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Abstract 
White matter tracts form the structural basis of large-scale functional networks in the human brain. We applied 
brain-wide tractography to diffusion images from 30,810 adult participants (UK Biobank), and found significant 
heritability for 90 regional connectivity measures and 851 tract-wise connectivity measures. Multivariate genome-
wide association analyses identified 355 independently associated lead SNPs across the genome, of which 77% 
had not been previously associated with human brain metrics. Enrichment analyses implicated 
neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural projection 
guidance, and axon development, as well as prenatal brain expression especially in stem cells, astrocytes, 
microglia and neurons. We used the multivariate association profiles of lead SNPs to identify 26 genomic loci 
implicated in structural connectivity between core regions of the left-hemisphere language network, and also 
identified 6 loci associated with hemispheric left-right asymmetry of structural connectivity. Polygenic scores for 
schizophrenia, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity disorder, left-handedness, 
Alzheimer’s disease, amyotrophic lateral sclerosis, and epilepsy showed significant multivariate associations with 
structural connectivity, each implicating distinct sets of brain regions with trait-relevant functional profiles. This 
large-scale mapping study revealed common genetic contributions to the structural connectome of the human 
brain in the general adult population, highlighting links with polygenic disposition to brain disorders and 
behavioural traits. 
 
One sentence summary: Variability in white matter fiber tracts of the human brain is associated with hundreds 
of newly discovered genomic loci that especially implicate stem, neural and glial cells during prenatal 
development, and is also associated with polygenic dispositions to various brain disorders and behavioural traits. 
 
Keywords 
Diffusion magnetic resonance imaging, white matter connectivity, brain fiber tracts, structural connectivity, 
multivariate association, genome-wide association scan, polygenic scores, UK Biobank. 
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Introduction 

Cognitive functions and behaviours are supported by dynamic interactions of neural signals within large-scale 
brain networks(1). Neural signals propagate along white matter tracts that link cortical, subcortical, and cerebellar 
regions to form the structural connectome(2, 3). White matter tracts also modulate neural signals and distribute 
trophic factors between connected regions(4, 5), helping to establish and maintain functional specialization of 
sub-networks. Various heritable psychiatric and neurological disorders can involve altered white matter structural 
connectivity, relating for example to cognitive deficits, clinical presentation or recovery(6-10). It is therefore of 
great interest to understand which DNA variants, genes and pathways affect white matter tracts in the human 
brain, as they are likely to influence cognitive and behavioural variability in the population, as well as 
predisposition to brain disorders.  

Diffusion tensor imaging (DTI) enables in vivo non-invasive study of white matter in the brain(11, 12). This 
technique characterizes the diffusion of water molecules, which occurs preferentially in parallel to nerve fiber 
tracts due to constraints imposed by axonal membranes and myelin sheaths(13, 14). Metrics commonly derived 
from DTI, such as fractional anisotropy or mean diffusivity, reflect regional white matter microstructure and can 
index its integrity(13-15). In contrast, white matter tractography involves defining fiber tracts at the macro-
anatomical scale, and computing connectivity strengths by counting the streamlines that link each pair of regions. 
Streamlines are constructed to pass through multiple adjacent voxels in DTI data, when the principal diffusion 
tensor per voxel aligns well with some of its direct neighbors(16). Tractography therefore produces subject-
specific measures of regional inter-connectivity that are ideally suited for brain network-level analysis. 

Recently, genome-wide association studies (GWAS) have reported that a substantial proportion of inter-individual 
variability in white matter microstructural measures can be explained by common genetic variants, with single 
nucleotide polymorphism (SNP)-based heritabilities ranging from 22% to 66%(17, 18). These studies also 
identified specific genomic loci associated with microstructural measures of white matter integrity(17, 18). 
However, to our knowledge, nerve fiber tractography has not previously been used for large-scale genome-wide 
association analysis of brain structural networks, likely due to heavy computational requirements for running 
tractography in tens of thousands of individuals. 

Here, we aimed to characterize the genetic architecture of white matter structural network connectivity in the 
human brain, using fiber tractography. DTI data from 30,810 participants of the UK Biobank adult population 
dataset were used to construct the brain-wide structural connectivity network of each individual. In combination 
with genome-wide genotype data, we then carried out a set of genetic analyses of tractography-derived metrics, in 
terms of the sum of white matter connectivity linking to each of 90 brain regions (as network nodes), and each of 
947 tract-wise  measures that indicated connectivity between specific pairs of regions (as network edges). These 
analyses included SNP-based heritability estimation, multivariate GWAS (mvGWAS), and biological annotation 
of associated loci. 

An important aspect of human brain organization is hemispheric specialization – the tendency of certain functions 
to be carried out dominantly by either the left or right cerebral hemispheres(19). Previous GWAS analyses have 
identified genetic loci associated with left-right asymmetries of cerebral cortical anatomy and/or handedness(20-
24). Aspects of language function show especially strong lateralizations, with roughly 85% of people having left-
hemisphere dominance(25). Such functional asymmetries may be partly underpinned by hemispheric asymmetries 
of white matter connectivity. Therefore, we used our brain-wide mvGWAS results to identify genomic loci that 
are associated with tract connectivities between core language-related regions of the left-hemisphere. In addition, 
for all structural connectivity metrics with paired left and right counterparts, we calculated their asymmetries and 
performed mvGWAS for any significantly heritable asymmetry measures, to identify genetic influences on 
hemispheric asymmetries of white matter connectivity. 

Finally, we assessed how genetic disposition to brain disorders and other behavioural traits manifests in terms of 
white matter connectivity in the general population, and how this relates to cognitive processes. To do so, we  
mapped multivariate associations of white matter tractography metrics with polygenic scores for an array of 
heritable brain disorders and traits, including schizophrenia, bipolar disorder, autism, attention-deficit 
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hyperactivity disorder, left-handedness, Alzheimer’s disease, amyotrophic lateral sclerosis, and epilepsy, and 
annotated the resulting brain maps with cognitive functions, using large-scale meta-analyzed functional 
neuroimaging data.  

Results 

White matter connectomes of 30,810 adults at regional and tract levels 

For each of 30,810 adult participants with diffusion MRI and genetic data after quality control, we performed 
deterministic fiber tractography(16) between each pair of regions defined in the Automated Anatomical Labeling 
atlas(26) (45 regions per hemisphere comprising cerebral cortical and subcortical structures) (Fig. 1; Methods). In 
the structural connectivity matrix of each individual, each region was considered a node, and each tract considered 
an edge, with each tract comprising all streamlines that link a given pair of regions. We excluded tracts when 
more than 20% of individuals had no streamlines connecting a pair of regions, resulting in 947 tracts with 
streamline counts. To quantify the connectivity of each tract in each individual, streamline counts were divided by 
the individual-specific grey matter volume of the two regions that they connected, as larger regions tended to have 
more streamlines connecting to them. The volume-adjusted tract measures were also used to calculate the regional 
connectivity for each region (i.e. the sum of all edges connecting with a given node) within each participant. The 
resulting node and edge measures were adjusted for demographic and technical covariates, and normalized across 
individuals (Methods), before being used for the subsequent analyses of the study. 

 

 
Figure 1. Schematic of white matter network construction within an individual brain. Network nodes were defined by mapping the 
Automated Anatomical Labeling atlas from common MNI space to individual space, with 45 regions per hemisphere (including cortical 
and subcortical structures). The edge between each pair of regions was defined as the number of streamlines constructed by tractography 
based on the corresponding diffusion tensor image, while adjusting for the volume of the connected regions. The process yielded a zero-
diagonal symmetrical 90×90 undirected connectivity matrix for each of 30,810 participants (the upper triangles were then used for 
subsequent analyses). 
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Of the 947 tracts, 377 connected pairs of left-hemisphere regions, 355 connected pairs of right hemisphere regions, 
and 215 involved interhemispheric connections. The top 10% of regions in terms of connectivity included the 
supplementary motor cortex, precuneus, medial superior frontal cortex, and subcortical regions bilaterally – 
caudate and thalamus (Supplementary Figure 1 and Supplementary Table 1). The latter observation is consistent 
with previous studies showing that subcortical regions connect widely with the cerebral cortex, to generate 
reciprocal cortical-subcortical interactions that together support many cognitive functions(4, 27, 28). 

Heritabilities of region-wise and tract-wise connectivities 

GCTA(29) was used to estimate the SNP-based heritability (h2) for each network measure, that is, the extent to 
which variance in each measure was explained by common genetic variants across the autosomes (Methods). For 
the 90 regional connectivities (i.e. connectivity of network nodes) all were significantly heritable (Bonferroni-
corrected p<0.05), ranging from 7.8% to 29.5% (mean h2=18.5%; Fig. 2A and Supplementary Table 2). Most of 
the homologous regions in the left and right hemispheres showed similar heritabilities, while some regions 
showed prominent differences, such as the inferior parietal cortex (left: 27.0% vs. right: 19.42%), pars triangularis 
(left: 23.4% vs. right: 16.9%) and inferior occipital cortex (left: 8.0% vs. right: 15.7%; Fig. 2A and 
Supplementary Table 2). Eleven regional connectivities showed h2 estimates >25% (Supplementary Table 1), with 
the superior temporal cortex in the left hemisphere being highest (h2=29.5%, p<1×10-20).  

851 of 947 tract-wise connectivities (network edges) showed significant heritability (Bonferroni-corrected 
p<0.05), ranging from 4.6% to 29.5% (mean 9.6%), with a mean h2 of 9.9% for 351 tracts within the left 
hemisphere, a mean h2 of 10.0% for 333 tracts within the right hemisphere, and a mean h2 of 8.1% for 167 inter-
hemispheric tracts (Fig. 2B and Supplementary Tables 3-5). Eleven out of 851 tract-wise connectivities had 
h2>20%, primarily for tracts linking bilateral frontal regions (e.g. superior and middle frontal cortex), 
supplementary motor and occipital cortex (e.g. cuneus and lingual). 

We calculated the Euclidean distance between the centroids of each pair of connected regions (Methods), to index 
the relative physical distances between them. The heritabilities of tract-wise connectivities were negatively 
correlated with Euclidean distance across the 851 tracts (r=-0.14; Supplementary Figure 2), suggesting that short-
range tracts tend to be under stronger genetic control, and/or that they were more reliably measured.  

Multivariate genome-wide association analyses of regional and tract-wise connectivities 

MOSTest(30) was used to perform two separate mvGWAS analyses, first for the 90 regional connectivity 
measures in a single multivariate genome-wide screen, and then for the 851 tract-wise connectivities in another 
single multivariate genome-wide screen, both times in relation to 9,803,735 SNPs spanning the genome. This 
analysis examined each SNP separately for its associations with multiple structural network measures, by 
simultaneously modelling the distributed nature of genetic influences across the brain (Methods). FUMA(31) was 
used to clump mvGWAS results on the basis of linkage disequilibrium (LD) and to identify independent lead 
SNPs at each associated genomic locus (Methods). At the 5×10-8 significance level, we identified 154 lead SNPs 
in 128 distinct genomic loci associated with regional connectivities (node level) (Fig. 2C, Supplementary Figure 3 
and Supplementary Table 6), and 231 lead SNPs in 181 distinct genomic loci associated with tract-wise 
connectivities (edge level) (Fig. 2C, Supplementary Figure 3 and Supplementary Table 7). 97 genomic loci were 
found in common between the regional connectivity mvGWAS and tract-wise connectivity mvGWAS. 
Permutation analysis under the null hypothesis of no association indicated that MOSTest correctly controlled type 
I error (Methods; Supplementary Figures 4 and 5). Except for chromosome 21, each chromosome had at least one 
locus associated with either regional connectivity or tract-wise connectivity. 

For each lead SNP, MOSTest indicated the contribution of each brain metric to its multivariate association, by 
reporting a z-score derived from each metric’s univariate association with that SNP (Methods; Supplementary 
Tables 8 and 9). In the regional connectivity (node level) mvGWAS, regions with the greatest magnitude z-scores 
considered across all lead SNPs were the bilateral middle frontal cortex (left mean |z|=2.02, right mean |z|=1.89), 
bilateral putamen (left mean |z|=2.01, right mean |z|=1.82), right superior frontal cortex (mean |z|=1.80) and 
middle cingulate cortex (mean |z|=1.78; Supplementary Figure 6 and Supplementary Table 10). For example, the 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.10.491289doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491289
http://creativecommons.org/licenses/by-nd/4.0/


Page 5 of 28 

 

left middle frontal cortex, which had the highest overall contribution across lead SNPs (mean |z|=2.02), was 
especially strongly associated with rs756705025 on 5q14.2 (z=8.90), rs67827860 on 5q14.3 (z=8.37), rs2696626 
on 17q21.31 (z=7.11), rs55938136 on 17q21.31 (z=6.66) and rs4385132 on 4q12 (z=6.59; Supplementary Table 
10). 

 

Figure 2. SNP-based heritability and 
multivariate GWAS analyses of regional 
connectivity and tract-wise connectivity in 
30,810 participants. (A) All 90 regional 
connectivities showed significant SNP-based 
heritability after Bonferroni correction, 
ranging from 7.8% to 29.5%. (B) 851 out of 
947 tract-wise connectivities showed 
significant SNP-based heritability after 
Bonferroni correction, ranging from 4.6% to 
29.5%. Right panel: brain maps. Left panel: 
nodes grouped by frontal, prefrontal, parietal, 
temporal, and occipital cortical lobes, and 
subcortical structures. (C) Miami plot for 
multivariate GWAS of 90 regional 
connectivities (upper) and 851 tract-wise 
connectivities (lower). The black lines 
indicate the genome-wide significance 
threshold p<5×10-8 (Methods). 
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In the mvGWAS of tract-wise connectivity (edge level), tracts that showed high magnitude z-scores considered 
across all lead SNPs mainly connected the precuneus, calcarine, middle temporal and pre- and post-central cortex 
(Supplementary Table 11 and Supplementary Figure 7). The tract linking the left and right precuneus had the 
greatest contribution across lead SNPs (mean |z|=1.59), and was especially associated with the variants rs946711 
on 10p12.31 (z=-5.58) and 3:190646282_TA_T on 3q28 (z=-5.53). 

The majority of genomic loci associated with structural connectivity are novel 

Together, our regional connectivity mvGWAS and tract-wise connectivity mvGWAS identified 355 lead SNPs, of 
which 105 were previously associated with at least one trait in the NHGRI-EBI GWAS catalog(32) 
(Supplementary Tables 6 and 7). This indicates that the majority (70.4%) of loci implicated here in the structural 
connectome were not identified by previous studies. There were 68 SNPs in common with those reported in 
previous GWAS of brain measures(18, 30, 33-35). Specifically, 48 of our lead SNPs were previously associated 
with brain regional volumes(33, 36), 30 with regional cortical thicknesses(30, 35), 35 with regional cortical 
surface areas(35, 37), and 20 with white matter microstructure(18, 38). Apart from brain measures, 11 of our lead 
SNPs were associated with mental health traits (e.g. autism, schizophrenia, and anxiety)(39, 40), 12 of our lead 
SNPs with cognitive functions (e.g. cognitive ability and performance)(41, 42), 4 of our lead SNPs with 
neurological diseases (e.g. Alzheimer’s disease and epilepsy)(43, 44), and 42 of our lead SNPs with non-brain 
physiological and physical variables (e.g. waist-hip ratio, cholesterol levels and lung function)(45, 46). In addition, 
we compared our results with those reported in a recent GWAS of white matter microstructure integrity for which 
the results have not been deposited in the GWAS Catalog(17): 33 of their lead SNPs overlapped with those from 
our mvGWAS analyses (Supplementary Table 12). 

Functional annotations of genomic loci associated with the structural connectome  

We used FUMA(31) to annotate SNPs to genes at significantly associated loci by three strategies: physical 
position, expression quantitative trait locus (eQTL) information and chromatin interactions (Methods). For the 
regional connectivity mvGWAS (node level), 960 unique genes were identified through these three strategies 
(Supplementary Table 13 and Supplementary Figure 8). 101 out of 154 lead SNPs had at least one eQTL or 
chromatin interaction annotation, indicating that these variants (or other variants in high LD with them) affect 
gene expression. For example, rs7935166 on 11p11.2 (multivariate z=5.71, p=1.15×10-8) is intronic to CD82, 
which has been reported to promote oligodendrocyte differentiation and myelination of white matter(47). This 
lead SNP is not only a brain eQTL(48, 49) of CD82, but also shows evidence for cross-locus chromatin 
interaction via the promoter of CD82 in adult brain(48). Another example: rs35396874 on 6q21 (multivariate 
z=6.64, p=3.17×10-11) affects the expression of its surrounding gene FOXO3, a core element of the 
TLR/AKT/FoxO3 pathway that is important for repairing white matter injury mediated by oligodendrocyte 
progenitor cell differentiation(50, 51).  

For the tract-wise connectivity mvGWAS (edge level), functional annotation identified 1530 unique genes 
(Supplementary Table 14 and Supplementary Figure 8). 148 of 231 lead SNPs had at least one eQTL annotation 
or chromatin interaction. For example, rs13084442 on 3q26.31 (multivariate z=6.34, p=2.32×10-10) is an eQTL(52) 
of TNIK, a gene associated with neurogenesis and intellectual disability(53, 54). The same lead variant is also 
located in a region having a chromatin interaction with TNIK promoters in fetal and adult cortex(55). Similarly, 
the SNP rs28413051 on 4q31.23 (multivariate z=6.28, p=3.47×10-10) is an eQTL of DCLK2 that is important for 
axon growth cone formation and neural migration(56, 57), and is also within a region interacting with the 
promoter of DCLK2 in neural progenitor cells(50). A further example: allele C of rs13107325 on 4q24 
(multivariate z=5.77, p= 7.99×10-9 in the regional connectivity mvGWAS and multivariate z=8.74, p=2.37×10-18 
in the tract-wise connectivity mvGWAS) is a missense coding variant in the gene SLC39A8 that showed a high 
combined annotation-dependent depletion (CADD) score of 23.1 (Methods), which indicates that this SNP is 
deleterious (its frequency was 7.01%). The same SNP has been associated with white matter microstructure 
integrity(34), schizophrenia(58, 59) and children’s behavioural problems(60). 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.10.491289doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491289
http://creativecommons.org/licenses/by-nd/4.0/


Page 7 of 28 

 

 

Figure 3.  Genes associated 
with variation in the adult 
white matter connectome are 
enriched for specific 
neurodevelopmental roles. (A) 
Sixty-one functionally-defined 
gene sets showed significant 
enrichment of association with 
regional connectivity. (B) 
Seventy-two functionally-defined 
gene sets showed significant 
enrichment of association with 
tract-wise connectivity. (C-D) 
Based on BrainSpan data from 
11 lifespan stages or 29 age 
groups, genes associated with 
variation in (C) adult regional 
connectivity and (D) adult tract-
wise connectivity show 
upregulation in the human brain 
prenatally. (E-F) Based on 
single-cell gene expression data 
from the prenatal brain, genes 
associated with variation in (E) 
adult regional connectivity show 
upregulation in astrocytes when 
considering all prenatal age 
groups combined, and in stem 
cells and microglia at 10 
gestational weeks, astrocytes at 
19 gestational weeks, and 
GABAergic neurons and 
astrocytes at 26 gestational 
weeks when breaking down by 
developmental stages, and 
similarly genes associated with 
variation in (F) adult tract-wise 
connectivity show upregulation 
in astrocytes when considering 
all prenatal age groups combined, 
and in stem cells and microglia at 
10 gestational weeks, neurons at 
16 gestational weeks, and 
GABAergic neurons and 
astrocytes at 26 gestational 
weeks when breaking down by 
developmental stages. (C-F) 
Black lines indicate the 
significance threshold p<0.05 
after Bonferroni correction. PCW: 
post-conceptional weeks. 
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Gene-based association analysis and gene set enrichment analysis for the brain’s structural connectome  

We used MAGMA(37) to perform gene-based association analysis, which combines the mvGWAS evidence for 
association at each SNP within a given gene, while controlling for LD. 

For regional connectivities we identified 343 significant genes after Bonferroni correction (Supplementary Table 
15 and Supplementary Figure 9), 255 of which overlapped with those annotated by at least one of the three 
strategies used above (i.e. physical location, eQTL annotation or chromatin interaction). The gene-based p values 
were then used as input to perform gene-set enrichment analysis, in relation to 15,488 previously defined 
functional sets within the MSigDB database(61). Sixty-one gene sets showed significant enrichment (Bonferroni 
adjusted p<0.05, Fig 3A and Supplementary Table 16) which mainly implicated neurodevelopmental processes, 
such as “go_neurogenesis” (beta=0.18, p=5.53×10-13; the most significant set), “go_neuron_differentiation” 
(beta=0.18, p=1.55×10-10), and “go_cell_morphogenesis_involved_in_neuron_differentiation” (beta=0.25, 
p=3.39×10-10). 

For tract-wise connectivities we identified 618 genes with significant gene-based association (Bonferroni-
corrected p values <0.05), 461 of which overlapped with genes mapped through physical location, eQTL 
annotation or chromatin interaction (Supplementary Table 17 and Supplementary Figure 9). Seventy-two gene 
sets were significant after Bonferroni correction (Fig. 3B and Supplementary Table 18) related especially to 
neural migration and the development of neural projections, such as 
“go_substrate_dependent_cerebral_cortex_tangential_migration” (beta=3.98, p=2.61×10-14; the most significant 
set), “go_neuron_projection_guidance” (beta=0.41, p=8.59×10-12), and “go_axon_development” (beta=0.29, 
p=3.45×10-11). 

We tested our genome-wide, gene-based p values with respect to human brain gene expression data from the 
BrainSpan database(62), grouped according to 11 lifespan stages or 29 different age groups. Genes associated 
with regional connectivity showed upregulation on average across much of the prenatal period, ranging from early 
(beta=0.04, p=5.84×10-5) to late (beta=0.08, p=1.01×10-5) prenatal stages, or from 9 (beta=0.002, p=4.15×10-5) to 
26 (beta=0.003, p=1.18×10-3) post-conceptional weeks (Bonferroni-corrected p values <0.05; Fig. 3C and 
Supplementary Table 19). Similarly, genes associated with tract-wise connectivities showed upregulation on 
average during early (beta=0.06, p=2.35×10-8) to late (beta=0.06, p=1.01×10-3) prenatal stages, or from 9 
(beta=0.003, p=5.92×10-8) to 24 (beta=0.003, p=2.67×10-5) post-conceptional weeks (Bonferroni-corrected p 
values <0.05; Fig. 3D and Supplementary Table 20). 

We also examined our genome-wide, gene-based association p values with respect to two independent single-cell 
gene expression datasets derived from human prefrontal cortex samples of different ages (GSE104276)(63). 
Combining across age groups, average upregulation was observed in astrocytes for genes associated with both 
regional connectivity (beta=0.05, p=4.34×10-5) and tract-wise connectivity (beta=0.04, p=1.27×10-3) (Bonferroni-
corrected p values <0.05; Fig. 3E and 3F and Supplementary Tables 21 and 22). Breaking down by age, genes 
associated with regional connectivity were upregulated on average in microglia (beta=0.02, p=3.72×10-5) and 
stem cells (beta=0.05, p=3.51×10-4) at 10 gestational weeks of age (GW), astrocytes at 19GW (beta=0.02, 
p=1.48×10-4) and 26GW (beta=0.05, p=1.35×10-7), and GABAergic neurons at 26GW (beta=0.04, p=3.97×10-4) 
(Fig. 3E and Supplementary Table 21). Similarly, genes associated with tract-wise connectivities (edge-wise) 
showed upregulation on average in microglia (beta=0.02, p=5.07×10-4) and stem cells (beta=0.06, p=5.18×10-6) at 
10GW, neurons at 16GW (beta=0.06, p=9.32×10-5), and astrocytes (beta=0.05, p=3.50×10-6) and GABAergic 
neurons at 26GW (beta=0.05, p=1.01×10-4); Fig. 3F and Supplementary Table 22). 

Genetics of left-hemisphere language network connectivity 

We selected four left-hemisphere regions that correspond to a network that is reliably activated by sentence-level 
language tasks in a left-lateralized manner in the majority of people and across languages(64-67), i.e. the 
opercular and triangular parts of inferior frontal cortex (Broca’s region), and the superior and middle temporal 
cortex (including Wernicke’s region, Fig. 4). These four regions are linked by six tracts with heritabilities ranging 
from 7.3% to 17.1% (Supplementary Table 3). Of the 231 lead SNPs from our brain-wide mvGWAS of tract-wise 
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connectivity, 26 were significantly associated with at least one of these six tracts according to the tract-specific z-
scores derived from MOSTest (Bonferroni correction at 0.05; Supplementary Table 23). For example, rs12636275 
on 3p11.1 is located within an intron of EPHA3, a gene that encodes an ephrin receptor subunit that regulates the 
formation of axon projection maps(68), and has also been associated with functional connectivity between 
language-related regions(69). Another example: rs7580864 on 2q33.1 is an eQTL of PLCL1 that is implicated in 
autism(70, 71), a neurodevelopmental disorder that often affects  language and social skills. Other positional 
candidate genes based on the 26 SNPs include CRHR1, encoding corticotropin releasing hormone receptor 1, and 
CENPW (centromere protein W) involved in chromosome maintenance and the cell cycle (Fig. 4and 
Supplementary Table 23). 

 
Figure 4.  Genetics of left-hemisphere language network connectivity. Left: Four regions with core functions in the left-hemisphere 
language network, encompassing the classically defined Broca’s (frontal lobe) and Wernicke’s (temporal lobe) areas. Also shown are the 
six edges connecting these four regions when considered as network nodes. Right: The closest genes to independent lead SNPs from the 
brain-wide multivariate GWAS of tract-wise connectivity, that showed significant association with at least one of the six left-hemisphere 
language network tracts (Bonferroni correction at 0.05; Supplementary Table 23). 

 

Genetics of left-right asymmetry of the structural connectome 

To investigate hemispheric specialization of structural connectivity in the brain, we computed the asymmetry 
index, AI=2(left-right)/(left+right), for each bilateral pair of regional connectivity and fiber tract metrics in each 
individual (Methods). For regional connectivity, all but one region showed population-level average asymmetry 
(mean AI different from 0, Bonferroni-corrected p<0.05), with regions comprising Broca’s area, plus the superior 
and middle temporal, postcentral, orbitofrontal and calcarine cortex, as well as the thalamus, showing strong 
leftward asymmetry of structural connectivity (Supplementary Figure 10 and Supplementary Table 24). Fifteen 
regional connectivity asymmetries were significantly heritable, mean h2=4.54% (range 3.82% to 5.34%, 
Bonferroni-corrected p<0.05; Supplementary Figure 11 and Supplementary Table 25), including asymmetries of 
structural connectivity linking to the dorsolateral prefrontal cortex, Broca’s area, supramarginal and fusiform 
cortex (Supplementary Figure 11). 

At the level of tract-wise connectivity asymmetries, none showed significant population-level average asymmetry 
after multiple testing correction, but there were 107 tract-wise connectivity asymmetries with significant 
heritability, mean h2=6.75% (range 4.34% to 12.17%, Bonferroni-corrected p<0.05; Supplementary Figure 11 and 
Supplementary Tables 26-29). 
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We performed two further mvGWAS analyses, one for heritable regional connectivity asymmetries and one for 
heritable tract-wise connectivity asymmetries, using MOSTest(30). There were two independent lead SNPs in two 
distinct genomic loci associated with regional connectivity asymmetries at the 5×10-8 significance level 
(Supplementary Figures 11 and 12 and Supplementary Table 30): rs28520337 on 15q14 (multivariate 
z=7.11,p=1.14×10-12) is located in an intron of RP11-624L4.1 and its multivariate association was driven 
particularly by the asymmetries of rolandic operculum (z-score=5.06) and supramarginal gyrus (z-score=6.47) 
connectivity (Supplementary Table 31). This SNP is in high LD with rs4924345 (r2=0.76), previously associated 
with cortical surface area(35). The second lead SNP rs56023709 on 16q24.2 (multivariate z=6.15, p=7.92×10-10) 
is located in C16orf95 and its multivariate association was driven particularly by the asymmetries of 
supplementary motor cortex (z-score=-4.58) and pallidum (z-score=-3.63) connectivity. This SNP is in high LD 
with rs12711472 (r2=0.99), previously associated with thalamus volume(30). 

For tract-wise connectivity asymmetries, mvGWAS identified four independent lead SNPs in four distinct 
genomic loci at the 5×10-8 significance level (Supplementary Figures 11 and 13, Supplementary Table 32): 
rs73219794 on 4p15.1 (multivariate z=5.66, p=1.54×10-8; nearest gene RP11-180C1.1), rs182149107 on Xp21.2 
(multivariate z=5.77, p=7.87×10-9; nearest gene IL1RAPL1, encoding a synaptic adhesion molecule, mutated in 
intellectual disability and autism(72)), rs4824483 on Xp11.23 (multivariate z=5.80, p=6.56×10-9; downstream of 
GAGE1, upregulated in some glioblastomas(73)) and rs140894649 on Xq11.2 (multivariate z=6.61, p=3.72×10-11; 
nearest gene MTMR8, a phosphatase enzyme that regulates actin filament modeling(74) – consistent with possible 
roles of cytoskeleton-related genes in patterning left-right asymmetry(20, 21, 75)). None of these SNPs had 
association z-scores that stood out for any particular tract connectivity asymmetries (Supplementary Table 33), i.e. 
contributions to their significant multivariate associations were widely distributed across many tract asymmetries. 

Gene-based association analyses for regional connectivity asymmetries or tract-wise connectivity asymmetries did 
not identify significantly associated genes, and neither did these gene-based association statistics show significant 
enrichment with respect to functionally defined gene sets, or differential expression levels in brain tissue at 
specific lifespan stages or cell types in the prenatal brain (Methods; Supplementary Tables 34-37).  

Multivariate associations of the structural connectome with polygenic scores for brain disorders and 
behavioural traits 

For each of the 30,810 individuals in our study sample we calculated polygenic scores(76) for various brain 
disorders or behavioural traits that have shown associations with white matter variation, using previously 
published GWAS summary statistics: schizophrenia(17, 77-79), bipolar disorder(80-82), autism(17, 20, 78, 83), 
attention deficit/hyperactivity disorder(84-86), left-handedness(21, 23), Alzheimer’s disease(87-89), amyotrophic 
lateral sclerosis(90-92), and epilepsy(93-95) (Methods). There were 18 significant partial correlations (i.e. 
adjusted for confounds including sex and age – see Methods) between different pairs of these polygenic scores 
across individuals (Bonferroni-corrected p<0.05): 16 correlations were positive, with the highest between 
polygenic scores for schizophrenia and bipolar disorder (r=0.36, p<1×10-200), and between attention 
deficit/hyperactivity disorder and autism (r=0.33, p<1×10-200), while 2 were negative, between polygenic scores 
for amyotrophic lateral sclerosis and bipolar disorder (r=-0.03, p=2.26×10-6), and amyotrophic lateral sclerosis 
and autism (r=-0.03, p=8.81×10-6; Supplementary Table 38 and Supplementary Figure 14). 

Separately for each of these polygenic scores, we used canonical correlation analysis to investigate their 
multivariate associations with the 90 heritable regional connectivity measures across the 30,810 individuals. All 
canonical correlations were highly significant: schizophrenia r=0.07, p=8.98×10-34; bipolar disorder r=0.07, 
p=1.53×10-35; autism r=0.06, p=7.87×10-24; attention deficit/hyperactivity disorder r=0.08, p=7.84×10-44; left-
handedness r=0.07, p=1.74×10-31; Alzheimer’s disease r=0.07, p=4.14×10-33; amyotrophic lateral sclerosis r=0.06, 
p=1.29×10-25; epilepsy r=0.05, p=1.49×10-20. Therefore, polygenic dispositions to these various disorders or 
behavioural traits in the general population are partly reflected in the brain’s white matter connectivity. 
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Figure 5. Polygenic dispositions to various brain-related disorders or behavioural traits show multivariate associations with 
regional white matter connectivities in 30,810 participants. Loadings are shown from canonical correlation analyses that indicate the 
extent and direction to which each regional connectivity is associated with polygenic scores for (A) schizophrenia, (B) bipolar disorder, (C) 
autism, (D) attention deficit/hyperactivity disorder, (E) left-handedness, (F) Alzheimer’s disease, (G) amyotrophic lateral sclerosis and (H) 
epilepsy. A positive loading (red) indicates a higher regional connectivity associated with increased polygenic disposition for a given 
disorder/behavioural trait, while a negative loading (blue) represents a lower regional connectivity associated with increased polygenic 
disposition for a given disorder/behavioural trait. Word clouds represent functions associated with the map of regions showing the strongest 
loadings (|r|>0.2) for each polygenic score. Functions were assigned using large-scale meta-analyzed functional neuroimaging data 
(Methods). The font sizes in the word clouds represent correlation magnitudes between the meta-analyzed functional maps for those terms 
and the co-activation map for the set of regions associated with each polygenic score. See Supplementary Table 41 for the correlation 
values. 

 

Canonical correlation analyses yielded loadings for each regional connectivity measure, reflecting the extent and 
direction of each measure’s association with polygenic disposition for a given disorder/behavioural trait. For 
psychiatric disorders the majority of loadings were negative, i.e. increased polygenic risk for these disorders was 
more often associated with reduced than increased connectivity across regions (Fig. 5, Supplementary Table 39). 
This was especially marked for polygenic risks for schizophrenia (85 regions with negative loadings, 5 regions 
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with positive loadings), bipolar disorder (81 negative, 9 positive) and autism (64 negative, 26 positive). Polygenic 
disposition to left-handedness was also associated with more reduced regional connectivities (62 negative 
loadings) than increased regional connectivities (28 positive loadings). In contrast, increased polygenic risk for 
Alzheimer’s disease was associated with increased white matter connectivity for a majority of brain regions (62 
out of 90) in the UK Biobank data, even while some core regions of disorder pathology showed decreased 
connectivity, such as posterior cingulate and medial temporal cortex(96-98). (These results remained stable when 
excluding the APOE locus that is known to have a substantial individual effect on Alzheimer’s disease risk – see 
Methods and Supplementary Table 40.) Similar observations were made for polygenic risk for amyotrophic lateral 
sclerosis, where 74 out of 90 regions showed positive loadings (Fig. 5, Supplementary Table 39).  

For each polygenic score we identified the specific regional connectivities that showed the strongest loadings in 
canonical correlation analyses, i.e. regions with loadings >0.2 or <-0.2. These regions were used to create a single 
brain mask for each polygenic score, which was then used to query the Neurosynth database of 14,371 functional 
brain imaging studies(99). In this process, a brain-wide co-activation map was generated for each mask, based on 
all functional maps in the database, and these were then correlated with cognitive and behavioural term-specific 
maps derived from the studies included in the database(99). 

For example, the mask for schizophrenia polygenic risk comprised 32 regions showing the strongest associations 
with white matter connectivity, distributed in the bilateral temporal, dorsoventral and posterior cingulate cortex 
(Fig. 5A and Supplementary Table 39), and there were 7 functional term-based correlations >0.2 with the 
corresponding co-activation map for these regions (Fig. 5A, Supplementary Figure 15 and Supplementary Table 
41), including ‘working memory’ and ‘language’. This suggests that polygenic disposition to schizophrenia 
influences the connectivity of brain regions especially involved in working memory and language (see 
Discussion). The mask for bipolar disorder polygenic risk comprised 30 regions, including temporal, medial 
frontal, superior parietal, and visual cortex, as well as hippocampus and caudate, and these regions together 
received functional annotations of ‘mood’, ‘working memory’ and language-related processes (Fig. 5B, 
Supplementary Figure 15 and Supplementary Tables 39 and 41). Polygenic risk for autism was mainly associated 
with white matter connectivity of the right dorsolateral prefrontal, right temporal, right sensorimotor and bilateral 
visual cortex, as well as the left amygdala, and these regions were annotated with visual, working memory, 
executive and attention functions (Fig. 5C, Supplementary Figure 15 and Supplementary Tables 39 and 41). 
Polygenic disposition to left-handedness was associated with regional connectivity of Broca’s area, left superior 
temporal cortex, left medial prefrontal and left visual cortex and right thalamus, functionally annotated with 
language-related cognitive functions (Fig. 5E, Supplementary Figure 15 and Supplementary Tables 39 and 41). 
See Fig. 5, Supplementary Figure 15 and Supplementary Tables 39 and 41 for the equivalent maps and functional 
annotations for all disorder/trait polygenic scores. 

The polygenic risks for bipolar disorder and schizophrenia had the most similar brain maps, in terms of regional 
structural connectivity associated with each of these polygenic risks (r=0.56 between the loadings for these two 
polygenic scores, across the 90 regions; Supplementary Figure 16 and Supplementary Table 42). 

Discussion 

This large-scale mapping study employed white matter tractography and multivariate analysis to characterize the 
contributions of common genetic variants to individual differences in structural connectivity of the adult human 
brain. Multivariate associations between structural connectivity and polygenic dispositions to brain-related 
disorders or behavioural traits were also characterized, and described in terms of functional activations of the 
implicated brain regions. Together, these various analyses in over 30,000 individuals from the general population 
linked multiple levels of biological organization: from genes and cell types through developmental stages to adult 
brain structure and function, behaviour and individual differences, newly implicating hundreds of genomic loci. 

Different brain regions are inter-connected through white matter nerve fibers - this fundamental property sub-
serves functional networks involved in cognition and behaviour. In over 30,000 adults from the general 
population we found that inter-individual variation in white matter connectivity is especially influenced by genes 
that are i) active in the prenatal developing brain; ii) upregulated in stem cells, astrocytes, microglia, and neurons 
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of the embryonic and fetal brain; and iii) involved in neurodevelopmental processes including neural migration, 
neural projection guidance and axon development. A likely neurodevelopmental origin of much inter-individual 
variation of adult white matter connectivity is consistent with findings from large-scale imaging genetics studies 
of other aspects of brain structural and functional variation(17, 20, 35). These statistical enrichment findings serve 
as a strong biological validation of the multivariate GWAS findings, as there was no reason for such clearly 
relevant functional enrichment to occur by chance in relation to brain white matter tracts. 

Astrocytes are the largest class of brain glial cells with a range of known functions, including neuronal 
homeostasis and survival, regulation of synaptogenesis and synaptic transmission(100). Less well known is that 
during neurodevelopment, astrocytes can express positional guidance cues, such as semaphorin 3a, that are 
required for neuronal circuit formation, through mediating the attraction or repulsion of the growth cone at the 
axonal tip(101). In our gene-based association analysis, SEMA3A was the most significantly associated individual 
gene with brain-wide fiber tract connectivity in the whole genome. Taken together, our data suggest that the 
formation of fiber tracts in the developing human brain may be affected substantially by positional cues provided 
by astrocytes, in addition to neurons. 

As regards microglia – these phagocytic cells are well known for immune functions but also help to remove dying 
neurons and prune synapses, as well as modulate neuronal activity(102). Less is known of their roles during 
development, but embryonic microglia are unevenly distributed in the brain and associate with developing axons, 
which again suggests roles in regulating axonal growth and positional guidance(103). Mouse brains without 
microglia, or with immune activated microglia, show abnormal dopaminergic axon outgrowth(104), while 
disruption of microglial function or depletion of microglia results in a failure of growing axons to adhere and 
form bundles in the corpus callosum – the largest fiber tract of the brain(105). Our data support such observations, 
through showing that genes up-regulated in microglia in the embryonic human brain are enriched for variants that 
associate with individual differences in adult white matter connectivity. Further research on the roles of astrocytes 
and microglia in fiber tract development is therefore warranted.  

While our results point especially to genes involved in neurodevelopment, it is also likely that some genetic 
effects on white matter connectivity act later in life. For example, astrocytes and microglia may affect the 
maintenance and aging of brain fiber tracts during adulthood, with implications for brain disorders, and possibly 
suggesting therapeutic targets. We mapped the multivariate associations of polygenic scores for various brain-
related disorders and behavioural traits with regional white matter connectivities, and annotated the resulting brain 
maps using meta-analyzed functional imaging data. Some maps and their annotations were consistent with 
expectations – for example, polygenic disposition to bipolar disorder was associated with white matter 
connectivity of brain regions prominently involved in mood, while polygenic dispositions to attention 
deficit/hyperactivity disorder or autism were associated with the connectivity of regions important for executive 
functions. Polygenic scores for left-handedness and for schizophrenia were associated with the connectivity of 
language-related regions – consistent with altered left-hemisphere functional dominance for language in both of 
these traits(25, 106), and a phenotypic association between them(107). Polygenic scores for left-handedness and 
schizophrenia have also been associated with altered structural asymmetry of grey matter in language-related 
regions(21, 78). 

Regarding genetic risks for neurological disorders, polygenic scores for Alzheimer’s disease and amyotrophic 
lateral sclerosis were associated with the connectivity of regions important for working memory, while polygenic 
scores for epilepsy were associated with connectivity of the default mode network – a set of brain regions 
involved in internally-initiated thoughts, and semantic and episodic memory(108). Previous analysis of white 
matter tracts in Alzheimer’s disease has indicated a broad-based reduction of connectivity(109), so it was striking 
that the majority of brain regions in the UK Biobank adult population dataset showed increased connectivity with 
higher polygenic risk for this disorder, even while some core regions of pathology showed decreased connectivity 
as expected. A similarly notable pattern was seen for amyotrophic lateral sclerosis, where increased polygenic risk 
was associated with increased structural connectivity for a majority of brain regions. It may be that increased 
connectivity of some regions occurs as a compensatory re-configuration in response to decreased connectivity of 
others(110). In addition, the UK Biobank volunteer sample is healthier than the general population(111). Those at 
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higher polygenic risk who manifest a given disorder may tend not to participate, leaving an unusually healthy set 
of volunteers among those with high polygenic risk. Such recruitment bias may influence brain correlates of 
polygenic risk in the UK Biobank. 

The brain-wide multivariate GWAS approach that we used provided high statistical power to detect relevant 
genomic loci, compared to a mass univariate approach(30). At the same time, the multivariate results could be 
queried post hoc to identify loci associated with particular tract-wise connectivities of interest. We illustrated this 
by querying the results with respect to six tracts linking four core regions of the left-hemisphere language network 
– together approximating to Broca’s and Wernicke’s classically defined functional areas(112). Twenty-six 
implicated loci included the EPHA3 locus, encoding an ephrin receptor subunit that acts a positional guidance cue 
for the formation of axon projection maps, and has also been associated with functional connectivity between 
regional components of the language network that are especially involved in semantics(69). This is therefore a 
concordant genetic finding with respect to both structural and functional connectivity of the human brain’s 
language network. 

We found the heritability of white matter left-right asymmetry metrics to be generally lower than the 
corresponding unilateral measures from which they were derived, and accordingly many fewer genetic loci were 
identified in our multivariate GWAS analyses of asymmetry metrics at both node and edge levels. This overall 
pattern has been found before with respect to other aspects of brain structure and their asymmetries(20, 35). One 
general explanation may be that asymmetry indexes are affected by measurement error in both of the unilateral 
metrics that are used to calculate them – this may then contribute to larger proportional estimates of non-genetic 
variance in heritability analysis. It is also likely that asymmetries are affected by a relatively high degree of 
random developmental variation – the noise inherent in creating complex organs from genomic components(20, 
113, 114). Nonetheless, we found some of the regional connectivity asymmetries and tract-wise connectivity 
asymmetries to be significantly heritable. This is consistent with the existence of genetically-regulated, lateralized 
developmental biases that ultimately give rise to hemispheric specializations, such as left-hemisphere language 
dominance. Specific loci that we found associated with white matter asymmetries implicated genes involved in 
synaptic adhesion, glioblastomas, and cytoskeleton modeling. 

This study had some limitations: i) We maximized our statistical power for GWAS by using the available data as 
one large discovery sample, but this did not permit a discovery-replication design(115). Nonetheless, ultimately 
the total combined analysis in the largest available sample is the most representative of the available evidence for 
association. As mentioned earlier in this section, the various enrichment analyses indicated biological validity of 
the GWAS findings. Indeed, it has been argued that discovery-replication designs have less utility in the current 
era of Biobank-scale genetic studies than they used to, and that other forms of validation such as biological 
enrichment should be given increased weight in interpretation(116). ii) We used deterministic tractography which 
we found to be computationally feasible in more than 30,000 individuals (and which took several months of 
processing on a cluster server). An alternative approach - probabilistic tractography - may have advantages insofar 
as it permits modelling of multiple tract orientations per voxel(117, 118), although run times are generally higher, 
and our approach yielded genetic results with clear biological validity for white matter tracts. iii) This was a large-
scale observational mapping study, which meant that many of the analyses were screen-based and descriptive. 
Science proceeds through a combination of observation and hypothesis testing – this study incorporated both to 
varying degrees. Some of the biological observations were striking and informative, for example the likely 
involvements of microglia and astrocytes in affecting white matter tracts during embryonic and fetal development, 
which should now be studied more extensively in animal models. iv) This study did not consider rare genetic 
variants (with population frequencies below 1%). Future analysis of the UK Biobank’s exome and genome 
sequence data in relation to white matter connectivity may reveal further genes and suggest additional 
mechanisms, cell types and lifespan stages in affecting inter-individual variation. 

In summary, we used large-scale analysis to chart the white matter connectivity of the human brain, its 
multivariate genetic architecture, and its associations with polygenic dispositions to brain-related disorders and 
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behavioural traits. The analyses implicated specific genomic loci, genes, pathways, cell types, developmental 
stages, brain regions, fiber tracts, and cognitive functions, thus integrating multiple levels of analysis, and 
suggesting a range of future research directions at each of these levels. 

 

Materials and Methods 

Sample quality control 

This study was conducted under UK Biobank application 16066, with Clyde Francks as principal investigator. 
The UK Biobank received ethical approval from the National Research Ethics Service Committee North West-
Haydock (reference 11/NW/0382), and all of their procedures were performed in accordance with the World 
Medical Association guidelines(119). Written informed consent was provided by all of the enrolled participants. 
We used the dMRI data released in February 2020, together with the genome-wide genotyping array data. For 
individuals with available dMRI and genetic data, we first excluded subjects with a mismatch of their self-
reported and genetically inferred sex, with putative sex chromosome aneuploidies, or who were outliers according 
to heterozygosity (principle component corrected heterozygosity >0.19) and genotype missingness (missing 
rate >0.05) as computed by Bycroft et al(120). To ensure a high degree of genetic homogeneity, analysis was 
limited to participants with white British ancestry, which was defined by Bycroft et al.(120) using a combination 
of self-report and cluster analysis based on the first six principal components that capture genetic ancestry. We 
also randomly excluded one subject from each pair with a kinship coefficient >0.0442, as calculated by Bycroft et 
al.(120). This inclusion procedure finally resulted in 30,810 participants, with a mean age of 63.84 years (range 
45-81 years), 14,636 were male and 16,174 were female. 

Genetic quality control 

We downloaded imputed SNP and insertion/deletion genotype data from the UK Biobank (i.e. v3 imputed data 
released in March 2018). QCTOOL (v.2.0.6) and PLINK v2.0(121) were used to perform genotype quality 
control. Specifically, we excluded variants with minor allele frequency <1%, Hardy-Weinberg equilibrium test p 
value <1×10-7 and imputation INFO score <0.7 (a measure of genotype imputation confidence), followed by 
removing multi-allelic variants that cannot be handled by many programs used in genetic-related analyses. This 
pipeline finally yielded 9,803,735 bi-allelic variants. 

Diffusion MRI-Based Tractography 

Diffusion MRI data were acquired from Siemens Skyra 3T scanners running protocol VD13A SP4, with a 
standard Siemens 32-channel RF receive head coil(122). We downloaded the quality-controlled dMRI data which 
were preprocessed by the UK Biobank brain imaging team(122, 123) (UK Biobank data field 20250, first imaging 
visit). The preprocessing pipeline included corrections for eddy currents, head motion, outlier slices, and gradient 
distortion. We did not make use of imaging-derived phenotypes released by the UK Biobank team, such as FA 
and mean diffusivity. Rather, we used the quality-controlled dMRI data to perform tractography in each 
individual, which generated three-dimensional curves that characterize white matter fiber tracts. Briefly, diffusion 
tensors were modeled to generate a FA image in native diffusion space, which was used for deterministic 
diffusion tensor tractography using MRtrix3(124). Streamlines were seeded on a 0.5 mm grid for every voxel with 
FA 0.15 and propagated in 0.5 mm steps using fourth-order Runge-Kutta integration. Tractography was 
terminated if the streamline length was <20 or >250 mm, if it turned an angle >45˚, or reached a voxel with an FA 
<0.15. These parameters were consistent with a previous study exploring the structural network correlates of 
cognitive performance using the UK Biobank dataset(125). Tens of thousands of streamlines were generated to 
reconstruct the white matter connectivity matrix of each individual on the basis of the Automated Anatomical 
Labelling atlas(26) comprising a total of 90 regions encompassing cortical and subcortical structures (45 regions 
per hemisphere). This deterministic tractography process took roughly 16 weeks on 6 cluster server nodes running 
in parallel. 
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We calculated the Euclidean distance between the centroids of each pair of connected regions, according to brain 
standard space (MNI template provided with the Automated Anatomical Labeling atlas(26)), to index the relative 
physical distances between regions. 

Network construction and analysis 

Describing the structural network of each participant requires the definition of network nodes and edges. In this 
study, the network nodes corresponded to the 90 regions of the Automated Anatomical Labeling atlas(26). The 
labeling system integrates detailed anatomical features from sulcal and gyral geometry, reducing anatomical 
variability that can arise from spatial registration and normalization of brain images taken from different 
individuals(26). For each participant, the T1 images were nonlinearly transformed into the ICBM152 T1 template 
in the MNI space to generate the transformation matrix(126). Inverse transformation was used to warp the 
Automated Anatomical Labeling atlas(26) from the MNI space to native space. Discrete labeling values were 
preserved using a nearest-neighbor interpolation method(126). Two nodes were considered connected if they were 
joined by the endpoints of at least one reconstructed streamline. Network edges were computed by the number of 
streamlines connecting a given pair of regions, while dividing by the volume of the two regions, because regions 
with larger volumes tend to have more streamlines connecting to them. We only included edges that were detected 
in at least 80% of participants. This yielded a zero-diagonal symmetrical 90×90 undirected connectivity matrix for 
each participant, in which 947 edges were retained.  The regional connectivity of a node was then defined as the 
sum of all existing edges between that node and all other nodes in the network, reflecting the importance of that 
node in the overall network. 

Asymmetry of network measures at the node and edge levels was assessed by the asymmetry index (AI) for each 
pair of network measures with left and right hemisphere homologues, using the following formula per individual: 
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In this formula, the denominator normalizes by the bilateral measure. Positive values of the AI represent leftward 
asymmetry (greater left than right), and vice versa. If the corresponding left and right measures for a given 
individual and homologous pair were both zero, we set the AI as zero. 

Rank-based inverse normalization across individuals was performed on each network measure, and regression on 
age, nonlinear age (i.e. (age-mean_age)2), assessment center, genotype measurement batch and sex. Residuals 
were then further regressed on the first ten genetic principal components that capture population genetic 
diversity(120), followed by rank-based inverse normalization of the residuals once more. These normalized, 
transformed measures were used for subsequent genetic analyses.  

SNP-based heritability 

We constructed a genetic relationship matrix using 9,516,306 variants on the autosomes with minor allele 
frequencies >1%, INFO score >0.7 and Hardy-Weinberg equilibrium p value >1×10-7, using GCTA(29) (version 
1.93.0beta). We further excluded one random participant from each pair having a kinship coefficient higher than 
0.025 (as SNP-based heritability analysis is especially sensitive to participants with higher levels of relatedness), 
yielding 29,027 participants for this particular analysis. Genome-based restricted maximum likelihood analyses 
were then performed to estimate the SNP-based heritability for each normalized structural network measure, again 
using GCTA(29). Bonferroni correction was applied separately for each type of network measure to identify those 
that were significantly heritable at adjusted p<0.05: 90 regional connectivities, 851 tract-wise connectivities, 15 
regional connectivity AIs and 107 tract-wise connectivity AIs were significantly heritable. 

Multivariate genome-wide association analysis 

A total of 9,803,735 bi-allelic variants were used for mvGWAS analysis, spanning all autosomes and 
chromosome X. The sample size for mvGWAS was 30,810 (see sample quality control, above). We applied the 
multivariate omnibus statistical test (MOSTest) toolbox(30) to perform mvGWAS analysis for the significantly 
heritable measures, separately for regional connectivities, tract-wise connectivities, regional connectivity AIs, and 
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tract-wise connectivity AIs (therefore four mvGWAS analyses in total). MOSTest can leverage the distributed 
nature of genetic influences across hundreds of spatially distributed brain phenotypes, while accounting for their 
covariances, which can boost statistical power to detect variant-phenotype associations(30). Specifically, the 
multivariate correlation structure is determined on randomly permuted genotype data. MOSTest calculates the 
Mahalanobis norm as the sum of squared de-correlated z-values across univariate GWAS summary statistics, to 
integrate effects across measures into a multivariate z statistic for each genetic variant, and uses the gamma 
cumulative density function to fit an analytic form for the null distribution. This permits extrapolation of the null 
distribution below the p=5×10−8 significance threshold without performing an unfeasible number of permutations 
(5×10−8 is a widely used threshold for GWAS multiple test correction in European-descent populations(127, 128)). 
Close matching of the null p value distributions from the permuted and analytic forms indicate that the method 
correctly controls type 1 error – this was the case for all four of our mvGWAS analyses (Supplementary Figures 4, 
5, 12 and 13). In this framework the signs (positive or negative) of univariate z scores indicate the corresponding 
directions of effects (with respect to increasing numbers of minor alleles at a given SNP), whereas multivariate z 
scores are always positive. 

Identification of genomic loci and functional annotations 

We used FUMA (version v1.3.7)(31) to identify distinct genomic loci showing significant multivariate 
associations with brain structural connectivity, and apply functional annotations, using default parameters. 
Linkage disequilibrium (LD) structure was applied according to the 1000 Genomes European reference 
panel(129). SNPs with genome-wide significant mvGWAS p values <5×10−8 that had LD r2<0.6 with any others 
were identified. For each of these SNPs, other SNPs that had r2

≥0.6 with them were included for further 
annotation (see below), and independent ‘lead SNPs’ were also defined among them as having low LD (r2<0.1) 
with any others. If LD blocks of significant SNPs were located within 250�kb of each other, they were merged 
into one genomic locus. Therefore, some genomic loci could include one or more independent lead SNPs. The 
major histocompatibility complex region on chromosome 6 was excluded from this process by default, because of 
its especially complex and long-range LD structure. 

Functional annotations were applied by matching chromosome location, base-pair position, reference and 
alternate alleles to databases containing known functional annotations, which were ANNOVAR(130) categories, 
Combined Annotation-Dependent Depletion(131) scores, RegulomeDB(132) scores and chromatin state(133, 
134): 

1. ANNOVAR catogorizes SNPs on the basis of their locations with respect to genes, e.g. exonic, intronic 
and intergenic, using Ensembl gene definitions. 

2. Combined Annotation-Dependent Depletion scores predict deleteriousness, with scores higher than 12.37 
suggesting potential pathogenicity(135). 

3. RegulomeDB scores integrate regulatory information from eQTL and chromatin marks, and range from 
1a to 7, with lower scores representing more importance for regulatory function. 

4. Chromatin states show the accessibility of genomic regions, and were labelled by 15 categorical states on 
the basis of five chromatin marks for 127 epigenomes in the Roadmap Epigenomics Project(134), which 
were H3K4me3, H3K4me1, H3K36me3, H3K27me3 and H3K9me3. For each SNP, FUMA calculated 
the minimum chromatin state across 127 tissue/cell-types in the Roadmap Epigenomics Project(120). 
Categories 1-7 are considered open chromatin states. 

We also used FUMA to annotate significantly associated SNPs, and other candidate SNPs that had r2
≥0.6 with 

them, according to previously reported phenotype associations (p<5�×10-5) in the National Human Genome 
Research Institute-European Bioinformatics Institute catalogue(32). 

Multivariate association profiles of independently associated lead SNPs 

For each SNP, MOSTest derives a z-score for each brain measure, calculated from the p value of the univariate 
association of that SNP with each individual measure. The z-scores give an indication of which measures 
contribute most to the multivariate association for a given SNP(30). We used the z-scores from the mvGWAS of 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.05.10.491289doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491289
http://creativecommons.org/licenses/by-nd/4.0/


Page 18 of 28 

 

fiber tracts to identify lead SNPs that were significantly associated with at least one from a set of six left-
hemisphere language-related fiber tracts (see main text). To determine significance in this context, a threshold z-
score with unsigned magnitude >3.7 was applied, corresponding to a p value of 2.16×10-4 (i.e. p<0.05 after 
Bonferroni correction for all 231 lead SNPs from the mvGWAS of fiber tracts, and considering six fiber tracts). 

To determine which structural connectivity measures contributed most to the multivariate associations as 
considered across lead SNPs, we summed the unsigned univariate z-scores separately for each measure across all 
lead SNPs (separately for the mvGWAS analyses of regional connectivities and fiber tracts). 

SNP-to-gene mapping 

Independent lead SNPs, and candidate SNPs having LD r2>0.6 with a lead SNP, were mapped to genes in FUMA 
using the following three strategies. 

1. Positional mapping was used to map SNPs to protein-coding genes based on physical distance (within 
10�kb) in the human reference assembly (GRCh37/hg19). 

2. eQTL mapping was used to annotate SNPs to genes up to 1�Mb away based on a significant eQTL 
association, i.e. where the expression of a gene is associated with the allelic variation, according to 
information from four brain-expression data repositories, including PsychENCORE(52), CommonMind 
Consortium(48), BRAINEAC(136) and GTEx v8 Brain(49). FUMA applied a FDR of 0.05 within each 
analysis to define significant eQTL associations. 

3. Chromatin interaction mapping was used to map SNPs to genes on the basis of seven brain-related Hi-C 
chromatin conformation capture datasets: PsychENCORE EP link (one way)(52), PsychENCORE 
promoter anchored loops(48), HiC adult cortex(55), HiC fetal cortex(55), HiC (GSE87112) dorsolateral 
prefrontal cortex(50), HiC (GSE87112) hippocampus(50) and HiC (GSE87112) neural progenitor 
cells(50). We further selected only those genes for which one or both regions involved in the chromatin 
interaction overlapped with a predicted enhancer or promoter region (250�bp upstream and 500�bp 
downstream of the transcription start site) in any of the brain-related repositories from the Roadmap 
Epigenomics Project(134), that is; E053 (neurospheres) cortex, E054 (neurospheres) ganglion eminence, 
E067 (brain) angular gyrus, E068 (brain) anterior caudate, E069 (brain) cingulate gyrus, E070 (brain) 
germinal matrix, E071 (brain) hippocampus middle, E072 (brain) inferior temporal lobe, E073 (brain) 
dorsolateral prefrontal cortex, E074 (brain) substantia nigra, E081 (brain) fetal brain male, E082 (brain) 
fetal brain female, E003 embryonic stem (ES) H1 cells, E008 ES H9 cells, E007 (ES-derived) H1 derived 
neuronal progenitor cultured cells, E009 (ES-derived) H9 derived neuronal progenitor cultured cells and 
E010 (ES-derived) H9 derived neuron cultured cells. FUMA applied a FDR of 1×10-6 to identify 
significant chromatin interactions (default parameter), separately for each analysis. 

Gene-based association analysis 

MAGMA (v1.08)(37), with default parameters as implemented in FUMA (SNP-wise mean model), was used to 
test the joint association arising from all SNPs within a given gene (including 50�kb upstream to 50�kb 
downstream), while accounting for LD between SNPs. SNPs were mapped to 20,146 protein-coding genes on the 
basis of National Center for Biotechnology Information build 37.3 gene definitions, and each gene was 
represented by at least one SNP. Bonferroni correction was applied for the number of genes (p<0.05/20,146), 
separately for each mvGWAS.  

Gene-set enrichment analysis 

MAGMA (v1.08), with default settings as implemented in FUMA, was used to examine the enrichment of 
association for predefined gene sets. This process tests whether gene-based p values among all 20,146 genes are 
lower for those genes within pre-defined functional sets than the rest of the genes in the genome, while correcting 
for other gene properties such as the number of SNPs. A total of 15,488 gene sets from the MSigDB database 
version 7.0(61) (5500 curated gene sets, 7343 gene ontology (GO) biological processes, 1644 GO molecular 
functions, and 1001 GO cellular components) were tested. Bonferroni correction was applied to correct for the 
number of gene sets (p<0.05/15,488), separately for each mvGWAS.  
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Cell-type-specific expression analysis in developing human cortex 

Based on a linear regression model, the CELL TYPE function of FUMA was used to test whether gene-based 
association z-scores were positively associated with higher expression levels in certain cell types, based on single-
cell RNA sequencing data from the developing human prefrontal cortex (GSE104276)(63). This dataset 
comprised 1) expression per cell type per age group, ranging from 8 to 26 postconceptional weeks, and 2) 
expression profiles per cell type, averaged over all ages combined. Results were considered significant if the 
association p values were smaller than the relevant Bonferroni threshold for the number of cell types/age groups. 
Analysis was performed separately for each mvGWAS. 

Developmental stage analysis 

We used MAGMA (default settings as implemented in FUMA) to examine whether lower gene-based association 
p values tended to be found for genes showing relatively higher expression in BrainSpan gene expression data(62) 
from any particular lifespan stages when contrasted with all other stages, separately for 29 different age groups 
ranging from 8 postconceptional weeks to 40 years old, and 11 defined developmental stages from early prenatal 
to middle adulthood. A FDR threshold of 0.05 was applied separately for each analysis. Positive beta coefficients 
for this test indicate that genes showing more evidence for association are relatively upregulated on average at a 
given lifespan stage. 

Polygenic disposition to brain-related disorders or behavioural traits  

We used PRS-CS(76) to compute polygenic scores for 30,810 UK Biobank individuals (see Sample quality 
control) for each of the following brain-related disorders or behavioural traits, using GWAS summary statistics 
from previously published, large-scale studies: schizophrenia (n=82,315)(77), bipolar disorder (n=51,710)(80), 
autism (n=46,350)(83), attention deficit/hyperactivity disorder (n=55,374)(84), , left-handedness (n=306,377)(21), 
Alzheimer’s disease (n=63,926)(87), amyotrophic lateral sclerosis (n=152,268)(90) and epilepsy (n=44,889)(93). 
None of these previous studies used UK Biobank data, except for the GWAS of left-handedness(21) – however 
the individuals in that GWAS were selected to be non-overlapping and unrelated to those with brain image data 
from the February 2020 data release, so that none of the 30,810 UK Biobank individuals from the present study 
had been included in that GWAS. This ensured that training and target sets for polygenic score calculation were 
independent. PRS-CS infers posterior effect sizes of autosomal SNPs on the basis of genome-wide association 
summary statistics, within a high-dimensional Bayesian regression framework. We used default parameters and 
the recommended global effect size shrinkage parameter φ=0.01, together with linkage disequilibrium information 
based on the 1000 Genomes Project phase 3 European-descent reference panel(137). Polygenic scores were 
calculated using 1,097,390 SNPs for schizophrenia, 1,098,372 SNPs for bipolar disorder, 1,092,080 SNPs for 
autism, 1,042,054 SNPs for attention deficit/hyperactivity disorder, 1,103,632 SNPs for left-handedness, 
1,105,067 SNPs for Alzheimer’s disease, 1,085,071 SNPs for amyotrophic lateral sclerosis, and 852,343 SNPs for 
epilepsy (these numbers came from 3-way overlaps between UK Biobank data, GWAS results, and 1000 
Genomes data). PRS-CS has been shown to perform in a highly similar manner to other established polygenic risk 
algorithms, with noticeably better out-of-sample prediction than an approach based on p value thresholds and LD 
clumping(138, 139).  

Polygenic scores were linearly adjusted for the effects of age, nonlinear age (i.e. (age-mean_age)2), assessment 
centre, genotype measurement batch, sex, and the first ten genetic principal components that capture population 
genetic diversity, before performing rank-based inverse normalization (i.e. the same set of covariate effects that 
the brain metrics were adjusted for - see Network construction and analysis). These adjusted and normalized 
polygenic scores were used as input for subsequent analyses.  

Separately for polygenic scores for each disorder or behavioural trait, canonical correlation analysis across 30,810 
participants (‘canoncorr’ function in MATLAB) was used to test multivariate association with the 90 heritable 
regional connectivity measures (which had also been adjusted for covariates and normalized - see Network 
construction and analysis). This multivariate analysis identified a linear combination of the 90 regional 
connectivity measures (i.e. a canonical variable) that maximally correlated with the polygenic score for a 
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particular disorder or behavioural trait across participants. Separately for the polygenic score of each disorder or 
behavioural trait, the cross-participant Pearson correlation between each regional connectivity and the canonical 
variable was used as a loading, reflecting the extent and direction of the contribution that a regional connectivity 
made to a particular multivariate association. 

We also assessed the pairwise correlations across individuals between adjusted and normalized polygenic scores 
for the different disorders and behavioural traits. 

As the APOE locus is known to have a substantial effect on the risk of Alzheimer’s disease, we also re-calculated 
polygenic scores for this disease after excluding a region from Chr19:45,116,911 to Chr19:46,318,605 
(GRCh37)(140) around this locus, and repeated the residualization, normalization and canonical correlation 
analyses to check that the results stably reflected the polygenic contribution to risk. 

Functional annotation of brain regions associated most strongly with polygenic scores 

From each separate canonical correlation analysis of polygenic scores and regional connectivity, we identified the 
regions showing loadings of >0.2 or <-0.2, which were then used to define a single mask in standard brain space 
(Montreal Neurological Institute space 152) (i.e. one mask for each polygenic score). Each mask was analyzed 
using the ‘decoder’ function of the Neurosynth database (http://neurosynth.org), a platform for large-scale 
synthesis of functional MRI data(99). This database defines brain-wide activation maps corresponding to specific 
cognitive or behavioural task terms using meta-analyzed functional activation maps. The database included 1,334 
term-specific activation maps corresponding to cognitive or behavioural terms from 14,371 studies. Each mask 
that we created was used separately as input to define a brain-wide co-activation map based on all studies in the 
database. The resulting co-activation maps were then correlated with each of the 1,334 term-specific activation 
maps(99). We report only terms with correlation coefficients r>0.2, while excluding anatomical terms, 
nonspecific terms (e.g., ‘Tasks’), and one from each pair of virtually duplicated terms (such as ‘Words’ and 
‘Word’). This method does not employ inferential statistical testing, but rather ranks terms based on the 
correlations between their activation maps and that of the input mask. 
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Data Availability 

The primary data used in this study are available via the UK Biobank website www.ukbiobank.ac.uk. Other 
publicly available data sources and applications are cited in the Methods section. The GWAS summary statistics 
are made available online within the GWAS catalog https://www.ebi.ac.uk/gwas/ . 

Code availability 

This study used openly available software and codes, specifically GCTA 
(https://cnsgenomics.com/software/gcta/#GREML), MRtrix3 (https://www.mrtrix.org/), MOSTest 
(https://github.com/precimed/mostest), FUMA (https://fuma.ctglab.nl/), MAGMA 
(https://ctg.cncr.nl/software/magma, also implemented in FUMA), PRS-CS (https://github.com/getian107/PRScs) 
and Neurosynth (https://www.neurosynth.org/). 
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