decrease and are already below the regularisation parameter default energy

sigma in iteration two. Because of this exceed of the default energy sigma compared to
the training and validation MAE, it is adjusted after four iterations (zero to three). By low-
ering the default energy sigma, it is tested, whether even lower training and validation
errors can be achieved. Until this point, this regularisation parameter is calculated by the
energy percentage times the standard deviation of all geometries in the current training
set. However, due to the inclusion of the AEs of atoms, dimers and gasphase molecules,
the distribution of the AEs is broad and unsymmetrical. Therefore, the calculation of the
standard deviation is adjusted to that of the distribution of the surface+adsorbate systems
only. This adjustment was implemented for iteration four and onwards and also for the
entire training rounds GAP2 and GAP3. For GAP1, it results in a sudden decrease of the
default energy sigma from iteration four to five as illustrated in figure 3.4 (a).

By qualitative analysis, low movement of the adsorbates on the Rhodium surfaces is
observed. As a consequence, a low variety of minima and adsorption sites is found during
the minima hopping in each iteration. The assumed reason for this is the soft minima
hopping conditions and the low variation in the geometries, the minima hopping is started
with. Note, that due to an error in the FPS implementation, several same structures are
chosen in the subsequent FPS steps and added to the training step in case of GAP1. The
error is corrected for the training of GAP2 and GAP3 .

Despite these observations, the first training trial reveals the following: in general, the
coupling of GAP training and training data generation by MHM is possible. The structures
generated by global optimization receive more chemical quality from iteration to iteration.
This improvement in chemical quality is exemplified in figure 3.3. Whereas at the begin-
ning, some non-chemical adsorbate assemblies appeared, this is not the case for the later
iterations.
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Therefore, the applicability and continuous improvement of the workflow is approved.

Figure 3.3: Illustration of the quality improvement of the produced minima in the proceed-
ing GAP training iterations. The left structure appears during the first training
iteration, whereas the right structure is produced in an advanced iteration.

With these findings, another training round, GAP2, is started. For the training of GAP2,
more adsorption sites are considered for both Rh(111) and Rh(211) surface facets. Instead
of starting five separate, shorter minima hoppings for each adsorbate-surface pair, different
sites for each adsorbate on each surface are taken into account. The initial training set
expands to 175 geometries. Moreover, the initial minima hopping conditions are adjusted
according to table 3.4, ensuring higher mobility and increasing the possibility to overcome
barriers.

The training progress of GAP2 is illustrated in figure 3.4 (b). At the beginning of the iter-
ative training, the training error (MAE of the AE per atom) as well as the default energy

sigma rise in value. This happens due to the inclusion of structures from the iterative
training, produced by the minima hopping and local optimization of structures with the
potential training in the zeroth iteration. The quality of the produced structures chosen via
the FPS can be underlined by the validation error. Up to the sixth iteration (ntrain= 415), the
validation error lowers and the minima produced via the MHM are qualitatively getting
better. Thereafter, the validation error surges. This increase in error is mainly caused by
the sampling of exceptional structures via the FPS, which do not comply with the overall
training set.

From a chemists point of view, the structures and energies qualitatively improved until
iteration six. The training set - to that point - includes the most important structures. Af-
terwards, ’unchemical’ structures are sampled via the FPS, which chooses those structures
most different from the existing data set (the farthest points). The reason for this is less
attributable to the FPS algorithm, but rather to the hard MHM settings, as those structures
mainly appear due to high temperatures and the applied constraints. When the validation
error rises, the FPS mainly chooses exceptions and extraordinary transitions occuring in
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the MDs. Those exceptions for example include structures, for which non-Hydrogen atoms
diffuse into the Rhodium layers. Alternatively, for some structures, the adsorbates desorb
into the vacuum, diffuse through the vacuum layer and re-adsorb on the ground layer of
the above periodic cell, which is built by bulk, non-surface-optimized Rhodium atoms.
This especially happens to systems with molecular hydrogen as an adsorbate, which is in
accordance to the fact that molecular hydrogen does not adsorb to Rhodium surfaces, but
causes errors in the prediction.

As a consequence, different possibilities to restrict those occurrences are considered.
Especially, the diffusion into the gasphase is an event, which should not be learned or
enhanced by the potential. Most notably, the transition of the entire vacuum should be
circumvented. In a first attempt, an additional plane constraint is added during the min-
ima hopping, pushing the adsorbate back towards the surface and therefore restricting the
molecule from desorption. This is found to be excessively time consuming in relation to
the achievement. Moreover, finding new minima by first slight diffusion into the vacuum,
second rearrangement of the adsorbate atoms and third alignment on a new adsorption
site should not be restricted.

Therefore, the input data to the FPS are filtered. Only those structures, for which all
atoms of the adsorbate molecule are within a height range of 14.5 and 24.5 Å (compare ta-
ble A.3 for the height of the Rhodium surfaces), are considered. This ensures the exclusion
of desorbed molecules on the one hand and of atoms moved too far into the bulk Rhodium
layers on the other hand. However, as this problem appeared with a rise in minima hop-
ping conditions, a compromise between training round 1 and 2 is developed. Comparing
GAP2 to GAP1, a more diverse training set is iteratively built including higher variability
in the found minima as well as a higher mobility during the dynamics. The problems
include the appearance of extraordinary structures, which challenge the stability of the
trained potential.

A new training round, GAP3, is started, which turns out to be the last attempt. The ini-
tial training set developed for GAP2 is also considered as the basis of the GAP3 training. In
order to ensure the development of a stable potential including higher dynamics and vari-
ability, the minima hopping starting conditions for GAP3 were step wise increased from
iteration to iteration. According to table 3.4, the conditions start from the soft conditions
used in GAP1 and rise up to the hard conditions used in GAP2 with progressing itera-
tions, slowly accustoming the potential to the harder settings. Using this approach, the
minima hopping shows a good compromise between movement and a proper variability
in chemical adsorption sites without stability problems.
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Figure 3.4: GAP training progress for (a) GAP1, (b) GAP2 and (c) GAP3 as mean absolute
error (MAE) of the atomisation energy (AE) per atom versus number of train-
ing data. The lines interpolate the default energy sigma σE (black dotted
line), the training MAE (teal dashed line) and the validation (val) MAE (rosa
dashed line) between the marked iterations. (a) GAP training round 1 (GAP1)
from iteration 0 (ntrain= 68) to 8 (ntrain= 388). After iteration 3 (ntrain= 188), the
calculation of the default energy sigma is adjusted. (b) GAP training round 2
(GAP2) from iteration 0 (ntrain= 175) to 12 (ntrain= 655). (c) GAP training round
3 (GAP3) from iteration 0 (ntrain= 175) to 10 (ntrain= 575).
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The training progress of GAP3 is pictured in figure 3.4 (c). Compared to GAP2, the
validation error reaches slower the level of the training error. A reason for this might be the
adjustment of the initial minima hopping conditions, whereby from iteration five onwards
(ntrain= 375) the initial conditions were kept constant. Afterwards, the training error and
default energy sigma further slightly decrease and the validation error fluctuates with
decreasing tendency.

While comparing the absolute level of the default energy sigma and the training and
validation error, a gap can be observed. Until now, the MAE of the AE per atom is cal-
culated taking into account every surface+adsorbate structure in the respective training or
validation set. These structures include the initial DFT optimized input structures, as well
as the constrained minima, random MD structures and unconstrained local minima. The
highest errors are observed for those structures produced via the MD simulations or the
unconstrained local optimizations.

Figure 3.5: GAP training progress for GAP3 as mean absolute error (MAE) of the atomisa-
tion energy (AE) per atom versus number of training data. The marker and the
corresponding interpolation refer to the default energy sigma σE as well as
the training MAE and the validation (val) MAE of the minima only. The lighter
lines indicate the errors calculated for all surface+adsorbate training structures,
as pictured in figure 3.4(c).

In contrast, this work mainly focuses on the minima. Therefore, the error measure is
adjusted such that just the errors of the minima included in the respective training or
validation set are calculated. Regarding these changes, the training and validation errors
approach more and more the default energy sigma, as illustrated in figure 3.5. In this
figure, the training and validation errors calculated for all surface-adsorbate structures are
directly compared to the errors for the minima only. Overall, the errors respecting the
minima only undercut the errors for all the surface-adsorbate structures. Therefore the
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prediction accuracy is even higher than expected from the error analysis of all surface-
adsorbate structures.

Moreover, the minima produced via the iterative approach qualitatively correspond to
the expectations. The variety and mobility is high and only at the beginning of the iterative
process, some ’unchemical’ structures appeared. Additionally, the GAP3 seems to be stable
in the high temperature range.

To conclude, three different potentials, namely GAP1 to GAP3, are trained. Thereby,
the process is continuously improved until sufficient performance, which is monitored by
quantitative and qualitative criteria. GAP3 shows the best compromise between stability
of the potential and variety of the produced minima, as well as low training and valida-
tion errors near to the default energy sigma, which represents the accuracy of the fit.
Therefore, GAP3 and the corresponding generated training set is taken as the input for
a hyperparameter refinement and the final training approach, for which the results are
elucidated in the following.

3.2.2 Hyperparameter finetuning

This work’s initial hyperparameter choice is based on prior research findings [81], as de-
tailed in section 3.1.2. With this initial parameter set, the GAP training workflow and
refinement is developed. For the final potential, accuracy can be increased by fine-tuning
the hyperparameters. This is done by repeating iteration number ten of GAP3 with varied
hyperparameters.

As each tested variation requires a new fit to monitor the effect, not a holistic hyper-
parameter grid search is performed, but a strategic variation. Overall five parameters are
varied: the default energy sigma, lmax, nmax, the delta of the 2-body and the delta for
the two SOAPs. The tested hyperparameter sets are summarized in table 3.5.

Starting from the initial hyperparameter set (0), which corresponds to the hyperparame-
ters applied in iteration number ten of the GAP3 training, first the default energy sigma

is step-wise lowered and the other hyperparameters are kept constant. This results in an
immediate decrease of the training error, but just a slight decrease of the validation error,
which can additonally be seen in figure A.5 (1) and (2).

As a next step, the test is repeated with increased hyperparameters lmax and nmax, which
are defined in table 3.2. This corresponds to the sets (3) to (5). The adjustment additionally
slightly decreases the training error with only low or in case of set (5) negative effect on the
validation error. Thus, the training and validation errors diverge, which is unfavorable and
leads to overfitting. As none of the tested hyperparameter sets improve both the training
and validation errors, the further hyperparameter finetuning is proceeded with the initial
values for the default energy sigma, lmax and nmax.

In order to increase the effect on the validation error, the delta values, which correspond
to the scaling of the kernel, are varied. As the delta values are calculated in the zeroth
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iteration for each training round (GAP1 to GAP3), new delta values are also calculated for
the zeroth iteration of GAP3, but with new heuristics to calculate it. First, the heuristic for
the calculation of the 2-body delta is adjusted. Hitherto, the 2-body delta is calculated
as the standard deviation of the energy of the surface-adsorbate systems divided by the
number of bonds in the system, as defined in equation 3.3.

Table 3.5: Overview of the hyperparameter variation. Eleven different hyperparameter
sets ((0) to (10)) are tested, whereas (0) refers to the initial hyperparameter set of
GAP3. The five hyperparameters default energy sigma σE, lmax, nmax as well
as the delta of the 2-body descriptor and the SOAP are stepwise varied. Note
that the depicted values refer to one SOAP only. For the double SOAP approach,
2∗ the listed delta values are considered.

Set Default energy lmax nmax Delta in eV
sigma in eV 2-body SOAP

(0) 0.004 3 9 0.16 0.032
(1) 0.002 3 9 0.16 0.032
(2) 0.001 3 9 0.16 0.032
(3) 0.004 4 12 0.16 0.032
(4) 0.002 4 12 0.16 0.032
(5) 0.001 4 12 0.16 0.032
(6) 0.004 3 9 0.51 0.030
(7) 0.004 3 9 0.51 0.060
(8) 0.004 3 9 0.51 0.12
(9) 0.004 3 9 0.51 0.24
(10) 0.004 3 9 0.45 0.25

The delta value of the hyperparameter set number (6) is calculated as the average
(instead of standard deviation) of the surface-adsorbate systems’ energy divided by the
number of atoms (instead of the number of bonds) in the system. This results in an increase
of the 2-body delta value with low effect on the training and validation error compared
to the initial set (0). Therefore, the delta for the two SOAPs, which is calculated by the
standard deviation of the energy of all surface-adsorbate systems divided by the number of
atoms, is step-wise doubled from set (6) to (9). This results in a step-wise decrease in both
training and validation error. For set (7), the training and validation error as well as the
default energy sigma level to the same value. As the default energy sigma represents
the fit accuracy, a leveling of the errors with the default energy sigma is targeted during
the training. In this step-wise value lowering, the set (9) achieves the lowest training and
validation errors.

Similar values are achieved by calculating the 2-body and SOAP deltas taking into
account the whole initial training set including the dimers and gasphase molecules and
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just excluding the single atoms. The effect of this adjustment of the deltas can be observed
in figure A.5 (10). For hyperparameter set (10), the overall lowest training and validation
errors are achieved.

Figure 3.6: Illustration of the improvement achieved by varying the hyperparameter set.
The initial hyperparameter set (0) is compared to the other sets (1) to (10) with
the training and validation mean absolute error (MAE) of the atomisation en-
ergy (AE) per atom as a measure. The dark bars represent the errors of the
related set, the underlying light bars repeat the errors of the initial hyperpa-
rameter set (0).

The figure 3.6 summarizes the improvement of the errors achieved by the hyperparam-
eter finetuning. In the figure, the different hyperparameter sets are compared to the initial
set (0) with the MAE of the AE per atom for the minima included in the training or vali-
dation sets as a measure.

To conclude, the variation of the hyperparameters default energy sigma, lmax and nmax

results in a decrease of the training error but only low effect on the validation error. Just
the variation of the delta values, especially an increase of the SOAP delta clearly lowers
the validation error. By increasing the delta of the SOAP, the weighting of the SOAP is
increased in comparison to the 2-body descriptor. As the SOAP is a multibody descriptor,
the multibody contributions are now increasingly considered, which might reason the
decrease of the errors. Both the lowest training and validation errors are yield by the
hyperparameter set (10).

The further studies and final training iteration are conducted with the hyperparameter
sets (0) and (10). This is reasoned by comparability in case of set (0) and the lowest overall
errors in set (10).
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3.2.3 Final training approach

The final training approach assembles the previously explained results. The GAP3 from
iteration ten as well as the training and validation set from iteration 10 are used as a basis
for the final GAP training. In a first step, the training set for the final GAP is cleaned
up. All the structures with adsorbate atoms outside the height range of 16.0 and 23.6 Å
are removed, ensuring that the set only includes adsorbate atoms, which are neither in the
below Rhodium layers nor too far in the vacuum layer. Consequently, 44 surface-adsorbate
structures are removed from the final training set, which now includes 571 geometries.

The final training approach is performed with the initial hyperparameter settings as
summarized in table 3.3 with adjustments in the delta values as resulted from the hy-
perparameter testing described in the previous section 3.2.2. For comparison, two of the
eleven tested hyperparameter (HP) sets are used in the final training iteration. We define
one final potential, which is named finalGAP and trained using the hyperparameter set
(10) as detailed in table 3.5. Moreover, the other variation is named initialGAP, whereas
initial denotes the usage of the initial hyperparameter set (0).

Figure 3.7: GAP learning curve of the final training depicted the mean absolute error
(MAE) of either forces or atomisation energy (AE) per atom versus iterations.
The final GAP (iteration 11) is based on the plotted iteration 0 to 10 of GAP3
with adjusted hyperparameters. The marker and the corresponding interpola-
tion refer to the default energy sigma σE as well as the training MAE and the
validation (val) MAE of the minima only.

Figure 3.7 overviews the overall training leading to the final potential. In addition to the
previously defined error measure - the MAE of the AE per atom-, a second error measure
is depicted: the MAE of the forces, as the forces are the second fit parameter in the GAP
training, which is monitored throughout the training. The final training iteration, iteration
eleven, aligns with the previous iterations. Also the new introduced force errors quickly
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balance with proceeding iterations. Due to the hyperparameter finetuning, the validation
and especially the training error of the final potential is significantly lowered compared to
the preceding iterations.

The final GAP leads to a high correlation between the trained GAP energy and the DFT
energy, which is emphasized by figure 3.8.

Figure 3.8: Correlation of the GAP versus the DFT atomisation energy (AE) per atom for
the final GAP training. The left plot visualizes the correlation of the training
data set with a mean absolute error (MAE) of 6.1 × 10−4 eV and the right plot
this of the validation with a MAE 7.2 × 10−3 eV. The solid lines depict the in-
tended full correlation of the energies.

To summarize, three different training rounds have been overall performed in this work:
GAP1, GAP2 and GAP3. Throughout these training rounds, the iterative training work-
flow has been designed and continuously refined. Especially the variation of training data
has been improved by the adjustment of the initial training set as well as the minima
hopping conditions. The initial hyperparameters for the ML serve as an appropriate set
throughout the development. In the hyperparameter finetuning, the accuracy of the pre-
dictions could be further improved. With these finetuned hyperparameters, the final GAP
is trained, which application represents this work’s next step.

Thus, the subsequent chapter 4 details the application of the developed finalGAP to the
syngas conversion on Rhodium surfaces.
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Chapter 4

Application of the potential to global
optimization

In accordance to the overall goal of this work, this chapter portrays the application of
the previously trained interatomic potential (see chapter 3) to the global optimization of
different adsorbates on Rhodium surfaces. It is divided into two parts: first, the strategy
and methodological details are stated and second, the results are presented and discussed.

4.1 Methods and computational details

The goal of this work is the development of a fast and accurate interatomic potential for
the prediction of minimum structures of different adsorbates on catalytic surfaces. As an
examplary system, the syngas conversion on Rhodium is chosen.

As introduced in section 2.1, dynamical simulations of large, periodic systems over
longer timescales are not realizable when approached with ab-initio quantum chemical
methods. Accordingly, global optimizations are most commonly approached with empir-
ical force fields, which possess massive losses in computational accuracy. With the rising
field of ML interatomic potentials an alternative to the usage of classical force fields ap-
peared. As those potentials, for example GAP, typically provide more accurate predictions
than empirical force fields, the GAP approach is also pursued in this work.

In the previous chapter, the development of the training workflow for the ML inter-
atomic potential as well as the final GAP are detailed. The section thereby focuses on the
computational improvement of the potential. Besides that, the applicability of the devel-
oped potential needs to be tested and verified. This is the focus of this chapter.

Therefore in a first instance, production runs are performed. The trained GAP is used
as the underling potential to conduct minima hopping runs for different, new systems.
In a first production run, the potential is applied to new surface-adsorbate systems with
surfaces and adsorbate molecules already known to the potential, but varied adsorption
sites. During the iterative training, the minima hopping is conducted with the same start
geometries and sites in every iteration, as detailed in section 3.1. Thus, the first production
run tests the applicability of the potential towards new adsorption sites. In a second
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production run, the potential is applied to the minima hopping of new, unknown start
geometries taken from literature [4] in order to test its applicability limits.

By performing production runs, only the general, qualitative applicability of the po-
tential towards different systems can be approved. However, a quantitative evaluation of
the found minima is not possible. In order to quantitatively evaluate the applicability of
the potential towards the minima hopping of unknown start geometries, the testing is fol-
lowed by an analysis of the found minima. This is done by comparison to and additional
optimizations with DFT.

Figure 4.1: Illustration of the GAP application procedure. The trained potential is used
to perform global optimization production runs (step 1). The output of the
production runs is then analysed by evaluation of the energies of the produced
global minima (step 2). Afterwards, the global minima are re-optimized us-
ing the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method (step 3) and again
evaluated (step 4). The evaluations and additional local optimization are per-
formed using DFT.

The applicability and evaluation analysis of this work’s trained potential towards the
global minimum search for the syngas conversion on Rhodium can be summarized in four
steps as visualized in figure 4.1. In the process, optimizations and evaluations alternate.
First, the start geometries are globally optimized by the MHM using the ML potential.
Afterwards, the global minima are evaluated by singlepoint calculations using both GAP
and DFT. This ist followed by step 3, a local DFT BFGS optimization of the global minima
and again, an evaluation of the discovered local minima of the global GAP minima in step
4. More details on the single steps can be found below.

In addition to the described procedure, further analyses of the found global minima
are performed. On basis of the reaction mechanisms (compare section A.1) developed by
Yang et al [4], a reduced reaction network for the syngas conversion on either Rh(111) or

42



Rh(211) surfaces is developed. Moreover, kPCA is conducted in order to reveal patterns
and trends in-between the revealed global minima.

In the following, the computational settings for the above described methods are de-
tailed.

Computational details

The application part of this work is implemented via the python programming language
in the Atomic Simulation Environment (ASE) [78]. For the production runs (step 1 in
figure 4.1), global optimizations are performed with the minima hopping algorithm as
part of the ASE package. The minima hopping is performed for nhops = 40 steps with an
initial temperature T0 of 2000 K and an initial difference energy Ediff0 of 5 eV (compare
section 2.2.2). These values correspond to the values applied in the final training. The
trained GAP is used as the underling potential for the minima hopping and the systems
are constrained in the same way as during the iterative training (compare section 3.1.2).

Two distinct production runs are performed, hereafter referred to as first and second
production run. The production runs differ in the start systems for the minima hopping
as well as the applied interatomic potential. The systems considered in the first produc-
tion run sum up to 342 structures. As adsorbates, the optimized gasphase molecules as
well as single atoms also included in the initial training set are used. Those adsorbates
are attached to four different Rh(111) and 14 different Rh(211) adsorption sites, which is
detailed in table B.1. In contrast to the surface-adsorbate systems included in the initial
GAP training set, more adsorption sites are considered and the systems of the production
run are not locally optimized with DFT prior to the minima hopping.

For the second production run, the low coverage systems of the study of Yang et. al are
taken into account [4]. In summary, 33 systems are selected. The considered adsorbates
equal those in the first production run, whereas differences are in the Rhodium surfaces.
In the work of Yang et al., for the low coverage system one type of Rh(111) surface and
two types of Rh(211) with different periodic cell sizes and lattice constants (3.86 Å and
3.866 Å compared to 3.85 Å in the first run) are used. Moreover, the adsorption sites
and conformation of the adsorbates on the surfaces differ from those regarded in the
first production run. Not every adsorbate is added to every surface. Thus, the surface-
adsorbate pairs of the second production run are specified in table B.3.

The previously detailed systems for both production runs can be summarized as follows:

• Adsorbates: C, H, CO, H2, H2O, OH, CH, CH2, CH3, CH4, COH, CHO, CHOH,
CHCO, CH2CO, CH3CO, CH3CHO, CH3CHOH, CH3CH2OH

• Surfaces for the first run: Rh(111) (four considered adsorption sites) or Rh(211) (14
considered adsorption sites) in a 3x3x4 fcc periodic cell with a lattice constant of
3.85 Å
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• Surfaces for the second run: Rh(111) or Rh(211) in a 3x3x4 fcc periodic cell with a
lattice constant of 3.86 Å, as well as Rh(211) in a 3x2x3 fcc periodic cell with a lattice
constant of 3.866 Å

As underling potentials for the minima hopping, the initialGAP is used in the first pro-
duction run and the finalGAP, as specified in 3.2.3, in the second run.

The analysis of the explored minima (steps 2 to 4 in figure 4.1) are parted in evaluation,
optimization and again evaluation. In both production runs, the analysis is performed for
a certain selection of minima. In case of the first run, the global minimum of each minima
hopping start geometry as well as the found minima with a maximum difference of 0.5 eV
to the global minimum are selected. The choice is based on the GAP potential energies.
In case of the second production run, the global minima are chosen on basis of both GAP
and DFT energy. Therefore, for each start geometry, two structures for further analysis are
chosen.

Table 4.1: Summary of the potentials used for the minima hopping, selection and evalua-
tion analysis of the first (1st) and second (2nd) production run.

Minima hopping Selection Evaluation
1st initialGAP global GAP minima + 0.5 eV minima range

evaluated by GAP potential energy
DFT, initialGAP,
finalGAP

2nd finalGAP global minima both evaluated by DFT and
GAP potential energy

DFT, finalGAP

For the selected structures, singlepoint calculations (step 2: evaluation) are performed
using the finalGAP or initialGAP and DFT. The DFT calculations are set up similar to
those in the previous chapter (compare section 3.1.2). Afterwards, the structures are lo-
cally optimized (step 3: optimization) using the BFGS method with DFT revPBE using the
FHIaims package within ASE and a force convergence criterion set to fmax=0.05 eV/Å. Those
local minima of the previously globally optimized GAP minima are then reevaluated (step
4: evaluation) with energy singlepoint calculations, using the finalGAP or initialGAP and
DFT. Additionally, the root mean square deviation (RMSD) of atomic positions is calcu-
lated for the structures before and after the local DFT optimizations, such that

RMSD =

√
1
n

n

∑
i=1

||ai − bi||2. (4.1)

Thereby a and b denote the structures before and after the optimizations and the sum is
only taken over the n adsorbate atoms in the systems without the Rhodium atoms, as their
positions are fixed. The previous description of the used potentials for the first and second
production run and analysis are summarized in table 4.1.
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The output minima of the first production round are additionally further analysed by
a network analysis on the one hand and kPCA on the other hand. The reduced catalytic
network is designed using the igraph network analysis software [82]. The depicted ener-
gies correspond to the formation energies Ef. Those energies are calculated in accordance
to literature [8], such that:

Ef = Esurf+ads − Esurf − ∑
i∈{C,H,O}

niµi. (4.2)

Thereby, Esurf+ads is the electronic free energy of the surface-adsorbate system on DFT
revPBE level, Esurf the energy of the empty surface, ni the absolute number of elements n
of each atomic species i and µi are the electronic potential energies, which are defined as

µO = EH2O − EH2

µC = ECO − EO

µH = EH2
/2.

(4.3)

The above energies E in formula 4.3 correspond to the electronic free gasphase energies of
the molecules. For the formation energy of the adsorbate molecules in the gasphase, the
following equation 4.2 is adjusted, such that:

Ef = Emolecule − ∑
i∈{C,H,O}

niµi. (4.4)

In addition to the network analysis, kPCA of the discovered global minima is per-
formed using the kPCA functionality from the MLinCRS code collection [83]. For the
kPCA, an average kernel is calculated, which equals the kernel used in the FPS as part
of the iterative GAP training. The underlying descriptor is a SOAP with a cutoff ra-
dius of 3 Å, an atom sigma of 0.3 Å and lmax and nmax set to 3 and 9 similar to the GAP
training. For the plotting, only the first principal components are used. For interpreta-
tion, the dimensionality reduction is additionally performed with Automatic Selection

And Prediction tools for materials and molecules (ASAP) [84] and visualized via
the projection viewer [85, 86].

With the methods and computational details described in this chapter, the application
of the ML interatomic potential is investigated. The results are presented and discussed in
the following.
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4.2 Results and discussion

In this section, the results of the application of the previously trained interatomic potential
to the syngas conversion on Rhodium are stated and discussed. First, the results for the
application of the potential towards the minima hopping starting from new adsorption
sites of the already known systems are given. This is followed by in-depth analysis of
the discovered global minima: reduced reaction networks are developed and a kPCA is
performed. The subsequent section 4.2.4 provides the results of the application of the
trained potential towards the minima hopping of unknown structures. At the end, the
overall applicability is assessed, limitations are pointed out and an outlook is given.

4.2.1 Minima hopping from new adsorption sites

In this section, the results of the first production run, as introduced in section 4.1, are
stated. This results section is structured along the production run and analysis procedure,
as summarized in figure 4.1.

Step 1: Optimization

The first optimization step - the global optimization by minima hopping for the overall 342
surface-adsorbate start systems - produces more than 6000 minima. These minima show
a high variability, which can be illustrated by the following figure 4.2. The figure shows
the minima ranges for all the 342 start geometries, defined as the difference of the minima
to the global minimum of each structure. Thereby, the teal graph illustrates the difference
energy of the minima obtained by the global optimization using the initialGAP.

One minima hopping with nhops = 40 steps, outputs approximately 20 minima per start
geometry. Thereby, an energy difference of up to 4.4 eV towards the global MHM minimum
is obtained. This energy difference accords to the preset initial energy difference Ediff, 0 of
5 eV for the minima hopping feedback mechanism (compare section 2.2.2 for details on the
parameters).

As the aim of this work is to develop an interatomic potential to reduce the computa-
tional complexity, not all of the discovered minima are further evaluated and re-optimized
with DFT, but only those minima within a 0.5 eV energy range from the global minimum.
This 0.5 eV range is also displayed in figure 4.2. All the minima above this boundary are
considered for further analysis and sum up to approximately 1600 surface-adsorbate min-
ima. In the proceeding analysis, this minima selection is first evaluated and then locally
optimized using DFT.
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Figure 4.2: Illustration of the minima ranges resulted from global optimization using GAP
and the subsequent local DFT optimization. The ranges are depicted as the
absolute potential energy difference (calculated by the initialGAP) of the lowest
minimum to the other minima for each structure. The GAP minima within a
energy difference range of 0.5eV are selected for further analysis.

Step 2: Evaluation

In figure 4.3, the first evaluation is depicted. In the evaluation, the energies calculated by
GAP and DFT are compared. The left figure shows the relative frequency of structures
as a distribution of the absolute difference between the GAP and the DFT AE. Although
these structures are solely optimized with the ML initialGAP, the deviations of GAP and
DFT AE are in a range of -0.7 to 0.4 eV.

Figure 4.3: Evaluation of the minima obtained via minima hopping using the initialGAP
as a calculator. Left, the distribution of the deviation between GAP and DFT
atomisation energy (AE) is depicted. Right, the correlation between the two
energies is shown.

This good agreement between GAP and DFT AE can be further emphasized by the
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right plot of figure 4.3. In this plot, the correlation of the GAP and the DFT energy is
shown. Overall, a high correlation between GAP and DFT AE is achieved before the DFT
optimization. The MAE of the AE accounts 1.6 × 10−1 eV (or 4.1 × 10−3 eV/atom) and is
therefore in the same order of magnitude as the validation error during the iterative GAP
training.

Step 3: Optimization

In order to further validate the quality of the minima discovered by global optimization
using the ML initialGAP, the selected minima are re-optimized. This optimization is con-
ducted as local BFGS optimization using DFT, as the the ML potential is also trained on
DFT energies and forces.

By DFT re-optimization, insufficiencies in the global optimization using the initialGAP
can be revealed. In order to quantify the optimization, two measures are considered. On
the one hand, the difference in the AE before and after the local DFT optimization is
investigated in order to reveal the energetic changes due to the local optimization. On the
other hand, the RMSD, as defined in equation 4.1, quantifies the geometric changes of the
adsorbates.

The energetic changes of the selected minima before and after the local BFGS optimiza-
tion using DFT are investigated from singlepoint calculations using the initialGAP, the
finalGAP and DFT. This investigation is depicted in figure 4.4.

Figure 4.4: Frequency distribution of the selected minima as a function of the difference
between the atomisation energy (AE) before and after the local DFT optimiza-
tion. The difference is evaluated by singlepoint calculations using the initial-
GAP (left), the finalGAP (middle) and DFT revPBE (right).

When evaluated with the initialGAP, as pictured in the left subfigure, the energy differ-
ence shows an unilateral distribution and only declines due to the DFT optimization. For
more than 50 percent of the structures, the DFT optimization has no big influence on the
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AE. For the rest of the cases, the predicted AE diminishes. This is on the one hand fa-
vorable, as the initialGAP is the underling potential for the previous minima hopping and
therefore, the minima hopping algorithm works properly. On the other hand, this reveals
flaws of the initialGAP, as the global GAP minima can be further optimized by local DFT
optimizations.

This can be further emphasized by the DFT evaluation of the minima before and after
the local optimization in the right plot of figure 4.4. The optimization potential by DFT
BFGS optimization reaches up to approximately 0.5 eV and again, a unilateral distribution
is obtained. This comes as no revelation, as the BFGS algrithm is designed such that
the energy is minimized and therefore the difference of the energy before and after the
optimization is positive.

In the middle plot of figure 4.4, the frequency distribution of the AE difference before
and after local optimization evaluated by the finalGAP is mapped. The distribution is
more symmetrical than the distribution of the initialGAP. The depicted energy difference
is the difference between the global minima obtained with the initialGAP and the locally
reoptimized minima with DFT. Therefore, none of the structures are optimized with the
depicted finalGAP, it is solely used as an additional calculator for the evaluation of the
global GAP and the local DFT minima. The distribution reveals, that the finalGAP ap-
proaches more to the DFT energies than the initialGAP.

Figure 4.5: Frequency distribution of the selected minima as a function of the RMSD of
the adsorbates in the adsorbate-surface systems before and after the local DFT
optimization.

The second measure, the geometric changes expressed in form of the RMSD, is displayed
in the previous figure 4.5. Nearly 45 percent of the minima re-optimized with DFT show
very low displacement in a range of 0 to 0.03 Å due to the optimization. The distribution
spreads to a maximum RMSD of 0.4 Å with one outlier at 0.8 Å. As the RMSD is a mea-
sure difficult to conceive, figure 4.6 exemplarily shows a global GAP minimum structure
before and after the local DFT optimization with an RMSD of 0.2 Å. During the local re-
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optimization, the hydrocarbon backbone of the adsorbate slightly moves and rotates along
the carbon-carbon bond. The RMSD of 0.2 Å is in the higher displacement range yielded
due to the local optimization.

Figure 4.6: Example of the displacement of a global GAP minimum before (left) and after
the local DFT re-optimization. The RMSD of the depicted structures accounts
0.2 Å.

Additionally, when redescribing the minima ranges depicted in figure 4.2, the selected
0.5 eV GAP minima range mostly does not diverge through the local re-optimization. The
depicted DFT minima ranges are in most cases below the 0.5 eV boundary, with just three
exceptions out of 342 systems. This additionally reinforces the observation, that energeti-
cally alike minima are obtained by the local re-optimization.

With the energetic and geometric reference ahead, the overall quality of the the global
minima discovered by the preceding minima hopping using the initialGAP as a potential
can be assessed as adequate.

Step 4: Evaluation

The last analysis step for the first production run is again an evaluation. The energies of
the global GAP minima further optimized in a local DFT optimization, are evaluated. Just
like in the first evaluation before the local re-optimization, the GAP and DFT energies are
compared in figure 4.7. In the upper part, the comparison for the initialGAP, which is
also applied in the minima hopping, is shown. The lower part additionally pictures the
comparison with the finalGAP, which is solely used for additional evaluation.

In the left half of the figure, the frequency distribution of the difference in the AE of
the GAP and DFT is depicted. In case of the initialGAP, which is shown in the upper
left subfigure, the distribution is slightly shifted towards right. A reason for this shift
might be the underrating of the DFT minima by the initialGAP, which is also previously
revealed in figure 4.4. As the initialGAP is trained towards structures obtained by minima
hopping, the comparison reveals the differences in predictive power for it’s own global
GAP minima (step 2) and the other structures, for example the DFT minima. Overall, the
deviation between the GAP and DFT energies are in the range of -0.7 to 0.7 eV.

In case of the finalGAP, which is shown in the lower left subfigure, the difference is
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distributed in a range of approximately -0.5 to 0.3 eV and is not shifted to a certain side.
This indicates an even higher accordance of the finalGAP to DFT.

Figure 4.7: Evaluation of the minima obtained via local re-optimization using DFT revPBE
as a potential. Left, the distribution of the deviation between GAP and DFT
atomisation energy (AE) is depicted. Right, the correlation between the two
energies is shown. The upper teal part of the figure refers to the evaluation by
the initialGAP, the lower dark red part to the finalGAP.

The correlation between the GAP and DFT AE is likewise high, which is depicted in
the right part of figure 4.7. The MAEs level with the MAE of the energies before the
local optimization (step 2) and also the validation errors of the GAP training in section
3.2. The MAE of the finalGAP even undercuts the MAE of the initialGAP with a value
of 2.0 × 10−1 versus 8.1 × 10−2 eV. Therefore, the second stage of the application test - the
second production run of unknown systems - is performed using the finalGAP.

Beforehand, the results of further analysis for the first production run are given, begin-
ning with the kPCA outcomes.
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4.2.2 Kernel principal component analysis

In order to further analyse the minima obtained by the minima hopping, kPCA is per-
formed. As introduced in section 2.3.2, kPCA allows to reveal patterns in multidimen-
sional data sets. Here, more than 1500 minima, which are discovered and selected for
further optimization in the first production run, are analysed. The following figure 4.8
depicts the results of the kPCA in coordinates of the first two principal components PC1
and PC2. The data points are colored based on the DFT AE of the appurtenant minima.

In the upper part of the figure, the kPCA for the surface-adsorbate systems is pictured
including both the Rh(111) and Rh(211) surfaces. In the lower part of the figure, the
analysis is divided to the different surface types.

Figure 4.8: Illustration of the kPCA of the MHM GAP minima re-optimized with DFT. The
first two principal components PC1 and PC2 are the coordinates, the coloring
corresponds to the atomisation energy (AE) calculated by DFT. In the upper
figure, the kPCA is summarized for both the Rh(111) and Rh(211) systems. The
lower figures differentiate the two surface types.

The systems arrange in distinguishable clusters with similar energies. In the upper left
edge of the plots, the systems with the highest AE are located and in the upper right edge
the systems with the lowest AE. By comparison of the kPCA for the Rh(111) and Rh(211)
systems, it can be observed, that the systems are more centered in case of the Rh(111)
systems. The Rh(211) systems are more distributed and some clusters overlap.
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Further analysis of the kPCA reveals that each cluster can be allocated to a certain
adsorbate. This allocation is indicated in figure 4.9. Two trends are observed: first, the
clusters organize in three distinguishable domains along the second principal component
(PC2) with either no or one or two carbon atoms. Second, the number of hydrogen atoms
increases from the lower left to the upper right part of the illustration (along PC1).

Figure 4.9: Interpretation of the kPCA with adsorbates allocated to the different clusters.
PC1 implies the number of H atoms and PC2 the number of C atoms. The
coloring corresponds to the atomisation energy (AE) calculated by DFT.

A reason for the overlapping and broaded clusters especially in case of the Rh(211) is
the availability of multiple adsorption sites. In contrast, on the plane Rh(111) surface a
lower variety in conformations is observed and therefore also a higher distinction of the
adsorbates is enabled. However, the energies on the Rh(111) and Rh(211) surfaces are in a
similar range for each cluster. In order to further unveil the differences for the Rh(111) and
Rh(211) surface systems, reduced reaction networks are developed. The results are given
in the following.
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4.2.3 Reduced reaction network development

As this work’s approach and choice of systems is based on the reduced reaction mecha-
nisms for the syngas conversion on Rhodium developed by Yang et al., the mechanisms
are also the starting point of this work’s reaction network development. In figure 4.10, the
developed reduced networks are illustrated.

In the networks, the selected adsorbates emerging during the syngas conversion on
either Rh(111) (upper network) or Rh(211) (lower network) surfaces are depicted. The
networks are colored in terms of the DFT formation energies for the adsorbates on the sur-
faces, calculated according to equation 4.2. Note that a low coverage approach is followed
in this work. The energies correspond to the found global minima of the single adsorbates
on the Rhodium surfaces. Therefore no reactions are simulated and the evaluation is solely
based on thermochemistry without the consideration of reaction barriers.

Section 4.2.1 reveals, that the difference between the initial GAP minima and the GAP
minima further optimized with DFT is small. As even more accurate predictions and lower
energies are achieved by the GAP minima further optimized with DFT, the formation
energies of those structures are calculated and pictured in the networks. The energies are
additionally summarized in table B.2.

The networks start from the educts hydrogen and carbon monoxide. By first analysis
of the networks, it can be observed, that adsorbed hydrogen is a central component in
the conversion, required in most of the ensuing reaction steps. Overall, three production
routes are depicted: the production of water, methane and ethanol. Especially, the side
production of water protrudes because of it’s comparatively low formation energy and the
energy difference to the underlying educts.

The main difference in the networks is the CO-activation step and it’s influence on the
subsequent reactions. Whereas in case of Rh(111), the CO activation proceeds via hy-
drogenation of the carbon atom towards CHO, for Rh(211) the oxygen is hydrogenated
resulting in COH. From these intermediates, different routes towards CH are followed.
In both cases, especially the side production of water protrudes because of it’s compara-
tively low formation energy and the energy difference to the underlying educts. The CH
intermediate is either further hydrogenated up to methane or reacts towards CHCO via a
C-C coupling step. This C-C coupling step is one of the most relevant steps in the syngas
conversion towards C2+ oxygenates and is accompanied by a step in the formation energy.

To further analyse the change in formation energy, a stability diagram for the reaction
routes towards methane and ethanol is developed. Thus, the progression of the formation
energy along the reaction coordinate is given in the figure 4.11. In the upper part of the
figure, the production routes on Rh(111) and Rh(211) are comparatively plotted. As the
hydrogen adsorption follows the mechanism of the dissociative adsorption, the gasphase
H2 formation energy is plotted. In the lower two subfigures, the gasphase formation
energies are compared to the adsorbate formation energies on either Rh(111) or Rh(211).
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Figure 4.10: Reduced reaction networks for the syngas conversion on Rhodium surfaces
based on [4]. On the top, the Rh(111) network is depicted, on the bottom the
Rh(211) network. The nodes are colored in terms of the formation energies
on DFT level of the re-optimized global GAP minima for each considered
adsorbate.
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Figure 4.11: Stability diagrams of two possible production routes for the syngas conversion
on either Rh(111) or Rh(211) surfaces: methane and ethanol formation. The
stability diagrams are depicted as the formation energy versus the reaction
coordinate. In the upper plot, the stability of the adsorbates on the Rh(111)
and Rh211 is compared. The lower two plots compare the gasphase formation
energy to the adsorbate formation energies on either Rh(111) or Rh(211).
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Overall, the adsorbate formation energies on the different surfaces are in a similar range
all along the production routes. Compared to the gasphase formation energies, all the ad-
sorbates are tremendously stabilized due to the adsorption. The step in formation energy
for the C-C coupling revealed in the network, is also conspicuous in the stability diagram.
Another salient state is the CH3 intermediate formation energy on the Rh(111) surface,
which is lower than the previous CH2 intermediate and the following CH4 product. Such
fluctuating steps also occur in Rh(211) reaction route towards CH3CH2OH. In the litera-
ture, a selectivity of Rh(111) surface facets towards CH3CHO and of Rh(211) towards CH4

is reported [4]. This seems to dissent to the pathway depicted in this work’s stability di-
agram, as for example the formation energy of CHCO is lower for the Rh(211) surface,
whereas Rh(111) has the higher selectivity towards this C2+ production route. A possible
reason for this might be in the reaction barriers, which are not considered in this work’s
evaluation.

However, further analysis of the reaction mechanisms and the detailed adsorbate forma-
tion energies is beyond the focus of this work as this production run is initially performed
to examine the applicability of the developed ML interatomic potential. Therefore, as a last
step towards this examination, the developed GAP is applied to new, unknown structures.
The results are given in the following.

4.2.4 Minima Hopping of unknown structures

In order to further validate the applicability of the trained potential, the finalGAP is ap-
plied to the minima hopping of unknown structures, taken from the studies of Yang et
al. [4]. The term unknown structures refers to out of sample structures, whereby the main
difference to the structures considered in the first production run is in the lattice constant
and the consideration of systems with a smaller periodic cell, as detailed in section 4.1.
This second production run as well as its analysis are resulted in this section.

The production run varies from the first one, detailed in section 4.2.1, in terms of con-
sidered systems and general extent. The first production run delivers the result, that the
trained GAP can be used to quickly sample low energy minimum structures for adsor-
bates and surfaces already known to the potential with high accuracy compared to DFT.
The focus of this second production run is therefore not on the generation of even more
minima, but on testing limitations and boundaries of the potential.

The global optimization of the second production run is performed for 33 selected start
geometries and produces 664 minima during the minima hopping. From the produced
minima, a certain selection is further analysed, whereby the selection heuristics differ
from the first production run: in this second production run, all the minima produced
by the minima hopping are evaluated by the finalGAP as well as by DFT and each the
global GAP-evaluated and global DFT-evaluated minima are chosen for further analysis
and local re-optimization.

57



The following figure 4.12 shows the analysis of the DFT-evaluated global minima before
local re–optimization. The upper subfigure shows all global minima for each of the 33
start geometries and the corresponding absolute energy difference between GAP and DFT.
Here, the global minima are selected according to their lowest DFT energy after the minima
hopping. The lower left plot illustrates the distribution of the energy difference. The lower
right plot directly compares the absolute GAP and DFT AE.

Figure 4.12: Analysis of the DFT-evaluated minima obtained via minima hopping using
the finalGAP. In the top, the absolute difference between GAP and DFT AE
is depicted for each minimum. Bottom left, the distribution of the deviation
between GAP and DFT AE is given. Bottom right, the correlation between the
two energies is shown.

Especially in the upper plot, the high deviation between GAP and DFT energy of some
minima is apparent. The highest deviation is approximately 5 eV. In addition, the high dif-
ference in the deviations is notable and comes out even more in the lower left distribution.
Approximately 75 percent of the start geometries show a low energy difference. However,
there are several outliers. This also influences the correlation of the energies resulting in a
high MAE of 1.1 eV. Especially the structures with an AE around -100 eV deviate.

The precise analysis of the high deviations reveals, that just those structures show up a
high deviation, which are build with a 3x2x3 periodic cell for the Rh(211) surface facets.
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Leaving out these structures build by a 3x2x3 periodic cell, which all show an absolute
deviation bigger than 4 eV, entails an immediate improvement of the prediction. This is
illustrated in the following figure 4.13.

Figure 4.13: Difference between GAP and DFT AE as relative frequency distribution on
the left and correlation the two energies on the right. The analysis is limited
to the minima with an absolute energy deviation below 4 eV.

By excluding the outliers, the MAE is improved to 8.6 × 10−2 eV. Thus, it is assumed, that
the varied cell size is the reason for the high errors. In the next subparagraph, the reasons
for the high deviations due to the change of the cell size are further discussed and a
possible approach to higher accuracy is suggested.

Similar to the first production run, the MHM minima are further optimized using lo-
cal BFGS optimization on DFT level. By doing so, the quality of the minima produced
using the trained potential is approved. In figure 4.14, the energetic as well as the geo-
metric change resulting from the local optimization is illustrated. The energetic change is
depicted as the frequency distribution of the absolute AE difference before and after the
local DFT optimization. In the left figure, the energy shift due to the optimization is eval-
uated by singlepoint calculations using the finalGAP. In the middle, the same evaluation
is performed by DFT singlepoint calculations. The right figure shows the RMSD of the
structures before and after the local optimization.

In accordance to the first production run starting from known systems (compare section
4.2.1, step 3), the local DFT re-optimization for unknown structures only slightly changes
the minima obtained by the MHM using the GAP. Energetically, the highest change is
approximately 0.2 eV, geometrically about 0.22 Å. As in the analysis of the first production
run, the local DFT optimization energetically improves the minima when evaluated by
DFT and impairs when evaluated by the finalGAP. Overall the energy differences as well
as the RMSDs are commensurable to the first production run it can be resulted that the
optimization steps as part of the MHM already provide a good energy convergence. As
also the previously detected outliers are part of this evaluation, the quality of the minima
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obtained by the MHM using the finalGAP is precluded as a reason for the insufficient
energy prediction for the outliers.

Figure 4.14: Frequency distribution of the DFT-evaluated MHM minima. The left and mid-
dle plot show the distribution as a function of the difference between the AE
before and after the local optimization, evaluated by singlepoint calculations
using the finalGAP (left) and DFT (middle). The right figure shows the distri-
bution as a function of the RMSD of the adsorbates in the adsorbate-surface
systems before and after the local optimization.

Other possible reasons for the high errors for the outliers as well as an approach to higher
prediction accuracy is given in the following.

Approach to higher accuracy: additional training iteration

The previous analysis of the minima obtained by MHM of unknown structures taken from
literature using the finalGAP brings up limitations in the applicability of the finalGAP
for certain structures. It is identified, that the outliers are those structures constructed
with a 3x2x3 periodic cell. The reasons for the high deviations and an approach to higher
accuracy are discussed here. As the outliers are identified by the comparison of the DFT
and GAP energies, both DFT as well as GAP are considered as error sources.

This work’s GAP training approach is based on DFT reference calculations. All the
input structures to the training are constructed with a 3x3x4 periodic cell and the DFT
calculations are performed with a k-grid of (4x4x1), which resulted from a convergence
test for the 3x3x4 periodic surfaces (compare figure A.3). Therefore, the potential is not
trained towards other periodic cell sizes and the DFT convergence is not approved to cell
size changes. Since in general, the required k-grid is dependent on the periodic cell size,
the influence of a k-grid variation is tested for an example system. However, no significant
improvement of the energy due to k-point grid adaption is observed and the largest energy
difference to the current k-point grid was in the order of 10−2 eV. Thus, the k-point grid
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can be eliminated from the sources of error.
The other, more probable source of error is in the prediction by the GAP. The main dis-

tinctions are the different lattice constants and the cell size. For the unknown structures, a
lattice constant of 3.86 Å for the 3x3x4 and 3.866 Å for the 3x2x3 cell is used, which slightly
differs from this work’s lattice constant of 3.85 Å. Moreovere, the 3x2x3 cells are smaller in
two directions: the y-direction as well as the z-direction, which both have influence on the
prediction. In the y-direction, the adsorbate molecules come closer to each other. In the
z-direction, one bulk Rhodium layer is completely removed. These both lead to changes
in the atomic environments of the atoms included in the system and therefore might lead
to predictability limits.

In order to approach and test this hypothesis, clean Rhodium surfaces are constructed
similar to those of the unknown structures and their energy is calculated by the finalGAP
and DFT in comparison. For the clean 3x3x4 surfaces with a lattice constant of 3.86 Å, an
absolute deviation of 3.0 × 10−2 eV between the DFT AE and the finalGAP AE is found.
Thus, the slight difference in the lattice constant does not spawn a predictability limit.
Though, the deviation quickly enlarges for the 3x2x3 surface with a lattice constant of
3.866 Å. Here, the absolute difference between GAP and DFT AE accounts 4.1 eV. Therefore,
the main reason for the high deviations for some structures in the second production run
is ascribed to the influence of the cell size on the energies of Rhodium atoms.

This influence is simply not considered by the finalGAP, as the training is conducted
with one type of periodic cells only. However, to approach a higher accuracy, the 3x2x3
structures from the unknown data set are added to the training set of the finalGAP and
the potential is retrained with otherwise similar settings. More precisely, the 11th iteration
of the third training round (GAP3, compare section 3.2.3) with the hyperparameter set
(10) is repeated with a training set expanded by eight 3x2x3 structures. The potential
resulting from the 11th iteration of GAP3 with finetuned hyperparameters is previously
named finalGAP, therefore the retrained potential is now defined as ’retrained finalGAP’.

To evaluate the retraining, the energies of the start geometries, GAP- and DFT-evaluated
MHM minima and locally re-optimized minima are recalculated with the retrained final-
GAP. As the start geometries are directly added to the training set, an improvement for
those is evident. Therefore, especially the influence of the retraining on the further opti-
mized structures is analysed in the following. Figure 4.15 shows the effect of the retraining
on the energy deviation between GAP and DFT. Thereby, the minima, which were first
obtained by minima hopping using the finalGAP, secondly selected as global minima by
DFT evaluation and thirdly locally reoptimized with DFT, are analysed.

In direct comparison, as depicted in the upper plot of figure 4.15, the retraining signifi-
cantly improves the deviation of the GAP to the DFT AE. Analysing the predictions by the
retrained finalGAP even further, the improvement can be confirmed. As can be seen in the
lower left subfigure, the energy difference distribution considerably narrower, with most
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of the structures having deviation less than 0.5 eV. This is accompanied by an improvement
of the MAE due to the retraining, lowered by one order of magnitude in contrast to the
finalGAP.

Figure 4.15: Analysis of the locally DFT optimized global minima evaluated by the re-
trained finalGAP. In the top, the absolute difference between GAP and DFT
AE is depicted for each minimum, evaluated by both the finalGAP and the
retrained finalGAP. Bottom left, the distribution of the deviation between the
retrained finalGAP and DFT AE is given, bottom right the correlation between
the two energies.

However, this error is still above the error of the first production run. One possible rea-
son for this might the interplay of SOAP cutoff versus periodic cell size. The higher errors
for the retrained finalGAP are ascribable to systems, where a big part of the adsorbate is
within the SOAP cutoff radius of the adsorbate in the adjacent cell. Although a certain
overlap also occurs for bigger cell sizes, this is confined to the overlap of single atoms
only. Therefore, long-ranged adsorbate-adsorbate contributions appear not to be learned
during the GAP training. Nevertheless, this is in conformity with this work’s low coverage
approach.

In the following, the applicability of the developed GAP is conclusively assessed and an
outlook is given.
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4.2.5 Applicability assessment and outlook

This work’s ML interatomic potential is applied to the minima hopping of the involved
structures in the syngas conversion on Rhodium surfaces. In two production runs, the
potentials applicability is tested. In a first, broad production run, the application towards
new adsorption sites is attempted. Secondly, the potentials limitations are assayed by the
application towards new, unknown structures. The results of this production runs are
previously stated and assessed here.

Overall, the generation of minima applying the trained GAP to the minima hopping
of adsorbates on Rhodium surfaces can be appraised as adequate. The potential quickly
allows to sample minimum structures of various adsorbates on the different Rhodium
surfaces, which only need slight local re-optimization if at all. Limitations especially occur
with surface-adsorbate structures not involved in the training set. The second application
test reveals, that changing the periodic cell deteriorates the predicted energy accuracy.
Including the structures with new characteristics such as a varied periodic cell in the
training set and retraining the potential however leads to an immediate improvement of
up to one order of magnitude.

Beyond this work, the developed GAP is already applied to sample minimum adsorp-
tion geometries for various adsorbates part of an extended reaction network for the syngas
conversion on Rhodium [87]. During this expanded sampling, it appears that for those ad-
sorbates included in the training set, the transferability is high. However, new adsorbates
lead to high errors. Those observations are in alignment with this work’s results and the
errors are in a similar range as those observed for the 3x2x3 surfaces. However, the sam-
pled adsorption structures serve as a good starting point for further analyses, for example
more accurate DFT calculations or microkinetic simulations.

Therefore, it can be generally stated, that for known adsorbates and surfaces the energy
prediction by the trained GAP has a high accuracy. This accuracy is not sustained when
applying the potential towards new systems. In such cases, an additional training iteration
is suggested to increase the accuracy. With the current settings and training set size, one
additional training iteration takes approximately two hours and improved the predictions
in this work’s applicability test by one order of magnitude, which represents a valuable
cost-trade ratio. Nonetheless, this work’s GAP is able to sample minima for unknown start
geometries and the proposed structures can be qualitatively evaluated as chemical.

The training workflow yields a system-specific GAP with good stability towards high
temperatures and temperature changes, due to the iterative training with rising minima
hopping conditions. The applicability of the workflow is estimated to not being limited to
the syngas conversion on Rhodium only, but also to be adaptable to other heterogeneous
catalytic reaction networks. An obvious, prospective expansion of the workflow could be
the inclusion of a higher variety of surface layers in the early training iterations. Addi-
tionally, the periodic cell size could be increased, which is valuable for larger adsorbate
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molecules. Due to size extensitivity of the GAP, the increase in cell size is expected to be
viable. In case of the syngas conversion on Rhodium, a higher variability of adsorbates
could additionally be considered, which is already ongoing [87]. Moreover, adsorbate-
adsorbate interactions could be supplementally included, which is already done in other
work [81].

It should be noted, that the potential is trained and tested towards the applied simu-
lation methods only. These methods include the constrained global optimization using
the MHM, which performs MD simulations as well as local optimizations, as well as un-
constrained BFGS optimizations. Therefore, no statement can be made to the applicability
towards other simulation methods. In future work, a worthwhile expansion could be build
about the exploration of transition states also. This would enable a more detailed insight
into the relevant adsorbate states and reaction barriers.

Retrospectively, less overall training iterations and an earlier adaption of the training
towards the specific scientific problem of interest could have even increased the training
efficiency. Therefore, this is suggested as a general take for further developments.
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Chapter 5

Summary

The goal of this work was to develop a method to discover the global minimum space of the
involved educts, intermediates and products of a heterogeneous catalytic reaction network.
As a model system, the syngas conversion on Rhodium has been chosen. Although syngas
is one of the key reagents in industrial chemistry, the mechanisms leading towards specific
products are not fully disclosed and especially the rational of the selectivity of different
catalysts towards specific products is still deficient.

Yang et al. [4] were able to formulate reduced reaction mechanisms for the syngas con-
version on Rhodium(111) and Rhodium(211) surface facets, which served as a basis of this
work’s approach. In order to discover the reaction network of the syngas conversion on
Rhodium, this work aimed to develop a fast and accurate interatomic potential for the
prediction of minimum structures of the different appearing adsorbates on the catalytic
Rhodium surfaces. Therefore, the overall goal of this work was divided into two subgoals:
the development of a machine learning (ML) interatomic potential on the one hand and
the application of the developed potential on the other hand.

In the first part - the development of a ML interatomic potential - a Gaussian approx-
imation potential (GAP) has been trained. As part of this work, an iterative GAP train-
ing workflow has been developed, which is tailored to the global optimization of the
adsorbates involved in the syngas conversion on Rhodium using the minima hopping
method (MHM). Overall three different training rounds have been performed, whereby
the training workflow was refined until a good compromise between stability of the po-
tential, computational accuracy compared to DFT and chemical quality of the produced
minima has been achieved. For the final potential, a hyperparameter finetuning allowed
to even increase the accuracy of the potential.

In the second part of this work - the application of the potential to global optimization -
the previously trained GAP was applied to the minima hopping of new start geometries.
In a first attempt, the potential has been applied to the global optimization of the same
surface and adsorbate conformations as considered in the GAP training but with addi-
tional adsorption sites. This first application served as a general production run testing
the overall applicability of the potential and sampling various minima. The overall quality
of the produced minima compared to DFT was adjudged as adequate. With the produced
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global minima and its related energies, the development of reduced reaction networks for
the syngas conversion on both Rhodium(111) and Rhodium(211) has been enabled.

In a second attempt, the potential has been applied to unknown start geometries taken
from literature, whereby the main distinction to the previously tested geometries was in
the periodic cell size and the lattice constant. This second production run was performed
in order to test the potential towards out of sample structures and to discover limitations.
It turned out, that the potential’s transferability is high for those structures already in-
cluded in the training set, but high errors appeared for structures with new, unknown
characteristics as for example a varied periodic cell size. A retraining of the potential with
an expanded training set by structures with the new characteristics however lead to an
immediate decrease of the error. Due to this quick and high adaptability, the workflow
as well as the potential serves as a good starting point for further customization towards
other specific scientific problems.

To conclude, this work brought up a method to train a system-tailored, ML interatomic
potential for the accelerated minima hopping of adsorbates in heterogeneous catalytic
systems, examined on the syngas conversion on Rhodium.
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[14] V. L. Deringer and G. Csányi, “Machine learning based interatomic potential for amor-
phous carbon,” Physical Review B, vol. 95, no. 094203, pp. 1–15, 2017.
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Appendix A

GAP training details

A.1 Reduced reaction mechanisms for the syngas conversion
on Rhodium

The following reduced reaction mechanisms are taken from [4] and used as a basis for this
work. Based on the appearing educts, intermediates and products, the training set of this
work’s GAP training is constructed. In the mechanisms, ⋆f, ⋆s and ⋆h refer to the fourfold,
step and hydrogen reservoir sites, which are the three sites considered by Yang et al. [4].
In this work, more sites are considered as detailed in sections 3.1.2 and 4.2.1.

Mechanism on Rh(111) surface

H2(g) + 2 ⋆h 2 H⋆h {1}

⋆s + CO(g) CO⋆s {2}

CO⋆s + H⋆h H CO⋆s + ⋆h CHO⋆s + ⋆h {3}

CHO⋆s + H⋆h HCO H⋆s + ⋆h CHOH⋆s + ⋆h {4}

CHOH⋆s + ⋆s CH OH⋆s + ⋆s CH⋆s + OH⋆s {5}

CH⋆s + H⋆h CH H⋆s + ⋆h {6}

CH ⋆s
2 + H⋆h H CH ⋆s

2 + ⋆h CH3⋆s + ⋆h {7}

OH⋆s + H⋆h H OH⋆s + ⋆h H2O(g) + ⋆s + ⋆h {8}

CH⋆s + CO⋆s CH CO⋆s + ⋆s CHCO⋆s + ⋆s {9}

CHCO⋆s + H⋆h H CHCO⋆s + ⋆h CH2CO⋆s + ⋆h {10}

CH2CO⋆s + H⋆h H CH2CO⋆s + ⋆h CH3CO⋆s + ⋆h {11}

CH3CO⋆s + H⋆h H CH3CO⋆s + ⋆h CH3CHO⋆s + ⋆h {12}

CH3CHO⋆s CH3CHO(g) + ⋆s {13}

CH3CHO⋆s + H⋆h CH3CHOH H⋆s + ⋆h CH3CH2OH⋆s + ⋆h {14}

CH3CH2OH⋆s CH3CH2OH(g) + ⋆s {15}
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Mechanism on Rh(211) surface

H2 + 2 ⋆h 2 H⋆h {16}

⋆s + COg CO⋆s {17}

CO⋆s + ⋆f + H⋆h CO H⋆ f + ⋆h + ⋆s COH⋆ f + ⋆h + ⋆s {18}

COH⋆ f + ⋆s C OH⋆ f + ⋆s C⋆ f + OH⋆s {19}

C⋆ f + H⋆h C H⋆ f + ⋆h CH⋆ f + ⋆h {20}

CH⋆ f + H⋆h + ⋆s CH H⋆s + ⋆h + ⋆f CH ⋆s
2 + ⋆h + ⋆f {21}

CH ⋆s
2 + H⋆h CH2 H⋆s + ⋆h CH ⋆s

3 + ⋆h {22}

CH ⋆s
3 + H⋆h CH3 H⋆s + ⋆h CH4(g) + ⋆s + ⋆h {23}

O⋆s + H⋆h O H⋆s + ⋆h OH⋆s + ⋆h {24}

OH⋆s + 2 H⋆h H OH⋆s + ⋆h H2O(g) + ⋆s + ⋆h {25}

CO⋆s + CH⋆ f CH CO⋆s + ⋆f CHCO⋆s + ⋆f {26}

CHCO⋆s + H⋆h H CHCO⋆s + ⋆h CH2CO⋆s + ⋆h {27}

CH3CO⋆s + H⋆h H CH3CO⋆s + ⋆h CH3CHO⋆s + ⋆h {28}

CH3CHO⋆s + H⋆h CH3CHO H⋆s + ⋆h CH3CHOH⋆s + ⋆h {29}

CH3CHO⋆s CH3CHO(g) + ⋆s {30}

CH3CHOH⋆s + H⋆h CH3CHOH H⋆s + ⋆h CH3CH2OH(g) + ⋆h + ⋆s {31}
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A.2 Additonal information on the initial training set

For the training of GAP1 - the first training trial - another initial training set is used than
for the subsequent rounds GAP2 and GAP3 (compare table 3.1). Therefore the following
table A.1 summarizes the components involved in the initial training set of GAP1.

Table A.1: List and specification of the different components included in the initial training
set of GAP1, classified into five groups.

Class Components Specification
atoms C, O, H, Rh /
dimers CC, CO, CH, HH, OH, OO dimers with varied distances (in Å)

d = (rcovalent, 1 + rcovalent, 2 + n · 0.1)
with n ranging from 0 to 4, taken
from [81]

gasphase
molecules

CO, H2, CH4, COH, CHO, CHOH,
CH2O, CH2OH, CH3O, CH3OH

selected optimized gasphase
molecules relevant for the syn-
gas conversion on Rhodium

surfaces Rh(111), Rh(211) periodic cell consisting of 36 Rh
atoms in 4 layers and a 10 Å vacuum
layer

surface +
adsorbate

single atoms or molecules adsorbed
to Rh(111) or Rh(211) surfaces

periodic cell consisting of 1 adsor-
bate attached to a Rhodium surface
on a specific adsorption site, as de-
fined in table A.2 and visualized in
figure A.1

The training of GAP1 just considers one adsorption site (the top site) as a starting point
for the iterative training data generation via minima hopping applying the potential of the
respective iteration. This adsorption site is pictured in figure A.1 and the site coordinates
are given in table A.2.

Table A.2: Site coordinates of the considered surface adsorption sites of Rh(111) and
Rh(211) for GAP1. The sites are considered for the construction of surface-
adsorbate structures for the initial training set of GAP1.

Surface Adsorption site Site coordinates in Å
x y z

Rh(111) top (a) 0.0000000 0.0000000 16.6683956
Rh(211) step top (b) 0.0000000 0.0000000 18.6446576
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(a) Rh(111), top site (b) Rh(211), step top site

Figure A.1: Illustration of the adsorption sites for (a) Rh(111) and (b) Rh(211) surfaces
considered for the surface + adsorbate systems in the initial training set of
GAP1.

During the training of GAP2 and GAP3, three adsorption sites are considered for each
Rh(111) and Rh(211) with the site coordinates as given in the following table A.3. These
sites are additionally pictured in figure 3.2.

Table A.3: Considered adsorption sites for the initial training set of GAP2 and GAP3.
Surface Adsorption site Site coordinates in Å

x y z

Rh(111) top 0.0000000 0.0000000 16.6683956
bridge 0.6805903 1.1788169 16.6683956
hollow fcc 0.6805903 1.1788169 16.6683956

Rh(211) step bridge 1.3611806 0.0000000 18.6446576
terrace hcp 5.4447222 3.7046642 17.5968203
4-fold 6.8059028 1.1113993 17.8587796
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A.3 DFT convergence tests and additional settings

Spin settings

As part of the GAP training, DFT reference calculations are performed. For the initial
training set, gasphase reference energies are calculated with DFT, set up with collinear
spin settings. The spin settings for these gasphase reference calculations are summarized
in table A.4.

Table A.4: Spin settings for DFT calculations of the listed molecules in gasphase
Molecule Initial magnetic moment
CO, H2, H2O, CH2, CH4, CH2CO, 0
CH3CHO, CH3CH2OH, CHOH
OH [1, 0]
CH [1, 0]
CH3 [1, 0, 0, 0]
CHCO [0, 1, 0, 0]
CH3CO [1, 0, 0, 0, 0, 0]
CH3CHOH [1, 0, 0, 0, 0, 0, 0, 0]
COH [1, 0, 0]
CHO [1, 0, 0]

The DFT reference calculations for the surface+adsorbate structures are performed without
collinear spin settings.

Hirshfeld parameter test

In order to model atoms and molecules on surfaces, the DFT calculations are set up with
additional Tkatchenko-Scheffler dispersion corrections with screened vdW interactions to
model atoms and molecules on surfaces. For the non-surface atoms, Tkatchenko-Scheffler
DFT+vdW corrections are applied and for interaction of the surface Rhodium atoms with
non-surface atoms DFT+vdWsurf corrections, whereby the Rh-Rh interactions are ignored.
Previous to application, the parameters have been validated, which is called as hirshfeld
test in the following.

During the hirshfeld test, the interaction of selected molecules, CO and CH4, with both
Rh(111) and Rh(211) surface facets are tested. The distance of the adsorbate molecules to
the surfaces is increased and the adsorption energy is monitored. The adsorption energy
Ead is calculated with the following equation:

Ead = Esurf+ads − Esurf − Egas, (A.1)
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whereby Esurf+ads, Esurf and Egas refer to the electronic free energies of surface+adsorbate,
clean surface and gasphase molecule respectively.

Three different parameter settings are tested: ’none’ referring to the calculation of ener-
gies without any additional vdW correction, ’default’ referring to the default vdW param-
eter values as part of the FHIaims package and ’set’ referring to screened vdW interactions
with parameter values taken from literature [41]. The test is performed in three steps:

1. Optimize gasphase molecules for the three conditions (none, default, set)

2. Optimize adsorbate (optimized gasphase molecule) on Rh surface for all conditions

3. From optimized adsorbate on surface: increase the distance of the adsorbate to the
Rh surface (0 to 5Å)

Figure A.2: Effect of the application of DFT+vdWsurf parameters on the DFT adsorption
energy of CO or CH4 on Rh(111) and Rh(211) surfaces. The figure shows the
adsorption energy as a function of the distance variation starting from an op-
timized adsorption geometry without (’none’), with default vdW parameters
(’default’) and with parameter values [41] (’set’).

Figure A.2 shows the effect of the DFT+vdWsurf parameters on the adsorption energies.
For CO, the adsorption energies do not differ widely for the different parameter settings.
For CH4, however the need of the additional setting of the parameters is revealed. Without
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setting additional parameters (’none’), the adsorbate desorbs from the surface and diffuses
into the gasphase. That is why the adsorption energy for CH4 is 0 eV for the ’none’ settings,
since the molecule does not adsorb to the surface at all without setting additional param-
eters. For the ’default’ settings, the adsorption energies are overestimated. Therefore,
the DFT calculations as part of this work are conducted with ’set’ parameters, meaning
additional Tkatchenko-Scheffler dispersion corrections with screened vdW interactions.

Convergence test for k-point grid

This work’s DFT calculations are performed with periodic boundary conditions. The sur-
faces are built with a periodic cell size of 3x3x4. Thus, DFT reference calculations are
calculated with a distinct number of k-points. In order to set the appropriate number of
k-points, a k-point grid convergence test has been performed.

Figure A.3 shows the AE, since this is also the energy considered in the GAP training,
for 11 different k-point grids. The AE converges for a k-grid of (4x4x1) with a convergence
criterion is set to 0.05 eV. Thus, the DFT reference calculations as part of the GAP training
are calculated with this converged k-point grid.

Figure A.3: k-grid convergence test for Rh(111) and Rh(211) surfaces without (upper plot)
and with adsorbed CO (lower plot). The convergence test is based on DFT
calculations and pictured as atomisation energy (AE) versus k-grids.
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A.4 GAP training baseline potential

Figure A.4: Illustration of the comprehensive dimer interactions considered by the baseline
potential. The baseline is used as a basis underling potential for the training
of this work’s GAP and taken from [81].
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A.5 Hyperparameter finetuning

For the final GAP, a hyperparameter finetuning is performed, as resulted in section 3.2.2.
The following figure additionally emphasizes the effect of the different hyperparameter
sets on the training and validation errors.

Figure A.5: Effect of different hyperparameter sets (0) to (10) on the training and val-
idation mean absolute error (MAE) of the atomisation energy (AE) per atom
(solid lines). The depicted hyperparameters (dashed lines) include the default
energy sigma σE, lmax (nmax excluded for simplification) as well as the deltas

of the 2-body descriptor and the first SOAP only (for both SOAPs, the
depicted delta value is multiplied by 2).
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Appendix B

GAP application details

B.1 Additional details on the first production run

In the first production run as part of the application testing of this work’s GAP, the po-
tential is applied to the minima hopping of known adsorbates on known surfaces, but
started from new adsorption sites. The considered adsorption sites for both the Rh(111)
and Rh(211) surface facets are summarize in table B.1.

Table B.1: Considered adsorption sites for the first production run.
Surface Site coordinates in Å

x y z

Rh(111) 0.0000000 0.0000000 16.6683956
0.6805903 1.1788169 16.6683956
0.6805903 1.1788169 16.6683956
5.4447222 6.2870237 16.6683956

Rh(211) 0.0000000 2.2227985 17.0729016
1.3611805 4.4455971 17.8587796
0.0000000 0.0000000 18.6446576
6.1253125 3.3341978 17.4658406
0.6805903 5.5569963 18.2517186
0.0000000 4.4455971 17.8587796
4.0835417 2.2227985 17.0729016
1.3611806 0.0000000 18.6446576
5.4447222 1.1113993 17.8587796
1.3611806 5.9274628 18.3826982
4.0835417 2.9637314 17.3348610
5.4447222 3.7046642 17.5968203
5.4447222 5.1865299 18.1207389
6.8059028 1.1113993 17.8587796
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Based on the produced minima via the first production run, reduced reaction networks
are developed. The following energies, Ef,min, are used for the coloring of the networks
and are calculated via equation 4.2.

Table B.2: Formation energies in eV of DFT reoptimized GAP minima used in the reaction
networks.

Adsorbate Rh(111) Rh(211)
Ef, min Ef, mean Ef, min Ef, mean

CO -3.0832 -3.0832 -3.0884 -3.0584
H2 -1.3118 -1.1959 -1.4440 -1.2989
H -1.2475 -1.2216 -1.3667 -1.3004
H2O -0.5736 -0.5663 -0.7534 -0.5192
OH -0.2907 -0.2748 -0.9013 -0.8553
CH -3.2984 -3.2621 -3.7697 -3.7540
CH2 -3.4179 -3.4152 -3.7352 -3.7235
CH3 -3.8767 -3.8763 -3.8359 -3.7867
CH4 -3.3723 -3.3618 -3.7937 -3.5889
CHCO -4.9182 -4.9166 -5.4589 -5.3064
CH2CO -5.0942 -5.0693 -5.3353 -5.0624
CH3CO -5.3506 -5.2937 -5.4256 -5.1597
CH3CHO -5.3832 -5.3730 -5.6251 -5.3975
CH3CHOH -5.3502 -5.3336 -5.9021 -5.4808
CH3CH2OH -5.5193 -5.4981 -5.6865 -5.4434
CHOH -2.9333 -2.8725 -3.0213 -2.8389
COH -2.9003 -2.8220 -3.1929 -3.1788
CHO -3.1181 -3.1142 -3.1064 -3.0721
C -2.2433 -2.1472 -3.3344 -3.3341
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B.2 Additional details on the second production run

In the second production run - the out of sample testing -, unknown structures from
the literature [4] are optimized via minima hopping with this work’s trained potential.
Thereby, the following low-coverage surface-adsorbate systems are considered:

Table B.3: Considered structures for the second production run.
Surface Periodic cell Lattice constant Adsorbates
Rh(111) 3x3x4 3.860Å H, H2, CO, OH, H2O, CH, CH2, CH3, CH4,

CHO, CHOH, CHCO, CH2CO,
CH3CO,CH3CHO, CH3CHOH,
CH3CH2OH

Rh(211) 3x3x4 3.860Å CO, CHCO, CH3CO, CH3CHO, CH3CHOH
Rh(211) 3x3x4 3.866Å O, C, CH, CH2, CH3, OH, COH
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