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Abstract. Diffraction in time manifests itself as the appearance of probability-

density fringes when a matter wave passes through an opaque screen with abrupt

temporal variations of transmission properties. Here we analytically describe the phase-

space structure of diffraction-in-time fringes for a class of smooth time gratings. More

precisely, we obtain an analytic expression for the Husimi distribution representing the

state of the system in the case of time gratings comprising a succession of Lorentzian-

like slits. In particular, for a double-slit scenario, we derive a simple and intuitive

expression that accurately captures the position of interference fringes in phase space.
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1. Introduction

When a matter wave passes through a barrier with abrupt spatial variations of

transmission properties (e.g., an opaque screen with one or multiple apertures)

it exhibits interference/diffraction ‡, which manifests itself as the appearance of

characteristic fringes in the probability density. The most iconic example that illustrates

such a behavior is the celebrated Youg’s double-slit scenario, whose experimental

implementation for single electrons [2, 3] has even been informally referred to as “the

most beautiful experiment in physics” [4]. Similar probability-density fringes appear

when a matter wave interacts with a screen whose transmission properties are spatially

uniform but change abruptly in time (e.g., a neutron shatter). This phenomenon,

commonly referred to as diffraction in time, was discovered by Moshinsky [5] and

‡ Quoting Richard Feynman [1], “No one has ever been able to define the difference between interference

and diffraction satisfactorily. It is just a question of usage, and there is no specific, important physical

difference between them.”
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received much attention in the literature (see Ref. [6] for a review). In particular,

there have been several experimental realizations of this effect [7, 8, 9, 10, 11, 12].

There are different approaches to describing diffraction in time analytically, each

involving its own assumptions and approximations. We outline them here in the context

of the following physical problem, which is at the heart of the present work. We consider

a (nonrelativistic and stuctureless) quantum particle moving in one dimension along the

x axis, in the presence of a shutter at x = 0. The particle starts from the x < 0 region

and moves towards the shutter. The latter is an infinitesimally thin barrier that can

be opened and closed (suddenly or gradually) in the course of time. During the time

intervals when the barrier is fully open, the system behaves simply as a free particle on

a line. On the other hand, a completely closed barrier blocks the matter-wave exchange

between the incident (x < 0) and transmission (x > 0) regions.

Our main goal is to analytically address the appearance and structure of probability-

density fringes caused by the time variations of the shutter transparency. Needless to

say, physical properties of the shutter, e.g. its reflectivity and absorptivity, strongly

depend on the particular realization of the particle-shutter scenario, and, essentially,

all existing analytic approaches to this problem differ from one another in how they

mathematically describe the shutter.

One apparent way to model the shutter is to introduce a time-dependent Dirac

delta-potential V (x, t) = ω(t)δ(x) in the Hamiltonian that governs the dynamics of

the particle. The positive function ω(t) ranges between 0 and ∞, and controls the

shutter transparency: the shutter is open when ω = 0 and closed when ω = ∞. The

main difficulty with this approach though is that analytic solutions to the corresponding

time-dependent Schrödinger equation are only known in very few special cases: ω(t) =

constant [13, 14], ω(t) ∝ t [15], ω(t) ∝ 1/t [16], and ω(t) ∝ (at2 + bt + c)−1/2 with

a, b, c being some constants [17]. This severely limits the range of diffraction-in-time

systems amenable to analytic investigation. For instance, the time-domain version of

the double-slit scenario does not appear to be analytically accessible within the delta-

potential approach.

An alternative analytic approach to investigating the particle-shutter system is

to focus entirely on the transmission, i.e. x > 0, region. The particle’s wave function

Ψ(x, t) satisfies the free-particle Schrödinger equation for all x > 0 and t > 0. Initially, at

t = 0, the particle is assumed to have a zero probability to be found in the transmission

region: Ψ(x, 0) = 0 for all x > 0. The action of the shutter is then introduced by

means of a time-dependent boundary condition imposed on the wave function at x = 0,

namely Ψ(0, t) = a(t) for all t > 0. Here a(t) is a given (complex-valued) function

that essentially contains all information about the initial wave packet in the incident

(x < 0) region, as well as the time protocol of the shutter opening. This approach is

very popular in diffraction-in-time studies and has been extensively used in the literature

(see, e.g., Refs. [9, 18, 19, 20, 21, 22]). What it does not take into account however is the

back-action of the transmitted matter wave on the incoming wave in the incident region.

Such a back-action may arise, for instance, as a consequence of the so-called quantum
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backflow effect (see Refs. [23, 24] for pioneering works on quantum backflow and the

introduction section in Ref. [25] for the most up-to-date review of the literature).

Another approach, which was originally developed in Refs. [26, 27] and that we

hereinafter refer to as the aperture function model, is of particular relevance to the

present work. It models a shutter that can absorb but not scatter the incident matter

wave. The shutter’s transparency can depend arbitrarily on time, and this dependence

is represented by an aperture function χ(t). The latter ranges between 0 (perfectly

absorbing, closed shutter) and 1 (perfectly transmitting, open shutter). In the aperture

function model, the shutter is modelled by means of discontinuous time-dependent

matching conditions, involving χ(t), that connect the value of the wave function Ψ and

its spatial derivative ∂Ψ/∂x across the shutter. These matching conditions are closely

related to Kottler’s matching conditions used to justify Kirchhoff’s diffraction theory

in stationary-wave optics [28, 29, 30], the latter being known to yield experimentally

relevant predictions in the transmission region [30]. The aperture function model then

allows one to express the particle’s wave function in the transmission region as an integral

involving the initial state Ψ(x, 0) and the aperture function χ(t). This transmitted wave

function constructed from the aperture function model has been explicitly shown to be

consistent with the wave function obtained from a first-principle analysis, based on a

delta-potential ω(t)δ(x), of physically relevant atom-optics systems [31].

In this paper, we analytically describe the interference fringes obtained in a class of

diffraction-in-time scenarios by extending the aperture function model into phase space.

More precisely, assuming that the incident particle is characterized by a fast localized

(Gaussian) wave packet, we derive an expression for the Husimi quasiprobability

distribution representing the part of the matter wave transmitted through the shutter.

We then evaluate this expression analytically for the case when the shutter aperture

function χ(t) consists of a finite number of Lorentzian-like slits. Our final analytic

result, obtained for narrow slits, offers a simple and intuitive description of (multiple)

slit interference/diffraction in the time domain. Special attention is devoted to the

single- and double-slit cases.

The paper is organized as follows. We first recall in section 2 the definition of the

aperture function model. We see in particular that the Husimi distribution associated to

the transmitted state can be expressed as an integral over a finite time interval. We then

discuss in section 3 how the latter can be written as a contour integral in the complex

plane that allows to apply Cauchy’s residue theorem. We see in particular that this

approach requires one to compute a residue at an essential singularity. This challenging

technical difficulty is addressed in section 4. Here we explicitly compute this residue,

and thus the resulting Husimi distribution, for a particular class of aperture functions

χn of the form χn(t) = 1/[1 + νn(t− T )n], with n an even integer. Such Lorentzian-like

functions describe apodization barriers, which smoothly open around the time T and

have a width 1/ν. The underlying integral yielding the Husimi distribution being by

construction linear in χ, our results can thus be straightforwardly extended to aperture

functions that consist in an arbitrary sequence of such χn: taking different opening
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times T then effectively describes a time grating. We treat the particular (Lorentzian)

case n = 2 in section 5. Considering the slit regime ν � 1 of narrow Lorentzian barriers

χ2 allows us to considerably simplify our analytic expression of the Husimi distribution.

In particular, we are able to derive a simple analytic expression of the position of the

interference fringes in the phase space. Our work is summarized and concluding remarks

are drawn in section 6. Additional technical details are deferred to the appendices.

2. The aperture function model of matter wave absorption

In this section we discuss how the dynamics of quantum wave packets in the presence of

a barrier can be adequately described by a particular model of matter-wave absorption.

The latter was originally devised in [26, 27] and is hereinafter referred to as the aperture

function model. We consider a nonrelativistic structureless quantum particle of mass m

that moves in one dimension along the x axis, and whose state at time τ is described

by a wave function Ψ(x, τ). The absorbing barrier is taken to be time dependent and

pointlike, located at position x = 0.

The particle is assumed to be prepared at the initial time τ = 0 in the minimum-

uncertainty Gaussian wave packet ψσ, x0, v0(x, 0), i.e.

Ψ(x, 0) = ψσ, x0, v0(x, 0) , (1)

given by

ψσ, x0, v0(x, 0) ≡
(

1

πσ2

)1/4

exp

[
−(x− x0)2

2σ2
+ i

mv0

~
(x− x0)

]
, (2)

where x0 and v0 correspond to the initial mean position and mean velocity, respectively,

of the particle, while σ > 0 characterizes the width of the wave packet. Throughout

this work, we use velocities v rather than momenta p = mv. The freely evolved state

ψσ, x0, v0(x, τ) =
´
dx′K0(x− x′, τ)ψσ, x0, v0(x′, 0) at some time τ , with

K0(ξ, τ) =

√
m

2iπ~τ
exp

(
i
mξ2

2~τ

)
(3)

the well-known free-particle propagator (see e.g. [32]), is then given by

ψσ, x0, v0(x, τ) =

(
1

πσ2
τ

)1/4

exp

[
−(x− xτ )2

2σ2
τ

+ iS(x, τ)

]
, (4)

where

xτ ≡ x0 + v0τ and στ ≡ σ

√
1 +

(
~τ
mσ2

)2

(5)

denote the mean position and the width, respectively, while the phase S is given by

S(x, τ) ≡ (x− xτ )2

2σ2
τ

~τ
mσ2

+
mv0

~
(x− xτ ) +

mv2
0τ

2~
− 1

2
Arctan

(
~τ
mσ2

)
. (6)

We now discuss the dynamics of the particle in the presence of the time-dependent

absorbing barrier. Before we introduce the aperture function model in section 2.2, we
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first briefly discuss in section 2.1 the so-called frozen Gaussian regime in which this

model has been shown [31] to yield accurate physical predictions. Finally, section 2.3

is devoted to defining and writing the Husimi distribution, the quantity that is at the

heart of the present work, within this model.

2.1. Frozen Gaussian regime

Here we discuss the particular dynamical regime that we consider throughout this work,

and that can be summarized by the set of assumptions

σ � −x0 = |x0| . xt = v0(t− tc)�
mσ2v0

~
, (7)

where

tc ≡
|x0|
v0

= −x0

v0

(8)

corresponds to the time needed for a classical free particle initially located at position

x0 and moving with the velocity v0 to reach the barrier at x = 0. For this reason, we

hereinafter refer to tc as the classical hitting time. Here and in the sequel we take the

final time of propagation t > tc of the particle to be a fixed parameter.

0x0

v0

�

x

BARRIER

 (x, t)

 (x, 0)

TRANSMISSION 
REGION

Figure 1: Physical picture of the dynamical regime described by (7), with the initial

Gaussian state Ψ(x, 0) (blue) and a sketch of the final transmitted state Ψ(x, t) (red).

The regime (7) allows for an intuitive picture, schematized on figure 1, of the

dynamics of the particle. The leftmost condition in (7) states that the particle is

initially localized on the left of the barrier. It then moves towards the latter with a

positive velocity v0 > 0, crosses the barrier around the classical hitting time tc before

it reaches the (mean) position xt that, according to the second condition in (7), is in

the transmission region x > 0. Finally, the rightmost condition in (7) ensures that the

particle is localized on the right of the barrier at the final time t.

Indeed, the latter condition yields in particular

~t
mσ2

� 1 . (9)
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This ensures, in view of (5), that the freely evolved wave packet ψσ, x0, v0(x, t) [which,

as sketched on figure 1, is known [31, 33] to be representative of the actual transmitted

state Ψ(x, t)] does not spread in the time t. This characterizes the so-called frozen

Gaussian approximation [34], hence the name frozen Gaussian regime that we give

to (7). The latter is well within the reach of experiments using ultracold atoms (such

as e.g. [35, 36, 37]).

With the frozen Gaussian regime (7) in hand we can now introduce the particular

model that we consider in order to describe the time-dependent absorbing barrier.

2.2. Model

Here we introduce the aperture function model, which is a model of time-dependent

absorption that was originally devised in [26, 27]. The presence of the barrier is taken

into account by imposing discontinuous time-dependent matching conditions on both

the wave function Ψ and its spatial derivative ∂Ψ/∂x at x = 0.

The problem can be equivalently formulated in terms of the propagator K, which

fully specifies the dynamics of the quantum particle between the initial time τ = 0 and

the final time τ = t. In view of the frozen Gaussian regime (7), the propagator here

corresponds to a function K(x, x′, t) that relates the transmitted state Ψ(x, t) of the

particle at time t to its initial state Ψ(x, 0) through

Ψ(x, t) =

ˆ 0

−∞
dx′K(x, x′, t)Ψ(x′, 0) . (10)

We emphasize that the integration range in (10) is restricted to x′ < 0 since we assume

the particle to be initially localized on the left of the barrier. That is, the variable x′ of

K can be restricted to take negative-only values.

The propagator K is then constructed as follows [26, 27]. It is first required to obey

the free-particle time-dependent Schrödinger equation on both sides of the barrier, i.e.
[
i~
∂

∂τ
+

~2

2m

∂2

∂x2

]
K(x, x′, τ) = 0 (11)

for any 0 < τ < t and x, x′ 6= 0. Then, it is set to satisfy the usual initial condition

K(x, x′, 0+) = δ(x− x′) , (12)

where 0+ merely means the limit ε → 0 with ε > 0, as well as Dirichlet boundary

conditions at x→ ±∞ for negative imaginary times, i.e.

K(x→ ±∞, x′, τ) = 0 for τ = −i|τ | . (13)

Finally, discontinuous time-dependent matching conditions are imposed on the

propagator and its spatial derivative at x = 0, reading (since x′ < 0 here)

K(x, x′, τ)|x=0+

x=0− = − [1− χ(τ)] K0(x− x′, τ)|x=0 (14)

and

∂

∂x
K(x, x′, τ)

∣∣∣∣
x=0+

x=0−
= − [1− χ(τ)]

∂

∂x
K0(x− x′, τ)

∣∣∣∣
x=0

, (15)
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for any 0 < τ < t. The real-valued time-dependent function χ(τ) in (14)-(15) embeds

the absorbing properties of the barrier. It is required to satisfy 0 6 χ(τ) 6 1 at any time

τ , with χ = 0 (χ = 1) corresponding to a fully absorbing (fully transparent) barrier.

For this reason, here and in the sequel χ is referred to as the aperture function of the

barrier, and thus the model itself as the aperture function model. The function χ has

been explicitly connected to the (time-dependent) intensity of a laser beam in [31].

It can then be shown [27] that the propagator K(x, x′, t), unique solution to the

well-posed problem formed by (11)-(15), is given by

K(x, x′, t) =

ˆ t

0

dτ
χ(τ)

2

(
x

t− τ −
x′

τ

)
K0(x, t− τ)K0(x′, τ) (16)

in the transmission region, i.e. for x > 0, and for an arbitrary χ(τ). Substituting (1)

and (16) into (10) then yields the following expression of Ψ(x, t) [38]:

Ψ(x, t) =

ˆ t

0

dτ
χ(τ)

2

[
x

t− τ +
v0 ατ
αtc

]
K0(x, t− τ)ψσ, x0, v0(0, τ) , (17)

with

ατ ≡
1

2σ2

1

1 + i~τ/mσ2
=

1

2σ2
τ

(
1− i ~τ

mσ2

)
. (18)

The transmitted state Ψ(x, t) is in general not normalized as a consequence of

absorption: that is, as soon as χ(τ) 6= 1, we have
´
dx |Ψ|2 6 1.

Now, the structure of (17) suggests to consider not Ψ itself, but rather a particular

phase-space representation of Ψ given by the Husimi distribution, as we now discuss.

2.3. Husimi distribution

In this section we construct the Husimi distribution associated with the transmitted

state Ψ(x, t) given by (17). The former is a well-known phase-space representation of

a quantum state (see e.g. [39, 40]). We hereinafter denote by x̃ and ṽ the phase-space

variables corresponding to position and velocity, respectively. We also introduce for

convenience the (reduced) de Broglie wavelengths λ̄, ˜̄λ and time scale t̃ given by

λ̄ ≡ ~
mv0

, ˜̄λ ≡ ~
mṽ

and t̃ ≡ x̃

ṽ
. (19)

The Husimi distribution, which we denote by F , is a nonnegative function of x̃ and

ṽ that can be written as

F (x̃, ṽ, t) ≡ |f(x̃, ṽ, t)|2 (20)

in terms of the complex-valued function f that we define by

f(x̃, ṽ, t) ≡
ˆ ∞
−∞

dx [ψσ, x̃, ṽ(x, 0)]∗Ψ(x, t) , (21)

where the asterisk denotes complex conjugation. In view of (20) we hence refer to f as

the Husimi amplitude. As is clear from (21), f is by construction the overlap between

Ψ and a minimum-uncertainty Gaussian wave packet ψσ, x̃, ṽ(x, 0) with mean position x̃,

mean velocity ṽ and width σ [indeed identical to the width of the initial state (1)].
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The frozen Gaussian regime (7) ensures that F (x̃, ṽ, t) only takes non negligible

values in the phase-space quadrant where x̃ > 0 and ṽ > 0. This is discussed in details

in ([33], Section 5.1). Substituting the expression (17) of Ψ(x, t) into (21), it can be

shown [38] that f(x̃, ṽ, t) is then given by

f(x̃, ṽ, t) =

ˆ t

0

dτ
χ(τ)

2

[
ṽ αt−τ
αt̃

+
v0 ατ
αtc

]
ψσ, x̃,−ṽ(0, t− τ)ψσ, x0, v0(0, τ) . (22)

This expression yields a formal solution for the Husimi amplitude corresponding to the

transmitted state Ψ(x, t). The physics that is embedded in f can be for instance accessed

by numerically computing the integral in (22). Here the challenge, and the main aim

of our study, is to analytically compute this integral. As we discuss in the remaining

part of this work, we perform this challenging task for a particular class of physically

relevant aperture functions χ(τ) by means of complex analysis.

To this end, we rewrite the Husimi amplitude (22) in an alternative form.

Combining (22) with (4)-(6) and (18), we show (details may be found in Appendix

A) that, in the frozen Gaussian regime (7), f can be written in the form

f(x̃, ṽ, t) =

[
1 +O

(
~t
mσ2

)]
ffroz(x̃, ṽ, t) , (23)

where we introduced the frozen Gaussian Husimi amplitude

ffroz(x̃, ṽ, t) ≡
ˆ t

0

dτ f̃froz(τ) , (24)

with the function f̃froz (whose dependence on x̃, ṽ is dropped for compactness) given by

f̃froz(τ) ≡ 1

4
√
πσ3

(
ṽ

αt̃
+
v0

αtc

)
χ(τ) eϕ(τ) . (25)

Here the dimensionless complex-valued function ϕ(τ) is defined by

ϕ(τ) ≡ T0

τ − τ0

+
T1

τ − τ1

− 1

2

(
σ

˜̄λ

)2

− 1

2

(σ
λ̄

)2

(26)

in terms of the complex quantities

τ0 ≡ i
mσ2

~
and τ1 ≡ t− imσ

2

~
, (27)

T0 ≡ −
i

2

(σ
λ̄

)2
(

1 + i
λ̄ |x0|
σ2

)2
mσ2

~
and T1 ≡

i

2

(
σ

˜̄λ

)2
(

1 + i
˜̄λx̃
σ2

)2
mσ2

~
. (28)

The form (23)-(24) of the Husimi amplitude is well suited to an analytic evaluation

by means of complex analysis. Our strategy is thus to resort to Cauchy’s residue theorem

in order to explicitly compute the integral in (24), as we now discuss.

3. The Husimi amplitude as a residue

In this section we express the frozen Gaussian Husimi amplitude (24) as a contour

integral in the complex plane that allows to apply the residue theorem.
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Re

Im

�R R

C(1)
R

C(2)
R

CR ⌘ C(1)
R [ C(2)

R

Figure 2: Contours C(1)
R , corresponding to the segment line [−R,R] of the real axis, and

C(2)
R , corresponding to the upper half-circle with center the origin and radius R, defining

the simple closed contour CR ≡ C(1)
R ∪ C

(2)
R run in the positive direction.

In view of (24) we introduce the contour integral f
�
froz defined by the limit

f
�
froz ≡ lim

R→∞

‰
CR
dz f̃froz(z) =

ˆ ∞
−∞

dτ f̃froz(τ) + lim
R→∞

[
iR

ˆ π

0

dθ eiθf̃froz

(
Reiθ

)]
, (29)

with CR ≡ C(1)
R ∪ C

(2)
R the simple closed contour, run in the positive direction, that is

depicted on figure 2. Comparing (29) with (24) hence shows that

ffroz(x̃, ṽ, t) = f
�
froz − IC(2)

∞
− I(−) − I(+) , (30)

where we introduced the integrals IC(2)
∞

, I(−) and I(+) defined by

IC(2)
∞
≡ lim

R→∞

[
iR

ˆ π

0

dθ eiθf̃froz

(
Reiθ

)]
, (31)

I(−) ≡
ˆ 0

−∞
dτ f̃froz(τ) and I(+) ≡

ˆ ∞
t

dτ f̃froz(τ) . (32)

We now use the decomposition (30) to explicitly compute ffroz. Our strategy is

as follows. We first show in section 3.1 that the integral IC(2)
∞

vanishes under suitable

conditions imposed on the aperture function χ. We then analyze the line integrals I(−)

and I(+) in section 3.2 and determine an upper bound for |I(−) + I(+)|. Finally, we

express in section 3.3 the contour integral f
�
froz by means of the residue theorem, for

which the main difficulty is seen to arise from the presence of an essential singularity.

3.1. The half-circle integral IC(2)
∞

Here we determine a sufficient condition that the aperture function χ must satisfy for

the integral IC(2)
∞

along the upper half circle to vanish.

Combining (31) with (25)-(26) yields for IC(2)
∞

IC(2)
∞

= i
1

4
√
πσ3

(
ṽ

αt̃
+
v0

αtc

)
exp

[
−1

2

(
σ

˜̄λ

)2

− 1

2

(σ
λ̄

)2
]

×
ˆ π

0

dθ lim
R→∞

[
Reiθχ

(
Reiθ

)
exp

(
T0

Reiθ − τ0

+
T1

Reiθ − τ1

)]
. (33)
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We then Taylor expand, in powers of 1/R, the exponential term in the integrand in the

right-hand side of (33), and we have

exp

(
T0

Reiθ − τ0

+
T1

Reiθ − τ1

)
= 1 +

T0 + T1

Reiθ
+O

[(
T0 + T1

Reiθ

)2
]
. (34)

Substituting (34) into (33) then readily shows that a sufficient condition for having

IC(2)
∞

= 0 is that the aperture function χ satisfies

lim
R→∞

[
Reiθχ

(
Reiθ

)]
= 0 for any 0 6 θ 6 π . (35)

Therefore, the integral IC(2)
∞

plays no role in the expression (30) of ffroz under the

condition that the aperture function χ satisfies (35). We now derive an adequate upper

bound regarding the line integrals I(−) and I(+).

3.2. Upper bound for
∣∣I(−) + I(+)

∣∣

From the triangle inequality and the definition (32) of I(−) and I(+) we have

∣∣I(−) + I(+)
∣∣ 6

∣∣I(−)
∣∣+
∣∣I(+)

∣∣ 6
ˆ 0

−∞
dτ
∣∣∣f̃froz(τ)

∣∣∣+

ˆ ∞
t

dτ
∣∣∣f̃froz(τ)

∣∣∣ , (36)

Combining (36) with (25), we show (details may be found in Appendix B) that

|I(−) + I(+)| admits the following global upper bound:

∣∣I(−) + I(+)
∣∣ 6 Γup(x̃, ṽ)Nx̃,−ṽ

[
max

(
t , t̃
)]

max
[
e−

1
2(σλ̄)

2

, e−
1
2(x0

σ )
2] ˆ 0

−∞
dτ |χ(τ)|

+Γup(x̃, ṽ)Nx0, v0(t) max

[
e−

1
2( x̃σ )

2

, e−
1
2(σ˜̄λ)

2
] ˆ ∞

t

dτ |χ(τ)| , (37)

where Γup is the algebraic function

Γup(x̃, ṽ) ≡ 1

2
√
πσ


ṽ

√√√√1 +

(˜̄λx̃
σ2

)2

+ v0

√
1 +

(
λ̄ |x0|
σ2

)2


 , (38)

while N is the Gaussian function

Nξ1,ξ2(τ) ≡ exp

[
− 1

2σ2
τ

(ξ1 + ξ2τ)2

]
(39)

and max(ξ1 , ξ2) denotes the maximum between ξ1 and ξ2.

The actual values of the integrals in (37) must be estimated, either numerically or

analytically, for any particular χ that we may consider. These integrals can reasonably

be expected to exist in view of the condition (35) that any valid χ must satisfy. In

particular, the apodization barriers χn that we consider in sections 4 and 5 below allow

us to analytically derive upper bounds of these integrals.

Combining now the expression (30) of ffroz with IC(2)
∞

= 0 yields in particular
∣∣∣ffroz(x̃, ṽ, t)− f

�
froz

∣∣∣ =
∣∣I(−) + I(+)

∣∣ . (40)
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Therefore, we can take the upper bound (37) as quantifying the maximum error that

we make when identifying ffroz to the contour integral f
�
froz.

We hence showed at this point that the terms IC(2)
∞

, I(−) and I(+) can be safely

neglected in the expression (30) of ffroz. Therefore, we now discuss how we can compute

the remaining (and most important) term in (30), namely the contour integral f
�
froz.

3.3. Residues

In this section we describe our strategy for analytically computing the contour integral

f
�
froz that, in view of the definition (29), is defined by

f
�
froz =

‰
γ

dz f̃froz(z) with γ ≡ lim
R→∞

CR . (41)

First, substituting (18) and (26) into (25), we write the function f̃froz in the form

f̃froz(z) = Ωχ(z) exp

(
T0

z − τ0

+
T1

z − τ1

)
, (42)

where we introduced the quantity

Ω ≡ 1

2
√
π

[
ṽ

σ

(
1 + i

˜̄λx̃
σ2

)
+
v0

σ

(
1 + i

λ̄ |x0|
σ2

)]
e−

1
2(σ˜̄λ)

2− 1
2(σλ̄)

2

. (43)

For convenience, we also introduce the notations Rγ and C(z̃ , ρ), with

Rγ ≡ {z ∈ C | z enclosed by γ} (44)

denoting the interior of the oriented closed contour γ and

C(z̃ , ρ) ≡ {z ∈ C | |z − z̃| = ρ} (45)

denoting the circle of center z̃ and radius ρ.

We now use Cauchy’s residue theorem (see e.g. [41, 42]) to compute the integral (41).

As is clear from (42) τ0 and τ1 are essential singularities of f̃froz. However, (27) ensures

that their imaginary parts satisfy Im (τ0) > 0 and Im (τ1) < 0. Therefore, the integration

contour γ in (41) only encloses τ0. If we further assume that the function χ(z) only

possesses isolated singularities Zj (as is indeed the case for the apodization barriers χn
considered in sections 4 and 5 below), then the Cauchy residue theorem states that the

contour integral (41) can be written as

f
�
froz = 2πi





Res
[
f̃froz(z) , τ0

]
+
∑

j
Zj∈Rγ

Res
[
f̃froz(z) , Zj

]



, (46)

where Res [f̃froz(z) , z̃ ] denotes the residue of the function f̃froz at the point z̃.

The term Res [f̃froz(z) , τ0] in (46) corresponds to a residue at an essential singularity

and is thus a priori the most challenging to treat. Indeed, no general method exists to

compute it other than to resort to its very definition: it is the coefficient of the term

1/(z − τ0) in the Laurent series of f̃froz about τ0. To this end, it turns out that the
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exponential term in (42) can be transformed into the generating function of the Bessel

functions of the first kind: this is what we discuss in the remaining part of this section.

By definition of a residue, we have [41, 42]

Res
[
f̃froz(z) , τ0

]
=

1

2πi

‰
γτ0

dz f̃froz(z) , (47)

where γτ0 is any simple closed contour enclosing τ0 such that f̃froz(z) is analytic on and

inside γτ0 except at z = τ0. For convenience, we choose γτ0 = C(τ0 , r), and we introduce

for concreteness the positive number rτ0 defined by

rτ0 ≡ min
[
|τ0 − τ1| , (|τ0 − Zj|)j

]
, (48)

where min denotes the minimum function. It is thus clear that, in order for τ0 to be the

only singularity of f̃froz enclosed by C(τ0 , r), the radius r must satisfy

0 < r < rτ0 . (49)

Substituting (42) into (47) hence yields

Res
[
f̃froz(z) , τ0

]
=

Ω

2πi

‰
C(τ0 ,r)

dz′ χ(z′) exp

(
T0

z′ − τ0

+
T1

z′ − τ1

)
. (50)

As we discuss in details in Appendix C, applying first the Möbius transformation

w =
−z′ + τ1

z′ − τ0

, (51)

followed by the change of variable

z =

√
T0

T1

w , (52)

we show that the residue (50) can be written as

Res
[
f̃froz(z) , τ0

]
=

Ω (τ1 − τ0)

2πiZ
e
T0−T1
τ1−τ0

‰
C
(
−Z ,|Z| |τ0−τ1|

r

) dz gχ(z)g(z) , (53)

where we introduced the complex number Z given by

Z ≡
√
T0

T1

, (54)

as well as the functions gχ(z) and g(z) defined by

gχ(z) ≡ 1

(z/Z + 1)2 χ

(
τ0z/Z + τ1

z/Z + 1

)
(55)

and

g(z) ≡ exp

[√
T0T1

τ1 − τ0

(
z − 1

z

)]
=

∞∑

k=−∞
Jk

(
2
√
T0T1

τ1 − τ0

)
zk , (56)

the latter hence corresponding to the generating function of the Bessel functions of the

first kind Jk(z) (see e.g. [43]).

In view of (49), it is clear that the integration contour in (53) encloses the essential

singularity z = 0 of g(z), but not its other essential singularity z =∞. In addition, the
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number of singularities of gχ(z) enclosed by the integration contour in (53) must, for

consistency, be independent of the particular value of r.

While the expression (53) is valid for an arbitrary aperture function χ, to evaluate

the remaining integral can a priori only be done in some specific cases. We now consider

a class of functions χ for which the integral in (53) can be evaluated explicitly.

4. Apodization barriers

The analysis performed in section 3 above is valid for general aperture functions χ. Here

and in the sequel, we consider a particular class of such functions, which we denote by

χn with n a strictly positive even integer. We define the function χn(τ) by

χn(τ) ≡ 1

1 + νn(τ − Top)n
, n even , ν > 0 , Top ∈ R . (57)

The requirement of an even n ensures that 0 6 χn(τ) 6 1 for any τ , so that (57)

indeed represents a valid class of aperture functions. As is illustrated on figure 3, χn
models a smooth algebraic window, or apodization barrier. Because χn(Top) = 1, we

call Top the opening time of the barrier. We assume hereinafter that it satisfies

0 < Top < t . (58)

This indeed ensures that the barriers (57) open when a substantial part of the incident

wave packet reaches the barrier. The quantity ν characterizes the inverse of the width

of the barrier, with ν � 1 (ν � 1) corresponding to a broad (narrow) barrier.

0 tc t

τ

0

0.5

1.0

χ
n
(τ

)

n = 2

n = 4

n = 6

n = 8

Figure 3: Apodization barriers (57) as functions of τ for n = 2 (blue), n = 4 (orange),

n = 6 (green) and n = 8 (red). Here we chose the numerical parameters to be ν = 5 (in

dimensionless units), Top = tc and t = 2tc.

Before analyzing the residue (53), we must check that the apodization barriers of

the form (57) satisfy our complex formulation of the Husimi amplitude discussed in
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section 3 above. First, since χn(Reiθ) ∼ 1/νnRn einθ as R→∞, we have

lim
R→∞

[
Reiθχn

(
Reiθ

)]
= lim

R→∞

[
1

νn (Reiθ)n−1

]
= 0 (59)

for any n > 2. Therefore, χn(z) indeed satisfies condition (35) for any n > 2.

We then evaluate the two integrals that appear in the right-hand side of (37) for

χ = χn. As we show in details in Appendix D, we have the upper boundsˆ 0

−∞
dτ χn(τ) 6

1

ν

[π
2
− Arctan (νTop)

]
, if ν >

1

Top

, (60)

and ˆ ∞
t

dτ χn(τ) 6
1

ν

{π
2
− Arctan [ν (t− Top)]

}
, if ν >

1

t− Top

, (61)

for any even integer n > 2. It is thus clear from (60)-(61) that we can make the upper

bound (37) arbitrarily small by making ν large enough. Therefore, the apodization

barriers (57) are indeed perfectly suited to our complex formulation.

We now explicitly compute the residues in (46) for the apodization barriers (57).

We first investigate in section 4.1 the analytic structure of the two functions χn and

gχn . We then derive in section 4.2 the Taylor expansion of gχn about z = 0. We use

the latter in section 4.3 to construct, by means of Cauchy products, the relevant part

of the Laurent series of gχng about z = 0: the term 1/z in the latter series then yields

the residue Res [gχn(z)g(z) , 0]. After obtaining this residue at the essential singularity,

we conclude in section 4.4 by computing the remaining, simple residues at poles.

4.1. Analytic structure of χn(z) and gχn(z)

In this section we study the analytic structure of the two functions χn(z), given by (57),

and gχn(z), obtained from (55) for χ = χn, for an arbitrary even integer n > 2.

These two functions being rational functions, their only singularities are thus poles [41].

Technical details are deferred to Appendix E.

As is clear from (57), χn admits the n simple poles Z
(n)
j given by

Z
(n)
j = Top +

1

ν
e(2j+1) iπ

n with 0 6 j 6 n− 1 . (62)

We now use (62) to identify which of these poles must be taken into account in (46),

namely those that have a positive imaginary part. Since n is even by assumption, it

is clear from (62) that Im [Z
(n)
j ] > 0 if and only if 0 6 j 6 n/2 − 1. Therefore, the

contour integral (46), which we relabel f
�

(n)
froz here to emphasize that it corresponds to

the aperture function χn, is given by

f
�

(n)
froz ≡

‰
γ

dz f̃
(n)

froz(z) = 2πi



Res

[
f̃

(n)
froz(z) , τ0

]
+

n/2−1∑

j=0

Res
[
f̃

(n)
froz(z) , Z

(n)
j

]


 , (63)
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where f̃
(n)

froz is obtained upon substituting χ = χn into (42), that is

f̃
(n)

froz(z) ≡ Ωχn(z) exp

(
T0

z − τ0

+
T1

z − τ1

)
=

Ω exp
(

T0

z−τ0 + T1

z−τ1

)

νn
n−1∏
j=0

[
z − Z(n)

j

] . (64)

We then denote by z
(n)
j , with j an integer, the poles of the function gχn that is

obtained upon substituting (57) into (55), that is

gχn(z) =
(z/Z + 1)n−2

(z/Z + 1)n + νn [(τ0 − Top) z/Z + τ1 − Top]n
. (65)

As is clear from (65), gχn admits the n simple poles

z
(n)
j = −Z

[
τ1 − Top −

1

ν
e(2j+1) iπ

n

] [
τ0 − Top −

1

ν
e(2j+1) iπ

n

]−1

with 0 6 j 6 n− 1 . (66)

Combining (66) with (62) shows that the poles z
(n)
j are related to the poles Z

(n)
j through

z
(n)
j = −Z

[
τ1 − Z(n)

j

] [
τ0 − Z(n)

j

]−1

with 0 6 j 6 n− 1 . (67)

We can now express the residue Res [f̃
(n)

froz(z) , τ0] obtained from (53) for χ = χn, i.e.

Res
[
f̃

(n)
froz(z) , τ0

]
=

Ω (τ1 − τ0)

2πiZ
e
T0−T1
τ1−τ0

‰
C
(
−Z ,|Z| |τ0−τ1|

r

) dz gχn(z)g(z) . (68)

Indeed, combining (67) with (49) shows that the distance | −Z − z(n)
j | between z = −Z

and any pole z
(n)
j satisfies the strict inequality
∣∣∣−Z − z(n)

j

∣∣∣ < |Z| |τ0 − τ1|
r

. (69)

This shows that the circle C (−Z , |Z| |τ0 − τ1| /r) encloses all the poles z
(n)
j of gχn .

Furthermore, we already saw in section 3.3 that it also encloses the essential singularity

z = 0 of g. The integral in (68) can thus itself be computed by means of the Cauchy

Residue Theorem, and we get

Res
[
f̃

(n)
froz(z) , τ0

]
=

Ω (τ1 − τ0)

Z
exp

(
T0 − T1

τ1 − τ0

)

×
{

Res [gχn(z)g(z) , 0] +
n−1∑

j=0

Res
[
gχn(z)g(z) , z

(n)
j

]}
. (70)

The terms Res [gχn(z)g(z) , z
(n)
j ] in the right-hand side of (70) correspond to residues

at simple poles, and are thus straightforward to compute. The main challenge hence

arises from the residue Res [gχn(z)g(z) , 0] at the essential singularity. The latter requires

to construct the Laurent series of gχng about z = 0. Since we already know the Laurent

series of g [see (56)], we now compute the Taylor series of gχn(z) about 0.
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4.2. Taylor expansion of gχn(z)

In view of the results obtained in section 4.1, we can write (65) as

gχn(z) =
Z2

1 + νn(τ0 − Top)n
(z + Z)n−2

{
n−1∏

j=0

[
z − z(n)

j

]}−1

. (71)

We can then write a partial fraction decomposition of (71) of the form

gχn(z) =
Z2

1 + νn(τ0 − Top)n

n−1∑

j=0

A
(n)
j

z − z(n)
j

, (72)

where the n complex numbers A
(n)
j must be explicitly determined. We propose the

following hypothesis regarding the expression of these coefficients A
(n)
j :

A
(n)
j =

[
z

(n)
j + Z

]n−2





n−1∏

j′=0
j′ 6=j

[
z

(n)
j − z(n)

j′

]




−1

, 0 6 j 6 n− 1 . (73)

While we have explicitly checked that the expression (73) of A
(n)
j is valid for even integers

n up to 10, we have been unable to show that (73) holds for an arbitrary n. Indeed, the

difficulty arises from explicitly expanding factorized polynomials of arbitrary degrees.

We emphasize however that (73) is exact for the n = 2 case that we analyze in section 5.

We now use (72) to write the Taylor series of gχn about z = 0. We easily get

1

z − ζ = −1

ζ

∞∑

k=0

(
z

ζ

)k
, (74)

which converges absolutely for any ζ 6= 0 and any z ∈ C such that |z/ζ| < 1.

Substituting (74) into (72) hence readily yields

gχn(z) = − Z2

1 + νn(τ0 − Top)n

n−1∑

j=0

A
(n)
j

z
(n)
j

∞∑

k=0

[
z

z
(n)
j

]k
. (75)

We can now use the Taylor series (75) to construct the Laurent series of gχng about

z = 0, which is necessary in order to obtain the residue Res [gχn(z)g(z) , 0], and thus

Res [f̃
(n)

froz(z) , τ0] in view of (70), at the essential singularity.

4.3. The residue at the essential singularity

Here we evaluate the residue Res [gχn(z)g(z) , 0] from its very definition [41, 42]: it

corresponds to the coefficient of the 1/z term in the Laurent series of gχng about z = 0.

Combining the Taylor series (75) of gχn with the Laurent series (56) of g yields the

Laurent series of gχng about 0, and we have

gχn(z)g(z) = − Z2

1 + νn(τ0 − Top)n

n−1∑

j=0

A
(n)
j

z
(n)
j

∞∑

k=0

[
z

z
(n)
j

]k ∞∑

k′=−∞
Jk′

(
2
√
T0T1

τ1 − τ0

)
zk
′
. (76)
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As we show in details in Appendix F, using Cauchy products to express the product

of the two series in (76) allows us to identify the term proportional to 1/z. We hence

obtain the following expression of Res [gχn(z)g(z) , 0]:

Res [gχn(z)g(z) , 0] = − Z2

1 + νn(τ0 − Top)n

n−1∑

j=0

A
(n)
j

∞∑

k=1

(−1)k
[
z

(n)
j

]kJk
(

2
√
T0T1

τ1 − τ0

)
. (77)

We now substitute (77) into the expression (70) of Res [f̃
(n)

froz(z) , τ0] to get

Res
[
f̃

(n)
froz(z) , τ0

]
=

Ω (τ1 − τ0)

Z
exp

(
T0 − T1

τ1 − τ0

)




n−1∑

j=0

Res
[
gχn(z)g(z) , z

(n)
j

]

− Z2

1 + νn(τ0 − Top)n

n−1∑

j=0

A
(n)
j

∞∑

k=1

(−1)k
[
z

(n)
j

]kJk
(

2
√
T0T1

τ1 − τ0

)



. (78)

Finally, we substitute (78) into the expression (63) of the contour integral f
�

(n)
froz to get

f
�

(n)
froz =





Ω (τ1 − τ0)

Z
e
T0−T1
τ1−τ0


− Z2

1 + νn(τ0 − Top)n

n−1∑

j=0

A
(n)
j

∞∑

k=1

(−1)k
[
z

(n)
j

]kJk
(

2
√
T0T1

τ1 − τ0

)

+
n−1∑

j=0

Res
[
gχn(z)g(z) , z

(n)
j

]

+

n/2−1∑

j=0

Res
[
f̃

(n)
froz(z) , Z

(n)
j

]




2πi . (79)

The remaining residues in (79) are at poles and are now easily computed.

4.4. The residues at poles

Here we explicitly compute the remaining residues in (79).

First, it is clear from (64) that any Z
(n)
j is a simple pole of f̃

(n)
froz . Therefore, the

residue Res [f̃
(n)

froz(z) , Z
(n)
j ] can be simply computed from the limit [41]

Res
[
f̃

(n)
froz(z) , Z

(n)
j

]
= lim

z→Z(n)
j

{[
z − Z(n)

j

]
f̃

(n)
froz(z)

}
. (80)

We hence get, in view of (64),

Res
[
f̃

(n)
froz(z) , Z

(n)
j

]
=

Ω

νn





n−1∏

j′=0
j′ 6=j

[
Z

(n)
j − Z(n)

j′

]




−1

exp

[
T0

Z
(n)
j − τ0

+
T1

Z
(n)
j − τ1

]
, (81)

for any 0 6 j 6 n− 1.

We then have from (56) and (71)

gχn(z)g(z) =
Z2 (z + Z)n−2

1 + νn(τ0 − Top)n

{
n−1∏

j=0

[
z − z(n)

j

]}−1

exp

[√
T0T1

τ1 − τ0

(
z − 1

z

)]
. (82)
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This shows that any z
(n)
j is a simple pole of gχng, so that

Res
[
gχn(z)g(z) , z

(n)
j

]
= lim

z→z(n)
j

{[
z − z(n)

j

]
gχn(z)g(z)

}
, (83)

and thus we get from (82)

Res
[
gχn(z)g(z) , z

(n)
j

]
=

Z2

1 + νn(τ0 − Top)n

[
z

(n)
j + Z

]n−2

n−1∏
j′=0
j′ 6=j

[
z

(n)
j − z(n)

j′

] e
√
T0T1

τ1−τ0

[
z

(n)
j − 1

z
(n)
j

]
, (84)

for any 0 6 j 6 n− 1.

We then set f
�
froz = f

�
(n)

froz into (30) to get the corresponding frozen Gaussian Husimi

amplitude

f
(n)
froz(x̃, ṽ, t) ≡ f

�
(n)

froz − I(−) − I(+) , (85)

where we used IC(2)
∞

= 0 [see section 3.1 as well as condition (59)]. Combining (85)

with (79), (81) and (84) hence yields

f
(n)
froz(x̃, ṽ, t) = 2πi

n/2−1∑

j=0

Ω

νn
1

n−1∏
j′=0
j′ 6=j

[
Z

(n)
j − Z(n)

j′

]e
T0

Z
(n)
j
−τ0

+
T1

Z
(n)
j
−τ1

+2πi
Ω (τ1 − τ0)

Z
e
T0−T1
τ1−τ0





− Z2

1 + νn(τ0 − Top)n

n−1∑

j=0

A
(n)
j

∞∑

k=1

(−1)k
[
z

(n)
j

]kJk
(

2
√
T0T1

τ1 − τ0

)

+
n−1∑

j=0

Z2

1 + νn(τ0 − Top)n

[
z

(n)
j + Z

]n−2

n−1∏
j′=0
j′ 6=j

[
z

(n)
j − z(n)

j′

] e
√
T0T1

τ1−τ0

[
z

(n)
j − 1

z
(n)
j

]




− I(−) − I(+) . (86)

Finally, setting ffroz = f
(n)
froz into (23) defines the Husimi amplitude f (n), namely

f (n)(x̃, ṽ, t) ≡
[
1 +O

(
~t
mσ2

)]
f

(n)
froz(x̃, ṽ, t) . (87)

The result (86), combined with (87), is the main result of our work. Indeed, it

provides an analytic expression of the Husimi amplitude f (n)(x̃, ṽ, t) for an apodization

barrier χn(τ) of the form (57). This expression is valid for an arbitrary opening time

Top, (inverse) width ν and even integer n > 2.

Since the expression (86) is rather intricate in general, we now illustrate this

important analytic result on the simplest, Lorentzian case n = 2.
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5. The Lorentzian case n = 2

In this final section we consider the apodization barriers (57) in the simplest case

n = 2, i.e. we consider Lorentzian aperture functions χ2. In addition to simplifying the

expressions (86)-(87), we also see that it embeds all the ingredients that are necessary

to exhibit interesting physical behaviors such as diffraction.

Setting n = 2 into (86) hence yields the frozen Gaussian Husimi amplitude

f
(2)
froz(x̃, ṽ, t;Top) = 2πi

Ω

ν2

1

Z
(2)
0 − Z(2)

1

e

T0

Z
(2)
0 −τ0

+
T1

Z
(2)
0 −τ1

+2πi
Ω (τ1 − τ0)

Z
e
T0−T1
τ1−τ0




− Z2

1 + ν2(τ0 − Top)2

1∑

j=0

A
(2)
j

∞∑

k=1

(−1)k
[
z

(2)
j

]kJk
(

2
√
T0T1

τ1 − τ0

)

+
1∑

j=0

Z2

1 + ν2(τ0 − Top)2
A

(2)
j e

√
T0T1

τ1−τ0

[
z

(2)
j − 1

z
(2)
j

]

− I(−) − I(+) , (88)

where the dependence on Top is explicitly written for later convenience.

The expression (88) remains rather intricate, notably because of the series of

Bessel functions. Therefore, we first discuss in section 5.1 how this expression can

be significantly simplified in the limit of a large ν. This so-called slit regime is then

applied in section 5.2 to the case of a double barrier. This allows us in particular to

exhibit diffraction, and to analytically describe the phase-space structure of the resulting

diffraction pattern.

5.1. The slit regime ν � 1

Hereinafter we consider the particular regime of large ν, which we write for convenience

ν � 1 (irrespective of units). This makes of χ2 a time slit that is open at time Top.

As we discuss in details in Appendix G, we show that i) the first term in the right-

hand side of (88) is of order 1/ν, whereas ii) all the other terms in the right-hand side

of (88) are of order 1/ν2. Therefore, we can write f
(2)
froz in the simple form

f
(2)
froz(x̃, ṽ, t;Top) = f1slit(x̃, ṽ, t;Top) +O

(
1

ν2

)
, (89)

where we introduced the slit Husimi amplitude f1slit defined by

f1slit(x̃, ṽ, t;Top) ≡ π

ν
Ω exp [γ0(Top) + γ1(x̃, ṽ, t;Top)] , (90)

with the quantities γ0,1 ≡ T0,1/(Top − τ0,1), i.e. in view of (19) and (27)-(28)

Re [γ0(Top)] =
1

2σ2

2Top|x0|v0 − x2
0 +m2σ4v2

0/~2

1 + ~2T 2
op/m

2σ4
, (91)

Im [γ0(Top)] =
m

2~
2|x0|v0 − Top (v2

0 − ~2x2
0/m

2σ4)

1 + ~2T 2
op/m

2σ4
(92)
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and

Re [γ1(x̃, ṽ, t;Top)] = − 1

2σ2

2 (Top − t) x̃ṽ + x̃2 −m2σ4ṽ2/~2

1 + ~2 (Top − t)2 /m2σ4
, (93)

Im [γ1(x̃, ṽ, t;Top)] =
m

2~
2x̃ṽ + (Top − t) (ṽ2 − ~2x̃2/m2σ4)

1 + ~2 (Top − t)2 /m2σ4
. (94)

In view of (20), we hence define the slit Husimi distribution F1slit by

F1slit(x̃, ṽ, t;Top) ≡ |f1slit(x̃, ṽ, t;Top)|2 , (95)

that is using (90)

F1slit(x̃, ṽ, t;Top) =
π2

ν2
|Ω|2 exp {2Re [γ0(Top)] + 2Re [γ1(x̃, ṽ, t;Top)]} . (96)

While (91)-(94) are valid for an arbitrary Top, the effect of the barrier is magnified

when Top is close to tc. In addition, to further assume that t − Top = Top allows to

considerably simplify (91)-(94). Therefore, here we assume that

Top = tc and t = 2tc = 2Top . (97)

Combining (96) with (19), (43), (91)-(94) and (97) hence yields

F1slit(x̃, ṽ, 2tc; tc) =
π

4σ2ν2

[
(ṽ + v0)2 +

~2

m2σ4
(x̃+ |x0|)2

]
exp

[
−(x̃− ṽtc)2

σ2
tc

]
. (98)

Therefore, it is clear from (98) that F1slit does not exhibit any diffraction pattern. This

is in agreement with [18], see more precisely Eq. (36) in [18] for a single rectangular slit

in space and in time: here we consider a time slit with a very small width, so that the

nearest diffraction peak (whose position depends on the inverse of the width of the time

slit) is essentially sent to infinity.

The expression (90) of f1slit is valid for an arbitrary narrow Lorentzian aperture

function χ2. It can be adequately used to construct the Husimi amplitude obtained in

the more interesting case of a double slit in time, as we now discuss.

5.2. Double slit

In this final section, we consider a double-slit scenario characterized by the aperture

function χ2slit given by a superposition of two narrow Lorentzian functions χ2 that open

at two different times T
(0)
op and T

(1)
op , with T

(0)
op < T

(1)
op , that is

χ2slit(τ) ≡ 1

2





1

1 + ν2
[
τ − T (0)

op

]2 +
1

1 + ν2
[
τ − T (1)

op

]2




. (99)

The factor 1/2 in (99) is added in order to ensure that 0 6 χ2slit(τ) 6 1 at any time τ .

Similarly to section 5.1 above, we still consider the slit regime ν � 1 here.

As is clear from (22), the Husimi amplitude is by construction linear in χ. Therefore,

the double-slit Husimi amplitude f2slit that corresponds to (99) can be constructed from

the single-slit Husimi amplitude f1slit, and we merely have

f2slit

[
x̃, ṽ, t;T (0)

op , T
(1)
op

]
=

1

2

{
f1slit

[
x̃, ṽ, t;T (0)

op

]
+ f1slit

[
x̃, ṽ, t;T (1)

op

]}
. (100)
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The corresponding double-slit Husimi distribution F2slit is then defined by (20), i.e.

F2slit

[
x̃, ṽ, t;T (0)

op , T
(1)
op

]
≡
∣∣f2slit

[
x̃, ṽ, t;T (0)

op , T
(1)
op

]∣∣2 . (101)

Therefore, combining (101) with (19), (43), (90) and (100) shows that F2slit reads

F2slit

[
x̃, ṽ, t;T (0)

op , T
(1)
op

]
=

π

8σ2ν2
g1(x̃, ṽ) exp

{
g2

[
x̃, ṽ, t;T (0)

op , T
(1)
op

]}

×
(
cosh

{
f1

[
x̃, ṽ, t;T (0)

op , T
(1)
op

]}
+ cos

{
f2

[
x̃, ṽ, t;T (0)

op , T
(1)
op

]})
, (102)

where we introduced the notations

g1 (x̃, ṽ) ≡ (ṽ + v0)2 +
~2

m2σ4
(x̃+ |x0|)2 , (103)

g2

[
x̃, ṽ, t;T (0)

op , T
(1)
op

]
≡ Re

{
γ0

[
T (0)

op

]}
+ Re

{
γ1

[
x̃, ṽ, t;T (0)

op

]}

+Re
{
γ0

[
T (1)

op

]}
+ Re

{
γ1

[
x̃, ṽ, t;T (1)

op

]}
− m2σ2

~2

(
ṽ2 + v2

0

)
, (104)

f1

[
x̃, ṽ, t;T (0)

op , T
(1)
op

]
≡ Re

{
γ0

[
T (0)

op

]}
+ Re

{
γ1

[
x̃, ṽ, t;T (0)

op

]}

−Re
{
γ0

[
T (1)

op

]}
− Re

{
γ1

[
x̃, ṽ, t;T (1)

op

]}
, (105)

f2

[
x̃, ṽ, t;T (0)

op , T
(1)
op

]
≡ Im

{
γ0

[
T (0)

op

]}
+ Im

{
γ1

[
x̃, ṽ, t;T (0)

op

]}

−Im
{
γ0

[
T (1)

op

]}
− Im

{
γ1

[
x̃, ṽ, t;T (1)

op

]}
. (106)

It seems reasonable to expect the occurrence of diffraction in the case where the

time difference T
(1)
op − T (0)

op between the two slits is small enough, as it is the analog of

the distance that separates the two slits in Young’s classic double-slit scenario. In view

of this, i) we assume for convenience that the two opening times T
(0)
op and T

(1)
op are taken

symmetrically with respect to the classical hitting time tc, that is

T (0)
op = tc(1− ε) and T (1)

op = tc(1 + ε) , (107)

and ii) we further assume that the dimensionless parameter ε is small, i.e.

ε� 1 . (108)

This ensures that both slits open when a significant part of the incident wave packet

reaches the barrier. Furthermore, in order to make the algebra as simple as possible

while at the same time preserving the essence of diffraction, similarly to (97) we here

again assume that the final time t is simply twice the classical hitting time tc,

t = 2tc . (109)

Combining (107) with (109) yields the symmetries

t− T (0)
op = T (1)

op and t− T (1)
op = T (0)

op . (110)

The expressions of the functions g2, f1 and f2 defined by (104)-(106) that result

from (107) and (109) are written explicitly in Appendix H.

We now compute the Husimi distribution (102) in view of (107)-(109). The results

are shown on figure 4(a) for a 87Rb atom of mass mRb = 86.9091805 u. We choose as



Phase-space representation of diffraction in time: Analytic results 22

0.05 0.15 0.25
x̃ (mm)

2.4

3.0

3.6

ṽ
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Figure 4: (a) Analytic expression (102) of the double-slit Husimi distribution F2slit

(see text for numerical parameters); (b) Corresponding Husimi distribution obtained by

means of a fully numerical evaluation of the integral (22) for the aperture function (99)

and for the exact same parameters as in (a).

numerical parameters x0 = −0.15 mm, σ = 30µm, v0 = 3 mm/s, tc ≡ |x0|/v0 = 50 ms

and t = 2tc = 100 ms (similar parameters have been e.g. used by Jendrzejewski et al.

in their study of the coherent backscattering of ultracold atoms of 87Rb [36]). This

set of parameters is designed so as to satisfy the frozen Gaussian regime (7) since we

have v0 (t− tc) = |x0| = 0.15 mm, while mσ2v0/~ ' 3.7 mm > 20 v0 (t− tc). The

dimensionless parameter ε in (107) is set to ε = 0.1, hence yielding the opening times

T
(0)
op = 45 ms and T

(1)
op = 55 ms. Finally, we have set ν ≈ 36.537 kHz (namely ν = 5000 in

the corresponding numerical set of dimensionless parameters). It is clear from figure 4(a)

that the double-slit Husimi distribution (102) exhibits a succession of peaks in the phase

space: this is indeed a clear signature of diffraction.

In order to check that the function F2slit given by (102) indeed provides an accurate

analytic description of the actual state of the system, we confront it to a fully numerical

evaluation of the original integral (22), which hence gives the actual Husimi amplitude,

for the double-slit aperture function (99). The results are shown on figure 4(b) for the

exact same numerical parameters as the ones used on figure 4(a). We can readily see

that the agreement between the numerical and analytic results is excellent: while our

analytic expression (102) apparently slightly overestimates the amplitude of the peaks,

the phase-space structure of the Husimi distribution is indeed remarkably predicted

by (102). Therefore, we can now adequately use the latter to analytically investigate

the phase-space structure of the diffraction pattern.

We are for instance able to infer an analytic expression of the position of the

interference fringes in phase space. To this end, we first note on figure 4 that the peaks

are seemingly arranged along a line ṽ = αx̃ + β, for some α > 0 and β ∈ R. In view of

the mathematical structure (102) of the double-slit Husimi distribution, our strategy is

thus as follows (additional technical details may be found in Appendix I): i) First, we

substitute the ansatz ṽ = αx̃ + β into the expression (105) of f1. ii) We then require
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the resulting expression of f1 to vanish, i.e. f1 [x̃, αx̃+ β] = 0 (what is also suggested

by numerical investigations). This allows us to obtain α and β, and we find

α =
1

tc

[
1 +O

(
~2t2c
m2σ4

ε2
)]

and β = v0O
(

~2t2c
m2σ4

ε2
)
. (111)

This ensures that in the diffraction regime (108), we can safely take α = 1/tc = v0/|x0|
and β = 0. iii) Finally, we substitute the resulting ansatz ṽ = x̃/tc = v0x̃/|x0| into the

expression (106) of f2, and require sin f2 to vanish, i.e. sin [f2 (x̃, x̃/tc)] = 0. The latter

condition hence precisely yields a countable family of solutions {x̃(2)
k , ṽ

(2)
k } with k ∈ Z,

and we find

{
x̃

(2)
k , ṽ

(2)
k

}
=




|x0|

√√√√1 +
2~

mv2
0

[
T

(1)
op − T (0)

op

]kπ , v0

√√√√1 +
2~

mv2
0

[
T

(1)
op − T (0)

op

]kπ




. (112)

This result precisely yields the position of the interference fringes in phase space. This

is in agreement with [18], see more precisely Eq. (44) in [18] for a single rectangular slit

in space and a double rectangular slit in time.
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(a) Husimi distribution along the line ṽ = v0x̃/|x0|
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ṽ
(2)
4

ṽ
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Figure 5: Confirmation of the expression (112) of the position of the interference fringes

in phase space (same numerical parameters as on figure 4): (a) Double-slit Husimi

distribution F2slit, as given by (102), along the line ṽ = v0x̃/|x0|; (b) Corresponding

Husimi distribution obtained by numerically evaluating the integral (22) for the aperture

function (99) and for the same parameters as in (a).

The validity of our analytic prediction (112) is illustrated on figure 5 (where we use

the exact same set of parameters as on figure 4 above). We first plot on figure 5(a) the

double-slit Husimi distribution F2slit, as given by (102), along the line ṽ = v0x̃/|x0|. As

anticipated, the latter is indeed seen to contain both the dark and the bright interference

fringes, whose positions are indeed perfectly described by our analytic result (112).

More precisely, the phase-space points (112) for even values of the index k correspond

to peaks of the Husimi distribution F2slit, i.e. to bright interference fringes. On the

other hand, the phase-space points (112) for odd values of the index k correspond to

dark interference fringes, i.e. points where F2slit vanishes. To further ensure that (112)
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indeed accurately describes the phase-space structure of the actual Husimi distribution,

we then superimpose on figure 5(b) the phase-space points (112) for k = −4,−2, 0, 2, 4

onto the corresponding Husimi distribution obtained by numerically evaluating the

integral (22) for the aperture function (99) and for the exact same numerical parameters

as on figure 5(a). This clearly confirms the accuracy of our analytic result (112) to

describe the position of the diffraction peaks in phase space.

The above analysis can of course be repeated for generalizations of the double-

slit aperture function (99) to aperture functions χ3slit, χ4slit, . . . that are a sum of

3, 4, . . . Lorentzian slits all opening at different times. Though the algebra becomes

more intricate even in the slit regime ν � 1, this effectively allows us to analytically

study diffraction in time for general time gratings.

6. Summary and conclusion

In this paper we investigated how a particular model of matter-wave absorption, the

so-called aperture function model, can be adequately used to obtain an analytic phase-

space representation of diffraction in time.

We considered a nonrelativistic, structureless quantum particle that follows a one-

dimensional motion along the x-axis. The particle is assumed to be free everywhere

except at x = 0 where it is taken to be subjected to a spatially infinitely thin,

pointlike time-dependent absorbing barrier. The aperture function model characterizes

the transparency of the barrier by a (time-dependent) function χ(t), termed the aperture

function, whose values range between 0 (completely closed barrier) and 1 (fully open

barrier). The effect of the barrier on the particle is then taken into account by imposing

discontinuous time-dependent matching conditions, which involve χ, on both the wave

function Ψ and its spatial derivative ∂Ψ/∂x at x = 0.

The advantage of the aperture function model is that it allows to analytically

express the wave function Ψ(x, t), evolved from the initial minimum-uncertainty

Gaussian state (1) according to (10), in the transmission (x > 0) region in the form

of the integral (17). This remains true for the Husimi amplitude f (yielding the Husimi

distribution F through F ≡ |f |2) associated with Ψ, given by (22). This integral

expression of f proves to be valid for an arbitrary time-dependent aperture function χ.

The main aim of our work has then been to explicitly compute the latter integral by

means of Cauchy’s residue theory.

We found that the main difficulty that arose from this complex-analysis-based

approach was the need to compute a residue at an essential singularity, for which no

general method exists. Therefore, we had to resort to the very definition of a residue, and

thus to construct the relevant part of the Laurent series of the corresponding function

(namely, the 1/z term if the singularity is z = 0). We did this for the particular class of

aperture functions χn given by (57), with n an arbitrary even integer. Such functions

describe Lorentzian-like barriers that smoothly open around the opening time Top with

a width 1/ν. We hence obtained the expression (86)-(87) of the Husimi amplitude f (n)
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that corresponds to the aperture function χn.

The latter expression, valid for any n, appears to be rather convoluted, in particular

due to the presence of a series of Bessel functions. Therefore, we gave particular attention

to the Lorentzian case n = 2. Furthermore, considering the slit regime ν � 1 of very

narrow barriers allowed us to reduce the Husimi amplitude f (2) to the considerably

simpler expression (89) in terms of the quantity f1slit given by (90). We saw in particular

that the resulting Husimi distribution F1slit, given by (98), exhibits no interference

pattern. We then exploited the linearity, obvious on (22), of the Husimi amplitude in

the aperture function χ and considered the double Lorentzian χ2slit given by (99). The

latter hence describes the time-domain version of the double-slit scenario, with two time

slits that open at different times T
(0)
op and T

(1)
op . The general structure of the resulting

Husimi distribution F2slit, given by (102), allows for the appearance of diffraction in

time: a clean diffraction pattern indeed arises in the regime of parameters described

by (107)-(109). This eventually allowed us to derive the analytic expression (112) of the

position of the interference fringes in phase space.

In conclusion, the main outcome of our work is to provide a simple and intuitive

analytic description of the phase-space structure of diffraction in time that arises from

a class of smooth, Lorentzian-like time gratings. An interesting followup question is

to investigate the structure of the Husimi distribution F (n) = |f (n)|2 outside of the

Lorentzian case, i.e. for n = 4, 6, . . . Another followup direction is to explore the phase-

space structure of the Husimi distribution out of the narrow-slit regime ν � 1 in order

for instance to determine the impact of the term that involves Bessel functions, a direct

consequence of the essential singularity.
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Appendix A. Derivation of (23)-(25)

Combining (22) with (4)-(6) and (18) allows to write f in the form

f(x̃, ṽ, t) =

ˆ t

0

dτ f̃(τ) , (A.1)

with the function f̃(τ) defined by

f̃(τ) ≡ χ(τ)

2

√
2

πα0

(
ṽ

αt̃
α

3
2
t−τα

1
2
τ +

v0

αtc
α

3
2
τ α

1
2
t−τ

)
eϕ(τ) . (A.2)

We now use the frozen Gaussian approximation (9) that results from (7) to Taylor-

expand the square roots in (A.2).

Because (9) can also be alternatively written as

0 6
~τ
mσ2

� 1 and 0 6
~(t− τ)

mσ2
� 1 , ∀τ ∈ [0, t] , (A.3)
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combining (A.3) with the definition (18) of ατ hence yields the Taylor expansion

αµτ = αµ0

[
1 +O

(
i
~τ
mσ2

)]
, ∀τ ∈ [0, t] , µ =

1

2
,
3

2
, (A.4)

which, because τ 6 t and by definition of the O notation, is equivalent to

αµτ = αµ0

[
1 +O

(
i
~t
mσ2

)]
, ∀τ ∈ [0, t] , µ =

1

2
,
3

2
, (A.5)

where the right-hand side has now the advantage of being independent of τ as compared

to the right-hand side in (A.4). Similarly, we can thus write

αµt−τ = αµ0

[
1 +O

(
i
~t
mσ2

)]
, ∀τ ∈ [0, t] , µ =

1

2
,
3

2
. (A.6)

Therefore, we combine (A.5) with (A.6) to get

α
3
2
t−τα

1
2
τ = α2

0

[
1 +O

(
i
~t
mσ2

)]
and α

3
2
τ α

1
2
t−τ = α2

0

[
1 +O

(
i
~t
mσ2

)]
. (A.7)

Substituting now (A.7) into (A.2) hence shows that f̃(τ) can be written in the form

f̃(τ) =

[
1 +O

(
i
~t
mσ2

)]
f̃froz(τ) , (A.8)

with f̃froz(τ) given by (25). As compared to its original definition (A.2), the resulting

expression (A.8) of f̃(τ) is single valued. This allows for a straightforward extension of

the integral in (A.1) to a branch-cut-free contour integral in the complex plane.

Appendix B. Upper bound for
∣∣I(−) + I(+)

∣∣

This appendix is devoted to deriving a relevant upper bound for |I(−) +I(+)|. For clarity,

we recall the following standard result about positive powers of positive real numbers:

∀a, b ∈ R+ , ∀µ ∈ R∗+ , a > b ⇐⇒ aµ > bµ , (B.1)

where R+ (R∗+) denotes the set of all positive real numbers with 0 included (excluded).

Furthermore, combining the definition (32) with the triangle inequality yields

∣∣I(−)
∣∣ 6
ˆ 0

−∞
dτ
∣∣∣f̃froz(τ)

∣∣∣ and
∣∣I(+)

∣∣ 6
ˆ ∞
t

dτ
∣∣∣f̃froz(τ)

∣∣∣ . (B.2)

We first write an upper bound for |f̃froz(τ)| in Appendix B.1. After discussing some

technical details in Appendix B.2 and Appendix B.3, we derive upper bounds for |I(−)|
and |I(+)| in Appendix B.4 and Appendix B.5, respectively.

Appendix B.1. Upper bound for
∣∣∣f̃froz(τ)

∣∣∣

In view of its definition (25), the function f̃froz(τ) can be written as

f̃froz(τ) = Γχ(τ) eϕ(τ) , (B.3)
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where ϕ is given by (26), and Γ is, in view of (18)-(19), defined by

Γ ≡ 1

2
√
π

[
ṽ

σ

(
1 + i

˜̄λx̃
σ2

)
+
v0

σ

(
1 + i

λ̄ |x0|
σ2

)]
. (B.4)

We now take the modulus of (B.3). We first note that
∣∣eϕ(τ)

∣∣ = eRe[ϕ(τ)] , (B.5)

with Re (z) denoting the real part of z, that is in view of (18) and (26)
∣∣eϕ(τ)

∣∣ = ũx̃, ṽ(τ)ux0, v0(τ) , (B.6)

where the functions ũx̃, ṽ(τ) and ux0, v0(τ) are defined by

ũx̃, ṽ(τ) ≡ exp

{
−α0 [x̃− ṽ(t− τ)]2

1 +
4~2α2

0

m2 (t− τ)2

}
and ux0, v0(τ) ≡ exp

[
−α0 (x0 + v0τ)2

1 +
4~2α2

0

m2 τ 2

]
. (B.7)

Finally, taking the modulus of (B.4) and using the triangle inequality, we can write

|Γ| 6 Γup , (B.8)

where Γup is defined by

Γup ≡
1

2
√
π


 ṽ
σ

√√√√1 +

(˜̄λx̃
σ2

)2

+
v0

σ

√
1 +

(
λ̄ |x0|
σ2

)2


 . (B.9)

Therefore, combining (B.3) with (B.6) and (B.8), we get:
∣∣∣f̃froz(τ)

∣∣∣ 6 Γup |χ(τ)| ũx̃, ṽ(τ)ux0, v0(τ) . (B.10)

This is our starting point for deriving upper bounds of |I(−)| and |I(+)|. We do this

in Appendix B.4 and Appendix B.5, respectively, after we study in Appendix B.2

and Appendix B.3 the general behavior of the two functions ũx̃, ṽ(τ) and ux0, v0(τ),

respectively. More explicitly, we want to determine their senses of variation for τ ∈ R.

This is indeed a simple approach of finding upper bounds for these two functions.

Appendix B.2. Behavior of ũx̃, ṽ

We first find the stationary points of ũx̃, ṽ, i.e. the points where the derivative

ũ′x̃, ṽ ≡ dũx̃, ṽ/dτ vanishes. Differentiating (B.7) with respect to τ yields

ũ′x̃, ṽ(τ) = [ṽτ − (ṽt− x̃)]

[
4~2α2

0

m2
x̃τ −

(
4~2α2

0

m2
x̃t+ ṽ

)]
2α0ũx̃, ṽ(τ)

[
1 +

4~2α2
0

m2 (t− τ)2
]2 . (B.11)

Since α0 6= 0 by assumption, and ũx̃, ṽ(τ) 6= 0, ∀τ ∈ R, we can readily see on (B.11) that

the derivative ũ′x̃, ṽ(τ) admits the two real roots τ
(1)
x̃, ṽ and τ

(2)
x̃, ṽ given by

τ
(1)
x̃, ṽ = t− t̃ and τ

(2)
x̃, ṽ = t+

m2

4~2α2
0t̃
, (B.12)
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where we used the definition (19) of t̃. Remember that in our case x̃, ṽ > 0, and hence

t̃ > 0. Therefore, a direct consequence of (B.12) is that

τ
(1)
x̃, ṽ < t < τ

(2)
x̃, ṽ . (B.13)

We now study the sign of ũ′x̃, ṽ(τ) for τ ∈ (τ
(1)
x̃, ṽ , τ

(2)
x̃, ṽ). In view of (B.13), and because

τ
(1)
x̃, ṽ and τ

(2)
x̃, ṽ are by construction the two only roots of ũ′x̃, ṽ, this is equivalent to merely

studying the sign of ũ′x̃, ṽ(t). From (B.7) and (B.11) we get

ũ′x̃, ṽ(t) = −2α0x̃ṽ e
−α0x̃2

, (B.14)

and thus, since by assumption α0, x̃, ṽ > 0,

ũ′x̃, ṽ(t) < 0 . (B.15)

Therefore, we deduce from (B.15) that

ũ′x̃, ṽ(τ) < 0 , ∀τ ∈
(
τ

(1)
x̃, ṽ , τ

(2)
x̃, ṽ

)
. (B.16)

We now determine the sign of ũ′x̃, ṽ(τ) for τ /∈ [τ
(1)
x̃, ṽ , τ

(2)
x̃, ṽ]. To do this, we study the

behavior of ũ′x̃, ṽ(τ) as τ → ±∞. From (B.7) and (B.11) we can write

lim
τ→±∞

ũ′x̃, ṽ(τ) =
m2x̃ṽ

2~2α0

e
− m2ṽ2

4~2α0 lim
τ→±∞

1

τ 2
= 0+ , (B.17)

since we have α0, x̃, ṽ > 0. Therefore, because τ
(1)
x̃, ṽ and τ

(2)
x̃, ṽ are by construction the two

only roots of ũ′x̃, ṽ we deduce from (B.17) that

ũ′x̃, ṽ(τ) > 0 , ∀τ /∈
[
τ

(1)
x̃, ṽ , τ

(2)
x̃, ṽ

]
. (B.18)

Combining the results (B.16) and (B.18), we hence see that the function ũx̃, ṽ(τ)

has the following behavior:




ũx̃, ṽ(τ) increasing , ∀τ ∈
(
−∞ , τ

(1)
x̃, ṽ

]

ũx̃, ṽ(τ) decreasing , ∀τ ∈
[
τ

(1)
x̃, ṽ , τ

(2)
x̃, ṽ

]

ũx̃, ṽ(τ) increasing , ∀τ ∈
[
τ

(2)
x̃, ṽ , ∞

)
. (B.19)

Appendix B.3. Behavior of ux0, v0

Now, we first find the stationary points of ux0, v0 , i.e. the points where the derivative

u′x0, v0
≡ dux0, v0/dτ vanishes. Differentiating (B.7) with respect to τ yields

u′x0, v0
(τ) = (x0 + v0τ)

(
4~2α2

0

m2
x0τ − v0

)
2α0ux0, v0(τ)
(

1 +
4~2α2

0

m2 τ 2
)2 . (B.20)

Since α0 6= 0 by assumption, and ux0, v0(τ) 6= 0, ∀τ ∈ R, we can readily see on (B.20)

that the derivative u′x0, v0
(τ) admits the two real roots τ

(1)
x0, v0 and τ

(2)
x0, v0 given by

τ (1)
x0, v0

= − m2

4~2α2
0tc

and τ (2)
x0, v0

= tc , (B.21)
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where we used the definition (8) of tc. Because tc > 0 by assumption, we deduce

from (B.21) that the two stationary points τ
(1)
x0, v0 and τ

(2)
x0, v0 satisfy

τ (1)
x0, v0

< 0 < τ (2)
x0, v0

. (B.22)

We now study the sign of u′x0, v0
(τ) for τ ∈ (τ

(1)
x0, v0 , τ

(2)
x0, v0). In view of (B.22), and

because τ
(1)
x0, v0 and τ

(2)
x0, v0 are by construction the two only roots of u′x0, v0

, this is equivalent

to merely studying the sign of u′x0, v0
(0). From (B.7) and (B.20) we get

u′x0, v0
(0) = −2α0x0v0 e

−α0x2
0 , (B.23)

and thus, since by assumption α0, v0 > 0 and x0 < 0,

u′x0, v0
(0) > 0 . (B.24)

Therefore, we deduce from (B.24) that

u′x0, v0
(τ) > 0 , ∀τ ∈

(
τ (1)
x0, v0

, τ (2)
x0, v0

)
. (B.25)

We now determine the sign of u′x0, v0
(τ) for τ /∈ [τ

(1)
x0, v0 , τ

(2)
x0, v0 ]. To do this, we study

the behavior of u′x0, v0
(τ) as τ → ±∞. From (B.7) and (B.20) we can write

lim
τ→±∞

u′x0, v0
(τ) =

m2x0v0

2~2α0

e
− m2v2

0
4~2α0 lim

τ→±∞
1

τ 2
= 0− , (B.26)

since we have α0, v0 > 0, x0 < 0. Therefore, because τ
(1)
x0, v0 and τ

(2)
x0, v0 are by construction

the two only roots of u′x0, v0
we deduce from (B.26) that

u′x0, v0
(τ) < 0 , ∀τ /∈

[
τ (1)
x0, v0

, τ (2)
x0, v0

]
. (B.27)

Combining the results (B.25) and (B.27), we hence see that the function ux0, v0(τ)

has the following behavior:




ux0, v0(τ) decreasing , ∀τ ∈
(
−∞ , τ

(1)
x0, v0

]

ux0, v0(τ) increasing , ∀τ ∈
[
τ

(1)
x0, v0 , τ

(2)
x0, v0

]

ux0, v0(τ) decreasing , ∀τ ∈
[
τ

(2)
x0, v0 , ∞

)
. (B.28)

Appendix B.4. Upper bound for
∣∣I(−)

∣∣

In view of (B.2) we have throughout this section τ 6 0. We first use the results

of Appendix B.2 and Appendix B.3 to obtain upper bounds of ũx̃, ṽ and ux0, v0 for τ ∈ R−.

As is clear from (B.19), the point τ
(1)
x̃, ṽ (τ

(2)
x̃, ṽ) corresponds to a local maximum

(minimum) of ũx̃, ṽ(τ). Since we have both t > 0 and t̃ > 0, then we see on (B.12)

that τ
(2)
x̃, ṽ > 0. However, note that τ

(1)
x̃, ṽ can a priori be either positive or negative, and

thus, because it is a local maximum of ũx̃, ṽ(τ), we can write

ũx̃, ṽ(τ) 6 ũx̃, ṽ

[
min

(
0 , τ

(1)
x̃, ṽ

)]
, ∀τ ∈ R− , (B.29)

where min(ξ1 , ξ2) denotes the minimum between ξ1 and ξ2. Therefore, the upper

bound (B.29) of the function ũx̃, ṽ depends on the sign of the stationary point τ
(1)
x̃, ṽ,
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that is, in view of (B.12), whether the final time t is larger or smaller than t̃ ≡ x̃/ṽ. For

completeness, we explicitly write (B.29) in these two cases.

If we first assume that τ
(1)
x̃, ṽ < 0, then (B.29) reads, in view of the definition (B.7)

of ũx̃, ṽ, the expression (B.12) of τ
(1)
x̃, ṽ and the fact that t̃ ≡ x̃/ṽ,

If t < t̃ : ũx̃, ṽ(τ) 6 1 , ∀τ ∈ R− , (B.30)

which is obviously the most naive upper bound we could write, the function ũx̃, ṽ being

by construction the exponential of a negative quantity. On the other hand, if we now

assume that τ
(1)
x̃, ṽ > 0, then (B.29) reads, in view of the definition (B.7) of ũx̃, ṽ,

If t > t̃ : ũx̃, ṽ(τ) 6 exp

[
−1

2

1

1 +
( ~t
mσ2

)2

(
x̃− ṽt
σ

)2
]

, ∀τ ∈ R− . (B.31)

Now, as is clear from (B.28), the point τ
(1)
x0, v0 (τ

(2)
x0, v0) corresponds to a local minimum

(maximum) of ux0, v0(τ). Since we have tc > 0, then we see on (B.21) that τ
(1)
x0, v0 < 0

and τ
(2)
x0, v0 > 0. Therefore, since τ

(1)
x0, v0 is a local minimum of ux0, v0(τ) we can write

ux0, v0(τ) 6 max

[
lim

τ→−∞
ux0, v0(τ) , ux0, v0(0)

]
, ∀τ ∈ R− , (B.32)

where max(ξ1 , ξ2) denotes the maximum between ξ1 and ξ2. In view of the

definition (B.7) of ux0, v0(τ), we have, also using the definition (19) of λ̄,

lim
τ→−∞

ux0, v0(τ) = e−
1
2(σλ̄)

2

and ux0, v0(0) = e−
1
2(x0

σ )
2

, (B.33)

and thus, combining (B.32) with (B.33) we get

ux0, v0(τ) 6 max
[
e−

1
2(σλ̄)

2

, e−
1
2(x0

σ )
2]

, ∀τ ∈ R− . (B.34)

Therefore, substituting the results (B.29) and (B.34) into (B.10) yields
∣∣∣f̃froz(τ)

∣∣∣ 6 Γup ũx̃, ṽ

[
min

(
0 , τ

(1)
x̃, ṽ

)]
max

[
e−

1
2(σλ̄)

2

, e−
1
2(x0

σ )
2]
|χ(τ)| , ∀τ ∈ R− . (B.35)

Finally, combining (B.35) with (B.2) yields the following upper bound for |I(−)|:
∣∣I(−)

∣∣ 6 Γup ũx̃, ṽ

[
min

(
0 , τ

(1)
x̃, ṽ

)]
max

[
e−

1
2(σλ̄)

2

, e−
1
2(x0

σ )
2] ˆ 0

−∞
dτ |χ(τ)| . (B.36)

Appendix B.5. Upper bound for
∣∣I(+)

∣∣

In view of (B.2) we have here τ > t. We first use the results of Appendix B.2

and Appendix B.3 to obtain upper bounds of ũx̃, ṽ and ux0, v0 for τ ∈ [t,∞).

In view of (B.13), and since we know from (B.19) that τ
(2)
x̃, ṽ is a local minimum of

ũx̃, ṽ(τ) we can write

ũx̃, ṽ(τ) 6 max
[
ũx̃, ṽ(t) , lim

τ→∞
ũx̃, ṽ(τ)

]
, ∀τ ∈ [t,∞) . (B.37)

In view of the definition (B.7) of ũx̃, ṽ(τ) we have, also using the definition (19) of ˜̄λ,

ũx̃, ṽ(t) = e−
1
2( x̃σ )

2

and lim
τ→∞

ũx̃, ṽ(τ) = e−
1
2(σ˜̄λ)

2

, (B.38)
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and thus, combining (B.37) with (B.38) we get

ũx̃, ṽ(τ) 6 max

[
e−

1
2( x̃σ )

2

, e−
1
2(σ˜̄λ)

2
]

, ∀τ ∈ [t,∞) . (B.39)

Now, combining (B.22) with the facts that τ
(2)
x0, v0 = tc [see (B.21)] and 0 < tc < t

readily shows in particular that

τ (2)
x0, v0

< t , (B.40)

and thus, since it is clear from (B.28) that τ
(2)
x0, v0 is a local maximum of ux0, v0(τ),

ux0, v0(τ) 6 ux0, v0(t) , ∀τ ∈ [t,∞) . (B.41)

Therefore, in view of the definition (B.7) of ux0, v0(τ), we have

ux0, v0(τ) 6 exp

[
−1

2

1

1 +
( ~t
mσ2

)2

(
x0 + v0t

σ

)2
]

, ∀τ ∈ [t,∞) . (B.42)

Therefore, substituting the results (B.39) and (B.42) into (B.10) yields

∣∣∣f̃froz(τ)
∣∣∣ 6 Γup exp

[
− 1

2σ2

(x0 + v0t)
2

1 +
( ~t
mσ2

)2

]
max

[
e−

1
2( x̃σ )

2

, e−
1
2(σ˜̄λ)

2
]
|χ(τ)| , (B.43)

for any τ ∈ [t,∞). Finally, combining (B.43) with (B.2) yields the following upper

bound for |I(+)|:
∣∣I(+)

∣∣ 6 Γup exp

[
− 1

2σ2

(x0 + v0t)
2

1 +
( ~t
mσ2

)2

]
max

[
e−

1
2( x̃σ )

2

, e−
1
2(σ˜̄λ)

2
] ˆ ∞

t

dτ |χ(τ)| . (B.44)

Finally, substituting (B.36) and (B.44) into (36) indeed yields (37).

Appendix C. Möbius transformation for Res [f̃froz(z) , τ0]

In this appendix we study how the residue Res [f̃froz(z) , τ0], given by (50), can be

adequately rewritten by means of a particular Möbius transformation.

We begin with the change of variable z′ → w in (50), where w and z′ are related

through the Möbius transformation [41]

w =
−z′ + τ1

z′ − τ0

, (C.1)

and hence the inverse transformation reads

z′ =
τ0w + τ1

w + 1
. (C.2)

First, the orientation of the integration contour is reversed under the change of

variable (C.1) (indeed, any Möbius transformation can be decomposed into two

translations and one inverse [41]). We hence formally write‰
→


. (C.3)
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Then, we determine how the integration contour C(τ0 , r) in (50) is mapped under (C.1).

By definition, C(τ0 , r) is described by the set of all z′ ∈ C satisfying the equation

z′z′∗ − τ ∗0 z′ − τ0z
′∗ + τ0τ

∗
0 − r2 = 0 . (C.4)

Therefore, substituting (C.2) into (C.4) yields the following equation for w:

ww∗ − (−1)∗w − (−1)w∗ + (−1)(−1)∗ −
( |τ0 − τ1|

r

)2

= 0 , (C.5)

which characterizes the circle C (−1 , |τ0 − τ1| /r), with in view of (49)

|τ0 − τ1|
r

>
|τ0 − τ1|
rτ0

. (C.6)

Therefore, (C.1) maps the integration contour C(τ0 , r) onto C (−1 , |τ0 − τ1| /r):

C(τ0 , r)→ C
(
−1 ,
|τ0 − τ1|

r

)
. (C.7)

Now, we have in view of (C.1) and (C.2)

dw

dz′
=

τ0 − τ1

(z′ − τ0)2 =
(w + 1)2

τ0 − τ1

,

so that the Jacobian of the transformation (C.1) reads

dz′ = dw
τ0 − τ1

(w + 1)2 . (C.8)

Finally, from (C.2) we get

T0

z′ − τ0

+
T1

z′ − τ1

=
1

τ1 − τ0

(
T0w −

T1

w

)
+
T0 − T1

τ1 − τ0

. (C.9)

Therefore, combining (C.2), (C.3) and (C.7)-(C.9), we see that under the Möbius

transformation (C.1) the residue (50) can be written in the form

Res
[
f̃froz(z) , τ0

]
=

Ω (τ1 − τ0) e
T0−T1
τ1−τ0

2πi

‰
C
(
−1 ,

|τ0−τ1|
r

) dwχ
(
τ0w+τ1
w+1

)

(w + 1)2 e
1

τ1−τ0 (T0w−T1
w ) . (C.10)

Furthermore, noting that

T0w −
T1

w
=
√
T0T1

(√
T0

T1

w −
√
T1

T0

1

w

)
, (C.11)

we then make the change of variable w → z in (C.10), with

z =

√
T0

T1

w , (C.12)

which then readily yields (53).



Phase-space representation of diffraction in time: Analytic results 33

Appendix D. Upper bounds for
´
dτ χn(τ)

In this appendix we derive upper bounds for the two integrals
´ 0

−∞ dτ |χn(τ)| and´∞
t
dτ |χn(τ)| obtained upon substituting χ = χn into (37).

First, we analytically compute these integrals for n = 2: using (57) and noting that

χ2(τ) =
1

ν

d

dτ
Arctan [ν(τ − Top)] , (D.1)

we have ˆ 0

−∞
dτ |χ2(τ)| = 1

ν

[π
2
− Arctan (νTop)

]
(D.2)

and ˆ ∞
t

dτ |χ2(τ)| = 1

ν

{π
2
− Arctan [ν(t− Top)]

}
. (D.3)

We then use the equivalence

χ2k(τ) 6 χ2(τ) ⇐⇒ |ν(τ − Top)|k−1 > 1 , (D.4)

that is alternatively

χ2k(τ) 6 χ2(τ) , ∀τ /∈
(
Top −

1

ν
, Top +

1

ν

)
, (D.5)

valid for any positive integer k. If in particular ν > 1/Top, we get from (D.5)

χ2k(τ) 6 χ2(τ) , ∀τ ∈ (−∞ , 0] . (D.6)

Furthermore, if ν > 1/(t− Top) we get from (D.5)

χ2k(τ) 6 χ2(τ) , ∀τ ∈ [t , ∞) . (D.7)

Finally, combining (D.6) with (D.2) and (D.7) with (D.3) indeed yields (60) and (61).

Appendix E. Analytic structure of χn(z) and gχn(z)

Here we study the analytic structure of the functions χn(z) (in Appendix E.1) and gχn(z)

(in Appendix E.2), as given by (57) and (65), for an arbitrary even integer n > 2.

Appendix E.1. The function χn(z)

We denote by Z
(n)
j the poles of χn. As is clear from (57), they must satisfy

1 + νn
[
Z

(n)
j − Top

]n
= 0 , (E.1)

which we rewrite in the form[
ν
(
Z

(n)
j − Top

)]n
=
(
e
iπ
n

)n
, 0 6 j 6 n− 1 .

We then use the n distinct roots of unity
(
e2j iπ

n

)n
= 1 , 0 6 j 6 n− 1 , (E.2)
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to get the n poles Z
(n)
j of χn given by

Z
(n)
j = Top +

1

ν
e(2j+1) iπ

n , 0 6 j 6 n− 1 . (E.3)

These poles can be readily seen to satisfy Z
(n)
j 6= Z

(n)
j′ for any j 6= j′. Therefore, the

function χn(z) admits precisely n simple poles.

Now, the poles Z
(n)
j that must be taken into account in (63) are, by definition of

the contour γ, those that have a positive imaginary part. It is clear from (E.3) that

Im
(
Z

(n)
j

)
=

1

ν
sin
[
(2j + 1)

π

n

]
, 0 6 j 6 n− 1 ,

where the parameter ν is by assumption strictly positive. We hence have the equivalence

Im
(
Z

(n)
j

)
> 0 ⇐⇒ (2j + 1)

π

n
< π ⇐⇒ j <

n

2
− 1

2
, (E.4)

where j must be an integer that satisfies 0 6 j 6 n − 1. Now, n must be even, hence

n/2 is an integer, so that the rightmost inequality in (E.4) is equivalent to j 6 n/2− 1.

Therefore, we readily get from (E.4) that

Im
(
Z

(n)
j

)
> 0 ⇐⇒ 0 6 j 6

n

2
− 1 , for any even n > 2 . (E.5)

Furthermore, we readily check that

Im
(
Z

(n)
j

)
< 0 ⇐⇒ n

2
6 j 6 n− 1 , for any even n > 2 . (E.6)

The two results (E.5) and (E.6) hence ensure that only the poles Z
(n)
j for which

0 6 j 6 n/2− 1 are enclosed by the integration contour in (63). In particular, no pole

lies precisely on the integration contour.

We now investigate the analytic structure of the function gχn(z).

Appendix E.2. The function gχn(z)

We now denote by z
(n)
j the poles of gχn . As is clear from (65), they must satisfy

[
z

(n)
j

Z
+ 1

]n
+ νn

[
(τ0 − Top) z

(n)
j

Z
+ τ1 − Top

]n
= 0 , (E.7)

We here again use the roots of unity (E.2), and rewrite (E.7) in the form{
ν

[
(τ0 − Top) z

(n)
j

Z
+ τ1 − Top

]}n

=

[
e(2j+1) iπ

n

(
z

(n)
j

Z
+ 1

)]n
, 0 6 j 6 n− 1 . (E.8)

This is readily solved and we get

z
(n)
j = −Z τ1 − Top − 1

ν
e(2j+1) iπ

n

τ0 − Top − 1
ν
e(2j+1) iπ

n

, 0 6 j 6 n− 1 , (E.9)

which clearly satisfies z
(n)
j 6= z

(n)
j′ for any j 6= j′. Therefore, the function gχn(z) admits

precisely n simple poles. Finally, combining (E.9) with (E.3) shows that the n distinct

simple poles z
(n)
j of gχn(z) are related to the n simple poles Z

(n)
j of χn(z) through

z
(n)
j = −Z

τ1 − Z(n)
j

τ0 − Z(n)
j

, 0 6 j 6 n− 1 . (E.10)
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The simple relation (E.10) now allows us to unambiguously identify which of the

poles z
(n)
j are enclosed by the integration contour C (−Z , |Z| |τ0 − τ1| /r) in (68) as a

direct consequence of the condition (49) satisfied by r. We do this by showing that the

distance between the center z = −Z and any z
(n)
j is strictly smaller than the radius

|Z| |τ0 − τ1| /r. In view of (E.10), the distance | − Z − z(n)
j | is given by

∣∣∣−Z − z(n)
j

∣∣∣ = |Z| |τ0 − τ1|∣∣∣τ0 − Z(n)
j

∣∣∣
, 0 6 j 6 n− 1 . (E.11)

Now, in view of (49), r satisfies in particular

r <
∣∣∣τ0 − Z(n)

j

∣∣∣ , 0 6 j 6 n− 1 ,

from which we readily get

|Z| |τ0 − τ1|
r

> |Z| |τ0 − τ1|∣∣∣τ0 − Z(n)
j

∣∣∣
, 0 6 j 6 n− 1 . (E.12)

Finally, combining (E.11) with (E.12) yields the strict inequality
∣∣∣−Z − z(n)

j

∣∣∣ < |Z| |τ0 − τ1|
r

, 0 6 j 6 n− 1 . (E.13)

This shows that C (−Z , |Z| |τ0 − τ1| /r) indeed encloses all the poles z
(n)
j of gχn .

Appendix F. The residue Res [gχn(z)g(z) , 0]

Here we explicitly compute the residue Res [gχn(z)g(z) , 0], which corresponds to the

coefficient of the 1/z term in the Laurent series of gχn(z)g(z) about z = 0.

We combine (75) with (56) to get

gχn(z)g(z) = − Z2

1 + νn(τ0 − Top)n

n−1∑

j=0

A
(n)
j

z
(n)
j

L
[
z

(n)
j

]
, (F.1)

where we introduced the function L defined by

L(ζ) ≡
∞∑

k=0

(
z

ζ

)k ∞∑

k′=−∞
Jk′

(
2
√
T0T1

τ1 − τ0

)
zk
′
, (F.2)

which we decompose in the form

L(ζ) =
∞∑

k=0

(
z

ζ

)k ∞∑

k′=0

Jk′

(
2
√
T0T1

τ1 − τ0

)
zk
′
+
∞∑

k=0

(
z

ζ

)k ∞∑

k′=1

J−k′

(
2
√
T0T1

τ1 − τ0

)
1

zk′
. (F.3)

We then rewrite the second term in the right-hand side of (F.3) by means of the

Cauchy product of two infinite series, namely

∞∑

k=0

ak

∞∑

k′=0

bk′ =
∞∑

k=0

k∑

l=0

albk−l . (F.4)
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Noting that we have, with a change of index k′ → k′ − 1,
∞∑

k′=1

J−k′

(
2
√
T0T1

τ1 − τ0

)
1

zk′
=

∞∑

k′=0

J−k′−1

(
2
√
T0T1

τ1 − τ0

)
1

zk′+1
, (F.5)

we hence get, in view of (F.4)-(F.5),

∞∑

k=0

(
z

ζ

)k ∞∑

k′=1

J−k′

(
2
√
T0T1

τ1 − τ0

)
1

zk′
=
∞∑

k=0

k∑

l=0

1

ζ l
Jl−k−1

(
2
√
T0T1

τ1 − τ0

)
1

zk−2l+1
, (F.6)

that is, splitting the sum over k in the right-hand side of (F.6) into one sum over even

integers only and one over odd integers only,

∞∑

k=0

(
z

ζ

)k ∞∑

k′=1

J−k′

(
2
√
T0T1

τ1 − τ0

)
1

zk′
=
∞∑

k=1

2k−1∑

l=0

1

ζ l
Jl−2k

(
2
√
T0T1

τ1 − τ0

)
1

z2(k−l)

+
∞∑

k=0

2k∑

l=0

1

ζ l
Jl−2k−1

(
2
√
T0T1

τ1 − τ0

)
1

z2(k−l)+1
. (F.7)

Substituting now (F.7) into (F.3) hence yields

L(ζ) =
∞∑

k=0

(
z

ζ

)k ∞∑

k′=0

Jk′

(
2
√
T0T1

τ1 − τ0

)
zk
′
+
∞∑

k=1

2k−1∑

l=0

1

ζ l
Jl−2k

(
2
√
T0T1

τ1 − τ0

)
1

z2(k−l)

+
∞∑

k=0

2k∑

l=0

1

ζ l
Jl−2k−1

(
2
√
T0T1

τ1 − τ0

)
1

z2(k−l)+1
. (F.8)

We now use (F.8) to identify the coefficient, which we denote by L−1(ζ), of the term

1/z in L(ζ). It is clear that the latter only arises from the third term in the right-hand

side of (F.8), and is obtained from the latter by keeping only the terms of the double

sum for which l = k. Using in addition the identity J−k(z) = (−1)kJk(z) [44], we hence

obtain for L−1(ζ)

L−1(ζ) = ζ
∞∑

k=1

(−1)k

ζk
Jk

(
2
√
T0T1

τ1 − τ0

)
. (F.9)

Since L−1 is by construction the coefficient of the term 1/z in the power series L,

the desired residue Res[gχn(z)g(z) , 0] is obtained from (F.1) and we have

Res [gχn(z)g(z) , 0] = − Z2

1 + νn(τ0 − Top)n

n−1∑

j=0

A
(n)
j

z
(n)
j

L−1

[
z

(n)
j

]
. (F.10)

Finally, substituting (F.9) into (F.10) yields the desired residue (77).

Appendix G. Leading order in 1/ν

In this appendix we derive the expansion of (88) to the leading order in 1/ν. Throughout

this appendix the integers j, j′ are such that

j, j′ = 0, 1 . (G.1)



Phase-space representation of diffraction in time: Analytic results 37

We also explicitly write the poles (62) and (67) for n = 2, that is

Z
(2)
0 = T +

i

ν
and Z

(2)
1 = T − i

ν
(G.2)

and

z
(2)
0 = −Z τ1 − Z(2)

0

τ0 − Z(2)
0

and z
(2)
1 = −Z τ1 − Z(2)

1

τ0 − Z(2)
1

. (G.3)

Furthermore, from (73) we have

A
(2)
0 =

1

z
(2)
0 − z(2)

1

and A
(2)
1 =

1

z
(2)
1 − z(2)

0

= −A(2)
0 . (G.4)

First, note that in view of (G.2) we have

1

Z
(2)
0 − Z(2)

1

=
ν

2i
(G.5)

and

1

τj′ − Z(2)
j

=
1

τj′ − Top

[
1 +

eθj

τj′ − Top

1

ν
+O

(
1

ν2

)]
, (G.6)

where we defined

θj ≡ (2j + 1)i
π

2
, (G.7)

as well as

T0

Z
(2)
0 − τ0

+
T1

Z
(2)
0 − τ1

=
T0

Top − τ0

+
T1

Top − τ1

+
β

ν
+O

(
1

ν2

)
, (G.8)

where we defined

β ≡ − T0e
θ0

(Top − τ0)2 −
T1e

θ1

(Top − τ1)2 . (G.9)

Therefore, we have

e

T0

Z
(2)
0 −τ0

+
T1

Z
(2)
0 −τ1 = e

T0
Top−τ0

+
T1

Top−τ1

[
1 +

β

ν
+O

(
1

ν2

)]
, (G.10)

and thus finally, also using (G.5),

1

ν2

1

Z
(2)
0 − Z(2)

1

e

T0

Z
(2)
0 −τ0

+
T1

Z
(2)
0 −τ1 =

1

2iν
e

T0
Top−τ0

+
T1

Top−τ1

[
1 +

β

ν
+O

(
1

ν2

)]

=
1

2i
e

T0
Top−τ0

+
T1

Top−τ1
1

ν
+O

(
1

ν2

)
. (G.11)

Then, we have in view of (G.3) and (G.6)

z
(2)
j = −Z τ1 − Top

τ0 − Top

+
µj
ν

+O
(

1

ν2

)
, (G.12)

where

µj ≡ −Z
τ1 − Top

τ0 − Top

τ1 − τ0

(τ0 − Top) (τ1 − Top)
eθj , (G.13)
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and similarly

1

z
(2)
j

= − 1

Z

τ0 − Top

τ1 − Top

+
ηj
ν

+O
(

1

ν2

)
(G.14)

where

ηj ≡ −
1

Z

τ0 − Top

τ1 − Top

τ0 − τ1

(τ0 − Top) (τ1 − Top)
eθj . (G.15)

From (G.12) we hence get

z
(2)
0 − z(2)

1 =
µ0 − µ1

ν
+O

(
1

ν2

)
, (G.16)

and thus, also using (G.4),

A
(2)
0 = −A(2)

1 =
1

z
(2)
0 − z(2)

1

=
ν

µ0 − µ1

[
1 +O

(
1

ν

)]
. (G.17)

Therefore, combining (G.14) with (G.17) yields

A
(2)
0

z
(2)
0

+
A

(2)
1

z
(2)
1

= A
(2)
0

[
1

z
(2)
0

− 1

z
(2)
1

]
=
η0 − η1

µ0 − µ1

+O
(

1

ν

)
, (G.18)

then

A
(2)
0[

z
(2)
0

]2 +
A

(2)
1[

z
(2)
1

]2 = A
(2)
0





1
[
z

(2)
0

]2 −
1

[
z

(2)
1

]2





=
2

Z

τ0 − Top

τ1 − Top

η1 − η0

µ0 − µ1

+O
(

1

ν

)
, (G.19)

and more generally

A
(2)
0[

z
(2)
0

]k +
A

(2)
1[

z
(2)
1

]k = A
(2)
0





1
[
z

(2)
0

]k −
1

[
z

(2)
1

]k





= O (1) , (G.20)

for any integer k > 1. Furthermore, it is clear that

Z2

1 + ν2(τ0 − Top)2
=

Z2

ν2(τ0 − Top)2

[
1 +O

(
1

ν2

)]
= O

(
1

ν2

)
. (G.21)

Therefore, combining (G.20) and (G.21) readily shows that

Z2

1 + ν2(τ0 − Top)2

1∑

j=0

A
(2)
j

∞∑

k=1

(−1)k
[
z

(2)
j

]kJk
(

2
√
T0T1

τ1 − τ0

)
= O

(
1

ν2

)
, (G.22)

where we used the fact that the Bessel functions Jk are independent of ν.

Furthermore, combining (G.12) and (G.14) yields

z
(2)
j −

1

z
(2)
j

= −Z τ1 − Top

τ0 − Top

+
1

Z

τ0 − Top

τ1 − Top

+
µj − ηj
ν

+O
(

1

ν2

)
, (G.23)

so that we have

e

√
T0T1

τ1−τ0

[
z

(2)
j − 1

z
(2)
j

]
= eΞ

[
1 +O

(
1

ν

)]
, (G.24)
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where the quantity

Ξ ≡
√
T0T1

τ1 − τ0

(
−Z τ1 − Top

τ0 − Top

+
1

Z

τ0 − Top

τ1 − Top

)
(G.25)

is independent of j. Therefore, combining (G.17), (G.21) and (G.24) shows that

1∑

j=0

Z2A
(2)
j e

√
T0T1

τ1−τ0

[
z

(2)
j − 1

z
(2)
j

]

1 + ν2(τ0 − Top)2
=
Z2eΞ

[
A

(2)
0 + A

(2)
1

]

1 + ν2(τ0 − Top)2

[
1 +O

(
1

ν

)]
= O

(
1

ν2

)
. (G.26)

Therefore, (G.11) shows that the first term in (88) is of order 1/ν, while (G.22)

and (G.26) show that the other terms in (88) are of order 1/ν2. Hence (88) reads

f
(2)
froz(x̃, ṽ, t;Top) =

πΩ

ν
e

T0
Top−τ0

+
T1

Top−τ1 − I(−) − I(+) +O
(

1

ν2

)
. (G.27)

Now, since (60)-(61) are exact for n = 2, we getˆ 0

−∞
dτ χ2(τ) =

1

ν2Top

+O
(

1

ν4

)
and

ˆ ∞
t

dτ χ2(τ) =
1

ν2 (t− Top)
+O

(
1

ν4

)
, (G.28)

so that ˆ 0

−∞
dτ χ2(τ) = O

(
1

ν2

)
and

ˆ ∞
t

dτ χ2(τ) = O
(

1

ν2

)
. (G.29)

Substituting (G.29) into (37) then readily shows that
∣∣I(−) + I(+)

∣∣ = O
(

1

ν2

)
. (G.30)

Therefore, combining (G.27) with (G.30) readily yields (89)-(90).

Appendix H. Explicit expressions of g2, f1 and f2

In this appendix we give the explicit expressions of the functions (104)-(106) that result

from (107) and (109). We get, also using (91)-(94),

g2

[
x̃, ṽ, 2tc;T

(0)
op , T

(1)
op

]
=

1

2σ2

1

1 + ~2(T
(0)
op )2/m2σ4

1

1 + ~2(T
(1)
op )2/m2σ4

×
{

2
[
T (0)

op + T (1)
op

]
[

1 +
~2T

(0)
op T

(1)
op

m2σ4

]
(|x0|v0 + x̃ṽ)

+

(
2 +

~2

m2σ4

[
(T (0)

op )2 + (T (1)
op )2

]) [m2σ4

~2

(
ṽ2 + v2

0

)
−
(
x̃2 + x2

0

)]}

−m
2σ2

~2

(
ṽ2 + v2

0

)
, (H.1)

then

f1

[
x̃, ṽ, 2tc;T

(0)
op , T

(1)
op

]
=

1

2σ2

1

1 + ~2(T
(0)
op )2/m2σ4

1

1 + ~2(T
(1)
op )2/m2σ4

[
T (1)

op − T (0)
op

]

×
{

2

[
−1 +

~2T
(0)
op T

(1)
op

m2σ4

]
(|x0|v0 − x̃ṽ)

+
[
T (0)

op + T (1)
op

] [
v2

0 − ṽ2 +
~2

m2σ4

(
x̃2 − x2

0

)]}
(H.2)
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and

f2

[
x̃, ṽ, 2tc;T

(0)
op , T

(1)
op

]
=
m

2~
1

1 + ~2(T
(0)
op )2/m2σ4

1

1 + ~2(T
(1)
op )2/m2σ4

[
T (1)

op − T (0)
op

]

×
{

2~2

m2σ4

[
T (0)

op + T (1)
op

]
(|x0|v0 − x̃ṽ)

+

[
−1 +

~2T
(0)
op T

(1)
op

m2σ4

] [
ṽ2 − v2

0 +
~2

m2σ4

(
x2

0 − x̃2
)]}

. (H.3)

Appendix I. Phase-space structure of the diffraction peaks

Here we derive the result (112) that describes the phase-space structure of the

interference fringes exhibited by the Husimi distribution F2slit in the case of the double-

slit scenario.

Our strategy to infer, from the mathematical structure (102) of F2slit, an analytic

expression of the position of the interference fringes in phase space is then the following.

We first note on figure 4 that the peaks of F2slit seem to be arranged on a line

ṽ(x̃) = αx̃ + β, for some α > 0 and β ∈ R. We determine these parameters α and

β in Appendix I.1, by i) substituting the ansatz ṽ = αx̃ + β into the expression (H.2)

of f1, and ii) requiring the resulting expression of f1 to vanish, i.e. f1 [x̃, αx̃+ β] = 0.

Then, as we discuss in Appendix I.2, we substitute the resulting ansatz ṽ = αx̃ + β

into the expression (H.3) of f2, and require sin f2 to vanish, i.e. sin [f2 (x̃, αx̃+ β)] = 0.

Since the latter condition hence sets f2 (x̃, αx̃+ β) = kπ with k ∈ Z, it thus yields a

countable family of solutions {x̃(2)
k , ṽ

(2)
k }: the latter precisely describe the position of the

interference fringes in the phase space.

Appendix I.1. The line ṽ(x̃)

A numerical analysis of the double-slit Husimi distribution (see figure 4) strongly

suggests that i) the peaks of F2slit are arranged on a line ṽ(x̃) = αx̃ + β, for some

α > 0 and β ∈ R, and ii) that f1 vanishes along this line ṽ(x̃): we hence take the latter

as our starting point in order to determine the parameters α and β.

First, our numerical results suggest that (xt, v0), i.e. (|x0|, v0) in view of (109),

belongs to the line ṽ(x̃), i.e. ṽ(|x0|) = α|x0|+ β = v0, which hence readily yields for β

β = v0 − α|x0| . (I.1)

We hence get for ṽ(x̃)

ṽ(x̃) = α (x̃− |x0|) + v0 . (I.2)

We then introduce the variables X and V defined by

X ≡ x̃− |x0| and V ≡ ṽ(x̃)− v0 , (I.3)

which in view of (I.2) are thus related through

V = αX . (I.4)
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Substituting (I.3)-(I.4) into (H.2) hence yields

f1

[
x̃, ṽ(x̃), 2tc;T

(0)
op , T

(1)
op

]
=

1

2σ2

1

1 + ~2(T
(0)
op )2/m2σ4

1

1 + ~2(T
(1)
op )2/m2σ4

[
T (1)

op − T (0)
op

]

×
(
ᾱX + β̄

)
X , (I.5)

where the quantities ᾱ and β̄ are defined by

ᾱ ≡ 2α

[
1− ~2T

(0)
op T

(1)
op

m2σ4

]
− α2

[
T (0)

op + T (1)
op

]
+

~2
[
T

(0)
op + T

(1)
op

]

m2σ4
(I.6)

and

β̄ ≡ 2 (|x0|α + v0)

[
1− ~2T

(0)
op T

(1)
op

m2σ4

]
− 2v0α

[
T (0)

op + T (1)
op

]
+ 2|x0|

~2
[
T

(0)
op + T

(1)
op

]

m2σ4
. (I.7)

We now require that ᾱ = 0, that is in view of (I.6)

α2 − 2

T
(0)
op + T

(1)
op

[
1− ~2T

(0)
op T

(1)
op

m2σ4

]
α− ~2

m2σ4
= 0 . (I.8)

The quadratic (in α) equation (I.8) hence admits the two solutions α± given by

α± ≡
1

2

{
2

T
(0)
op + T

(1)
op

[
1− ~2T

(0)
op T

(1)
op

m2σ4

]
±
√

∆

}
(I.9)

in terms of the discriminant

∆ ≡ 4
[
T

(0)
op + T

(1)
op

]2



1 +

~2
[
(T

(0)
op )2 + (T

(1)
op )2

]

m2σ4
+

[
~2T

(0)
op T

(1)
op

m2σ4

]2


 , (I.10)

which is thus positive by construction. Furthermore, substituting (107) into (I.10) [and

remembering (108)] readily shows that

∆ =
1

t2c

[(
1 +

~2t2c
m2σ4

)2

+O
(

~2t2c
m2σ4

ε2
)]

. (I.11)

Therefore, taking the square root of (I.11) and using
√

1 + y = 1 +O(y) we get

√
∆ =

1

tc

[
1 +

~2t2c
m2σ4

+O
(

~2t2c
m2σ4

ε2
)]

. (I.12)

Substituting (I.12) into (I.9) hence yields the two roots

α+ =
1

tc

[
1 +O

(
~2t2c
m2σ4

ε2
)]

(I.13)

and

α− = − ~2tc
m2σ4

[
1 +O

(
ε2
)]
. (I.14)

Note on (I.14) that α− is negative: since it is clear from our numerical results (see

figure 4) that the peaks of the Husimi distribution are arranged along a line that has
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a positive slope, the solution α− must thus be discarded. Therefore, the slope α of the

line (I.4) is given by the solution α+, that is in view of (I.13)

α = α+ =
1

tc

[
1 +O

(
~2t2c
m2σ4

ε2
)]

. (I.15)

Furthermore, substituting (I.15) into (I.7) yields, using again (107),

β̄ = 4v0O
(

~2t2c
m2σ4

ε2
)
. (I.16)

Furthermore, substituting (I.15) into (I.1) yields

β = v0O
(

~2t2c
m2σ4

ε2
)
, (I.17)

so that β vanishes to first order in ε. Therefore, substituting (I.15) into (I.5) and

using (107) and (108) indeed ensures that we have

f1

[
x̃, ṽ(x̃), 2tc;T

(0)
op , T

(1)
op

]
= O

(
~2t2c
m2σ4

ε3
)
, (I.18)

showing that f1 indeed vanishes, to first order in ε, on the line

ṽ(x̃) =
x̃

tc
+O

(
~2t2c
m2σ4

ε2
)
. (I.19)

We now derive the phase-space positions of the interference fringes.

Appendix I.2. Derivation of x̃
(2)
k and ṽ

(2)
k

We determined in Appendix I.1 the line (I.19) that we expect contains the phase-space

points {x̃(2)
k , ṽ

(2)
k } that characterize the positions of the interference fringes. Our strategy

to obtain the latter is to impose that the sine of the function f2 along this line ṽ(x̃)

must vanish (to first order in ε), that is

sin
{
f2

[
x̃, ṽ(x̃), 2tc;T

(0)
op , T

(1)
op

]}
= O

(
ε2
)
. (I.20)

Therefore, we first compute f2 along the line ṽ(x̃). Noting, in view of (107), that

1

1 + ~2(T
(0)
op )2/m2σ4

= 1− ~2t2c
m2σ4

(1− ε)2 +O
[
~4t4c
m4σ8

(1− ε)4

]
(I.21)

and

1

1 + ~2(T
(1)
op )2/m2σ4

= 1− ~2t2c
m2σ4

(1 + ε)2 +O
[
~4t4c
m4σ8

(1 + ε)4

]
, (I.22)

we hence get upon substituting (I.19) and (I.21)-(I.22) into (H.3)

f2

[
x̃, ṽ(x̃), 2tc;T

(0)
op , T

(1)
op

]
= −mε

~tc
(
x̃2 − x2

0

) [
1 +O

(
~2t2c
m2σ4

ε2
)]

. (I.23)

Combining now (I.20) with (I.23) hence requires that

mε

~tc
(
x̃2 − x2

0

) [
1 +O

(
~2t2c
m2σ4

ε2
)]

= kπ , (I.24)
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for k ∈ Z. Since we have

1

1 +O
(

~2t2c
m2σ4 ε2

) = 1 +O
(

~2t2c
m2σ4

ε2
)
,

we hence get from (I.24)

x̃2 = x2
0

{
1 +

~
mv2

0tcε
kπ

[
1 +O

(
~2t2c
m2σ4

ε2
)]}

. (I.25)

Taking the square root of (I.25) hence readily yields the positions x̃
(2)
k of the interference

fringes, namely

x̃
(2)
k = |x0|

√
1 +

~
mv2

0tcε
kπ , (I.26)

that is alternatively, recognizing that in view of (107) we have tcε = [T
(1)
op − T (0)

op ]/2,

x̃
(2)
k = |x0|

√√√√1 +
2~

mv2
0

[
T

(1)
op − T (0)

op

]kπ . (I.27)

The latter readily yields the corresponding velocities ṽ
(2)
k , since in view of (I.19) we can

write (neglecting the ε2 terms)

ṽ
(2)
k =

x̃
(2)
k

tc
. (I.28)

Substituting (I.27) into (I.28) hence yields (also recalling that tc ≡ |x0|/v0)

ṽ
(2)
k = v0

√√√√1 +
2~

mv2
0

[
T

(1)
op − T (0)

op

]kπ . (I.29)

The expressions (I.27) and (I.29) of the positions x̃
(2)
k and velocities ṽ

(2)
k of the

interference fringes exhibited by the double-slit Husimi distribution (102) have been

obtained by focusing only on the terms cosh f1 and cos f2 in the expression (102) of

F2slit. Therefore, we emphasize that our analysis up to this point does not yet ensure

that the phase-space points {x̃(2)
k , ṽ

(2)
k } indeed correspond to actual critical points of

F2slit, which would require to show that

∂F2slit

∂x̃

∣∣∣∣
{x̃,ṽ}={x̃(2)

k ,ṽ
(2)
k }

=
∂F2slit

∂ṽ

∣∣∣∣
{x̃,ṽ}={x̃(2)

k ,ṽ
(2)
k }

= 0 , (I.30)

to the leading order in ε. While this can technically be done, it would require some

tedious algebra. Therefore, here we choose a pragmatic approach: we test the validity

of our analytic expressions (I.27) and (I.29) by numerically evaluating the Husimi

distribution F2slit. As is clear from figure 5, the agreement between our expressions (I.27)

and (I.29) and the numerical results is excellent, as we are indeed able to predict, with

an excellent precision, the positions of the dark and bright interference fringes, i.e. the

minima and maxima, respectively, of the Husimi distribution.
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[6] A. del Campo, G. Garćıa-Calderón, and J. G. Muga. Quantum transients. Phys. Rep., 476(1):1,

2009.
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[18] Č. Brukner and A. Zeilinger. Diffraction of matter waves in space and in time. Phys. Rev. A,

56:3804, 1997.

[19] A. del Campo, J. G. Muga, and M. Moshinsky. Time modulation of atom sources. J. Phys. B:

At. Mol. Opt. Phys., 40:975, 2007.

[20] S. Godoy, N. Olvera, and A. del Campo. A theorem on boundary functions for quantum shutters.

Phys. B: Condens. Matter, 396:108, 2007.
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[42] W. Appel. Mathématiques pour la physique et les physiciens, 4è Ed. H & K Eds, 2008.
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