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Abstract

In this work we calculate the partition functions of N = 1 type 0A and 0B JT supergravity (SJT) on

2D surfaces of arbitrary genus with multiple finite cut-off boundaries, based on the T T̄ deformed super-

Schwarzian theories. In terms of SJT/matrix model duality, we compute the corresponding correlation

functions in the T T̄ deformed matrix model side by using topological recursion relations as well as the

transformation properties of topological recursion relations under T T̄ deformation. We check that the

partition functions finite cut-off 0A and 0B SJT on generic 2D surfaces match the associated correlation

functions in T T̄ deformed matrix models respectively.

∗Electronic address: hesong@jlu.edu.cn
†Electronic address: haoouyang@jlu.edu.cn
‡Electronic address: sunyuan@jlu.edu.cn

1

http://arxiv.org/abs/2204.13636v2
mailto:hesong@jlu.edu.cn 
mailto:haoouyang@jlu.edu.cn
mailto:sunyuan@jlu.edu.cn


Contents

I. Introduction 2

II. Basic facts 4

III. T T̄ of SJT 8

A. Gravity side 9

B. Matrix model side 14

1. Type 0A 14

2. Type 0B 17

IV. Conclusions and discussions 20

Acknowledgements 21

A. Equation (88) 21

B. RQ
0,2 22

References 24

I. INTRODUCTION

In recent years, a particular kind of irrelevant deformation of field theory referred to as T T̄

deformation [1–3] has received much research attention. The T T̄ deformation possesses a number of

remarkable properties, e.g. integrable and solvable [2, 4, 5], helping us gain a better understanding

of two-dimensional deformed quantum field theory [6–8]. These properties make the deformed

theories tractable though the deformation is irrelevant. Another aspect that makes T T̄ deformation

so compelling is that in the context of holographic duality [9, 10], the T T̄ deformed CFT was

proposed to be dual to finite cut-off AdS3 with positive deformation parameter [9]. Nevertheless,

the cut-off picture was shown valid only for pure AdS3 gravity, while in the general case with the

matter, the deformed CFT is dual to AdS3 gravity with mixed boundary conditions [11][12][13].

Interestingly, the two dual pictures were consistent with each other in pure gravity. A natural

question to ask is what is dual of the finite cut-off AdS gravity in other dimensions, and whether

one can define the analog T T̄ deformation in other dimensions providing such a duality. For higher-

dimensional cases, it has been explored in [14]. For lower dimension, i.e., the one-dimensional
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case or ordinary quantum mechanic system, which is the main interest of present work, the T T̄

deformation was first introduced in [15, 16], see also recent developments [17–24].

One way to define T T̄ deformation in 1D is through the dimensional reduction of T T̄ operator

in 2D [15, 16], which is

2∂tH =
H2

4− 2tH
. (1)

Here t is the deformation parameter, and one works with Hamiltonian H instead of Lagrangian

formalism as in 2D. It was shown that such deformation shares many crucial properties with that of

2D theory. The deformed spectrum can be worked out explicitly which agrees with the energy of 2D

black hole with a finite cut-off, and the eigenvectors remain unchanged under deformation. In this

sense, the deformation is solvable. Furthermore, such deformation will preserve the supersymmetry

of seed theory, which is in the same situation as in 2D cases [25–29]. In addition, the partition

function and correlation functions were also investigated in the deformed theory. Especially, similar

to the Nambu-Goto action corresponding to the deformation of the 2D boson, the deformation of

1D QM will be a world line action. As concrete examples [15, 16], the deformed Schwarzian and

SYK model were discussed. Among other things, a remarkable feature is the holographic dual of 1D

deformed theory. The dual gravity with mixed boundary conditions at infinity can be interpreted

as a finite cut-off with the Dirichlet boundary condition.

The 2D JT gravity on a disk was proposed to be dual to Schwarzian theory, which was regarded

as a particular example of AdS2/CFT1 [30]. Since then a substantial amount of work has been

focused on many aspects of JT gravity. In [31], JT gravity was shown to be dual to a double scaled

Hermitian random matrix model. From such a perspective, the dual of JT gravity on higher genus

Riemann surface beyond disk can be explored, which is an example of ensemble average in the

lower dimensional holography [32]. The JT gravity can be viewed as a limit of a minimal string

theories [33] which is known to possess random matrix description [34–38]. The JT/matrix model

duality has been extended in many directions. A general classification of such kind of duality

was investigated in [39], including both JT and JT supergravity (SJT) cases. Furthermore, the

deformed JT gravity with a generic dilaton potential also admits matrix model description [40–43].

Interestingly, there are applications on page curves with island formula [44] and average ensemble

holography. For other related recent developments, please refer to [45–49]. In the present work,

we are interested in the JT and SJT/ matrix model duality with T T̄ deformation[19, 50–57].

In [51], the partition function of JT gravity with finite cut-off boundaries was in good agree-

ment with the partition function and correlation functions of T T̄ deformed Schwarzian theory.
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Subsequently, the finite cut-off JT gravity, defined based on T T̄ deformed Schwarzian theory, was

re-visited in [52]. The disk and trumpet partition functions were computed by the resurgence

method. The result was consistent with [51]. Meanwhile, the deformed partition functions for JT

gravity with higher genus and multiple boundaries are dual to correlation functions in the matrix

model, which can be derived from the Eynard-Orantin topological recursion relation in the matrix

model. It is a natural question to check the finite cut-off SJT/matrix model duality. The random

matrix theory dual of SJT was introduced in [39]. Since fermions are present in supersymmetric

theory, there are two different ways to sum over the spin structure for fermion fields. It follows that

there exist two types of SJT called type 0A and type 0B. They are dual to complex and Hermitian

matrix models respectively. In the literature, the duality between SJT with certain defects and the

matrix model is investigated in [43].

Inspired by the above progress, we focus on investigating the duality between the N = 1 JT

supergravity (SJT) with finite cut-off and the corresponding matrix model. One can define the finite

cut-off of SJT as the holographic dual of T T̄ deformed super-Schwarzian theory. The deformed

disk and trumpet partition function can be worked out by applying the techniques developed in [52]

as well as the method in [51]. For SJT with higher genus and multiple boundaries, the partition

functions can be computed using the gluing procedure systematically. In the matrix model side,

the quantities dual to gravity partition functions are the correlation functions of , for example, the

resolvents, which can be computed by using topological recursion relation. The results obtained

in the matrix model match the gravity side computation in the 0A case. For 0B SJT with finite

cut-off, to match the gravity side, we make use of the covariant properties of topological recursion

relation under the transformation induced by T T̄ deformation.

The structure of this paper is organized as follows. In Section 2, we review some aspects of

N = 1 JT supergravity, as well as the matrix model duality for type 0A and 0B SJT respectively.

In Section 3, we investigate the finite cut-off deformed SJT and the corresponding T T̄ deformed

matrix models. The partition functions on the gravity side and the dual correlation functions on

matrix model side are computed in this section. Conclusions and discussions are given in the final

section. In the appendix, we list some relevant derivations in our analysis.

II. BASIC FACTS

In this section, we firstly review some aspects of N = 1 JT supergravity, and the matrix model

to set the notations. We mainly follow the discussions in [31, 39, 43]. The action of SJT can be
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written in terms of superfields [58, 59], see also [60–62]

I ′SJT = −1

2

(

i

∫

d2zd2θEΦ(R+− − 2) + 2

∫

dudϑΦK
)

. (2)

Here Φ is the dilaton superfield including the dilaton field φ

Φ = φ+ θαλα + iθθ̄F (3)

and the scalar curvature R of the 2D manifold is contained in superfield R+−

R+− = A+ θαλα + iθθ̄C, C = R+ fermions + auxiliary fields. (4)

Besides the field φ and R, all other fields are fermions or auxiliary fields, whose precise defini-

tion can be found in [58]. The second term is the Gibbons-Hawking-like term, and (u, ϑ) is the

boundary superspace. The field contents in the bosonic part include metric and dilaton, and the

supersymmetric partners consist of gravitino and dilatino. Integrating over auxiliary fields and

turning off the fermions, the action of I ′SJT (with proper boundary term added) reduces to the

action of JT gravity

IJT = −1

2

∫

M

√
gφ(R+ 2)−

∫

∂M

√
hφ(K − 1), (5)

An important kind of quantities in SJT relevant later is the partition functions, i.e, the path

integral of N = 1 SJT on a two-dimensional surface M with n boundaries, which can be written

as [43]

ZSJT(β1, ..., βn) =

∫

DgµνDφDΨe−S0χ(M)−ISJT(gµν ,φ,Ψ) (6)

with

χ(M) =
1

2π

(1

2

∫

M

√
gR+

∫

∂M

√
hK
)

. (7)

Here (β1, ..., βn) are related to boundary conditions: the i-th boundary length =βi

ǫ , φ|∂M = 1
2ǫ .

The fermions are denoted collectively as Ψ. χ(M) = 2 − 2g − n is the Euler characteristic of

the manifold M if it has g handles and n boundaries. We denote such manifold as Mg,n. The

appearance of the Euler characteristic implies that the gravity path integral admits a topological

expansion in the limit e−S0 ≪ 1

ZSJT(β1, ..., βn) =

∞
∑

g=0

e−(2−2g−n)S0ZSJT
g,n (β1, ..., βn), (8)
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where ZSJT
g,n (β1, ..., βn) is understood as the gravity path integral on the manifold Mg,n. The SJT

on disk reduces to N = 1 super-Schwarzian theory containing a bosonic field and an anti-periodic

(on disk) fermionic field with global OSp(2|1) symmetry [63]. It turns out that the disk partition

function ZSJT
0,1 can be computed by the path integral of super-Schwarzian theory which is 1-loop

exact [39, 63, 64]

ZSJT,D(β) ≡ ZSJT
0,1 (β1) =

√

2

πβ
e

π2

β . (9)

Beyond the disk case, the higher topological partition function can be obtained by gluing method

which will be discussed in the subsequent section. In this method, we need to know the partition

function on the trumpet, which similar to the disk case, results from the super-Schwarzian theory

ZSJT,T(β, b) =
1√
2πβ

e−
b2

4β . (10)

Here the trumpet contains two boundaries, i.e, the geodesic and asymptotic boundaries, b(β) is

related to the length of the geodesic (asymptotic) boundary. From partition functions, one can get

the corresponding spectral densities defined by

ZSJT,D(T)(β) =

∫ ∞

0
dEe−βEρSJT,D(T)(E) (11)

as

ρSJT,D(E) =

√
2

π
√
E

cosh(2π
√
E), ρSJT,T(E, b) =

cos(b
√
E)√

2πE
. (12)

Since SJT contains fermions which could be periodic (R) or anti-periodic (NS) for general

topology, one should sum over different spin structures. One can defined the parity (−1)ζ for spin

structures, where (−1)ζ = 1 for NS spin structure, and (−1)ζ = −1 for Ramond. Then two types

of SJT could be defined [43]. The first one is denoted as type 0A SJT whose partition function

is defined by summing over different spin structures, while the second one called type 0B SJT is

defined by summing over different spin structures weighted by the parity (−1)ζ . Note for disk and

trumpet, there is a unique spin structure, thus the disk and trumpet partition function is the same

for both types of SJT.

In the next step, let us move on to the matrix model side. The SJT dual to an ensemble

of supersymmetric quantum mechanics (QM) [39]. For SUSY QM the supercharge is related to

Hamiltonian by H = Q2. There are two different matrix ensembles dual to two types of SJT

respectively. For type 0A SJT including (−1)ζ in the summation of spin structure, there is an
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additional (−1)F symmetry in dual ensemble [39]. Then the Hilbert space can be decomposed into

two blocks with

(−1)F =





IN 0

0 −IN



 , Q =





0 M †

M 0



 , H = Q2 =





0 MM †

M †M 0



 (13)

where IN is N ×N identity matrix, M is N ×N complex matrix. This implies that type 0A SJT

dual to random complex matrix ensemble. The dictionary is [39]

ZSJT,−(β1, ..., βn) = 〈Z−(β1)...Z
−(βn)〉conn. (14)

with

Z−(β) = 2Tre−βH = 2Tre−βMM†

. (15)

where ZSJT,±(β1, ..., βn) represent ZSJT(β1, ..., βn) in (8) for type 0A and 0B SJT respectively. Note

the the gravity path integral on the LHS of (14) on connected manifold Mg,n, and the average on

the RHS is connected part of the following matrix integral [43]

〈Z−(β1)...Z
−(βn)〉 =

1

Z

∫

dMe−NTr(VMM†)Z−(β1)...Z
−(βn), Z =

∫

dMe−NTr(MM†), (16)

where V (H) is a function of H that defines the matrix model. It is convenient to work with the

Hermitian matrix H = MM † [39, 43], and the corresponding spectral density and resolvent defined

with respect to MM † are 1

ρ−(E) = Trδ(E −MM †), R−(E) = Tr
1

E −MM † . (19)

For type 0B SJT, there is no (−1)F symmetry. It follows that the dual matrix model is the

ensemble for supercharge Q, which is a random Hermitian matrix. Similar to the type 0A case,

the dictionary for this duality [39]

ZSJT,+(β1, ..., βn) = 〈Z+(β1)...Z
+(βn)〉conn. (20)

1 In the study of matrix models, one is usually interested in the quantities called resolvent and spectral density In
general, for a random matrix A with eigenvalues λi, the resolvent, spectral density are defined as

R(E) = Tr
1

E − A
=

N
∑

i=1

1

E − λi

, ρ(E) =

N
∑

i=1

δ(E − λi). (17)

They related to each other and the quantity Tre−βA through integral transformations

R(E) = −

∫ ∞

0

dβeβETre−βA, R(E) =

∫ ∞

−∞

dE′ ρ(E′)

E − E′
. (18)
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with

Z+(β) =
√
2Tr(e−βH) =

√
2Tr(e−βQ2

) (21)

and

〈Z+(β1)...Z
+(βn)〉 =

1

Z

∫

dQe−NTrV (Q)Z+(β1)...Z
+(βn), Z =

∫

dQe−NTr(V (Q). (22)

The corresponding spectral density and resolvent are then defined in terms of Q

ρ+(E) = Trδ(E −Q), R+(E) = Tr
1

E −Q
. (23)

For later convenience, we use the notation RQ(E) = R+(E), and define the resolvent for H = Q2

RH(E) = Tr
1

E −H
= Tr

1

E −Q2
. (24)

Let us focus on the correlation functions of matrix model, i.e., the RHS of (14) and (20). In

large N expansion as indicated by perturbation theory of matrix integral [31]

〈Z±(β1)...Z
±(βn)〉conn. =

∞
∑

g=0

N2−2g−nZ±
g,n(β1, ...βn). (25)

Here g is the genus of the double-line diagram in the matrix perturbation theory. Strictly speak-

ing, equalities (14) and (20) hold only in the so-called double -scaled limit. In this limit, the 1/N

is replaced by e−S0 [31] in (25). 2 This expansion is the matrix model version of (8). It fol-

lows that we have the relation ZSJT±
g,n (β1, ..., βn) = Z±

g,n(β1, ..., βn), (Z
SJT±
g,n (β1, ..., βn) are actually

ZSJT
g,n (β1, ..., βn) for 0A and 0B SJT in (8) respectively). In the matrix model, usually Z±

g,n could

be computed by the so-called topological recursion relation as we will discuss in detail in the next

section.

III. T T̄ OF SJT

In this section, we will study the finite cut-off SJT and the dual T T̄ deformed matrix models.

The partition functions of SJT on general topologies are computed, which are shown to match the

results obtained from the dual matrix model side.

2 To match the gravity results, one should take the continuum limit of matrix models. Naively, one takes N → ∞

limit, however, in this limit, all the terms except the leading term (25) would vanish. To enhance the higher-order
terms to keep all the terms in the expansion, one can take a second limit simultaneously, i.e., taking a particular
coupling constant near its critical value. The critical value is determined by the configuration of spectral density
in the matrix model [43]. This is called double scaling limit [36, 65–67]. Note the two limits are not independent
of each other.
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A. Gravity side

As remarked above, by performing super-Schwarzian path integrals on a surface Mg,n, the

corresponding partition function Z±
g,n(β1, ..., βn) can be obtained as [39]. Firstly, let us consider

the disk and trumpet topologies, since there is only one boundary condition for fermions in this

geometry, the corresponding partition functions are the same for both type 0A and 0B SJT. The

results are presented in (9) and (10). Comparing these results with the disk and trumpet partition

functions in JT gravity [31, 63, 68]

ZJT,D ≡ Z0,1(β) =
1

4
√
πβ3/2

e
π2

β , ZJT,T(β, b) =
1

2
√
πβ

e−
b2

4β . (26)

the corresponding spectrum densities

ρJT,D =
1

(2π)2
sinh(2π

√
E), ρJT,T =

cos(b
√
E)

2π
√
E

, ZJT,D(T )(β) =

∫ ∞

0
dEρJT,D(T )e

−βE. (27)

A key observation is that ZSJT,T equals to ZJT,T up to a numerical factor and moreover ZSJT,D

can be reproduced by analytically continuing of b in ZJT,T, i.e.

ZSJT,T(β, b) =
√
2Z JT,T(β, b) (28)

and

ZSJT,D(β) = 2
√
2Z JT,T(β, b = 2πi). (29)

The corresponding spectral density again is related to the trumpet density of the JT case as

ρSJT,D(E) = 2
√
2ρ JT,T(E, b = 2πi), ρSJT,T(E, b) =

√
2ρ JT,T(E, b). (30)

For higher topologies, the partition functions can be computed by the gluing procedure as did in

[39]. More recently, this was generalized with defect deformation of SJT [43].

So far we have discussed the undeformed SJT gravity. When taking T T̄ deformation into ac-

count, the deformed disk and trumpet function can be easily written down by the above observation,

since (28) and (29) still hold. Based on JT results [52]

ZJT,D(u, t) =
u√
t

e−u/t

u2 + 4π2t
I2

(1

t

√

u2 + 4π2t
)

ZJT,D(u, t) =
u√
t

e−u/t

√
u2 − b2t

I1

(1

t

√

u2 − b2t
)

, u = 2β,

(31)

where I1, I2 are modified Bessel functions. The SJT case is

ZSJT,D(β, t) =2
√
2Z JT,T(β, b = 2πi, t) =

2
√
2e−u/t

√
t

[ u√
4π2t+ u2

I1(
1

t

√

4π2t+ u2)
]

(32)
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and

ZSJT,T(β, b, t) =
√
2ZJT,T(β, b, t) =

√
2e−u/t

√
t

[ u√
−b2t+ u2

I1(
1

t

√

−b2t+ u2)
]

. (33)

Notice this results can be obtained by resurgence method as did in [52] for the JT gravity case.

Alternatively, the deformed SJT partition functions can also be produced by the integral kernel

method proposed in [51] In this method, the deformed partition function is [51]

Z(β, t) =

∫ ∞

0
dβ′K(β, β′)Z(β′) (34)

with the integral kernel

K(β, β′) =
β√

−tπβ′3/2 e
(β−β′)2

tβ′ , t < 0. (35)

This method is only well-defined for t < 0. For t > 0 which is related to finite cut-off geometry,

one can analytically continue from t < 0. Now apply the above method to the SJT disk partition

function (9), the deformed one is then

Z(β, t) =

∫ ∞

0
dβ′K(β, β′)ZSJT,D(β

′) =
2
√
2ue−u/tK1(−

√
u2+4tπ2

t )√−tπ
√
4π2t+ u2

, t < 0. (36)

Using K1(−z) = −K1(z) = −iπI1(z) and keeping only the real part [51], one can also obtain

(32). In parallel with JT case, the SJT disk partition function (32) can be write as an integral

over a contour C surrounding interval (− 1√
t
, 1√

t
) on complex s =

√
E plane, noting this interval

corresponds to branch cut in deformed spectrum (38) below

ZSJT,D(β, t) =

∫

c
dssρSJT,D(s

2)e−I(s,t,u) =

√
2

π

∫

C
ds cosh(2πs)e−I(s,t,u), (37)

where we follow the notation in [52] with u = 2β, and I(s, t, u) = u
t (1−

√
1− ts2) (rewriting of (38)

below). Furthermore, (37) can be expressed in a form where both branches of deformed spectral

density are included. To see this let us recall that the T T̄ deformation defined in (1), would lead

to two branches deformed eigenvalues

E±(t) =
2

t
(1∓

√
1− tE). (38)

Notice that when t > 0, the spectrum would be complex for when E > 1/t. In addition, the

undeformed eigenvalues can be recovered for the solution E+(t) as t → 0. It seems that only

the E+(t) makes sense as the deformed spectral. However, [52] shows that by employing the

resurgence method both branches should be included. Moreover, when both branches are taken
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into consideration, the T T̄ flow equation will be satisfied and the complex spectrum problem

mentioned above will disappear [51]. 3

Explicitly, ZSJT,D(β, t) in terms of two branches spectrum is

ZSJT,D(β, t) =

√
2

π

∫ 1/
√
t

−1/
√
t
ds cosh(2πs)e−

u
t

(

e
1
t

√
1−ts2 − e−

1
t

√
1−ts2

)

=

√
2

π

∫ 1/t

0
dE cosh(2π

√
E)√

E
e−

u
t

(

e
1
t

√
1−tE − e−

1
t

√
1−tE

)

=

∫ 4/t

0
dE

√
2

π
(1− tE

2
)
cosh(2π

√

E − tE2/4)
√

E − tE2/4
e−uE/2,

(40)

where s =
√
E , E = −2

t (±
√
1− tE − 1). From the last line the deformed spectral density of SJT

can be read off, which is

ρSJT,D(E, t) =

√
2

π

(

1− tE

2

)cosh(2π
√

E − tE2/4)
√

E − tE2/4
. (41)

This spectral density has support on (0, 4t ) and reproduces the undeformed one when t = 0. Notice

that ρSJT,D(E, t) is negative in the range (2t ,
4
t ), which is similar with JT case [52].

Along the same line, we can obtain the deformed spectral density for trumpet in SJT

ρSJT,T(E, b, t) =
(

1− tE

2

)cos(b
√

E − tE2/4)√
2π
√

E − tE2/4
. (42)

Next, let us move on to consider other topologies with g > 0 or n > 1 in SJT. In this case,

we should distinguish between two different types of SJT. The partition functions can be com-

puted by the gluing procedure, i.e. gluing the basic building block, the trumpet partition func-

tion ZSJT,T (βi, b) for each boundary, to the supervolume V ±
g,n(b1, ..., bn), ”±” to denote type 0A

and 0B supervolume respectively [39]. V ±
g,n(b1, ..., bn) is an analogue to Weil-Petersson volume

Vg,n(b1, ..., bn) in JT case. The latter is volume of moduli of space of hyperbolic Riemann surfaces

of genus g with n geodesic boundary of length b1, ..., bn [39]

Z±
g,n(β1, ..., βn, t) =

∫ ∞

0
b1db1...

∫ ∞

0
bndbnV

±
g,n(b1, ..., bn)ZSJT,T(β1, b1, t)...ZSJT,T(βn, bn, t). (43)

Here we assume that under T T̄ deformation the gluing procedure still works as finite cut-off JT/SJT

3 One problem is that the resulting deformed spectral density contains a negative part. For JT case is [52]

ρJT,D(E, t) =
1− tE/2

4π2
sinh(2π

√

E(1− tE/4)). (39)

which is negative in the range (4/t, 2/t).

11



case [38]. 4 And only the boundary condition is affected by the deformation, while the geodesic

boundary remains the same, the super volumes would not change, thus the gluing takes the above

form. Intuitively, this can be understood as follows, the T T̄ deformation will lead to a finite cut-off

in the bulk as what happens in higher dimensions [9]. Therefore only the boundary conditions will

be changed, which is relevant to ZSJT,D(T ) but not V
±
g,n.

For type 0A it takes the form as

V −
g=1,n(b1, ...bn) =

1

2

(−1)n(n− 1)!

4

V −
g=2,n(b1, ...bn) =3

1

2

(−1)n(n+ 1)!

45

[

(2π)2(n + 2) +

n
∑

i=1

b2i

]
(44)

V −
g=3,n(b1, ...bn) =

1

5

(−1)n(n+ 3)!

49

[

(2π)4(n+ 4)(42n + 185) + 84(2π)2(n+ 4)
n
∑

i=1

b2i

+ 25

n
∑

i=1

b4i + 84
∑

i 6=j

b2i b
2
j

]

(45)

and V −
g=0,n≥3(b1, ...bn) = 0. While for the case of type 0B, all V +

g,n vanish except (g, n) = (0, 2). For

both case V ±
0,1(b1) is undefined, and by definition V ±

0,2(b1, b2) = 2δ(b1 − b2)/b1. In the subsequent

section, we will need the correlation functions of the resolvent, which following (18) is

RSJT±
g,n (E1, ..., En, t) = (−1)n

∫ ∞

0
dβ1...

∫ ∞

0
dβne

β1E1+...+βnEnZSJT±
g,n (β1, ..., βn, t). (46)

To evaluate this integral, at the first step, by substituting into (43), we should compute the following

integral

T̃ (E, b, t) =

∫ ∞

0
dβZSJT,T(β1, b1, t)e

βE . (47)

which is essentially computed in the JT case, since ZSJT,T is proportional to ZJT,T. The result is

[52]

T̃ (E, b, t) ≡ −
√

t

2π

∞
∑

k=1

Γ(k + 1/2)

(1− tE/2)k

(2
√
t

b

)k
Jk

( b√
t

)

. (48)

In the second step, Noticing that the supervolumes are polynomial in the power of b2i , the integral

(46) decomposes into the following integrals [52]

R̃n(E, t) ≡
∫ ∞

0
dbb2n+1T̃ (E, b, t) = − (2n+ 1)!(1 − tE/2)√

2(−E(1− tE/4))n+1
√

−E(1− tE/4)
. (49)

4 There is a subtlety in the finite cut-off JT picture, in this case, since the boundary locates at a finite cut-off, its
length of it is finite. Thus the length of geodesic boundary b will greater than the boundary length and it seems
that the integral range in (43) is ill-defined. Fortunately, as discussed in [52], for JT gravity the integral range
would be unchanged under T T̄ deformation. We will assume this also holds in the SJT case. As we will see, under
this assumption, the results of deformed SJT will match the matrix model results.
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Similarly, the integral (43) for deformed correlation functions of Z(β) can be decomposed into

Z̃n(β, b, t) ≡
∫ ∞

0
dbb2n+1ZSJT,T(β, b, t) =

√

2

t
n!un+1e−u/tIm

(u

t

)

. (50)

Now we are ready to compute the deformed correlation functions of resolvent and Z(β) from

the gravity side. Using (44), (45) and (46), for the cylinder geometry

RSJT±
0,2 (E1, E2, t) =4R JT

0,2 (E1, E2, t)

=
t2(1− tE1/2)(1 − tE2/2)(tE

2
1/4 + tE2

2 − E1 − E2)

((1− tE1/2)2 − (1− tE2/2)2)2
√

−E1(1− tE1/4)
√

−E2(1− tE2/4)

− t2((1 − tE1/2)
2 + (1− tE2/2)

2)

((1 − tE1/2)2 − (1− tE2/2)2)2
,

(51)

which reduces to undeformed result 1√
−E1

√
−E2(

√
−E1+

√
−E2)2

when t = 0. And then from (50)

ZSJT
0,2 (β1, β2, t) =4ZJT

0,2(β1, β2, t) =

∫ ∞

0
db1db2b1b2ZSJT,T(β1, b1, t)ZSJT,T(β2, b2, t)V

±
0,2(b1, b2)

=
4u1u2e

−(u1+u2)/t

t(u21 − u22)

(

u1I0

(u2
t

)

I1

(u1
t

)

− u2I0

(u1
t

)

I1

(u2
t

))

,

(52)

which reproduces the undeformed result 2
π

√
β1β2

β1+β2
at t = 0. Note that for cylinder geometry, the

correlators of type 0A and type 0B share the same form as presented in above.

In what following, we turn to consider more general topologies except the cylinder and disk.

For type 0B theory, all the correlators RSJT+
g,n and Z+

g,n(β1, ..., βn, t) vanish

RSJT+
g,n = 0, (g, n) 6= (0, 2), (53)

since corresponding V +
g,n = 0. For type 0A, we list some examples (g ≤ 3) for the correlation

functions of resolvent below

RSJT−
1,n (E1, ..., En, t) =

1

2

(−1)n(n− 1)!

4

n/2 n
∏

i

R̃0(Ei, t),

RSJT−
2,n (E1, ..., En, t) =2n/23

(−1)n(n+ 1)!

45

(

(2π)2(n+ 2)

n
∏

i

R̃0(Ei, t) +
∑

j

R̃1(Ej , t)
∏

i 6=j

R̃0(Ei, t)
)

,

RSJT−
3,n (E1, ..., En, t) =2n/2

1

5

(−1)n(n+ 3)!

49

(

(2π)4(n+ 4)(42n + 185)

n
∏

i

R̃0(Ei, t)

+ 84(2π)2(n+ 4)
∑

j

R̃1(Ej , t)
∏

i 6=j

R̃0(Ei, t) + 25
∑

j

R̃2(Ej , t)
∏

i 6=j

R̃0(Ei, t)

+ 84
∑

i,j,i 6=j

R̃1(Ei, t)R̃1(Ej , t)
∏

k,k 6=i,j

R̃0(Ek, t)
)

.

(54)

In the next section, we will show some examples that the correlators computed in (54) will match

the results obtained from the dual matrix model.
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B. Matrix model side

1. Type 0A

In this case, as reviewed in section II, the dual random matrix is a complex matrix ensemble.

It follows from (15) that the spectral density of the dual matrix model is half of that of SJT (12)

ρ−(E) =
1

2
ρSJT,D(E) =

1

π
√
2E

cosh(2π
√
E). (55)

Under T T̄ deformation, using (41), the deformed spectral density reads

ρ−(E, t) =
1

2
ρSJT,D(E, t) =

1√
2π

(

1− tE

2

)cosh(2π
√

E − tE2/4)
√

E − tE2/4
. (56)

For general topological with (g, n), it follows from (15) that one has

RSJT−
g,n (E1, ..., En, t)(β, t) = 2nR−

g,n(E1, ..., En, t). (57)

Here R−
g,n(E1, ..., En, t) is related to Z−

g,n(E1, ..., En, t) defined in (25) by integral transformation.

5 To compute R−
g,n(E1, ..., En, t) in matrix model, one can employ a power tool called topological

recursion relation [69, 70]. This recursion relation can be derived from loop equation which play the

role of Ward identity in matrix model. For matrix model dual to SJT without T T̄ deformation,

the topological recursion relation have been considered in [39, 43]. Below we will consider the

case when T T̄ deformation presents. The input of topological recursion relations are the deformed

spectral density (or spectral curve) and R−
0,2(E1, E2, t). To be more concrete, we first define the

uniformizing parameter z by E(z) = −z2 as in T T̄ JT case [52]. In terms of z, the recursion

relation is

Wg,n(z1, ..., zn, t) = Resz→0K(z1, z, t)
[

Wg−1,n+1(z,−z, z2, ..., zn, t)

+
′
∑

h1+h2=g

′
∑

I1∪I2=J

Wh1,1+I1(z, I1, t)Wh2,1+I2(−z, I2, t)
]

,

(58)

where the prime in the summation indicate terms containing W0,1 are excluded. Here J =

{z2, ..., zn}. For g = 0, n = 1 the quantities Wg,n is related to spectral density

W0,1(z, t) = iπρMM(E(z))E′(z) =
√
2(2 + tz2)

cos(πz
√
4 + tz2)√

4 + tz2
. (59)

5 It is interesting to note that R−
0,2(E1, E2, t) takes the same form for both JT and SJT cases. This is follows from

RSJT−
0,2 (E1, E2, t) = 4R JT

0,2 (E1, E2, t) (see (51)).
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For general (g, n) Wg,n are determined by R−
g,n as

Wg,n(z1, ..., zn, t) =
{

(

R−
0,2(E(z1), E(z2), t) +

1
(E(z1)−E(z2))2

)

E′(z1)E′(z2), g = 0, n = 2,

R−
g,n(E(z1), ..., E(zn), t)E

′(z1)...E′(zn), otherwise.
(60)

As mentioned before R−
0,2(E(z1), E(z2), t) in SJT takes the same form as in JT case, therefore

W0,2(z1, z2, t) also equals to JT case, which is [52]

W0,2(z1, z2, t) =
(

R−
0,2(−z21 ,−z22 , t) +

1

(E(z1)− E(z2)2)

)

E′(z1)E
′(z2)

=
4(2 + tz21)(2 + tz22)

(z21 − z22)
(4 + t(z21 + z22))

2

(

2z1z2 +
4(z21 + z22) + t(z41 + z42)
√

4 + tz21
√

4 + tz22

)

.
(61)

The last quantities that remain to explain are the kernel

K(z1, z, t) =
1

2[W0,1(z, t) +W0,1(−z, t)]

∫ z

−z
dz2W0,2(z1, z2, t)

=
z(4 + tz2)(2 + tz21) sec(πz(4 + tz2))√

2(2 + tz2)(z21 − z2)
√

4 + tz21(4 + t(z2 + z21))
.

(62)

With the initial data W0,1 and W0,2 in hand, we are ready to evaluate higher topological cases via

the topological recursion relations. Below we consider several examples.

• W1,1

Applying the topological recursion relation, one have (58) 6

W1,1(z1, t) =Resz→0K(z1, z, t)W0,2(z,−z, t) =
2 + tz21

2
√
2z21(4 + tz21)

3/2
. (64)

The result from SJT in (54) is

RSJT−
1,1 (E, t) =−

√
2

16

1− tE/2

(−E(1− tE/4))
√

−E(1− tE/4)
= −

√
2

4

2 + tz2

z3(4 + tz2)3/2
. (65)

From (57), we see that the result from the matrix model is in good agreement with the one

obtained on gravity side

2R1,1(z1, t) = 2W1,1(z1, t)/(−2z1) =RSJT−
1,1 (z1, t). (66)

• W0,3

6 Here we used

W0,2(z,−z, t) =
(2 + tz2)2

z2(4 + tz2)2
. (63)
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The relevant topological recursion relation for W0,3 is

W0,3(z1, z2, z3, t) = Resz→0K(z1, z, t)[W0,2(z, z2, t)W0,2(−z, z3, t)

+W0,2(z, z3, t)W0,2(−z, z2, t)] = 0,
(67)

which also matches the SJT result since V −
0,3 = 0.

• W1,2

The relevant topological recursion relation for W1,2 is

W1,2(z1, z2, t) =Resz→0K(z1, z, t)[W0,3(z,−z, z2, t)

+W0,2(z, z2, t)W1,1(−z, t) +W1,1(z, t)W0,2(−z, z2, t)]

=
(2 + tz21)(z + tz22)

z21(4 + tz21)
3/2z22(4 + tz22)

3/2
,

(68)

where we need to use the result (67) derived before. Note this result matches the SJT

computation

RSJT−
1,2 (E1, E2, t) =

(2 + tz21)(2 + tz22)

z31(4 + tz21)
3/2z32(4 + tz22)

3/2
, (69)

since

4R−
1,2(z1, z2, t) = 4W1,2(z1, t)/(4z1z2) =RSJT−

1,2 (z1, z2, t). (70)

• W2,1

The relevant topological recursion relation for W2,1 is

W2,1(z1) =Resz→0K(z1, z, t)[W1,2(z,−z) +W1,1(z)W1,1(−z)]

=− 9(2 + tz21)(2 + π2z21(4 + tz21))

32
√
2z41(4 + tz21)

5/2
.

(71)

where W1,2,W1,1 have been obtained before. The gravity result is

RSJT−
2,1 (z, t) =

9(2 + tz2)(2 + 4π2z2 + π2tz4)

32
√
2z5(4 + tz2)5/2

. (72)

Thus they match each other as

2R−
2,1(z1, t) = 2W2,1(z1, t)/(−2z1) =RSJT−

2,1 (z1, t). (73)

Note that in the above examples, the deformed Wg,n are related to the undeformed one by trans-

formation

Wg,n(ẑ1, ..., ẑ1, t) = Wg,n(z1, ..., zn)
dz1
dẑ1

...
dzn
dẑn

(74)
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with the coordinate transformation induced by T T̄ deformation [52]

Ê = −2

t
(
√
1− tE − 1), (75)

Ê = −ẑ2, E = −z2 ⇒ z =
ẑ

2

√

4 + tẑ2. (76)

Here Wg,n(z1, ..., zn) is undeformed one and Wg,n(ẑ1, ..., ẑ2, t) is deformed one. Note that formally

(75) is the same as the T T̄ deformed spectral as (38). According to [52], topological recursion

relations formulated in terms of differentials

wg,n(z1, ..., zn) = Wg,n(z1, ..., zn)dz1 ⊗ ...⊗ dzn (77)

is covariant and takes the same form under coordinate transformation, for example, like in (76).

2. Type 0B

The dual matrix model is a random Hermitian matrix for supercharge Q. And according to the

dual dictionary (22), we have

RSJT+
g,n (E1, ..., En) = 2n/2RH

g,n(E1, ..., En). (78)

where RH
g,n(E1, ..., En) is n-pt function of resolvent RH(E) defined in (24).

Let us recall the undeformed case

ZSJT,D(β) =
√
2〈Tr(e−βH)〉 =

√
2〈Tr(e−βQ2

)〉 =
√
2

∫ ∞

0
dx2xe−βx2

ρH(x2)

=
√
2

∫ ∞

−∞
dx|x|ρH(x2)e−βx2

=
√
2

∫ ∞

−∞
dxe−βx2

ρQ(x),

(79)

where x is eigenvalue of Hermitian matrix Q, while x2 is the eigenvalue of system Hamiltonian H.

According to (11) and (12), ρH(E) is

ρH(x2) =
1√
2
ρSJT,D(x

2) =
1

πx
cosh(2πx). (80)

The leading spectral density for matrix ensemble Q is

ρQ(E) = |x|ρH(x2) =
cosh 2πx

π
. (81)

Note that the spectral density has support on the whole real axis, in other words, it means the

branch-cut of resolvent is the real axis.
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In one-cut Hermitian matrix model, in general, the leading 2-point function RQ
0,2 depends only

on the position of spectral edges. For Q ensemble considered here RQ
0,2 is [39]

RQ
0,2(x1, x2) =

{ 0, x1, x2 on same side of real axis,

− 1
(x1−x2)2

, x1, x2 on opposite sides of real axis.
(82)

Using the identity

2xRH(x2) = RQ(x)−RQ(−x), (83)

one obtain the follow relation for 2-pt function

−4x1x2R
H
0,2(−x21,−x22) = RQ

0,2(ix1, ix2) +RQ
0,2(−ix1,−ix2)−RQ

0,2(−ix1, ix2)−RQ
0,2(ix1,−ix2).

(84)

Substituting into (82), one obtains RH
0,2(−x21,−x22) =

1
2x1x2(x1+x2)2

. In gravity side RH
0,2(−x21,−x22)

is dual to SJT partition function on cylinder, [39] showed that this is indeed the case.

Now let us add T T̄ deformation. The deformed spectral density is, using (41) and (79)

ρQ(x, t) =|x|ρH(x2, t) =
1√
2
|x|ρSJT,D(x

2, t)

=
1

π

(

1− tx2

2

)cosh(2πx
√

1− tx2/4)
√

1− tx2/4
, x ∈ (− 2√

t
,
2√
t
).

(85)

Next, let us consider the leading 2pt function under deformation. According to (78), one has

RSJT
0,2 (E1, E2, t) = 2RH

0,2(E1, E2, t), (86)

where the LHS is computed in (51) and RHS is related to Q ensemble quantity R0,2(E1, E2, t)

through (84). Thus we have

− 4x1x2R
H
0,2(−x21,−x22, t)

=RQ
0,2(ix1, ix2, t) +RQ

0,2(−ix1,−ix2, t)−RQ
0,2(−ix1, ix2, t)−RQ

0,2(ix1,−ix2, t)

=− 2x1x2

(

t2(1− tE1/2)(1 − tE2/2)(tE
2
1/4 + tE2

2/4− E1 − E2)

((1 − tE1/2)2 − (1− tE2)2)2
√

−E1(1− tE1/4)
√

−E2(1− tE2/4)

− t2((1− tE1/2)
2 + (1− tE2/2)

2)

((1 − tE1/2)2 − (1− tE2/2)2)2

)

, E1 = −x21, E2 = −x22.

(87)

One simplification of above equation can be made by using the fact

RQ
0,2(x1, x2, t) = RQ

0,2(−x1,−x2, t). (88)

This could result from the fact that the deformed spectral ρQ(x, t) in (85) is an even function in x.

For more details please see the Appendix (A). Note that for the undeformed RQ
0,2(x1, x2) (82), this
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is indeed the case. 7 One possible solution for RQ
0,2(x1, x2, t) of (87) can be obtained by assuming

there exist a coordinate transformation between deformed and undeformed topological recursion

relation. The result is presented as follows. We leave the detailed procedure for obtaining the

result in Appendix B

RQ
0,2(x1, x2, t) =







RQ−
0,2 (x1, x2, t), x1, x2 on same side of real axis,

RQ+
0,2 (x1, x2, t), x1, x2 on opposite sides of real axis,

(90)

where RQ−
0,2 (x1, x2, t) is defined in Appendix B. It ready to check this expression reduces to unde-

formed case (82) when t = 0 and indeed satisfies the equation (87).

Next consider the deformed higher topologies quantites RQ
g,n(E1, ..., En, t) in Q ensemble. A

simplification comes from the gravity side. As discussed in previous section, the supervolumes

V +
g,n vanish except for the case (g, n) = (0, 2), which leads to RSJT+

g,n with (g, n) 6= (0, 2) vanishing.

Thus the dual RH
g,n is expected to equal zero. From (83), then RQ

g,n = 0 with (g, n) 6= (0, 2). Note

this results valid whether or not the T T̄ deformation presents, since the supervolume is unchanged

under T T̄ deformation.

In principle, the topological recursion relation would be a possible way to investigate

RQ
g,n(E1, ..., En, t) , since Q is a random Hermitian ensemble. However the initial data for topologi-

cal recursion relation, i.e., RQ
0,2(E,E2, t), remains to be fixed, we will adopt another way, by making

use of the transformation properties of topological recursion relation under T T̄ deformation. At

the end of subsection (IIIB 1), the deformed and undeformed topological recursion relations are

related to each other by the coordinate transformation

Ê = −2

t
(
√
1− tE − 1). (91)

Motivated by this fact, similarly, if there exists a that there exists a coordinate transformation

relates deformed and undeformed correlators in Q ensemble for type 0B theory. 8 It follows by

using (74) the deformed Wg,n would vanish since the undeformed Wg,n vanish, which is consistent

with the prediction of the gravity side (53), i.e., RSJT+
g,n = 0 when (g, n) 6= (0, 2).

7 Also (88) holds for usual one-cut Hermitian matrix model, if the support of spectral density is a symmetric interval
(−a, a), then the RQ

0,2(x1, x2) is (see (3.3.38) of [70]

RQ
0,2(x1, x2) = −

1

2(x1 − x2)2

(

1−
x1x2 − a2

√

x2
1 − a2

√

x2
2 − a2

)

. (89)

8 The T T̄ deformation of SUSY QM system was considered in [15], where the supercharge Q deforms as

Q(t) = ±

√

2

t
(1−

√

1− tQ2), (92)

which induced from (91).
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IV. CONCLUSIONS AND DISCUSSIONS

In the work, we study the partition functions of type 0A and 0B SJT on higher genus g 2D

surfaces with n finite cut-off boundaries, and the dual correlation functions in the T T̄ deformed

matrix models. The disk and trumpet partition function in SJT with finite cut-off are the same for

both type 0A and 0B SJT. For other topologies except for disk and cylinder, the deformed partition

functions can be computed by the gluing procedure, which are non-zero for 0A SJT and vanish

for 0B SJT. The latter case is due to the fact that the vanishing super-volume V +
g,n for 0B except

(g, n) = (0, 2). In the dual matrix side, the deformed partition functions of SJT with multiple

finite cut-off boundaries are corresponding to the correlation functions Rg,n(E1, ..., En, t) which

can be computed by employing the topological recursion relations. In the 0A SJT, we compute

several Rg,n(E1, ..., En, t) (or, more precisely, the quantities Wg,n) in the dual matrix model. The

results from the gravity (54) and matrix model (63)−(71) match each other. In addition, there is

a transformation (75) rule between the deformed and undeformed topological recursion relations.

For the case of type 0B SJT, the dual matrix model is unusual. In the undeformed matrix model,

i.e. Q ensemble, the spectral is supported on the whole real axis. After taking T T̄ into account,

the deformed density in Q ensemble can be worked out. Applying the covariant property of Wg,n

and topological recursion relation in a generic Hermitian matrix model, we compute the matrix

model counterparts of correlation functions in 0B SJT on surfaces with finite cut-off boundaries.

In particular, as for leading 2-point function RQ
0,2, we give one possible solution that satisfies the

constraint (87) imposed by matching the SJT result. This solution is obtained by transformation

properties of RQ
0,2 under T T̄ deformation, as presented in appendix B. For other RQ

g,n, to match

the gravity results, as the RQ
0,2 case we assume that the deformed topological recursion relations

for Q ensemble exist, and there exists a transformation between the deformed and un-deformed

topological recursion relations. With such assumptions, we can obtain results consistent with the

gravity side.

In addition, one problem is how to explain the negative spectral density of the deformed matrix

model and the finite cut-off SJT, which should not occur in the standard matrix model. This is an

open question as pointed out in [52], which is also presented in the finite cut-off JT case. Recently,

a relevant discussion on the negative spectral density appeared in [43]. This question may be

related to how to define T T̄ deformation for the matrix model. [50] treated the T T̄ deformation of

the matrix model in the framework of the standard matrix model. However, the results there don’t

match the gravity side. Interestingly, recently, another definition of T T̄ deformed matrix model

20



was proposed in [19]. The T T̄ flow equation could be satisfied in this definition. A further study

on such problems would be an important direction.

It would be interesting to apply the deformed 2D gravity/matrix model duality to Liouville

gravity, or minimal string theory. It has been shown in [37] that the partition function of such

theories can be calculated by the gluing procedure and they also admit dual matrix description.

Therefore one may consider the T T̄ deformation of the corresponding matrix model.
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Appendix A: Equation (88)

In this appendix we will show that if ρ0(x) is a even function of x, then R0,2(−E1,−E2) =

R0,2(E1, E2). To this end, we convert to the 2pt correlator of resolvent to that of spectral density

〈R(E1, E2)〉 =
∫ ∞

−∞
dE′

1

∫ ∞

−∞
dE′

2

〈ρ(E′
1, E

′
2)〉

(E1 − E′
1)(E2 − E′

2)
. (A1)

Therefore the problem now is to show

〈ρ(−E′
1,−E′

2)〉 = 〈ρ(E′
1, E

′
2)〉, (A2)

which can be seen as follows. If ρ0(x) is even, the potential for matrix model V (x) is even. It follows

that in the orthogonal polynomial method (for example, see [71]), the orthogonal polynomials Pn(x)

have definite parity, i.e., being even or odd of x. The 2pt correlator for spectral density for N ×N
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random matrix is

〈ρ(E1, E2)〉

=
1

Z

∫

dNx∆2(x)
∑

i 6=j

δ(E1 − xi)δ(E2 − xj)e
−N

∑
i V (xi)

=
2C2

N

Z ǫr1...rN ǫs1...sN

∫

dNxPr1(x1)...PrN (xN )Ps1(x1)...PsN (xN )δ(E1 − x1)δ(E2 − x2)e
−N

∑
i V (xi)

=
2C2

N

Z ǫr1...rN ǫs1s2r3...rNPs1(E1)Pr1(E1)Pss(E1)Pr2(E1)e
−N(V (y1)+V (y2))hr3 ...hrN

∝e−N(V (y1)+V (y2))
∑

r1,r2

1

hr1hr2
(P 2

r1(E1)P
2
r2(E2)− Pr1(E1)Pr2(E1)Pr1(E2)Pr2(E2))

(A3)

with

hnδmn =

∫

dxe−NV (x)Pn(x)Pm(x), and ∆(x) = ǫr1...rNPr1(x1)...PrN (xN ). (A4)

Here Z ∝ h1...hN is a normalization factor. From the last line of (A3), (A2) follows since Pr(x)

have definite parity. Note in the first line we omit the term proportional to δ(E1 − E2), which

obviously does not effect the equality (A2).

Appendix B: RQ
0,2

In this appendix, we describe the procedure to obtain (90). The undeformed RQ
0,2(x1, x2) is

supported on (−a, a) with a → ∞. RQ
0,2(x1, x2) has a cut along (−a, a) according to (3.3.37) in

[70]. 9 Transforming to uniformized coordinate zi by the map ((3.3.15) of that paper a = −b)

x =
a

2

(

z +
1

z

)

, (B1)

where z is double cover of x (similar to the map x = −z2 appeared in the JT case). In terms of

z. Note RQ
0,2(x1, x2) is not covariant. And the quantities being covariant in topological recursion

relation is [70]

W0,2(z1, z2) =
1

(z1 − z2)2
=
(

RQ
0,2(x1, x2) +

1

(x1 − x2)2

)dx1
dz1

dx2
dz2

. (B2)

with

RQ
0,2(x1, x2) = − 1

2(x1 − x2)2

(

1± x1x2 − a2
√

(x21 − a2
√

x22 − a2

)

, (B3)

9 W̄2(x1, x2) in [70] is RQ
0,2(x1, x2) here.
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where there are two choices of signature since the square root is double-valued, ”-” is chosen when

x1, x2 are in the same sheet, and ”+” when x1, x2 locate in different sheets.

To account for T T̄ deformation we assume the coordinate transformation z = zẑ between

deformed and undeformed topological relations, and then W0,2 transforms as

W0,2(ẑ1, ẑ2, t) = W0,2(z1, z2)
dz1
dẑ1

dz2
dẑ2

, (B4)

where the RHS is known by (B2). The LHS is related to deformed RQ
0,2 like in undeformed case

(B2) (we treat (assume) the deformed 0B as a one-cut matrix model)

W0,2(ẑ1, ẑ2, t) =
(

RQ
0,2(x̂1, x̂2, t) +

1

(x̂1 − x̂2)2

)dx̂1
dẑ1

dx̂2
dẑ2

. (B5)

From the above equations, we can obtain the deformed RQ
0,2

RQ
0,2(x̂1, x̂2, t) =

(

RQ
0,2(x1, x2) +

1

(x1 − x2)2

)dx1
dx̂1

dx2
dx̂2

− 1

(x̂1 − x̂2)2
. (B6)

Here x(x̂) is the eigenvalue of the supersymmetry charge. The coordinate transformation between

x and x̂, if it exists, is expected to be is (92) (see (74))

x̂(t) =

√

2

t
(1−

√

1− tx2), (B7)

Now let us compute RQ
0,2(x̂1, x̂2, t). At first, consider x1, x2 in RQ

0,2(x1, x2) locate in different sheet

(see B3), the result is

RQ
0,2(x̂1, x̂2, t)

=− 1

(x̂1 − x̂2)2

± 2(tx̂22 − 2)(tx̂22 − 2)(−4a2 + x̂1x̂2
√

4− tx̂21
√

4− tx̂22 ±
√

4x̂21 − tx̂41 − 4a2
√

4x̂22 − tx̂42 − 4a2)
√

4− tx̂21
√

4− tx̂22
√

4x̂21 − tx̂41 − 4a2
√

4x̂22 − tx̂42 − 4a2)(x̂1
√

4− tx̂21 − x̂2
√

4− tx̂22)
2

(B8)

where the +(−) corresponds to the initial x1, x2 in RQ
0,2(x1, x2) locate in the different (same) sheet.

Now we take the limit a → 0, RQ
0,2(x̂1, x̂2, t) with ”-” is

RQ−
0,2 (x̂1, x̂2, t) = − 1

(x̂1 − x̂2)2
+

4(tx̂21 − 2)(tx̂22 − 2)
√

4− tx̂21
√

4− tx̂22(x1
√

4− tx̂21 − x̂2
√

4− tx̂22)
2
, (B9)

and for ”+”

RQ+
0,2 (x̂1, x̂2, t) = − 1

(x̂1 − x̂2)2
, (B10)
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where for convenience we renamed RQ
0,2(x̂1, x̂2, t) = RQ±

0,2 (x̂1, x̂2, t) in each case. Note in the limit

t → 0, RQ±
0,2 (x̂1, x̂2, t) reduces to the result (82) as it should be.
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