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ABSTRACT
This work explores the origin of dynamical localization in one-dimensional systems using the kicked rotor as an example. In particular,
we propose the fractal dimension of the phase space as a robust indicator to characterize the onset of classical chaos. As a result, we find
that the system crosses the stability border when the fractal dimension ≥1.81, and we obtain a functional form for the fractal dimen-
sion as a function of the kick strength. At the same time, dynamical localization is explored in the quantum realm by looking into the
energy–localization relationship across the classical stability border, thus finding a correlation between the classical chaos and the presence of
dynamical localization.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0084028

I. INTRODUCTION
The kicked rotor is a traditional system in theoretical physics

to study the fundamentals of classical and quantum chaos. In partic-
ular, it is a crucial system for the study of dynamical systems since
it shows stochastic motion, as explained by Chirikov1 and Greene.2
Moreover, the kicked rotor has been employed on the quantal front
(the quantum kicked rotor) to study the nature of quantum chaos
and its relationship with classical chaos due to its analogy with the
standard map. As a consequence, a vast amount of literature has
been published treating different facets of the quantum kicked rotor,
such as the quantum suppression of classical diffusion, also known
as dynamical localization,3–5 the localization of the wave function,6,7

which is somehow related to the Anderson localization,8,9 or the
existence of quantum resonances in which the energy of the system
grows faster in time than in the classical case.3,10–12 In fact, some of
the theoretical predictions have been corroborated by experimental
realizations that usually come in two flavors: (i) atoms and molecules
in microwave fields13,14 and (ii) ultracold atoms in pulsed optical
lattices.15–23

The quantum mechanical version of a classically chaotic sys-
tem generally shows the expected repulsion of energy levels. In
most cases, spectral properties can be described by random matrix

theory, following one of the possible ensembles based on the symme-
tries of the system under consideration.24–31 However, the quantum
kicked rotor shows a quasi-energy spectrum rather than an energy
spectrum since it is a time-dependent system and energy is not
a conserved quantity. Furthermore, and surprisingly enough, its
quasi-energy spectrum is regular (follows a Poisson distribution)
due to the exponential localization in momentum space charac-
teristic of the system. Consequently, the onset of quantum chaos
is not well described by random matrix theory. Instead, dynamic
localization is mainly used to characterize the onset of quantum
chaos, which is believed to be a quantum interference effect due to
its similarity with Anderson localization.8,9 However, recent stud-
ies challenge that interpretation and still the nature of dynamical
localization is under debate.32–34

This paper presents a study on the classical-quantum corre-
spondence in one-dimensional systems in light of the dynamical
localization using the kicked rotor as a prototypical example. First,
we propose using the fractal dimension of the phase space as the
parameter to specify the onset of classical chaos since it is naturally
related to the phase space volume that exhibits stochastic diffusion.
Second, the relation between the average energy and the localization
of the wave function is analyzed in the transition from ordered to
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diffusive classical regimes, thus giving new insights into the nature
of the dynamical localization.

This paper is organized as follows: Sec. II introduces the fractal
dimension of the phase space as the parameter to specify the onset
of classical chaos. Then, Sec. III explores the classical-quantum cor-
respondence of the dynamical localization in the quantum kicked
rotor. Finally, Sec. IV contains a summary and main conclusions
drawn from the present study.

II. FRACTAL DIMENSION AS A MEASURE
OF CLASSICAL CHAOS

Fractals and chaos are related at a fundamental level. One of the
necessary conditions a system must have to be chaotic is exponential
sensitivity to the initial conditions.35 Because of this property, when
looking into the phase space of a chaotic system, we can expect tra-
jectories to pass extremely close to one another in some areas of the
phase space and to be more spread out in other areas. This diverging
behavior is present at arbitrarily small scales, as even tiny differences
in initial conditions will eventually diverge in chaotic systems. As the
defining property of fractals is the fine structure that persists at arbi-
trarily small scales,36 we can thus expect the phase space of a chaotic
system to be a fractal.

A prime example of a chaotic system showing a fractal nature
is the dynamics of ultracold dipolar collisions.37 In such a sys-
tem, it has been shown that the emergence of quantum chaos is
connected to the volume of phase space presenting a chaotic (or
fractal) nature. Similarly, in two-dimensional (2D) maps, it has
been shown that the area covered by chaotic orbits in phase space
depends on the resolution to measure it, and they are called fat
fractals.38 However, the concept of fat fractal seems to contradict
a priori Newhouse’s theorem about the integral dimension of strange
attractors.39 Although, they can be reconciled by considering that
Newhouse’s theorem is a formal result applicable to a complete orbit
with infinite points. In contrast, the concept of fat fractals emerges as
a numerical exploration of two-dimensional maps, including a large
but finite number of points. Therefore, from a numerical perspec-
tive, the fractal properties of chaotic orbits can be treated as effective
rather than apparent.

Fueled by these results and following previous studies on the
nature of classical chaos of the kicked rotor,40,41 we propose to use
the fractal dimension as a measure of classical chaos. The fractal
dimension measures the detail present in a curve at increasingly
small scales. The more the chaotic a system, the more the trajectories
in phase space will diverge from one another at smaller distances,
and so the level of detail at smaller scales will be higher, and thus,
the fractal dimension of the phase space will be greater.

Here, we chose the box-counting dimension or the
Minkowski–Bouligand dimension42 to characterize the fractal
dimension as it is elaborated in Appendix A. As with all fractal
dimensions, the box-counting dimension is a measure of how the
detail of a set of points varies as a function of scale. The Hamiltonian
of the classical kicked rotor is given by

H(L, θ; t) = L2

2I
+ μϵ0 cos θ

∞
∑
n=0

δ( t
T
− n), (1)

which describes the dynamics of a 2D rotor in a time-dependent
electric field. δ(x) denotes the Dirac delta function of argument

x, and the infinite sum of Dirac delta functions is associated with
a comb of kicks that describe the periodic kicks of the system. In
Eq. (1), L is the angular momentum, I is the moment of inertia, μ is
the dipole moment of the rotor, ϵ0 is the electric field strength, θ is
the angle between the external electric field and the axis of the rotor,
and T is the period of the kicks. After applying Hamilton’s equations
and simplifying the results, we are left with the standard mapping,

ln+1 = ln + K sin θn,

θn+1 = θn + ln+1,

where the dimensionless angular velocity and angle immediately
before the nth kick are denoted by ln and θn, respectively, and
K ≡ μϵ0T2/I. As both equations of the standard mapping are invari-
ant to addition of multiples of 2π, the phase space can be projected
onto a torus.

Phase space diagrams are obtained for different values of K by
iterating the standard map of the kicked rotor and plotting the angu-
lar momentum vs the angle for each of the iterations. The phase
space diagrams have been calculated by using 100 initial trajectories
each propagated with 104 time steps. As already argued, we expect
the phase space diagram of a chaotic system to be a fractal, so we
calculated the fractal dimension for the phase space diagrams for
the different values of K, as shown in Fig. 1. This figure shows that
the fractal dimension varies between 1 and 2, as expected. A fractal
dimension of 1 correlates with a line in the phase space, i.e., uni-
form motion of the system without interaction potential. On the
contrary, a fractal dimension of 2 implies a fully chaotic phase space
or the absence of stability regions. However, a fractal dimension of
2 cannot be attained since there are always narrow stable regions for
K ≫ 1, as explained in Ref. 1.

To better illustrate the relation between fractal dimension and
K, we show a few characteristic phase space diagrams for different
values of K (see the insets of Fig. 1). As a result, we note a growth of
the dense unstable regions of motion in correlation with the values
of K. In particular, the larger the stable regions are, the lower the
fractal dimension is, thus confirming its value as a parameter for the
characterization of the onset of chaos. Furthermore, it is clear that
there is a plateau around K ≈ 0.5 and then a steep rise around K ≈ 1,
before plateauing again for K > 1.5. This behavior may be correlated
with the width of the stochastic layer for the stability border around
K ≈ 1.

The literature analyzing the classical kicked rotor often focuses
on the region around Kcr ≈ 0.97: the lowest value of K such that
there is no invariant non-resonant curve spanning all angles6 or
the value often considered as the stability border following the
Kolmogorov–Arnold–Moser (KAM) theory.43,44 Then, using the
fact that K ≈ 1 is the tipping point, the steep curve of the fractal
dimension around K ≈ 1 shows the transition from stable to glob-
ally unstable or chaotic. In general, we find that the box-counting
dimension is different from the topological dimension of the phase
space, thus confirming its fractal nature. For 0.5 ≲ K ≲ 2.0, we find
that the box-counting dimension can be heuristically described by

D(K) = α tanh(βK + γ) + δ, (2)

and the results are depicted by the red line in Fig. 1. Moreover, the
same expression explains the fractal dimension of a chaotic orbit
in phase space of other two-dimensional maps.41 It is interesting
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FIG. 1. Fractal dimension as a function of the classical parameter K for the clas-
sical kicked rotor. Each point shows the corresponding error bar based on the
box-counting method as explained in Appendix A. The red line corresponds to the
fitting of Eq. (2). The insets show the phase space for different values of K (shown
in the top of each panel).

to note that the upper limit of K for which Eq. (2) is applicable
roughly corresponds to the stability border based on the overlap
criterion. Similarly, the lower limit, K = 0.5, corresponds to a sce-
nario in which 96% of the trajectories are stable.1 In particular, after
fitting our results to Eq. (2), we find α = 0.194 ± 0.003, β = 4.298
± 0.263, γ = −3.820 ± 0.239, and δ = 1.725 ± 0.003. The onset of clas-
sical chaos identifies with a fractal dimension of 1.81. In other words,
as long as the system is chaotic, its fractal dimension is bounded
and given by D ≥ 1.81. Consequently, different realizations of the
kicked rotor are very close to each other when analyzing the fractal
dimension of the phase space.

III. DYNAMICAL LOCALIZATION: FROM ORDER
TO DIFFUSIVE REGIMES

The Hamiltonian of the quantum kicked rotor reads as45

Ĥ = L̂2

2I
+ μϵ0 cos θ

∞
∑
n=0

δ( t
T
− n), (3)

where L̂ represents the angular momentum operator in 2D. After
using the time-dependent Schrödinger equation to determine the
evolution of the system, two dimensionless control parameters
are found, τ ≡ hT/I, where h is the reduced Planck constant, and
k ≡ μϵ0T/h. The former is connected to the free evolution of the rigid
rotor between kicks, whereas the latter is with the kick itself. The
product of these quantal parameters leads to the parameter relevant
for the onset of classical chaos, K = kτ.

Let us assume that the state of the system in momentum space
at a given time, t, is given by the ket ∣ψ(t)⟩; then, the evolution of the
system after one period is given by

∣ψ(t + T)⟩ = Û(k, τ)∣ψ(t)⟩, (4)

where Û is the evolution operator over one period. In momentum
space, the wave function is described as

∣ψ(t)⟩ =
l

∑
n=−l

cn(t)∣n⟩, (5)

where ∣n⟩ denotes the nth momentum state, and the evolution
operator is given by a (2l + 1) × (2l + 1)matrix representation,6

Unm(k, τ) = ei τ4 (n2+m2)ei π2 (n−m)Jn−m(k), (6)

where Jn(k) is a Bessel function of the first kind of order n. Within
such a representation, τ, unlike k, only changes the phase and not
the magnitude of the elements of the matrix, so τ will not affect the
number of basis states needed to ensure unitarity of the evolution
operator; only k determines that. The further from the main diago-
nal, the larger the order of the Bessel function, and the smaller the
matrix element is there. The larger the k, the more the terms farther
from the main diagonal we need to include. As a result, the num-
ber of momentum states required for an accurate description of the
dynamics depends on the value of k, as is elaborated in Appendix B.
In particular, for k = 0.5, the momentum ranged from l = −250 to
250, and for k = 4, the momentum ranged from l = −2250 to 2250.

It is well-known that the quantum kicked rotor shows dynam-
ical localization,3–5,8,9 i.e., the quantum suppression of classical dif-
fusion, as explained in Sec. I. In general, dynamical localization is
almost identical to the Anderson localization once a proper map is
introduced. Therefore, dynamical localization is a consequence of
quantum interference, although recent studies show that dynamical
localization appears only when the classical counterpart present a
chaotic behavior.32–34

Assuming localization of the wave function, the probability of
finding the kicked rotor in a given momentum state x is P(x, λ)
∝ e−

∣x∣
λ , where λ is the localization length; the smaller the λ, the more

localized it is. To properly describe a probability, P(x, λ) needs to be
discretely normalized, leading to

P(x, λ) = tanh( 1
2λ
)e−

∣x∣
λ . (7)

On the other hand, the energy of the system is given by

E = ⟨ψ∣ L̂
2

2
∣ψ⟩ = 1

2

∞
∑

n=−∞
n2P(n), (8)
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where P(n) denotes the probability to find the system in a state of
given momentum n. Then, assuming that such probability is given
by Eq. (7), we find

E(λ) = 1
4
[csch( 1

2λ
)]

2
, (9)

which only depends on the localization length. Therefore, the local-
ization length and energy are intimately related, as it has been
discussed previously in the literature.6 Indeed, Eq. (7) is strictly valid
for x≫ 1, i.e., for the description of the tail of the probability density
function.6 Hence, Eq. (9) is only an approximation to the expected
energy of the system. Equation (9) can be well approximated by
E(λ) ≈ λ2, as the first two terms of the Laurent series of Eq. (9)
are λ2 − 1

12 . We thus expect the energy to roughly scale with the
square of the localization length (this relationship has been discussed
previously in other papers, such as Ref. 6).

To further explore the relation between the localization length
and average energy beyond any previous work, we ran simulations
for various values of k and τ. In particular, we choose 50 different
values of K ∈ [0.1, 5], and for each of these values, we pick 15 dif-
ferent values of k ∈ [0.5, 4] and τ ∈ [0.025, 10] to keep K = kτ fixed.
We, thus, have 50 × 15 = 750 simulations of different systems. For
each of the 15 realizations associated with a given value of K, on the
one hand, we calculate the average energy ⟨E⟩ resulting from averag-
ing the energy of the system during 450 time steps once the system
reaches a steady-state, which takes of the order of 50 time steps. On
the other hand, we calculate ⟨λ2⟩ by averaging the square of the local-
ization length for 150 time steps after 350 time steps, thus ensuring
that the system’s state has had enough time to visit all the accessible
momentum states.

The results are displayed in Fig. 2 where ⟨E⟩ is plotted vs ⟨λ2⟩
for four different values of K or D. This figure shows a correlation
between the energy and the square of the localization length: the
larger the localization length, the larger the energy is. A behavior
expected in virtue of the role of the diffusion of momentum in clas-
sical chaotic regions. In particular, the relationship between those
magnitudes is linear, and it is fulfilled for values of D ≥ 1.54.

Furthermore, we realize that even though the relation between
the energy and the square of the localization length is mainly linear,
the slope has a severe dependence on K, or D, as it is shown in Fig. 3.
This figure displays the slope, including its error when fitting the
averaged energy as a linear function of ⟨λ2⟩. In particular, one notes
that the slopes decrease with increasing D, showing an abrupt change
between D = 1.81 and D = 1.93, corresponding roughly with the
classical stability border. A more precise analysis is displayed in the
inset of Fig. 3, where the same magnitude is shown in a semi-log
plot, exhibiting two distinct trends: A cubic dependence on the clas-
sical stable region and a flat dependence beyond the classical stability
border. The exact point of the transition between those trends lies in
the shaded area depicted in the inset. The results in Fig. 3 corrobo-
rate previous studies pointing out the necessity of being in a classical
chaotic regime to observe dynamical localization.32,33 Furthermore,
it seems that the average energy vs the squared localization length is
a suitable parameter for defining the onset of quantum chaos in the
quantum kicked rotor. Indeed, this parameter will be the equivalent
of D or K but from the quantum mechanical front.

FIG. 2. Energy vs average localization length for different values of K (the corre-
sponding D values are also shown). Each of the panels contains 11 realizations of
the system with different values of k and τ so as to keep K = kτ fixed.

FIG. 3. The slope refers to the slope of the fitted line in the graphs such as in
Fig. 2. K is shown on the lower x axis and the corresponding fractal dimension
is shown in the upper x axis labeled as D. The inset shows the same data in
a semi-log plot. The parameters for the fitting in the inset are α = 12.71 ± 0.48,
β = 0.11 ± 0.01, and c = 1.02 ± 0.10; the shaded area denotes the region where
both fitting functions overlap. The error bars were calculated using the fitting
function and are one standard deviation.
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IV. CONCLUSIONS
In this work, we have explored dynamic localization in one-

dimensional systems, using the kicked rotor as a case scenario, in
a wide dynamical range whose classical counterpart goes from regu-
lar to diffusive. The onset of classical chaos has been characterized
via the fractal dimension of the phase space. This parameter has
a straightforward interpretation as the portion of the phase space
that shows a chaotic behavior vs the stable one. On the other hand,
dynamical localization in the quantum realm is characterized by the
relationship between the energy and localization of the wave func-
tion. As a result, we find that only when the system shows a classical
diffusive character dynamical, localization emerges in accordance
with previous results in different one-dimensional systems. How-
ever, in our case, we propose to use the slope of the energy vs the
square of the localization length to characterize the aforementioned
transition, thus finding a possible new parameter to quantitatively
characterize the onset of quantum chaos.

Finally, our findings support previous explanations on the
nature of dynamical localization due to quantum interference but
only when the underlying classical dynamics present a diffusive
character, thus helping to mitigate the initial thought that dynam-
ical localization is a pure quantum effect based on its similitude with
Anderson localization.
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APPENDIX A: FRACTAL DIMENSION CALCULATION

Following the box-counting method, to calculate the fractal
dimension of a set of points, we place the set of points in question
on a grid of squares and count the number of non-empty squares,
N0. Next, the set of points is scaled by a factor f , and we count
the number of squares again, N1. If the set of points were all of the
points within some closed loop in two dimensions, then we would
expect N1 ≈ N0 f 2, as we know that the area scales with the square
of the scaling factor (it will not be exact as the grid is not arbitrarily
fine). In general, we would expect N1 ≈ N0 f D, where D is the fractal
dimension.

Instead of dealing with just two data points, we can scale the set
many times and plot the number of non-empty squares as a function
of the scaling factor, as shown in Fig. 4. In that case, the number of
non-empty squares is given by

FIG. 4. Determining the fractal dimension for the phase space plot of the classical
kicked rotor for K = 1. The slope of the fitted line gives us the fractal dimension.

N( f ) = c f D. (A1)

Thus, by plotting the data points in a log–log plot, we can simply fit
a straight line as

log(N( f )) = log(c f D) = D log( f ) + log(c) (A2)

to the points, the slope of which will be the fractal dimension D. An
example of this is given in Fig. 4.

APPENDIX B: NUMERICAL SIMULATIONS

In simulations of the quantum kicked rotor, the initial wave
function is entirely localized in momentum space at 0 momentum,
i.e.,

∣ψ(t = 0)⟩ =
l

∑
n=−l

cn(0)∣n⟩, (B1)

with c0 = 1, ci≠0 = 0. The value of l, meaning the largest momentum
state under consideration, is determined upon analyzing the eigen-
values of the Û matrix. In particular, we chose l such that at least
99% of their eigenvalues are within 1 ± 10−4. Therefore, the matrix
representing the operator is nearly unitary, as it should. Another way
to check that the chosen basis is large enough is to run the simula-
tion for the required number of kicks n and then check the extreme
ends of ∣ψ(nT)⟩. If the coefficients are 0 at the extremes, then we
can be sure that the matrix was large enough, as the wave function
never reached the boundary. As a result, all the results provided
in our work are physically meaningful due to the proper unitary
propagation carried out.
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