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ABSTRACT which the agents’ actions were critical for the outcome of interest

Actual causality and a closely related concept of responsibility attri-
bution are central to accountable decision making. Actual causality
focuses on specific outcomes and aims to identify decisions (actions)
that were critical in realizing an outcome of interest. Responsibility
attribution is complementary and aims to identify the extent to
which decision makers (agents) are responsible for this outcome.
In this paper, we study these concepts under a widely used frame-
work for multi-agent sequential decision making under uncertainty:
decentralized partially observable Markov decision processes (Dec-
POMDPs). Following recent works in RL that show correspondence
between POMDPs and Structural Causal Models (SCMs), we first es-
tablish a connection between Dec-POMDPs and SCMs. This connec-
tion enables us to utilize a language for describing actual causality
from prior work and study existing definitions of actual causality
in Dec-POMDPs. Given that some of the well-known definitions
may lead to counter-intuitive actual causes, we introduce a novel
definition that more explicitly accounts for causal dependencies
between agents’ actions. We then turn to responsibility attribution
based on actual causality, where we argue that in ascribing respon-
sibility to an agent it is important to consider both the number of
actual causes in which the agent participates, as well as its abil-
ity to manipulate its own degree of responsibility. Motivated by
these arguments we introduce a family of responsibility attribu-
tion methods that extends prior work, while accounting for the
aforementioned considerations. Finally, through a simulation-based
experiment, we compare different definitions of actual causality and
responsibility attribution methods. The empirical results demon-
strate the qualitative difference between the considered definitions
of actual causality and their impact on attributed responsibility.

CCS CONCEPTS

« Computing methodologies — Multi-agent systems; Sequen-
tial decision making.
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1 INTRODUCTION

Ex-post analysis of a decision making outcome, be it perceived pos-
itive or negative, is central to accountability, which is considered
to be one of the pillars of trustworthy AI [11]. Such an analysis can
enable us to pinpoint decisions (hereafter actions) that caused fail-
ures and assign responsibility to decision makers (hereafter agents)
involved in the decision making process. When the emphasis is put
on a specific outcome and circumstances, actions that were critical
in realizing this outcome constitute actual causes. The extent to

determines the agents’ degrees of responsibility. Both actual causal-
ity and responsibility attribution have been well studied in moral
philosophy, law, Al and related fields [3, 8-10, 18, 22, 27, 28, 32, 51].

A canonical approach to actual causality is based on the but-for
test, which examines the counterfactual dependence of the outcome
on agents’ actions. It states that an action (or more generally, a set
of actions) is a but-for cause of the outcome if the outcome would
not have occurred had the action (resp. the set of actions) not been
taken. It is well-known that but-for causes do not always align
with human intuition—we refer the reader to [18] for an extensive
discussion. Given this, much of the recent work on actually causality
has tried to extend but-for causes in order to capture nuances of
decision making scenarios where they seem to fail.

Some of the most influential extensions are due to Halpern and
Pearl [15, 20, 21], who use Structural Causal Models (SCMs) [40]
as a framework for reasoning about actual causality. Focusing on
the modified Halpern-Pearl (HP) definition [15], actual causes are
identified through an extended but-for test, evaluated relative to
some contingency. As argued by Halpern [15], placing appropriate
restrictions on contingencies is subtle; in the modified HP definition,
contingencies can only be formed from non-causal variables set to
their actual values. If we ascribe causality only to agents’ actions,
we can think of contingencies as a subset of the actions that are
actually taken (realized).

While the modified HP definition generalizes but-for causality,
it may still yield counter-intuitive actual causes when applied to
sequential decision making [15]. An example that illustrates this
is a variant of the bogus prevention scenario [27]. In this example,
we have two agents, Assassin A and Bodyguard B, whose actions
influence Victim V. By poisoning Vs coffee, A can cause V’s death,
whereas B can prevent V from dying by putting an antidote. One
may ask, if A decides on its action after observing the action of
B and only poisons V’s coffee if B has put the antidote, which
actions should constitute the actual causes of V’s survival? As
argued by Halpern [15], in contrast to what our intuitions would
suggest, under the modified HP definition (as well as other variants
of the HP definition), B’s action of putting the antidote is an actual
cause. Namely, putting the antidote passes the but-for test under
the contingency that A poisons V’s coffee. However, this is not an
answer that one would expect, since A had no intention of poisoning
V in the first place. To correct for this, one may resort to normality
considerations and extend the HP definition accordingly [19]. For
example, when examining causality, the extended definition would
exclude the “abnormal world” where B does not add the antidote
and A poisons V’s coffee [15].
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However, as we show in this paper, there are sequential deci-
sion making scenarios where the HP definitions provide counter-
intuitive actual causes, even under the normality considerations.
These novel scenarios demonstrate that existing definitions of ac-
tual causality (i.e., the but-for definition and the HP definitions) do
not fully account for conditions under which an agent decides on
its actions. These conditions generally depend on the interaction
history, i.e., the previous actions of the agent or the other agents.

In this paper, we study actual causation in decentralized partially
observable Markov decision processes (Dec-POMDPs) [37], which
are widely used for modeling multi-agent interactions under un-
certainty. Our goal is to utilize this framework in order to derive a
novel definition of actual causality that more explicitly accounts for
causal dependencies between agents’ actions and their policies. As a
down-stream task of interest, we consider responsibility attribution
based on actual causality. Our contributions are as follows.

Framework. By relying on the recent results in reinforcement
learning [7, 36], which show the correspondence between POMDPs
and SCMs, we establish a connection between Dec-POMDPs and
SCMs. This allows us to study existing definitions of actual causality
and responsibility attribution methods in Dec-POMDPs.

Formal Properties. Using sequential decision making scenar-
ios inspired by those from the moral philosophy literature, we argue
that some of the most prominent definitions of actual causality (i.e.,
the but-for definition and the modified HP definition) do not fully
account for causal dependencies between agents’ actions. The cor-
responding nuances are formally captured by two novel properties:
Counterfactual Eligibility and Actual Cause-Witness Minimality.

New Definition of Actual Causality. We then propose a def-
inition of actual causality that satisfies the two novel properties.
This definition utilizes additional variables, which are a part of the
standard agent modeling approach in Dec-POMDPs [37] that as-
signs to each agent an information state specifying how the agent’s
policy depends on the interaction history.

Responsibility Attribution. We additionally study responsi-
bility attribution based on actual causality. We introduce a family
of responsibility attribution methods that extends the responsibility
attribution method of Chockler and Halpern [8]. These methods
take into consideration the number of actual causes an agent par-
ticipates in and preserve a type of performance incentive akin to
the one studied by [47]—an agent cannot reduce its own degree of
responsibility by increasing the number of its actions that must be
changed in order for a different final outcome to be achieved.

Experimental Results. Using a simulation-based experiment,
we test the qualitative properties of different definitions of actual
causation and we quantify their influence on responsibility as-
signments. The experimental results show that the modified HP
definition violates the two novel properties rather frequently in
one of the standard benchmarks for multi-agent RL—the card game
Goofspiel. For example, for a game configuration in which agents
can take 12 actions in total, we find that in the majority of trajec-
tories, 2 or more actions (i.e., more than 16% of actions) do not
conform to Counterfactual Eligibility. Similarly, 4 or more actual
causes do not conform to Actual Cause-Witness Minimality; for com-
parison, the majority of trajectories have at least 13 actual causes.
The but-for definition, which satisfies Actual Cause-Witness Mini-
mality, violates Counterfactual Eligibility even more often than the
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HP definition: in the game configuration from above, 3 or more
actions (i.e., 25%) do not conform to Counterfactual Eligibility. The
results also show that these property violations can have a signifi-
cant effect on agents’ degrees of responsibility. When we correct
for them, the agents’ degrees of responsibility change in total by up
to 50%-112%, depending on the responsibility attribution method.

We believe that these results shed a new light on actual causality
and responsibility attribution, as they showcase additional chal-
lenges related to multi-agent sequential decision making. To the
best of our knowledge, this is the first work that aims to tackle
these challenges.

1.1 Related Work

In this subsection we provide a brief overview of the most relevant
prior work, categorized in three different research topics: actual
causality, responsibility and blame attribution, and other works.

Actual Causality. Arguably the closest to this paper is a recent
line of work on actual causality in Al due to Halpern and Pearl
[15, 20, 21], who introduced different versions of the HP definition
of actual causality that generalize but-for causality. Works that are
closely related to the HP definition are extensively surveyed in
[15, 18], and they include: Pearl [39], who introduced the notion of
causal beam that inspired the HP definition; Hitchcock [26] who
identified a variable as an actual cause by searching for a causal
path in which the variable passes the but-for test; Hall [14], who
considered the H-account definition, which is more stringent than
the HP definitions in that it identifies a subset of actual causes
identified by the HP definitions; and Halpern and Hitchcock [19]
who extend the HP definitions by incorporating normality consid-
erations. As we already mentioned, we extend this line of work
by studying actual causality in Dec-POMDPs, which enables us
to more explicitly model causal dependencies between agents’ ac-
tions. This paper is also closely related to a more recent work by
Baier et al. [2], who model multi-agent interaction via extensive
form games, accounting for the conditions under which an agent
decides on its actions through information states. However, Baier
et al. [2] study orthogonal aspects, primarily focusing on respon-
sibility attribution. In contrast, we contribute to the literature on
actual causality by proposing a new definition that tackles some of
the challenges related to multi-agent sequential decision making,
identified in this paper.

Responsibility and Blame Attribution. This paper is also re-
lated to the literature on responsibility attribution in multi-agent
decision making. We already mentioned Chockler and Halpern [8],
who consider a causality-based notion of responsibility, and Baier
et al. [3], who provide a game-theoretic account of the forward and
backward notions of responsibility from [42]. Alechina et al. [1]
extend the decision-oriented notion of responsibility from Chockler
and Halpern [8] to assign responsibility to agents for the failure of
a team plan [35, 50]. In our work, we use their method as a baseline
for responsibility attribution. Yazdanpanah et al. [52] study a notion
of responsibly akin to the notion of blame from [8],! and similar to

!Chockler and Halpern [8] differentiate responsibility and blame. For example, one of
the key difference is that an agent’s degree of blame depends on its epistemic state
(i.e., the agent’s belief about the underlying causal model).
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this paper, they explicitly incorporate time. However, their frame-
work is based on altering time temporal logic (ATL), whereas we
utilize Dec-POMDPs, which are more suitable for decision mak-
ing under uncertainty. Halpern and Kleiman-Weiner [16] formalize
the notions of blameworthiness and intent using actual causality;
similar to the degree of blame from [8] (see Footnote 1.1), these
notions depend on the epistemic state of an agent. Friedenberg and
Halpern [12] extend the notion of blameworthiness to cooperative
multi-agent settings. In contrast, this paper takes the notion of
responsibility defined by Chockler and Halpern [8] as its starting
point. The work by Triantafyllou et al. [47] is perhaps the closest
in spirit to this paper as it studies blame attribution in multi-agent
Markov decision processes. However, the focus of that work is on
average performance as an outcome of interest, whereas we focus
on specific events along a decision making trajectory. Naturally,
this paper broadly relates to (cooperative) game theory and cost
sharing games [30, 49], since attribution methods such as Shapley
value [45, 46] or Banzhaf index [4, 5] are often utilized for defining
degrees of blame, responsibility and blameworthiness [3, 12, 47].

Other Works. From a technical point of view, this paper closely
relates to reinforcement learning approaches that utilize SCMs.
Buesing et al. [7] leverages SCMs for policy evaluation, which in
turn can improve policy search methods in model-based reinforce-
ment learning. Oberst and Sontag [36] extends the framework of
Buesing et al. [7], allowing for off-policy evaluation in POMDPs
with stochastic transition dynamics. Madumal et al. [34] utilizes
causal models to generate explanations for actions taken by a re-
inforcement learning agent. Tsirtsis et al. [48] consider a causal
model of the environment based on Markov decision processes
(MDPs). They use this model to find an alternative sequence of
actions that maximizes the counterfactual outcome, but is within a
certain Hamming distance from the original action sequence. This
alternative sequence serves as a counterfactual explanation. We
contribute to this line of work by establishing a connection between
Dec-POMDPs and SCMs and utilizing it for actual causality and
responsibility attribution in multi-agent sequential decision mak-
ing. Finally, this paper relates to the recent work on counterfactual
credit assignment in reinforcement learning [23, 23], where the goal
is to improve an agent’s learning efficiency by properly crediting
an action for its effect on the obtained rewards. Our focus is not on
improving the learning process of an agent, but on accountability
considerations.

2 FORMAL SETTING AND PRELIMINARIES

In this section, we describe our formal setting, based on decentral-
ized partially observable Markov decision processes (Dec-POMDPs)
[6, 37] and structural causal models (SCMs) [40, 41]. We also review
and adopt to our setting a language for reasoning about actual
causality [18], and we formally model the actual causality problem
in the context of multi-agent sequential decision making.

2.1 Decentralized Partially Observable Markov
Decision Processes (Dec-POMDPs)

We consider a Dec-POMDP M = (S,{1,..,n}, A, P,0,QT,0)

with n agents, where: S is the state space; {1, ..., n} is the agents’

set; A = XIL | A; is the joint action space, with A; being the action
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space of agent i; P specifies transitions with P(s, a, s”) denoting the
probability of the process transitioning to s’ from s when agents
{1, ..., n} take joint action a = (ay, ..., a,); O = Xyzl()i is the joint ob-
servation space, with O; being the observation space of agent i; Q is
an observation probability function with Q(s, 0) denoting the prob-
ability of agents {1, ..., n} receiving joint observation o = (01, ..., 0p)
when in state s; T is the finite time horizon; o is the initial state
distribution. We assume S, A and O to be finite and discrete. For
ease of notation, we additionally assume that the agents’ immediate
rewards are part of their observations. Throughout the paper, we
denote random variables with capital letters, i.e., S, O, A and I.
We also consider for each agent i a model m; = (I}, 7, Zi, Zi)
[37], where: Z; is the (finite and discrete) information state space of
i; 7 is the policy of agent i, which is a mapping from information
states to a probability distribution over Aj, i.e., m; : I} — A(A;);
Z; is agent i’s information probability function with Z;(1;, a;, 04, zlf )
denoting the probability of i’s information state changing from i;
to llf, after i takes action a; and observes o0;; Z; o is agent i’s initial
information probability function depending only on observation
0i0. We use mj(a;|i;) to denote the probability of agent i taking
action g; given information state 1;. The agents’ joint policy is
denoted by 7, and we assume that 7 (aliy,....,1n) = m1(a1|u) - - -
7y (an|tn). Note that information states are a way to encode the
information that an agent uses in its decision making.

2.2 Dec-POMDPs and Structural Causal Models

Although Dec-POMDPs are a very general and useful modelling
tool for multi-agent sequential decision making, they are not suf-
ficient to reason counterfactually about alternate outcomes [33],
and hence actual causality.? For instance, given a trajectory 7 =
{(st, a1,y s an,t)}tT:’O1 generated by Dec-POMDP M under joint
policy 7, we would like to predict what would have happened,
had agent i taken action a] instead of action a;;. However, even
though we have access through M to the probability distribution
of the next state P(s¢, (a1t .., alf..., an,t), ), we do not have a way
to infer what would be the value of Sy4;.3 Following Buesing et al.
[7], to overcome this limitation we view M under joint policy =
as a structural causal model (SCM) C. To do this, we express P, Q,
{Zitieqr,..,n) and {7i}ic (1, n} as deterministic functions g with
independent noise variables U, such as

St = 9s,(St-1,A1-1,Us,),  Or = go,(S+,Uo,),
Lit = g1, (Lit-1, Air-1, 0it, U, ), Air = ga,, (e, Uga,,)s (D)

where Us,, Uo,, Uy, and Uy,, are |S|-, |O|-, |Z;|- and |A;|- dimen-
sional, respectively. It can be shown that such a parameterization
is always possible.* Henceforth, we will refer to SCMs that are de-
fined in this way as Dec-POMDP SCMs. Consistent with the SCMs’
terminology [40], we also say that state variables S;, observation
variables Oy, information variables I;; and action variables A; ;
constitute the endogenous variables of C, U are the exogenous
variables, and equations (1) are the model’s structural equations.

2By counterfactual reasoning, we mean predicting what would have happened in a
specific instance of the decision process (trajectory) had some action(s) been different.
30r in general the value of anything that comes (chronologically) after time-step .
“In [7], they show how to represent an episodic POMDP as an SCM, and prove that
this is always possible. Their results can be trivially extended to Dec-POMDPs.
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The causal graph of the Dec-POMDP SCM can be found in Ap-
pendix A. We can generate a trajectory 7 = {(sz, a1, ..., an,t)}th_Ol
using Dec-POMDP SCM by simply specifying a setting 4 for the
exogenous variables in U, also called context, and then solving
the structural equations of C, i.e., Eq. (1). Note that for each Dec-
POMDP SCM-context pair (C, i), also called causal setting, there is
a unique trajectory 7 that can be generated in that way. Importantly,
we can also find out what would have happened in 7, had agent i
taken action a] instead of ;¢ in the following way:

(1) We perform the intervention® A;; « aj on C, that is we
replace gy, , (Iit, Ua,,t) in Eq. (1) with the value a]. The re-
sulting SCM is denoted by C4#< 4.

(2) We generate the counterfactual trajectory € from the causal
setting (C4% 4 7). where i is the same context that we
used to generate T.6

Note that when Dec-POMDP M or joint policy 7 are stochastic,
the counterfactual trajectory 7°f may not be identifiable without
further assumptions [36]. This is because, there may be multiple
parameterizations of a Dec-POMDP SCM,, i.e., multiple functions
g and distributions over the exogenous variables U, which are all
able to correctly represent M under 7,7 but which suggest different
counterfactual outcomes, e.g., et Consequentially, the choice of
model can have a significant impact on claims of causality. In our
experiments, we choose to focus on a particular class of SCMs,
the Gumbel-Max SCMs [36]. This class of SCMs has been shown
to satisfy the desirable property of counterfactual stability, which
excludes a specific type of non-intuitive counterfactual outcomes.
Appendix B provides more details on Gumbel-Max SCMs and the
counterfactual stability property.

2.3 Actual Causality

We now review and adopt in our formal setting a language intro-
duced by prior work on actual causality with SCMs [18]. Consider
a Dec-POMDP SCM C and a context i, and the (unique) trajectory
generated by the causal setting (C,u), 7 = {(s¢, at)}T 1 We call
primitive event, any formula of the form V = o, where V is an
endogenous variable in C, i.e., state, observation, information or
action variable, and v is a valid value for V. Let ¢ be an event, that
is any Boolean combination of primitive events. We use (C, ) = ¢
to denote that ¢ is true in the causal setting (C,u), i.e., ¢ takes
place in 7. Furthermore, given a set of interventions on action vari-
ables A — @', we write (C,ii) | [A « @4, if (CA9 i) E ¢.
For instance, consider the counterfactual scenario in which agent i
takes the action alf instead of a;; in 7. If under this counterfactual
scenario the process transitions to state s at time-step ¢ + 1, then
the following statement holds

(C i) E [Air — aj](St41 = 5).

Actual Causality in Multi-Agent Sequential Decision Mak-
ing. Our goal is to pinpoint the actions which caused a particular

SInterventions are also often modeled through the do-operator [38], do(A;; = ay).
Definitions for actual causality and responsibility, which are the focus of this paper,
are relative to a causal setting [8]. Therefore, we assume C and i to be fully known.
"For every state, observation, information or action variable V/, it holds that variable
V’ equals V in distribution, where V' = gy (pay, Uy ), and pay are the parents of V
in the causal graph.
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event to happen. Given a causal setting (C, %) and the event of
interest ¢, we want to determine the actual causes of ¢ in (C, #). In
this paper, what can be an actual cause is a conjunction of primitive
events consisted only of action variables, abbreviated here as A=a.
We say that every conjunct of actual cause A=dis part of that
cause. Furthermore, in some cases we want to define an actual cause
A = dwrt. some contingency, that is A = dis an actual cause only
if that contingency holds. What can be a contingency in this paper
is again a conjunction of primitive events consisted only of action
variables, abbreviated as W = w’. Finally, for A = G to be an actual
cause of ¢ in (C, i) under contingency W = w’, there has to exist a
setting @', such that (C, i) | [A — @, W «— w’]~¢. We will often
refer to @’ as the counterfactual setting. Consistent with the actual
causality literature [18], we call the tuple (W, w’,a’) a witness to
the fact that A = @ is an actual cause of ¢ in (C, &i).

Coming back to the introduction example, (C, i) models the
considered trajectory: B puts the antidote (B = antidote); A poisons
V’s coffee (A = poison); V survives. The outcome of interest ¢ for
this trajectory is that V survives. According to the HP definition, the
action B = antidote consists the actual cause of ¢ in (C, i) under
the contingency that A = poison. Indeed, there is a counterfactual
setting for B such that

(C, ) = [B = not antidote, A = poison]—(V survives).

In Section 3, we consider several definitions of actual causality
w.r.t. a causal setting (C, i), where C is always a Dec-POMDP SCM.
More specifically, in this paper an actual causality definition O has
to formally describe a process that receives as input a causal setting
(C, 1) and an event of interest ¢, and outputs a set of actual cause-
witness pairs, i.e., a set of elements of the form (K =a, (V_\}, w',a’)).
We use Hyy ((C, i), ¢) (or just Hgy, when (C, ) and ¢ are implied)
to denote the set of all actual cause-witness pairs of ¢ in (C, ),
according to D.

We refer to (C, ) as the actual world or situation, meaning the
trajectory to which it corresponds. Similarly, we refer to a causal
setting as the counterfactual world or scenario when it results from
(C, u) after an intervention is performed on a subset of its action
variables, e.g., (CA‘_‘?, i).

3 DEFINITIONS FOR ACTUAL CAUSE

In this section, we analyze two of the most popular definitions of
actual causality that involve counterfactuals, the “but-for” defini-
tion® (BF definition from now on) [22], and the Halpern and Pearl
definition (HP definition from now on) [15]. We provide two coun-
terexamples (both are new variants of the “bogus prevention” sce-
nario [25]) which expose several weaknesses of the two definitions.
We formally capture the insights we gain from these examples with
two novel properties. Subsection 3.3 introduces a new definition
for actual cause, which satisfies these two properties.

3.1 The BF Definition

But-for cause is one of the fundamental definitions of causation in
law [22], C is a cause of E if but for C, E would not have occurred.

8 Also known as cause-in-fact and sine qua non.
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In other words, C was necessary for E to happen. We adopt the BF
definition in our formal setting.

Definition 3.1. (But-For Cause) A = G is a but-for cause of the
event ¢ in (C, ) if the following conditions hold:

BFCL. (C.i) [ (A=3d) and (C, @) E ¢
BFC2. There is a setting @ of the variables in A, such that

(Ci) E [A @]~

BFC3. A is minimal; there is no subset A ofg, such that A’ = @’
satisfies BFC1 and BFC2, where @’ is the restriction of d to
the variables of A

We say that (0,0, a’) is a witness of A=d being a but-for cause of

¢ in (C,u).

BFC1 requires that both A =dand ¢ happened in the actual
world, (C, ). BFC2 implies the but-for condition,’ i.e., but for A=3a,
¢ would not have occurred. BFC3 is a minimality condition, which
ensures that an actual cause does not include any non-essential
elements. Unfortunately, but-for cause does not suffice for a good
definition of actual cause in the context of sequential decision
making, and the next example illustrates some of the reasons.

Example 3.2. Victim V dines at time-step ¢. Assassin A has access
to V’s table at time-steps t — 2 and t — 1, when they can choose
whether to poison or not poison V’s water. A’s policy is to always
poison V’s water, unless it is already poisoned. We consider the
trajectory, in which A chooses to poison V’s water only at time-step
t — 2, and V dies from the poison at time ¢.

To identify a but-for cause of V dying at time-step t consider an
intervention that sets A’s action at time-step ¢ — 2 to not poison. If
this is the only intervention, A follows its policy at t — 1 and takes
action poison, which results in the same outcome. To change the
outcome, we also need to intervene at time-step t — 1 and set A’s
action to not poison. This implies that action poison taken at t — 2
and action not poison taken at t — 1 form a but-for cause of V dying
at time ¢. We find this counter-intuitive because the action that has
to be changed at time-step ¢ — 1 is not the one that was taken in
the actual situation but the one that would have been taken in the
counterfactual scenario where A does not poison the water at ¢t — 2.
Since the conditions that influence A’s decision at t — 1 change
once we intervene at t — 2, we argue that the action taken at ¢ — 1
should not be a part of an actual cause, but should be treated as a
contingency. The following property formalizes this insight.

Property 3.3 (Counterfactual Eligibility). We say that a defini-
tion for actual cause D satisfies Counterfactual Eligibility if for
every (C.ii), ¢, (A = d@ (W,w’,d@)) and Ai; = ajy, where (A =
@, (W,w’,3)) is an actual cause-witness pair of ¢ in (C,u) ac-
cording to D, and A;; = a;; is part of A = d, it holds that
(CH) E[A — @ W « w'](Ii,y = 1i¢), where 1;; is agent i’s
information state in (C, i), ie., (C, ) E (Iis = 1i,r).

Property 3.3 states that an agent’s action is eligible for being a
part of an actual cause if the information state under which the
agent took that action in the actual world remains the same in the

9 Also known as the but-for test.
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witness world, i.e., the counterfactual world which corresponds
to the cause’s witness. As Example 3.2 suggests, the BF definition
violates Property 3.3.

3.2 The HP Definition

Arguably, one of the most influential accounts of causality is Halpern
and Pearl’s notion of actual causes in SCMs [21]. There are three
variants of the HP definition of actual causality [15, 20, 21], in this
paper we consider and adopt in our setting the latest one [15] (all
definitions and their relations are extensively discussed in [18]).

Definition 3.4. (HP) A = d is an actual cause of the event ¢ in
(C, ) if the following conditions hold:

HPC1. (C,ii) E (A=3d) and (C,4) E ¢
HPC2. There is a set W of action variables and a setting a’ of the
variables in A such that if (C,#) = (W = w’), then

(Ci) E[A—a We—w]g

HPC3. A is minimal; there is no subset A of/i, such that A’ = @’
satisfies HPC1 and HPC2, where @’ is the restriction of @ to
the variables of A

We say that (W, w’, @) is a witness of A = d being an actual cause

of ¢ in (C, u).

HPC1 and HPC3 are similar to BFC1 and BFC3, respectively. HPC2
says that the but-for condition holds under the contingency W=,
where the setting W’ has the observed value of W in (C, ii). Roughly
speaking, this means that A = disanactual cause of ¢ in (C, i) if but
for A =G, ¢ would not have happened, had the action variables in
W been fixed to their actual values. The main intuition behind HPC2,
and what differentiates this HP definition from its predecessors, is
that “only what happens in the actual situation should matter” [18].

Coming back to Example 3.2, according to the HP definition, the
actual cause of V dying at time-step t is the action of A to poison
the water at time-step ¢ — 2, under the contingency that A would
not poison the water at t — 1. In other words, if we assume that in
the counterfactual world where A does not poison the water at t — 2,
they also do not poison the water at t — 1, then the first action is
considered an actual cause of V dying. We find this answer more
satisfactory and elegant than the one given by the BF definition.
Despite the success of the HP definition in Example 3.2 as well as
in many more examples in the moral philosophy literature [15, 18],
we illustrate with the next example that the HP definition is not
sufficient for multi-agent sequential decision making.

Example 3.5. Victim V dines at time-step t. Bodyguard B, who
suspects a poisonous attack, has access to V’s table at time-step
t—2, when they can choose where to put an antidote, either into V’s
water or into V’s wine. B is right, indeed an assassin A has access
to V’s table at time-step t — 1, when they can choose where to put
the poison, again either into V’s water or into V’s wine. The poison
is neutralized by the antidote only if they have been put into the
same liquid, otherwise V dies. We assume that A observes where B
puts the antidote, and hence A’s policy is to simply put the poison
into the opposite liquid. Consider the trajectory, in which B puts
the antidote into the water at time-step t — 2, A puts the poison into
the wine at time-step ¢t — 1, and V dies at time ¢.
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According to both BF and HP definitions, an actual cause of V
dying at ¢ is the action of A poisoning the wine at t — 1. However,
according to the HP definition, this is not the only actual cause of
V’s death. The action of B putting the antidote into the water is also
considered an actual cause, under the contingency that A would
poison the wine, i.e., B’s action is an actual cause assuming that A’s
action is fixed to its value in the “actual situation”. ° In particular, B
did put the antidote into the water in the actual scenario, and since
it is a single action, it is also minimal, hence HPC1 and HPC3 are
satisfied. Furthermore, if we intervene on B’s action by changing it
to wine, and fix A’s action also to wine (the realized action), then V
does not die, and hence HPC2 is satisfied.

We find the latter actual cause to be counter-intuitive. Essentially
B had no control over the final outcome of this example, because of
the full observability and policy assumed for A. This unsatisfactory
result is due to the fact that the HP definition applies the minimality
condition (HPC3) only on the variables of the actual cause A=d,and
does not include those of the contingency W = w’ (here W = w’
is in fact another actual cause). Motivated by Example 3.5, we
introduce the following property.

Property 3.6 (Actual Cause-Witness Minimality). We say that a
definition for actual cause D satisfies Actual Cause-Witness Mini-
mality if for every (C,4), ¢, A=dand W = w’, where A = d is an
actual cause of ¢ in (C, i) under contingency W=w according
to D, there are no A’, W’ and w”’, such that A’ UW’ c AUW
and A’ = @ is an actual cause of ¢ in (C, i) under contingency
W’ = " according to D, where @ is the restriction of @ to A.

Roughly speaking, Property 3.6 extends HPC3 to also include
W, ie., AU W is minimal. As Example 3.5 suggests, the HP defini-
tion violates Property 3.6. Additionally, Appendix C.1 describes a
scenario where the HP definition violates Property 3.3.

Example 3.5 also sets the ground for arguing about the inter-
pretation of the actuality test: “only what happens in the actual
situation should matter”. For instance, one can argue that A’s action
of putting the poison into the wine is a valid contingency for the
HP definition since this action did realize in the actual situation.
Arguably, this interpretation is adopted in [15]. In contrast, we
argue for an interpretation that focuses not just on agents’ actions,
but also on their information states, i.e., conditions under which
agents reach their decisions. Under this interpretation, A’s action
of putting the poison into the wine does not pass the actuality test
for the counterfactual world in which B puts the antidote into the
wine. Namely, in the actual situation, A put the poison into the
wine only because B had put the antidote into the water. Now, this
interpretation may be restrictive if the actuality test is applied on
contingencies, as it is the case with the HP definition. For instance,
if condition HPC?Z is modified accordingly, the HP definition would
identify no actual causes in Example 3.2. However, we believe that
the actuality test is not important for contingencies, but for actual
causes. This is formalized by Property 3.3.

Normality and Defaults. The notions of normality and de-
faults have been shown to deal with a number of examples where
the HP definitions provide counter-intuitive actual causes [17, 19].

19Note that based on Theorem 2.3 from [15] both older versions of the HP definition
also consider B’s action as an actual cause of V’s death in Example 3.5.
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However, Example 3.5 is not one of them. More specifically, in this
example there are two possible worlds, one where B and A put the
antidote and the poison into the same liquid, and one where they
put them into different liquids. Given the intentions of A and that
A observes B’s action in this example, one may consider the former
world less normal than the latter one. All 3 HP definitions, when
extended to account for the aforementioned normality ordering,
they provide no actual causes, although there is arguably one. We
conclude, that despite the usefulness of these notions, they do not
address several shortcomings of the core definition described above.

3.3 A New Definition for Actual Cause

We extend the BF definition with the notion of contingencies and
implement the insights we gain from Examples 3.2 and 3.5, to pro-
pose a new definition for actual cause. Intuitively, our definition
takes a but-for cause and splits its set of (action) variables into two
subsets: the actual cause and the contingency. The partition is based
on whether the conditions under which these actions were taken,
change between the actual world and the witness one.

Definition 3.7. (Actual Cause) A = d1is an actual cause of the
event ¢ in (C, &), under the contingency W = w’ if the following
conditions hold:

AC1. There is a setting @’ of the variables in A, such that A =
G AW = w is a but-for cause of ¢ in (C, i), and also satisfies
condition BFC2 with setting (a’, w’)

AC2. For every agent i and time-step ¢ such that A;; € A, it holds
that

(Cid) E[A e @ W e #1(Li = iie)

AC3. For every agent i and time-step ¢ such that A; ; € W, it holds
that

(Ci) E A @ W e ]I = izy)

We say that (W, w’, @) is a witness of A = 4 being an actual cause

of ¢ in (C, u).

AC1 says that combined, the variables of the actual cause A
and those of the contingency W, should be able to form a but-for
cause using the settings @’ and w’. AC2 requires that the actual
cause A = 4 should contain only (action) variables for which their
underlying conditions (information states) in the counterfactual

world (CA4-W<W 7y are the same as in the actual world (C, ).
While AC3 says that the contingency W = w’ should contain only
variables for which these conditions change. Regarding Example 3.2,
our definition agrees with the HP definition, because of condition
AC3. Regarding Example 3.5, our definition agrees with the BF
definition because of condition ACI. Furthermore, conditions AC2
and ACI guarantee Properties 3.3 and 3.6, respectively. Note that
the BF definition also satisfies Property 3.6 because of BFC3.
Definition 3.7 can also be extended with the notion of normality,
by following the same procedure as with the HP definition in [19].

4 RESPONSIBILITY

In this section, we study approaches to determining the agents’
degree of responsibility relative to a causal setting (C, #) and an
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event of interest ¢. We focus on approaches that assign responsi-
bility based on the actual causes of ¢ in (C, #). More specifically,
in Section 4.1, we adopt in our setting and analyze a well-known
definition of responsibility introduced by Chockler and Halpern
[8]. In Section 4.2, we introduce a new family of definitions that
extend the Chockler and Halpern definition.

4.1 The Chockler-Halpern Definition

In 8], Chockler and Halpern show that the original HP definition
of causality [20] can be used to assign a degree of responsibility to
each primitive event, measuring how pivotal it was for the event of
interest. In [18], the Chockler-Halpern definition (hereafter CH) is
modified to incorporate the other two HP definitions [15, 21], and in
[1], Alechina, Halpern and Logan take the analysis one step further
and appraise the responsibility of each agent. In our framework
and for a definition of causality 9, Chockler and Halpern’s notion
of responsibility can be defined as follows.

Definition 4.1. (CH Degree of Responsibility) Consider a causal
setting (C,4) and an event of interest ¢ such that (C,4) [ ¢.
Agent i’s degree of responsibility for ¢ in (C, #)is 0 if none of i’s
actions is a part of an actual cause according to D. Otherwise it

is the maximum value % such that if A = @ is an actual cause of

¢ in (C, i) under the contingency W = w’ according to D, then
k= |A'| + |W| and m denotes the number of agent i’s action variables
inA.

The CH definition captures the important idea that an agent’s de-
gree of responsibility should depend on the size of the actual causes
it participates in, the size of their corresponding contingencies, and
its degree of participation. However, as mentioned by Baier et al.
[2], the CH definition does not take into consideration the number
of actual causes an agent is involved in, which is evidence of that
agent’s power over the final outcome. Additionally, the definition
also ignores other aspects of actual causality that one might con-
sider important for attributing responsibility, such as the number
of different contingencies an actual cause might have.

4.2 A Family of Methods that Extend CH

We consider the CH definition and extend it in a natural way, so
that an agent’s degree of responsibility is now determined by a
wider variety of actual causes, instead of just one. More specifically,
our new definition takes into account the whole set of actual cause-
witness pairs Hyy of some definition © and applies weight vectors
over that set. These vectors are non-negative and agent-specific,
and they determine by how much an agent’s degree of responsibility
is affected by each pair in Hgy. Each weight vector b has to have at
least one strictly positive element.

Definition 4.2. (Degree of Responsibility) Consider a causal set-
ting (C, #1) and an event of interest ¢ such that (C,#) [ ¢. Given

a weight vector b over the set Hy, agent i’s degree of responsi-
bility for ¢ in (C,#) is 0 if none of i’s actions is part of an actual

p..me
ZecllulHplt 7¢ ke o) oh that
Yce{t,...|Hp ) be

cause according to D; otherwise it is
if (A =a, (VT/, w’,a’)) is the c-th actual cause-witness pair of Hyp,
then k. = |A| + |W| — w¢, and m. and w, denote the number of

agent i’s action variables in A and W, respectively.
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Definition 4.2 is flexible in the sense that it can generate multiple
instances of itself by changing the agents’ weight vectors. Com-
pared to Definition 4.1, an agent’s degree of responsibility does
not depend anymore on the number of action variables the agent
has in a contingency of an actual cause in which it participates.
In simpler words, our definition guarantees that an agent would
not be attributed a reduced degree of responsibility had it adopted
a policy that would make more “mistakes” in the counterfactual
scenario.!! For instance, in Example 3.2, if A’s policy was to poison
K’s water only at time-step ¢ — 2 then its degree of responsibility
according to CH (and D being either the HP definition or Definition
3.7) would be 1. However, it would be 1/2 if its policy was to always
poison the water. On the contrary, for responsibility attribution
methods from Definition 4.2, the agent’s degree of responsibility is
1 in both cases. Note also that, similar to CH, an agent’s degree of
responsibility according to Definition 4.2 is always between 0 and
1.12 More specifically, if the agent had no impact on the outcome,
its degree of responsibility would be 0, while if it were the only
agent that had the full control over the outcome, its responsibility
would be 1.

5 EXPERIMENTS

In this section, we experimentally test the studied definitions of
actual causality (Section 3) and responsibility attribution methods
(Section 4) using an experimental testbed based on the card game
Goofspiel. Appendix E contains additional results regarding the
actual causality definitions.

5.1 Environment and Policies

The game. Goofspiel(N) is a two-person card game where each
player’s initial hand consists of the cards {1, ..., N}. There is a face
down central pile of cards (also {1, ..., N}) called the deck, which is
shuffled in the beginning of each game. In every round, the top card
of the deck is flipped. Then, both players choose a card from their
hand and simultaneously reveal it. The player with the higher card
wins the round, and in the case of a tie no player wins. If a player
manages to win the round, they are awarded a number of points
equal to the value of the flipped card, also called the prize, otherwise
they are awarded 0 points. All cards played in that round are then
discarded and a new round starts. After N rounds, the player with
the most points wins the game. Note that typically N = 13, making
the mathematical analysis of the game quite challenging [43, 44].
Moreover, it is worth mentioning that Goofspiel(N) is part of a
well known framework for reinforcement learning and planning
in games [24, 31]. We introduce a version of this game which has
two teams of two players. We call this version TeamGoofspiel(N).
The game proceeds as before, with the only difference that now the
team which cumulatively bids the higher cards in a round is the
team that obtains that round’s prize. No communication is assumed
among players.

The players. We assume the agency over the members of one of
the teams, whose players are referred to as agents and are denoted

This guarantee is aligned with the intuition behind the blame attribution property
of Performance Monotonicity, introduced by Triantafyllou et al. [47].
12The agents’ degrees of responsibility do not have to sum up to 1 [18].
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by Ag0 and Agl. We treat the other team as a part of the environ-
ment, and we refer to its members as opponents. All the players are
assumed to keep similar information states at each time-step/round.
More specifically, the information state of a player at each round
consists of: the remaining cards on their hand; the round’s prize;
partial information about the current score-if their team is winning
or not. Notice that for simplicity, in this setting players do not keep
track of which cards the other players discarded in previous rounds,
i.e,, they don’t condition their actions on the available moves of
other players, nor they try to infer their policies.

Policies. The policy of Ag0 is to always match the round’s prize
whenever possible. We differentiate two cases when this action is
not feasible, i.e., if the matching card is not on Ag0’s hand. If their
team is winning (resp. not winning) they play the card with the
highest (resp. lowest) value out of the cards with a value lower
(resp. higher) than the prize. In case such a card is not available,
they play the card with the lowest (resp. highest) value on their
hand. The policy of Agl is to always play the card with the highest
value on their hand, if the prize is greater than their hand’s average
card value minus X, otherwise they play the card with the lowest
value on their hand. X is set to 0 if their team is winning and to 1
otherwise.

Both opponents follow the same stochastic policy defined as
follows. If their team is winning (resp. not winning) they randomly
choose a card from their hand with value lower (resp. higher) or
equal to the prize, and if they don’t have such a card in their hand
they randomly choose one of the cards available.

We choose the players’ policies to follow simple rules, and de-
pend on small size information states, so that the generated actual
causes are easy to interpret, but not too simple and small, so that
they become trivial. Note also that the random and the matching
policies are quite standard in Goofspiel(N) analysis, and that the
latter have been shown to dominate the former [13, 44].

Actual Causes. We focus on trajectories, i.e., instances of the
game in which the final outcome is either a win for the opponents’
team or a draw. For each of these trajectories, our goal is to pin-
point those actions of the agents that caused them to not win the
game, and then quantify the agents’ influence on that outcome.
In particular, we specify the set of all actual cause-witness pairs
for each trajectory, and based on this set we compute the agents’
degrees of responsibility. Note that in order to generate a trajectory
in the TeamGoofspiel(N) environment, we first need to sample from
the initial state distribution, i.e., shuffle the deck, and then at each
time-step sample the opponents’ actions based on the distributions
defined by their stochastic policies.

5.2 Demonstration Example

In this section, we focus on a particular trajectory of TeamGoof-
spiel(N) and present the set of actual cause-witness pairs for that
trajectory based on Definition 3.7. To compute this set, we imple-
ment a simple tree search algorithm that iterates over all possible
alternative actions of the agents.13 In our experiments, we restrict
the size of actual cause-witness pairs to 4, in order to obtain more
interpretable actual causes. Namely, large actual causes suggest

13We are able to infer what would have happened in these alternative/counterfactual
scenarios, because we view the environment as an SCM (see Section 2.2).
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Table 1: Actual Cause-Witness Pairs Based on Definition 3.7

Actual Cause CF Setting | Contingency | Improvement

Ap1=4,A11=4 1,1 - 2
1,1 Apgo2 =2 1
Ag1=4,A13=2 .

01 =% 3 2,1 Ags =1 1
A1 =4,A12=3 1,1 - 2
A1 =4,A03=2 1,1 - 1

Ai2=3 2
A11=4,Ap2=3 1,1 2
1,1 0,2 A1,2 — 1
1 - 1
Aoo=5
0.0 2 - 1
Ag3 = 1
1 A1,3 = 1
Al,l = 3
Ay = 1
A1p=5 2
10 A1,2 =3 1
2 Al,l = 3
A1’1 = 1
3 Ap=2 1
A10=5A02=3 1,2 - 1
A0 =5 A01=4 1,2 - 1
1.0
- Ag0
= Agl
0.8
2z
206
%]
S
0.4
%]
(V]
4
0.2
0-0—"CH AC ACCS  ACW  ACW-I
Methods

Figure 1: Responsibility Attribution Based on Table 1

a counterfactual world that is quite different from what actually
happened, and they are also more difficult to comprehend. Thus,
smaller actual causes are usually preferred.

For N = 5, we consider the trajectory where prizes show up in a
descending order (5,4, 3, 2,1). Both agents’ and opponents’ actions
in this scenario always match the prize, resulting in a 0 — 0 draw.
Table 1 shows the set of all actual cause-witness pairs for that tra-
jectory. Interestingly, and despite its simplicity, the considered tra-
jectory admits 19 different actual cause-witness pairs, each of them
representing a set of minimal changes that the agents could have
made in order to win the game. More specifically, each row of Table
1 corresponds to one actual cause-witness pair (A=3a (W, w,a)),
where: column 1 includes the actual causes A = @ column 2 includes
the counterfactual settings @’; column 3 includes the contingencies
W = #w’; column 4 includes the improvement in score difference
the agents achieve in the corresponding counterfactual worlds.

The corresponding tables for definitions BF and HP can be found
in Appendix C.1.
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5.3 Instances of Definition 4.2

As mentioned in Section 4.2, by changing the values of the agent-
specific weight vectors b in Definition 4.2 we can generate multiple
different approaches to determining an agent’s degree of responsi-
bility. Next, we present the instances of Definition 4.2 we consider
in our experiments. The names of the corresponding attribution
methods are derived from the elements of actual causality which
they consider distinct.

AC: For every actual cause A = G, the weight of exactly one
pair (A=a (W,w’,@))is 1, and all other weights are 0. For Table
1, this means that we keep exactly one row per actual cause, and
we discard every other row for that actual cause and the column
Improvement. For an agent i, the actual cause-witness pair we
choose for each actual cause, i.e., the pair whose weight is 1, is one
with the highest value of m‘ for that agent. This method takes into
account the number of dlStlnCt actual causes an agent participates
in.

ACCS: For every actual cause A = @ and counterfactual setting
a’, the weight of exactly one pair (A =aq, (W w’,d’)) is 1, and all
other weights are 0. For Table 1, this means that we keep exactly
one row per actual cause-counterfactual setting pair, and we discard
every other row for that pair and the column Improvement. For
an agent i, the actual cause-witness pair we choose for each actual
cause-counterfactual setting pair, i.e., the pair whose weight is 1, is
one with the highest value of m‘ for that agent. Additional to AC,
ACCS takes also into account the number of all the different coun-
terfactual actions that the agents who participate in A =G could
have taken in order for the final outcome to improve.

The remaining attribution methods assume the same weight
vectors for all agents.

ACW: The weight of each actual cause-witness pair is 1. For
Table 1, this means that we take its whole content into account
except for the column Improvement. Additional to ACCS, ACW
takes into account all the different contingencies under which A=
d is an actual cause.

ACW-I: The weight of each actual cause-witness pair is equal to
the value of the counterfactual improvement it admits. This means
that we use the full information given in this table.!

Apart from AC, ACCS, ACW and ACW-1, we also consider in
our experiments the CH definition. Plot 1 shows the agents’ degrees
of responsibility for the trajectory we introduced in Section 5.2 and
for the various responsibility attribution methods we consider in
this section. For this plot, the input of all the methods is Table
1. Observe how in this example the lion’s share of responsibility
shifts gradually from Ag0 to Agl, as we include more information
from Table 1 to our responsibility assignment process. For instance,
Ag1 could improve on their own the final outcome by playing one
of 3 alternative actions at the first time-step (rows 10-16), while
Ag0 had only 2 (rows 8, 9). Because of that, Agl’s degree of respon-
sibility increases relative to Ag0’s when we transition from AC to
ACCS. Appendix C.2 shows the attributed responsibilities, when
definitions BF and HP are considered instead of Definition 3.7.

4This approach to responsibility is aligned with the notion of graded causality [19].
However, here instead of using a normality ranking over the actual cause-witness
pairs, we evaluate them w.r.t. the counterfactual improvement they admit.
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5.4 Violations of Properties 3.3 and 3.6

In this section, we compute the frequency of Property 3.3 and
Property 3.6 violations by the BF and HP definitions from Section 3.
Furthermore, we examine by how much these property violations
might affect the agents’ degrees of responsibility. We measure both
quantities for N € {4, 5,6, 7,8}, and 50 trajectories per value of N.

5.4.1  Property 3.3 Violations. Plot 2a summarizes the frequency
results for Property 3.3. More specifically, for each trajectory we
compute the number of actions that are, according to Property 3.3,
wrongfully characterized as part of one or more actual causes by
the BF and HP definitions. For instance, consider the boxplot which
corresponds to N = 6 and HP. For half of the trajectories, the HP
definition considers at least 2 out of the total 12 actions as part of
one or more actual causes, when it should had instead considered
them as part of their contingencies.

Next, we want to measure by how much this mislabeling of ac-
tions, i.e., Property 3.3 violations, can affect the process of respon-
sibility attribution. In order to quantify this measure, we execute
the following procedure. For each trajectory, we first compute the
set of actual cause-witness pairs Hyy based on definition D, where
D can be either BF or HP. Then, for every approach from Section
5.3 we compute the agents’ degrees of responsibility utilizing the
set Hypy. Next, we correct Hyy for Property 3.3 violations, i.e., for
every actual cause-witness pair (A=a (W, w",d))in Hg we re-
move from A = d and @ all actions that violate Property 3.3, and
we add them to the contingency set W = w’. We then take the
newly defined set of actual cause-witness pairs H Q) and recompute
the agents’ degrees of responsibility. Plot 2b shows the maximum
value of the total absolute difference between the two computed
degrees of responsibility, for every value of N and responsibility
method. The maximum is taken over all trajectories. We choose
to plot the maximum differences to showcase the potential magni-
tude of unfairness that violating Property 3.3 might cause to the
responsibility assignment. The results demonstrate that correcting
BF and HP for these violations can have a significant impact on the
agents’ degrees of responsibility. It is also worth noting that the CH
definition seems to be the least resilient to this type of violations
among the definitions we consider here.

5.4.2  Property 3.6 Violations. Apart from Property 3.3, the HP
definition also violates Property 3.6 (Section 3.2). Plot 2¢ displays the
frequency of these violations (brown boxplots). More specifically,
the plot shows for all trajectories the number of distinct actual cause-
contingency pairs which are non-minimal, according to Property
3.6. While comparing this number to the total number of these
pairs which is shown in Plot 2d, we conclude that the HP definition
systematically violates Property 3.6.

To measure the impact of Property 3.6 violations on respon-
sibility attribution, we follow a procedure similar to the one for
Property 3.3 in Section 5.4.1. More specifically, we first compute the
agents’ degrees of responsibility based on Hypy, where D is the HP
definition. Next, we correct Hyy for Property 3.6 violations, i.e., we
remove all actual cause-witness pairs the actual cause-contingency
pairs of which are non-minimal according to Property 3.6, and we
recompute the degrees of responsibility. Similar to Plot 2b, Plot 2e
shows the maximum value of the total absolute difference between
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Figure 2: Plots 2a and 2c show the number of violations of Properties 3.3 and 3.6. Plots 2b and 2e show the impact of these
violations on the agents’ degrees of responsibility. Plot 2d shows the number of distinct actual cause-contingency pairs.

the two computed degrees of responsibility, for every value of N
and responsibility method. The maximum is taken over all trajec-
tories. The results indicate that Property 3.6 violations in the HP
definition can greatly affect the downstream task of responsibil-
ity attribution. However, it is worth mentioning that for CH, the
agents’ degrees of responsibility changed only for 1 trajectory out
of the 250 we sampled in our experiments, indicating that it is the
most resilient to this type of property violations.

Note that the HP definition allows for non-minimal contingen-
cies, that is (A = @, (W, w’, @)) may be considered as a valid actual
cause-witness pair by HP even if there is a subset W’ of W and a
setting w”” such that (A=a (W, w",a)) is also an actual cause-
witness pair according to HP. As mentioned by Ibrahim [29], when
attributing responsibility based on the HP definition it would make
sense to impose the witness minimality condition in addition to
HPC3. We denote this enhanced version of the HP definition by HP-
MIN. Note that violations of the contingency minimality condition
fall under Property 3.6 violations. Therefore, we expect that HP-
MIN will do better than HP w.r.t Property 3.6 violations, and hence
have a lower impact on responsibility.'> Plots 2c and 2d verify this
intuition. They show that the number of violations is significantly
smaller for HP-MIN. However, these violations are not completely
vanished, meaning that there are still cases where they can have a
large impact on responsibility attribution. In Appendix D, we plot
again 2a, 2b and 2e, after replacing HP with HP-MIN.

51n particular, only ACCS, ACW and ACW-I are affected.
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6 CONCLUSION

To summarize, in this paper we studied actual causality and respon-
sibility attribution through the lens of sequential decision making
in Dec-POMDs. We identified some of the shortcomings of existing
definitions of actual causality and introduced a new definition to
address them. Furthermore, we extended one of the well known
causality-based approaches to responsibility attribution in order
to account for an agent’s power over the final outcome and its
ability to manipulate its own degree of responsibility. While this
work focuses on particular challenges in defining actual causality
and attributing responsibility, we view it as an important step to-
ward establishing a formal framework that supports accountable
multi-agent sequential decision making.

Some of the most interesting future research directions are re-
lated to practical considerations. Given that our primary goal is to
formalize the notions of actual causality and responsibility attribu-
tion, we made simplifying assumptions that allowed more efficient
computation of experimental results. For example, even though the
Dec-POMDP framework adopted in this work does model uncer-
tainty, we assumed the full knowledge of random variables that
define contexts of the corresponding SCM. We also assumed that
the agents’ policies are given. Lifting these assumptions is critical
for making this work more applicable in practice. Furthermore, the
algorithmic solution for inferring actual causes and assign respon-
sibility in the experiments is based on exhaustive search. Therefore,
deriving more scalable algorithmic solutions is needed for applying
this work in challenging domains.



Actual Causality and Responsibility Attribution in Decentralized Partially Observable Markov Decision Processes Preprint Under Review

REFERENCES [31] Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi,
Satyaki Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls,
Shayegan Omidshafiei, et al. 2019. OpenSpiel: A framework for reinforcement
learning in games. arXiv preprint arXiv:1908.09453 (2019).

[1] Natasha Alechina, Joseph Y. Halpern, and Brian Logan. 2020. Causality, responsi-
bility and blame in team plans. arXiv preprint arXiv:2005.10297 (2020).

[2] Christel Baier, Florian Funke, and Rupak Majumdar. 2021. A game-theoretic : ) A -
account of responsibility allocation. arXiv preprint arXiv:2105.09129 (2021). (32] Dav%d LeWI_S‘ 1974. Causation. The journal ofthlosophy 70,17 (1974), 556-567.
[3] Christel Baier, Florian Funke, and Rupak Majumdar. 2021. Responsibility Attri- [33] David Lewis. 2013. C'ounte'rfactuqls. John Wiley & Sons. .
bution in Parameterized Markovian Models. In Proc. of the 35th AAAI Conference (34] Prashap Madumal, Tim Mxller, Liz Sonenberg, and Frank Vetere. 2020. Explain-
on Artificial Intelligence (AAAI). able reinforcement learning through a causal lens. In Proceedings of the AAAI

[4] John F.BanzhafIIl. 1964. Weighted voting doesn’t work: A mathematical analysis. conference on artificial intelligence, Vol. 34. 2493-2500. . o
Rutgers Law Review 19 (1964), 317. [35] Roberto Micalizio, Pietro Torasso, and Gianluca Torta. 2004. On-line monitoring

and diagnosis of multi-agent systems: a model based approach. In ECAI Vol. 16.
848.
[36] Michael Oberst and David Sontag. 2019. Counterfactual off-policy evaluation with
gumbel-max structural causal models. In International Conference on Machine
Learning. PMLR, 4881-4890.
Frans A. Oliehoek and Christopher Amato. 2016. A concise introduction to decen-
tralized POMDPs. Springer.
Judea Pearl. 1995. Causal diagrams for empirical research. Biometrika 82, 4 (1995),

[5] John F. Banzhaf III. 1968. One man, 3.312 votes: a mathematical analysis of the
Electoral College. Villanova Law Review 13 (1968), 304.
Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein.
2002. The complexity of decentralized control of Markov decision processes.
Mathematics of operations research 27, 4 (2002), 819-840.
[7] Lars Buesing, Theophane Weber, Yori Zwols, Sebastien Racaniere, Arthur Guez,
Jean-Baptiste Lespiau, and Nicolas Heess. 2018. Woulda, coulda, shoulda:
Counterfactually-guided policy search. arXiv preprint arXiv:1811.06272 (2018).
Hana Chockler and Joseph Y. Halpern. 2004. Responsibility and blame: A 669-688. . .
structural-model approach. Journal of Artificial Intelligence Research 22 (2004), Judea Pearl. 1998. On the d'eﬁmtzon Of ac_tual cause. Te_chnlcal Report R-259.
93-115. Department of Computer Science, University of California, Los Angeles.
[9] Mark Coeckelbergh. 2020. Artificial intelligence, responsibility attribution, and Judea Pearl. 2009. <C,‘1”3“l”,y' Cambridge Umversity Press.
a relational justification of explainability. Science and engineering ethics 26, 4 [41] Jonas Peters, Dominik Janzing, and Bernhard Schdlkopt. 2017. Elements of causal
(2020), 2051-2068. inference: Foundations and leammg algorithms. The MIT Pres‘.sA
[10] Anupam Datta, Deepak Garg, Dilsun Kaynar, Divya Sharma, and Arunesh Sinha. [42] Tbo van de P Oelj 2'0.11‘ The relation befw\{e‘en for\'rvard-lookmg and backward-
2015. Program actions as actual causes: A building block for accountability. In looking responsibility. In Moral respoqszblllty. Springer, 37_5?'
2015 IEEE 28th Computer Security Foundations Symposium. IEEE, 261-275. [43] Glenn C Rhoads and Laurent Bartholdi. 2012. Computer solution to the game of
pure strategy. Games 3, 4 (2012), 150-156.
Sheldon M Ross. 1971. Goofspiel—the game of pure strategy. Journal of Applied
Probability 8, 3 (1971), 621-625.
Lloyd S. Shapley. 2016. 17. A value for n-person games. Princeton University
Press.
Lloyd S. Shapley and Martin Shubik. 1954. A method for evaluating the distribu-
tion of power in a committee system. The American Political Science Review 48, 3

[6

®
=

@
&,

8

&
@
20,

=
2

[11] European Commission. 2019. Ethics Guidelines for Trustworthy Artificial
Intelligence. URL: https://ec.europa.eu/digital- single-market/en/news/ethics-
guidelines-trustworthy-ai. [Online; accessed 15-January-2021].

[12] Meir Friedenberg and Joseph Y Halpern. 2019. Blameworthiness in multi-agent
settings. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
525-532.

[13] Mark Grimes and Moshe Dror. 2013. Observations on strategies for Goofspiel. In
2013 IEEE Conference on Computational Inteligence in Games (CIG). IEEE, 1-2. (1954), 787-792.

[14] Ned Hall. 2007. Structural equations and causation. Philosophical Studies 132, 1 [47] Stel‘ios Triantafyllou, Adish S'{ngla, and Goran'Radan(')\{ic. 2021" On Blame Attri-
(2007), 109-136. bution for Accountable Multi-Agent Sequential Decision Making. Advances in

Neural Information Processing Systems 34 (2021).

Stratis Tsirtsis, Abir De, and Manuel Rodriguez. 2021. Counterfactual Explana-
tions in Sequential Decision Making Under Uncertainty. Advances in Neural
Information Processing Systems 34 (2021).

[49] John Von Neumann and Oskar Morgenstern. 2007. Theory of games and economic

NS
oo

~
Ko

[15] Joseph Halpern. 2015. A modification of the Halpern-Pearl definition of causality.
In Twenty-Fourth International Joint Conference on Artificial Intelligence.

[16] Joseph Halpern and Max Kleiman-Weiner. 2018. Towards formal definitions of
blameworthiness, intention, and moral responsibility. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

~
)

[17] Joseph Y Halpern. 2008. Defaults and Normality in Causal Structures.. In KR. behavior (commemf)mtive edition). Princeton University Presls.
198-208. [50] Cees Witteveen, Nico Roos, Roman van der Krogt, and Mathijs de Weerdt. 2005.
[18] Joseph Y. Halpern. 2016. Actual causality. MIT Press. Diagnosis of single and multi-agent plans. In Proceedings of the fourth international
[19] Joseph Y. Halpern and Christopher Hitchcock. 2015. Graded causation and Joint conferenc? on Autonomous agents and multiager'zt systems. 805-812.
defaults. The British Journal for the Philosophy of Science 66, 2 (2015), 413-457. [51] Richard W Wright. 1985. Causation in tort law. Calif. L. Rev. 73 (1985), 1735.

[52] Vahid Yazdanpanah, Mehdi Dastani, Natasha Alechina, Brian Logan, and Woj-
ciech Jamroga. 2019. Strategic responsibility under imperfect information. In
Proceedings of the 18th International Conference on Autonomous Agents and Multi-
agent Systems AAMAS 2019. IFAAMAS, 592-600.

[20] Joseph Y Halpern and Judea Pearl. 2001. Causes and Explanations: A Structural-
Model Approach. Part I: Causes.. In Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence. 194-202.

[21] Joseph Y. Halpern and Judea Pearl. 2005. Causes and Explanations: A Structural-

Model Approach. Part I: Causes. British Journal for the Philosophy of Science 56, 4

(2005).

Herbert Lionel Adolphus Hart and Tony Honoré. 1985. Causation in the Law.

OUP Oxford.

[23] Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Ghesh-
laghi Azar, Bilal Piot, Nicolas Heess, Hado P. van Hasselt, Gregory Wayne, Satin-
der Singh, Doina Precup, et al. 2019. Hindsight credit assignment. Advances in
Neural Information Processing Systems 32 (2019).

[24] Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Rémi Munos, Julien Pero-

lat, Marc Lanctot, Audrunas Gruslys, Jean-Baptiste Lespiau, Paavo Parmas, Edgar

Duéfiez-Guzman, et al. 2020. Neural replicator dynamics: Multiagent learning

via hedging policy gradients. In Proceedings of the 19th International Conference

on Autonomous Agents and MultiAgent Systems. 492-501.

Eric Hiddleston. 2005. Causal powers. The British journal for the philosophy of

science 56, 1 (2005), 27-59.

[26] Christopher Hitchcock. 2001. The intransitivity of causation revealed in equations

and graphs. The Journal of Philosophy 98, 6 (2001), 273-299.

Christopher Hitchcock. 2007. Prevention, preemption, and the principle of

sufficient reason. The Philosophical Review 116, 4 (2007), 495-532.

[28] David Hume. 2000. An enquiry concerning human understanding: A critical edition.

Oxford University Press.

Amjad Ibrahim. 2021. An Actual Causality Framework for Accountable Systems.

Ph. D. Dissertation. Technische Universitit Miinchen.

Kamal Jain and Mohammad Mahdian. 2007. Cost sharing. Algorithmic Game

Theory 15 (2007), 385-410.

[22

[25

[27

[29

[30

11


https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

Preprint Under Review

A CAUSAL GRAPH OF DEC-POMDP SCM

In this section, we provide the causal graph of the Dec-POMDP
SCM from Section 2.2. The graph is shown in Figure 3.

B GUMBEL-MAX SCMS AND
COUNTERFACTUAL STABILITY

In this section, we show how Gumbel-Max SCMs can be imple-
mented in our framework, and also provide the main intuition
behind the counterfactual stability property. For more details on
Gumbel-Max SCMs and the counterfactual stability property we
refer the interested reader to [36].

Under the Gumbel-Max model, the structural equations of Eq.
(1) become:

St = arg max{log P(S;-1,A¢-1, 5t = s) + Us, }
seS
Oy = argmax{log Q(S;,0; = 0) +Up, }
0e0
Iy = argmax{log Z; (L t—1, Ait—1, O, Iiy = 1) + Up,, }
1,€7;
A;; = argmax{log 7 (Ai; = a;i|lis) + Ua;,
aiEﬂi

where Us,, Uo,, Uy, and Uy,, ~ Gumbel(0, 1).

The class of Gumbel-Max SCMs has been shown to satisfy the
desirable property of counterfactual stability, which excludes a spe-
cific type of non-intuitive counterfactual outcomes. We provide the
main intuition behind this property, with the help of an example.
Consider the observed trajectory 7 = {(ss, at)}th_Ol, and the coun-
terfactual scenario in which agents {1, ..., n} take the joint action a’
at time-step ¢, instead of a;. The counterfactual stability property
ensures that under this counterfactual scenario, it is impossible that
at time-step ¢ + 1 the process would transition to a state s’ different
than the observed state, i.e., s;41 if

P(St=s5,Ar=a’,St41=5t41) _ P(St =s,Ar =a',S11=5')
P(St =5,Ar = as,Sr41 =5st41)  P(St =s,Ar=ap,Ste1=5")

In other words, in order for the state at time-step ¢ + 1 to change
under a counterfactual scenario, the relative likelihood of an alter-
native state s’ must have increased compared to that of s41.

C RESULTS OF SECTIONS 5.2 AND 5.3 FOR
THE BF AND HP DEFINITIONS

C.1 Actual Cause-Witness Pairs

In this section, we provide the sets of actual cause-witness pairs for
the trajectory considered in Section 5.2, and definitions BF (Table
2) and HP (Table 3).

We also describe a scenario where the HP definition violates
Property 3.3. The actual cause-witness pair of Table 3 denoted by
red color fails to meet the conditions stated by Property 3.3. More
specifically, Ag0’s information state at time-step 2 is different be-
tween the actual world and the witness world, i.e., the agent’s hand
in the actual situation at time 2 is (1, 2, 3) and in the counterfactual
scenario is (2, 3,4). Despite that, action Ag 3 = 4 is still considered
as a part of the actual cause by the HP definition. Therefore, this
scenario shows that the HP definition does not satisfy Property 3.3.
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C.2 Responsibility

In this section, we provide the agents’ degrees of responsibility
for the trajectory considered in Section 5.2, and definitions BF
(Plot 4) and HP (Plot 5). Compared to Plot 1, Plots 4 and 5 show
a similar albeit less prominent tendency, regarding the shift of
responsibility from Ag0 to Agl, throughout the several approaches
to responsibility attribution considered in this paper.

D EXPERIMENTAL RESULTS FOR HP-MIN

In this section, we present the results from Section 5.4 after replac-
ing the HP definition for actual cause with its enhanced version,
HP-MIN, which was introduced in Section 5.4.2. As expected, Plots
2a and 6a are identical, since the number of Property 3.3 violations
is not affected by whether the contingency minimality condition is
satisfied or not. As a result, the differences in Plots 2¢ and 6c are
insignificant. As mentioned in Section 5.4.2, the number of Prop-
erty 3.6 violations is considerably reduced when replacing HP with
HP-MIN. Although, Plot 6e (compared to Plot 2e) shows a similar
tendency for the impact on the agents’ degrees of responsibility,!®
it can be seen that this impact is still quite large.

E ADDITIONAL COMPARISON RESULTS OF
ACTUAL CAUSALITY DEFINITIONS

In this section, we provide some additional empirical insights that
we gain by comparing the actual causality definitions from Section
3, in the experimental test-bed of Section 5. Plots 7a and 7b display
the number of distinct actual causes and their corresponding size
(over all sampled trajectories), respectively. As expected, the BF
definition admits a larger number of distinct actual causes, and of
greater size than the other two definitions, since it is not equipped
with the notion of contingencies. Plot 7c shows the counterfactual
improvement admitted by the actual cause-witness pairs of each
definition. It can be seen that the HP definition provides pairs
that admit greater improvement in general. However, the main
reason why this is happening, is because HP allows for non-minimal
contingencies (see Section 5.4.2 and Appendix D). Plot 7d validates
this intuition.

16 At least for ACCS, ACW and ACW-I which are the only ones being affected.
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Figure 3: Causal Graph of Dec-POMDP SCM with Structural Equations (1)

Table 2: Actual Cause-Witness Pairs Based on the BF Definition

Actual Cause CF Setting | Contingency | Improvement

Ap1=4,A11=4 1,1 - 2
1,2,1 - 1
Ap1=4,A02=3A13=2 3 11 - 1
Ap1=4A12=3 1,1 - 2
A1 =4,A03=2 1,1 - 1
1,1,3 - 2
A1 =4,A02=3,A12=3 114 - 1
1 - 1
Ago =5 > - 1
A10=5A03=2 1,1 - 1
A1 0=5A13=2 1,4 - 1
1,3 - 3
1,4 - 1

A10=5A11=4 2
1,0 =5, A11 2.3 - 3
2,4 - 1
2,3 - 1

A = A = 4
1,0 =5, A2 =3 3.2 - I
A10=5A02=3 1,2 - 1
A10=5A01=4 1,2 - 1

Table 3: Actual Cause-Witness Pairs Based on the HP Definition

Actual Cause CF Setting Contingency Improvement
Ap1=4A11=4 1,1 - 2
1,2,1 - 1
Ao1=4,A02=3,A13=2 511 - 7
Ap1=4,A12=3 1,1 - 2
A1 =4,A03=2 1,1 - 1
A1 =4A02=3 1,1 A2 =3 2
Ao =5 ; - 1
1 A])l =4 1
Aj1=4A12=3 1
Ao=5 A2 =3 1
2 Al =4 1
Aj1=4A12=3 1
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