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Abstract Mauser and coworkers discussed in a series of papers an ansatz how to split the Dirac equation and
the wave function appearing therein into a part related to a free moving electron and another part related to a free
moving positron. This ansatz includes an expansion of these quantities into orders of the reciprocal of the speed of
light ε = 1/c. In particular, in Mauser (VLSI Design 9:415, 1999) it is discussed how to apply this expansion up to
the second order in the reciprocal of the speed of light ε. As an expansion of this analysis, we show in this work how
all three well-known terms that appear in an expansion of the Dirac equation in second order on the reciprocal of the
speed of light, namely, a relativistic correction to the kinetic energy, the Darwin term, and the spin-orbit interaction,
can be found using the ansatz of Mauser—and doing so, we close a gap between this ansatz to approximate the
Dirac equation and other approximative results found using the Foldy–Wouthuysen transformation.
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1 Introduction

In 1928, Dirac found the famous Dirac equation for the description of the relativistic quantum theory of an electron
[1]. According to the relativistic aspect of this equation, the question arises how the Dirac equation can be approx-
imated in a semi-classical approach, so that one finds an equation which has the form of a Schrödinger equation
plus small relativistic corrections.

This approximation can be made using the reciprocal of the the speed of light ε = 1/c as a parameter—this
ansatz was discussed already in several works [2–11]. In particular, in [8–11] Mauser and his coworkers applied
such an approximation of the Dirac equation within an ansatz, where the Dirac equation and the wave function are
both split into a part related to a free moving electron and a part related to a free moving positron, and hereby,
Mauser demonstrates in [9,10] how to apply this expansion up to second order in the reciprocal of the speed of light
ε for the differential equation being related to the free moving electron.

However, within this calculation the question remains unclear how to find the relativistic corrections to the
Schrödinger equation in second order in the reciprocal of the speed of light ε—namely, a relativistic correction to
the kinetic energy, the spin–orbit interaction, and the Darwin term—in the form which can be found elsewhere in
the literature [12–15] derived with the Foldy–Wouthuysen scheme [16]. Within this work, we address this question
and show how to derive these terms if one uses the ansatz of Mauser. Hereby, a careful discussion must be made
how the electromagnetic quantities and their spatial derivatives depend in leading order on the reciprocal of the
speed of light ε for the chosen system—we analyse in our discussion dependencies which are typical for atomic or
molecular systems containing one electron, such as the interaction of a hydrogen atom or a dihydrogen cation with
a laser pulse.

This paper is structured as follows: in Sect. 2, we explain how the electromagnetic quantities depend in leading
order on the reciprocal of the speed of light ε. In Sect. 3, a brief review of the Dirac equation is given, and then,
in Sect. 4, it is discussed how the splitting of the Dirac equation is made into one differential equation for a free
moving electron and another part related to a free moving positron with the Mauser method. After that, we show in
Sect. 5, how we can derive from these two equations another differential equation with the form of the Schrödinger
equation plus relativistic corrections up to second order in ε. In addition, we analyze in Sect. 5 how the differential
equations derived there can be related to prior findings ofMauser and his coworkers, where they derived within their
ansatz the Pauli equation [8–11]. Some longish side calculations of this section are presented in the Appendices.
Finally, we close this paper with a summary in Sect. 6.

2 Properties of the electromagnetic quantities

In this chapter, we will discuss how some electromagnetic quantities—these are the electric field E, the magnetic
field B, the scalar potential V , the vector potential A and spatial derivatives of these four quantities—depend in
leading order on the reciprocal of the speed of light

ε = 1/c. (1)

In general, all these quantities depend on the position r and the time t . The position r is described in Cartesian
coordinates with according coordinates r1 ≡ x , r2 ≡ y, r3 ≡ z, basis vectors e1 ≡ ex , e2 ≡ ey , e3 ≡ ez , and
coordinate derivatives ∂1 ≡ ∂x , ∂2 ≡ ∂y , ∂3 ≡ ∂z . Moreover, we use Gaussian units throughout this paper.

We analyze a system, where an atom or molecule that contains one electron interacts with a laser pulse (so, the
atom or molecule might be a hydrogen atomH or a hydrogen cation H+

2 ). In the following, we will use the position r
as the position of the electron, while the positions of all other particles will not appear in the following calculations
explicitly—so we omit to use formula symbols for these positions. For this system, the scalar potential V is related
to the attractive Coulomb forces that pull the electron towards the nuclei. These Coulomb forces are zero-order
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How to approximate the Dirac equation...

quantities in ε—thus, the vector potential V itself and its spatial and time derivatives are zero-order quantities in ε,
too:

V = O(ε0), (2)(
n∏

a=1

∂ia

)
V = O(ε0), (3)

∂nt V = O(ε0), (4)

where in the equations above and below ia ∈ {1, 2, 3} and n ∈ N.
Here, due to the form of Eq. (3), the left side of this equation can take for an appropriate choice of the parameter

n and the indices ia all forms of mixed derivatives of the Cartesian coordinates of the position r—for instance for
the special choice n = 3, i1 = i2 = 1 and i3 = 3, the left side of Eq. (3) becomes

∂21∂3 V ≡ ∂2x ∂z V . (5)

Moreover, the effects of the laser pulse on the electron are induced by the vector potential A. We use for the vector
potential A the Coulomb gauge:

∇A = 0 (6)

and assume that it has the following form:

A = A0

ε
f(η), (7)

where the prefactor A0 does not depend on the position r or the time t , and the vector function f(η) depends on the
quantity:

η = ω t − k r = ω (t − ε κ r) , (8)

where ω is the angular frequency of the laser pulse, and

k = ω ε κ = O(ε), (9)

is the wave vector of the pulse, where κ is a unit vector being independent of ε, so |κ | = 1.
A typical example,which form thevector function f(η) appearing inEq. (7) could take for a laser pulse propagating

in z direction (so that κ = ez) is

f(η) = sin2
( πη

ωNT

) [− sin (η + φCE ) ex + p cos (η + φCE ) ey
]

(10)

for 0 ≤ η ≤ ωNT and f(η) = 0 for all other values of η.
Here, T = 2π/ω is the oscillation period, N is the number of oscillation cycles of the pulse, p ∈ [−1, 1] is the

ellipticity parameter, φCE is the carrier-envelope phase (CEP). Now, we continue our discussion for any general
form of the function f(η) for which

f(η) = O(ε0), (11)
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∂nf(η)

∂ηn
= O(ε0) (12)

is valid.
Then, the vector potential A multiplied by ε, that is

A := εA = A0f(η), (13)

is a zero-order term in ε because of Eqs. (7) and (11) and the constancy of the prefactor A0:

A := O(ε0). (14)

In the following, we call the vector A as the scaled vector potential and substitute the vector potential A in all
equations by A/ε.

Moreover, using Eqs. (8) and (13), we find for spatial derivatives of the k-th component of the scaled vector
potential A (where k ∈ {1, 2, 3} here and in all following calculations):

(
n∏

a=1

∂ia

)
Ak =

(
n−1∏
a=1

∂ia

)
∂in [A0 fk(η)]

=
(
n−1∏
a=1

∂ia

)
A0

(
∂η

∂rin

)
∂ fk(η)

∂η

= −ω ε A0 κin

(
n−1∏
a=1

∂ia

)
∂ fk(η)

∂η

= (−1)nωnεn A0

(
n∏

a=1

κia

)
∂n fk(η)

∂ηn
. (15)

The important consequence of the result (15) for the spatial derivatives of the vector component Ak is(
n∏

a=1

∂ia

)
Ak = O(εn). (16)

Here, after comparing Eqs. (3) and (16), we note that each spatial derivative increases the leading order in ε of a
vector componentAk by one, whereas these spatial derivatives have no effect on the leading order in ε of the scalar
potential V .

However, time derivatives have no effect on the leading order in ε of a vector component Ak , which can be
proven using Eqs. (8), (12) and (13) within the following calculation:

∂nt Ak = ∂nt [A0 fk(η)]

= ∂n−1
t

[
A0

(
∂η

∂t

)
∂ fk(η)

∂η

]

= A0 ω ∂n−1
t

∂ fk(η)

∂η

= A0 ωn ∂n fk(η)

∂ηn

= O(ε0). (17)
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How to approximate the Dirac equation...

For all other electromagnetic quantities discussed in this publication, time derivatives have no impact on the leading
order in ε as well.

Now, we turn our discussion to the electric field E and the magnetic field B. They depend in this manner on the
potentials V and A:

E = −∇V − ∂A
∂t

, (18)

B = 1

ε
∇ × A. (19)

Then, by combing Eqs. (3), (16), and (17) with Eqs. (18) and (19) we find that both the electric field E and the
magnetic field B have in lowest order a zero-order term in ε:

E := O(ε0), (20)

B := O(ε0). (21)

As a further consequence of Eqs. (16) and (19), we find for spatial derivatives of the magnetic field B:

(
n∏

a=1

∂ia

)
Bk = O(εn). (22)

Moreover, because of Eqs. (3), (17) and (18), we find for spatial derivatives of the electric field E in contrast to Eq.
(22) for B:

(
n∏

a=1

∂ia

)
Ek = O(ε0). (23)

As an additional comment for all equations in this paper, where the symbol O(εq) with a q ∈ N0 is used, we note
that there exist special cases for which in some of these equations the value of q is higher than in our more general
calculations.

In particular, if the electron is so far away from all nuclei that their Coulomb forces on the electron can be
neglected and we can use V = 0, then from Eqs. (16) and (18) follows that on the right side of Eq. (23) appears the
symbol O(εn) instead of O(ε0).

As another special case, we find for the rotation of the electric field ∇ × E using Eqs. (16), (18) and regarding
that for all quantities analyzed in this work time derivatives have no effect on the leading order in ε:

∇ × E = −∇ ×
(

∇V + ∂A
∂t

)
= − ∂

∂t
(∇ × A) = O(ε), (24)

so this is in contrast to Eq. (23) in the leading order in ε a first order term.
However, for the discussions in the following sections, these special cases are not problematic, because then the

order of approximation is even higher if we neglect terms described by the symbol O(εq).
Here, we mention that in [11] a discussion about how the electromagnetic fields and potentials depend on the

quantity ε is performed, too. However, in Ref. [11] a different ansatz for this discussion is made that leads to a
magnetic field B = O(ε), while in our work, we have B = O(ε0). Moreover, in this work the additional point
appears that due to Eq. (22), applying spatial derivatives on the magnetic field B increases the leading expansion
order in the quantity ε, which is not included in [11].
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Now, we have completed our discussion about the properties of the electromagnetic fields E, B and the potentials
V and A and will turn now to the analysis of the Dirac equation.

3 The Dirac equation

In the following equations, we use the Einstein summation convention. Thus, when an index variable which is
related to time or a spacial coordinate appears twice in a single term, it implies summation of that term over all the
values of the index.

Therefore, with this convention, the Dirac equation is given by [1,13–15]1

ih̄ ∂t	
ε =

(
me

ε2
β + 1

ε
αk p̂k

)
	ε + e

ε
Akα

k	ε − eV	ε. (25)

Here, i = √−1 is the unit imaginary number, h̄ is the reduced Planck constant, e is the elementary charge and me

is the mass of the electron. The wave function 	ε is a four-dimensional spinor wave function depending on ε. Here
and below, an upper index ε of a quantity does not denote a power but that this quantity depends on ε. Moreover,
αk and β are 4×4 matrices given by

αk =
(

0 σ k

σ k 0

)
(26)

and

β =
(
12 0
0 −12

)
, (27)

where 12 is the 2×2 unit matrix and σ k are the 2×2 Pauli matrices

σ 1 =
(
0 1
1 0

)
, (28)

σ 2 =
(
0 −i
i 0

)
, (29)

σ 3 =
(
1 0
0 −1

)
. (30)

In addition,

p̂k = −ih̄ ∂k (31)

is the k-th vector component of the momentum operator p̂. As an additional quantity, we will use in the following
the kinematic momentum operator �̂. Its components 
̂k are given by


̂k = p̂k + eAk . (32)

1 In the Refs. [1,13–15], in the Dirac equation the vector potential A appears, for which we use A/ε instead.
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Using Eq. (32), the Dirac equation (25) can be rewritten into this form:

ih̄ ∂t	
ε =

(
me

ε2
β + 1

ε
αk
̂k − eV

)
	ε. (33)

4 The Mauser method

Having rewritten the Dirac equation (33) and discussed how the quantities depend on ε, we can start to transform it
within the Mauser method developed by Mauser and his coworkers [8–11]. This means that we will split the Dirac
equation into two differential equations: One differential equation in which appears the eigenfunction of the free
moving electron, and another differential equation in which the eigenfunction of the free moving positron appears.

Here, we mention as a detail that in [8] this point, which is deviating to our following calculations, is explained:
there, the Dirac equation (33) is rescaled in a manner so that in this equation the natural constants me, h̄ and c are
eliminated—and the quantity ε is introduced there not as the reciprocal of the speed of light, but as the dimensionless
quotient v/c of a reference speed v and the speed of light c. However, we will keep these nature constants in the
Dirac equation (33) for a better comparability of our results to other literature, such as [12–15], where this equation
is discussed within Gaussian units like in our work.

Now, the first step for the application of the Mauser method is to introduce the operator Q̂ε as

Q̂ε = meβ + ε αk p̂k =

⎛
⎜⎜⎝

me 0 ε p̂3 ε( p̂1 − i p̂2)
0 me ε

(
p̂1 + i p̂2

) −ε p̂3
ε p̂3 ε

(
p̂1 − i p̂2

) −me 0
ε
(
p̂1 + i p̂2

) −ε p̂3 0 −me

⎞
⎟⎟⎠ . (34)

Therefore, the Dirac equation of the free electron, which is not coupling to the potentials A and V and which is
described by a wave function 	ε

f , is given by

ih̄ ∂t	
ε
f := 1

ε2
Q̂ε	ε

f . (35)

In the momentum space, we have to substitute the operator p̂k = −ih̄∂k by the real-valued vector component pk .
Then, in momentum space, we find that the operator Q̂ε has eigenfunctions 	̃ε±(p, t) and eigenvalues ±λε(p). The
according equation is

Q̂ε	̃ε±(p, t) = ±λε(p)	̃ε±(p, t), (36)

and the function λε(p) is given by

λε(p) =
√
m2

e + ε2p2. (37)

Therefore, we can interpret the eigenfunction 	̃ε+(p, t) as the electronic wave function and the eigenfunction
	̃ε−(p, t) as the positronic wave function. With respect to the indices ± of the wave functions 	̃ε±(p, t), we here
follow the notation ofMauser and his coworkers in [8–10] pointing out that these indices± do not refer to the charge
of the associated particles. Instead, they refer to the sign of the eigenvalues±λε(p). As a further consequence, these
indices also refer to whether the particle assigned to the wave function 	̃ε±(p, t) is matter (+) or antimatter (−).
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Then, we find projectors [8–10]

πε± = 1

2

(
1 ± Q̂ε

λε(p)

)
. (38)

For these projectors, the following equations are valid:

πε±	̃ε±(p, t) = 	̃ε±(p, t), (39)

πε±	̃ε∓(p, t) = 0, (40)

πε+ + πε− = 1. (41)

For the non-relativistic case ε = 0, we find the according projectors π0± using Eqs. (34), (37), and (38):

π0± = 1

2
(1 ± β) . (42)

We note that because of Eqs. (26), (27) and (42), these equations are valid:

π0±αk = αkπ0∓, (43)

π0±β = ±π0±. (44)

As the next step, using Eqs. (37), (38), (42) and the expansion

1

λε(p)
= 1

me
− 1

2

ε2p2

m3
e

+ O(ε4), (45)

we find for the projectors πε± the following third-order expansion:

πε± = 1

2

[
1 ±

(
meβ + εαk pk

)( 1

me
− 1

2

ε2p2

m3
e

+ O(ε4)

)]

= π0± ± 1

2

ε

me
αk pk ∓ 1

4

ε2

m2
e
βp2 ∓ 1

4

ε3

m3
e
αk pkp2 + O(ε4). (46)

Since in the position space, the vector components pk transform into the operators −ih̄∂k , there, this expansion
turns into the following equation:

πε± = π0± ∓ ih̄

2

ε

me
αk∂k ± h̄2

4

ε2

m2
e
β� ∓ ih̄3

4

ε3

m3
e
αk∂k� + O(ε4). (47)

In the following equations, we will take into account often only the first two orders of this approximation, so we
will use:

πε± = π0± ∓ ih̄

2

ε

me
αk∂k ± h̄2

4

ε2

m2
e
β� + O(ε3). (48)
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Sometimes, also a rewritten form of the equation above for the projectos π0± is useful:

π0± = πε± ± ih̄

2

ε

me
αk∂k ∓ h̄2

4

ε2

m2
e
β� + O(ε3). (49)

In addition, we can transform the function λε(p) given in Eq. (37) from the momentum space into the position
space. Then, we find:

λε(p̂) =
√
m2

e + ε2p̂2 =
√
m2

e − h̄2ε2�. (50)

Here, the operator � under the square root can be evaluated using an expansion in ε—up to the fifth order, this
expansion is given by

λε(p̂) = me − h̄2

2

ε2

me
� − h̄4

8

ε4

m3
e
�2 + O(ε6). (51)

Then, the eigenvalue equation (36) can be transformed into the position space—there, it takes the following form:

Q̂ε	ε± = ±λε(p̂)	ε±. (52)

Moreover, Eqs. (39) and (40) can be transformed into the position space in the following manner:

πε±	ε± = 	ε±, (53)

πε±	ε∓ = 0. (54)

In addition, we assume that the wave functions 	ε± are scaled in a manner so that for the wave function 	ε holds

	ε = 	ε+ + 	ε−, (55)

where the wave function 	ε is normalized as

∫
dr (	ε)† 	ε = 1, (56)

where
∫
dr means an integration over the three-dimensional space. In contrast, the wave functions 	± are not

normalized to unity.
Now, we rewrite the Dirac equation (33) using Eqs. (34), (52) and (55). Then, we find:

ih̄ ∂t	
ε = 1

ε2
Q̂ε	ε + e

ε
Akα

k	ε − eV	ε

= 1

ε2
Q̂ε

(
	ε+ + 	ε−

)+ e

ε
Akα

k	ε − eV	ε

= λε(p̂)

ε2

(
	ε+ − 	ε−

)+ e

ε
Akα

k	ε − eV	ε. (57)

Then, we apply the projectors πε± on Eq. (57).
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When we execute this projection, we regard that the projectors πε± depend on the momentum operator p̂ but not
on the position vector r, which means that the following commutators hold:

[πε±, ∂t ] = 0, (58)

[πε±, λε(p̂)] = 0, (59)

[πε±, r] �= 0. (60)

Thus, the projectors πε± do not commute with the potentials V and A.

Therefore, using the projectors πε± on Eq. (57), we find that

ih̄ ∂t	
ε± = ± 1

ε2
λε(p̂)	ε± + πε±

( e
ε
Akα

k	ε − eV	ε
)

. (61)

Now, we define the wave functions φε± and φε as

φε± := exp

(
i
met

ε2h̄

)
	ε±, (62)

φε := φε+ + φε−. (63)

As a consequence, we can express the wave functions 	ε± and 	ε as

	ε± = exp

(
−i

met

ε2h̄

)
φε±, (64)

	ε = exp

(
−i

met

ε2h̄

)
φε. (65)

Then, by combining Eqs. (56) and (65) we find that the wave function φε is normalized:

∫
dr (φε)† φε = 1. (66)

Since

[
πε±, exp

(
−i

met

ε2h̄

)]
= 0, (67)

we can find for the functions φε± analogous equations to Eqs. (53) and (54):

πε±φε± = φε±, (68)

πε±φε∓ = 0. (69)

As a next step, we find for the left side of Eq. (61):

ih̄ ∂t	
ε± = me

ε2
exp

(
−i

met

ε2h̄

)
φε± + exp

(
−i

met

ε2h̄

)
ih̄ ∂tφ

ε±. (70)
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Using Eq. (67), we find the following equation, too:

πε±
[ e
ε
Akα

k	ε − eV	ε
]

= exp

(
−i

met

ε2h̄

)
πε±

[ e
ε
Akα

kφε − eVφε
]
. (71)

Thus, using Eqs. (70) and (71), we find the following differential equation for the wave functions:

ih̄ ∂tφ
ε± = ± 1

ε2
λε(p̂)φε± − me

ε2
φε± + πε±

( e
ε
Akα

kφε − eVφε
)

. (72)

Therefore, as a result of theMauser ansatz, we find that this differential equation splits into two differential equations,
one for φε+ and one for φε− [8–10]:

ih̄ ∂tφ
ε+ = 1

ε2

(
λε(p̂) − me

)
φε+ + πε+

( e
ε
Akα

kφε − eVφε
)

, (73)

ih̄ ∂tφ
ε− = 1

ε2

(−λε(p̂) − me
)
φε− + πε−

( e
ε
Akα

kφε − eVφε
)

. (74)

5 Approximation of the Dirac equation

In this section, we will analyze how to derive a differential equation that has the form of the Schödinger equation
plus relativistic corrections up to the second order in the reciprocal of the speed of light ε from the two differential
equations (73) and (74). For the following discussion, we use this expansion for the wave functions φε± [9,10]

φε± :=
∞∑
n=0

εnφn±. (75)

The upper index of the wave functions φn± is not a power but it is related to the n-th expansion order of φε± in ε. The
wave functions φε± and φn± can be distinguished by the fact that for the wave function φε± the upper index has the
dimension of a reciprocal velocity, but for the wave function φn±, the upper index is an integer greater than or equal
to zero. However, for the special case {ε = 0, n = 0}, the wave functions φε± and φn± cannot be distinguished—but
this is not a problem, since it follows from Eq. (75) that for this case, the wave functions φε± and φn± are equal.

For other wave functions discussed below, where either an upper index ε or n is used, an analogous argumentation
is valid.

Now, the next step of our derivations of the differential equation mentioned above is to calculate the positronic
wave function φε− up to third order in ε.

5.1 Positronic wave function φε− up to third order in ε

Using Eqs. (51) and (63), we obtain from the differential equation for φε− (74):

φε− = ε

2me
πε−

(
eAkα

kφε+
)

+ ε

2me
πε−

(
eAkα

kφε−
)

− ε2

2me
πε−

(
eVφε+

)− ε2

2me
πε−

(
eVφε−

)
− ε2

2me

p̂2

2me
φε− − ih̄ε2

2me
∂tφ

ε− + O(ε5). (76)
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Now, we realize that only the lowest order function φ0− vanishes, that is

φ0− = 0, (77)

	⇒ φε− = εφ1− + ε2φ2− + ε3φ3− + O(ε4). (78)

For the following transformations, Eqs. (48), (49), (68), and (69) for the projectors πε± and π0± will be useful. In
addition, we need the following equations [13]:2

αkαl = δkl 14 + i εklm�m, (79)

αkαl = 2δkl 14 − αlαk, (80)

ββ = 14, (81)

αkβ = −βαk . (82)

Here, 14 is the 4×4 unit matrix, �k is the following 4×4 matrix

�k =
(

σ k 0
0 σ k

)
(83)

being an extension of the 2×2 Pauli matrices σ k . In addition, δkl is the Kronecker delta, where

δkl =
{
1 if k = l
0 if k �= l

, (84)

and εklm is the Levi–Cevita symbol given by

εklm =
⎧⎨
⎩

1 if (k, l,m) is an even permutation of (1,2,3)
−1 if (k, l,m) is an odd permutation of (1,2,3)
0 if at least two indices are equal

. (85)

Moreover, for the operator �k , the following calculation rule applies:

π0±�k = �kπ0±. (86)

As the next step, the six summands in Eq. (76) have to be evaluated and then the sum of these summands has
to be simplified to find the final result for φε− up to third order in ε. Since these calculations are quite long and
cumbersome, we execute them in the Appendix A and state here just the final result:

φε− = εeAk

2me

(
αk − ε

p̂k
me

− ε2αk 2�̂
2 − e2A2

4m2
e

)
φε+

−ε3eh̄

4m2
e

(
�B − iEkα

k
)

φε+ + O(ε4). (87)

2 In [13], Eq. (79) is given in an analogous form σ kσ l = δkl 12 + i εklmσm for the 2×2 matrices σ k instead of the 4×4 matrices αk

and �k . However, using Eqs. (26) and (83), one can easily verify that from this form follows, Eq. (79).
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The quantity � appearing in Eq. (A.27) is just � = �kek . As an analogous quantity, we use below σ = σ kek ,
too.

5.2 Differential equation for φε+ up to second order in ε

As the next step, we now derive the differential equation for φε+ up to second order in ε. Therefore, we use Eqs.
(51), (63), and (73) to get

ih̄ ∂tφ
ε+ = − h̄2

2me
�φε+ − ε2h̄4

8m3
e

�2φε+ + πε+
(
1

ε
eAkα

kφε − eVφε

)
+ O(ε4)

= − h̄2

2me
�φε+ − ε2h̄4

8m3
e

�2φε+ + 1

ε
πε+

(
eAkα

kφε+
)

+ 1

ε
πε+

(
eAkα

kφε−
)

−πε+
(
eVφε+

)− πε+
(
eVφε−

)+ O(ε4). (88)

On the right side of Eq. (88), six summands appear in front of theO(ε4) term. The first two of these six summands
do not need to be simplified. Moreover, in the Appendix B, we explain how the last four of these six summands
can be simplified. Then, we sum up in this appendix these six summands, simplify the resulting sum, and find the
following final differential equation for φε+ up to second order in ε:

ih̄ ∂tφ
ε+ =

(
1

2me
�̂

2 − eV

)
φε+ + εeh̄

2me
�Bφε+ + iεeh̄

2me
αk (∂kV ) φε+

− ε2

8m3
e

�̂
4
φε+ + ε2e

2m2
e

αk
[(

1

ε
p̂kAl

)
eAl + β

(
1

ε
p̂lAk

)
p̂l

]
φε+

−ε2e2h̄

4m2
e

{� [A × (E − (∇V ))] + iA (∂tA)} φε+

−ε2eh̄2

4m2
e

β (�V − V�)φε+ + O(ε3). (89)

We mention here that Mauser also gives a differential equation for φε+ up to second order in ε in [9,10]. However,
Mauser’s differential equation deviates from our differential equation, because he uses in his calculation the vector
potential A as a quantity which is independent of ε, while we use the scaled vector potential A = εA instead
as a quantity which is in leading order independent from ε (see Eq. (14)). As an additional contrast to [9,10], we
regard in our calculations that spatial derivatives increase the leading order for an expansion in ε of the scaled vector
potential A and the magnetic field B (see Eqs. (16) and (22)).

The differential equation for φε+ (Eq. (89)) has already the form of a Schrödinger equation plus relativistic
corrections up to second order in ε. Within this equation, there appear two relativistic correction terms which have
already a form that one could expect from literature [12–15]:

These two terms are first the coupling term εeh̄
2me

�Bφε+ of the magnetic field B with the operator �, and second

a relativistic correction to the kinetic energy which is − ε2

8m3
e
�̂

4
φε+.3

However, two other relativistic corrections to the Schrödinger equation in second order in the reciprocal of the
speed of light ε, namely, these are the spin–orbit interaction and the Darwin term, cannot be found in Eq. (89) in
the form we would expect them from the references [12–15]. However, for two reasons, these deviations are not
too surprising:

3 As a detail, here and in [12] the kinematic momentum operator �̂ is regarded for this relativistic correction to the kinetic energy, while
in [13–15] in this term the kinematic momentum operator �̂ is approximated using just the momentum operator p̂ instead. Among these
references, this approximation is explained in the most detail in Ref. [13].
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The first reason is that the differential equation (89) is only a differential equation for the electronic wave function
φε+, but not for the full wave function φε being the sum of the electronic wave function φε+ and the positronic wave
function φε− (see Eq. (63)).

The second reason is that the above mentioned spin–orbit interaction and the Darwin term do not appear in a
differential equation for a four-dimensional spinor like Eq. (89) but a two-dimensional one—so we have to search
for a differential equation, where a two-dimensional spinor appears. As the first step for that, we define below
several two-dimensional wave functions.

5.3 Introduction of different two-spinors

We begin with the introduction of the two-dimensional spinors ϕε± and χε±—using these spinors we can write the
four-dimensional spinors φε± as

φε± =
(

ϕε±
χε±

)
, (90)

and then, we define the four-dimensional spinors ϕ̃ε± and χ̃ ε± as

ϕ̃ε± :=
(

ϕε±
0

)
(91)

and

χ̃ ε± :=
(

0
χε±

)
. (92)

Thus, we can calculate these spinors ϕ̃ε± and χ̃ ε± using the projectors π0± and Eqs. (27) and (42) as

ϕ̃ε± = π0+φε±, (93)

χ̃ ε± = π0−φε±. (94)

Analogously to Eq. (75), we expand the functions ϕ̃ε± and χ̃ ε± in this way:

ϕ̃ε± :=
∞∑
n=0

εn ϕ̃n±, (95)

χ̃ ε± :=
∞∑
n=0

εnχ̃n±. (96)

Of course, such two-dimensional spinors can not only be defined like in Eq. (90) for the four-dimensional electronic
spinor φε+ or the according positronic spinor φε−, but for the total four-dimensional wave function φε = φε+ + φε−
(see also Eq. (63)), too. Therefore, within the following equation, we introduce the two-dimensional spinors ϕε and
χε :

φε =
(

ϕε

χε

)
, (97)
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and also these four-spinors:

ϕ̃ε =
(

ϕε

0

)
, (98)

χ̃ ε :=
(

0
χε

)
. (99)

In analogy to Eqs. (93)–(96), for the four-spinors ϕ̃ε and χ̃ ε , these equations hold:

ϕ̃ε = π0+φε, (100)

χ̃ ε = π0−φε. (101)

Moreover, the four-spinors ϕ̃ε and χ̃ ε can be expanded as

ϕ̃ε :=
∞∑
n=0

εnϕ̃n, (102)

χ̃ ε :=
∞∑
n=0

εnχ̃n . (103)

As the next step, we derive a differential equation for ϕε+ up to second order in ε.

5.4 Differential equation for ϕε+ up to second order in ε

To obtain the differential equation for ϕε+ up to second order in ε, we use Eqs. (43), (44), (86), and apply the
projector π0+ on the differential equation for the electronic wave function φε+ up to second order in ε for interaction
with laser fields (89) according to

ih̄ ∂tπ
0+φε+ =

(
1

2me
�̂

2 − eV

)
π0+φε+ + εeh̄

2me
�Bπ0+φε+ + iεeh̄

2me
αk (∂kV ) π0−φε+

− ε2

8m3
e

�̂
4
π0+φε+ + ε2e

2m2
e

αk
[(

1

ε
p̂kAl

)
eAl −

(
1

ε
p̂lAk

)
p̂l

]
π0−φε+

−ε2e2h̄

4m2
e

{� [A × (E − (∇V ))] + iA (∂tA)} π0+φε+

−ε2eh̄2

4m2
e

(�V − V�)π0+φε+ + O(ε3). (104)

Now, we derive first a differential equation for ϕ̃ε+ up to second order in ε—since these calculations are a bit
cumbersome, we give them in the Appendix C and here just state their result:

ih̄ ∂t ϕ̃
ε+ =

(
1

2me
�̂

2 − eV

)
ϕ̃ε+ + εeh̄

2me
�Bϕ̃ε+ − ε2

8m3
e

�̂
4
ϕ̃ε+

−ε2eh̄

4m2
e

�
[
(∇V ) × �̂ + eA × E

]
ϕ̃ε+

−ε2eh̄

4m2
e
[h̄∇ (∇V ) + ieA (∂tA)] ϕ̃ε+ + O(ε3). (105)
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In this equation, only terms appear, in which the upper two components of the wave function ϕ̃ε+ are not coupled to
its lower two components. Moreover, the lower two components of the wave function ϕ̃ε+ are zero (see Eq. (91)).
Therefore, we can substitute in Eq. (105) all the four-dimensional spinors ϕ̃ε+ by the two-dimensional spinors ϕε+
and the operator�—being a 4×4 extension of the spinor operator σ , which is a 2×2 matrix—by the spinor operator
σ itself. Taking this into account and using Eq. (31), we find

ih̄ ∂tϕ
ε+ =

(
1

2me
�̂

2 − eV

)
ϕε+ + εeh̄

2me
σBϕε+ − ε2

8m3
e

�̂
4
ϕε+

−ε2eh̄

4m2
e

σ
[
(∇V ) × �̂ + eA × E

]
ϕε+

− iε2eh̄

4m2
e

[
p̂ (∇V ) + eA (∂tA)

]
ϕε+ + O(ε3) (106)

as the differential equation for the wave function ϕε+ up to second order in ε.

5.5 Differential equation for ϕε up to second order in ε

We derived the differential equation (106) for ϕε+ up to second order in ε. However, the wave function ϕε+ contains
just the electronic part of the total upper two-spinor ϕε , and now we derive an according differential equation for
this upper two-spinor ϕε .

In the following, we apply π0+ ih̄ ∂t on Eq. (63), i.e., φε = φε+ + φε−. In addition, we use Eq. (93) and that the
limit ε → 0 of the +-case of Eq. (58) is [π0+, ∂t ] = 0. Then, we find

π0+ ih̄ ∂tφ
ε = π0+ ih̄ ∂t

(
φε+ + φε−

)
	⇒ π0+ ih̄ ∂tφ

ε = π0+ ih̄ ∂tφ
ε+ + π0+ ih̄ ∂tφ

ε−
	⇒ ih̄ ∂tπ

0+φε = ih̄ ∂tπ
0+φε+ + ih̄ ∂tπ

0+φε−
	⇒ ih̄ ∂t ϕ̃

ε = ih̄ ∂t ϕ̃
ε+ + ih̄ ∂t ϕ̃

ε−. (107)

Now, we have to bring the right side of Eq. (107) into the form of an operator acting on ϕ̃ε (where we will neglect
terms of higher order than O(ε2)). This right side of Eq. (107) contains two terms, namely, ih̄ ∂t ϕ̃

ε+ and ih̄ ∂t ϕ̃
ε−.

We will focus first on the term ih̄ ∂t ϕ̃
ε+ in this equation, for which we can use Eq. (105). However, on the right side

of Eq. (105), the wave function ϕ̃ε+ appears, but not ϕ̃ε . Therefore, we need a formula to rewrite the wave function
ϕ̃ε+ as an expression, where ϕ̃ε appears. In the Appendix D, we show first how to derive this equation. It is

ϕ̃ε+ = ϕ̃ε + ε2e

4m2
e

[A p̂ − i�
(A × p̂

)]
ϕ̃ε + O(ε3). (108)

Using Eq. (108), we rewrite then in Appendix D the term ih̄ ∂t ϕ̃
ε+ and find:

ih̄ ∂t ϕ̃
ε+ =

(
1

2me
�̂

2 − eV

)
ϕ̃ε + εeh̄

2me
�Bϕ̃ε − ε2

8m3
e

�̂
4
ϕ̃ε

+ ε2e

4m2
e

(
1

2me
�̂

2 − eV

) [A p̂ − i�
(A × p̂

)]
ϕ̃ε

− ε2eh̄

4m2
e

�
[
(∇V ) × �̂ + eA × E

]
ϕ̃ε

− ε2eh̄

4m2
e
[h̄∇ (∇V ) + i eA (∂tA)] ϕ̃ε + O(ε3). (109)

Having found the result (109) for the first term ih̄ ∂t ϕ̃
ε+ on the right side of Eq. (107), we turn now to the second

term ih̄ ∂t ϕ̃
ε−.
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Since the calculus of this term is long, we discuss it in Appendix E and state here just the result of this calculation:

ih̄ ∂t ϕ̃
ε− = − iε2eh̄

4m2
e

[
(∂tA)p̂ + A(∇V )

]
ϕ̃ε

− ε2eh̄

4m2
e

�
[
(∂tA ) × p̂ + eA × (∇V )

]
ϕ̃ε

− ε2e

4m2
e

(
1

2me
�̂

2 − eV

) [A p̂ − i�
(A × p̂

)]
ϕ̃ε + O(ε3). (110)

As the next step, we insert into Eq. (107) the result (109) for the term ih̄ ∂t ϕ̃
ε+ and the result (110) for the term

ih̄ ∂t ϕ̃
ε−. Then a differential equation for the wave function ϕ̃ε can be calculated. The corresponding calculations

are given in detail in Appendix F—here we give just the result:

ih̄ ∂t ϕ̃
ε = 1

2me
�̂

2
ϕ̃ε − eV ϕ̃ε + εeh̄

2me
�Bϕ̃ε − ε2

8m3
e

�̂
4
ϕ̃ε

+ ε2eh̄

4m2
e

�̂ (� × E) ϕ̃ε + iε2eh̄

4m2
e

�̂Eϕ̃ε + O(ε3). (111)

Since all of the operators that act in Eq. (111) on the wave function ϕ̃ε do not couple its upper two components with
its lower two components, and the lower two components of the wave function ϕ̃ε are due to Eq. (98) just zero, we
can substitute in (111) the four-spinor ϕ̃ε everywhere it appears by its upper two-spinor ϕε , and the 4×4 matrix �,
which is an extension of the 2×2 spinor operator σ , by the spinor operator σ itself. Then, we find:

ih̄ ∂tϕ
ε = 1

2me
�̂

2
ϕε − eVϕε + εeh̄

2me
σBϕε − ε2

8m3
e

�̂
4
ϕε

+ ε2eh̄

4m2
e

�̂ (σ × E) ϕε + iε2eh̄

4m2
e

�̂Eϕε + O(ε3). (112)

Now, we have derived the differential equation for the wave function ϕε up to second order in ε.
However, one problem remains: while the operators

Ĥ1 := 1

2me
�̂

2
, (113)

Ĥ2 := −eV, (114)

Ĥ3 := εeh̄

2me
σB, (115)

Ĥ4 := − ε2

8m3
e

�̂
4
, (116)

which act in the first line of Eq. (112) on the wave function ϕε , are Hermitian, the operators

Ĥ5 := ε2eh̄

4m2
e

�̂ (σ × E) , (117)

Ĥ6 := iε2eh̄

4m2
e

�̂E, (118)

123



K. Renziehausen et al.

which act in the second line of Eq. (112) on thewave functionϕε , are non-Hermitian. Because of these non-Hermitian
operators Ĥ5 and Ĥ6, in general, the norm of the wave function ϕε is not conserved during its propagation in time.

The reason why these norm deviations occur during the propagation of the wave function ϕε is:
According to Eq. (97), the four-dimensional spinor φε can be represented with a two-dimensional upper spinor

ϕε and a two-dimensional lower spinor χε . As given in Eq. (66), the four-dimensional spinor φε is normalized
but it still allows the two-dimensional spinors ϕε and χε to exchange population between each other during their
propagation in time. Because of this exchange of population, the norms of the two-dimensional spinors ϕε and χε

are not conserved.

5.6 Differential equation for the normalized upper wave function ϕε
n

In the following, we will discuss how to bring the diffential equation (112) for the non-normalized wave function
ϕε in a form with a normalized wave-function ϕε

n . To do that, we have to make the operators Ĥ5 and Ĥ6 on the right
side of (112) Hermitian.

Therefore, we regard that the Hermitian part Ôh of any operator Ô is

Ôh = 1

2

(
Ô + Ô†

)
. (119)

The adjoint operators to the operators Ĥ5 and Ĥ6 are

Ĥ†
5 = ε2eh̄

4m2
e

(σ × E) �̂, (120)

Ĥ†
6 = − iε2eh̄

4m2
e
E�̂, (121)

hence

Ĥ5h = ε2eh̄

8m2
e

[
�̂ (σ × E) + (σ × E) �̂

]
, (122)

Ĥ6h = iε2eh̄

8m2
e

(
�̂E − E �̂

)

= iε2eh̄

8m2
e

(−ih̄ ∇E + eAE + ih̄ E∇ − eEA)

= ε2eh̄2

8m2
e

(∇E − E∇)

= ε2eh̄2

8m2
e

[(∇E) + E∇ − E∇]

= ε2eh̄2

8m2
e

(∇E) . (123)

As an additional detail, we mention that the term Ĥ5h given in (122) can be rewritten using Eqs. (31), (32) in the
following form:

Ĥ5h = ε2eh̄

8m2
e

εklm

(

̂kσl Em + σl Em
̂k

)
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= ε2eh̄

8m2
e

εklm

[
2
̂kσl Em + ih̄ σl(∂k Em)

]

= ε2eh̄

4m2
e

�̂ (σ × E) − iε2eh̄2

8m2
e

σ (∇ × E)

= Ĥ5 − iε2eh̄

8m2
e

σ (∇ × E) . (124)

Now, we regard Eq. (24) for the rotation of the electric field ∇ × E and find:

Ĥ5h = Ĥ5 + O(ε3). (125)

If the rotation of the electric fields vanishes, from Eq. (124) follows that we have even Ĥ5h = Ĥ5 then.
Nevertheless, for electric fields with a non-vanishing rotation, it is still advisable to use the term Ĥ5h instead of

the term Ĥ5 as a summand in the Hamiltonian, because the Hermitian term Ĥ5h does not cause norm violations for
all kind of electric fields E, while this applies for the term Ĥ5 only for electric fields with a vanishing rotation.

Having discussed this detail related to the term Ĥ5h , using the results (122) and (123), we finally obtain the
differential equation for the normalized upper wave function ϕε

n :

ih̄ ∂tϕ
ε
n = 1

2me
�̂

2
ϕε
n − eVϕε

n + εeh̄

2me
σBϕε

n − ε2

8m3
e

�̂
4
ϕε
n

+ ε2eh̄

8m2
e

[
�̂ (σ × E) + (σ × E) �̂

]
ϕε
n + ε2eh̄2

8m2
e

(∇E) ϕε
n + O(ε3). (126)

The result (126) is the Schrödinger equation with the relativistic corrections we searched for, and it coincides with
the result in [12]. In detail, these relativistic corrections can be split into four different terms; one term scaling with
ε in first order and three terms scaling with ε in second order. Due to [12], these terms can be described in the
following way:

The single first-order term is Ĥ3 (see Eq. (115)), which can be related to the Zeeman splitting in the magnetic
field.

The first second-order term is Ĥ4 (see Eq. (116)), which can be related to a relativistic correction of the kinetic
energy; the following second-order term is Ĥ5h (see Eq. (122)), which is proportional for the special case of static
electromagnetic central fields with

A = B = 0, (127)

E = −r
r

∂V

∂r
(128)

to an operator Ŝ ·L̂, where Ŝ = h̄
2σ is the so-called spin operator and L̂ = r× p̂ is the angular momentum. Therefore,

this operator Ĥ5h is called the spin–orbit interaction.
Finally, the last second-order term is Ĥ6h , which is the Darwin term: a relativistic correction that can be related

to the charge density ρ = ∇E/(4π) in the system.
As an additional comment to Eq. (126), we mention that it also corresponds to the according results in [13–15]—

whereas in these references, the spin–orbit interaction is given in the above-mentioned form for the special case of
static electromagnetic fields, where Ĥ5h is proportional to the operator Ŝ · L̂.4

4 Moreover, in the Refs. [13–15], the kinematic momentum operator �̂ is approximated by the momentum operator p̂ in the term Ĥ4
(see also Footnote 3 in Sect. 5.2).
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Thus, using theMausermethod,we could derive the differential equation (126) in theSchrödinger formcontaining
relativistic corrections up to the second order in ε that coincides with other literature results [12–15] derived with
the Foldy–Wouthuysen scheme [16].

5.7 Relation of the discussed differential equations to the Pauli equation

As a final part of Sect. 5, we discuss how the Pauli equation [13–15,17] is related to the differential equations (106),
(112), and (126) derived in Sects. 5.4, 5.5, and 5.6, because Mauser and his coworkers derived the Pauli equation
from a differential equation for the wave function ϕε+ in [8–10] already.

At first sight, one might wonder why they found the Pauli equation from an equation related to the electronic
part ϕε+ of the upper two-spinor ϕε and not from an equation related to the wave function ϕε

n , since we needed
in this work the differential equation (126) related to the wave function ϕε

n to derive a differential equation in the
Schrödinger form containing relativistic corrections up to the second order in ε that coincides with other literature
results. As an addition to the works of Mauser [8–10], we will clarify this point with the discussion below about
Eqs. (106), (112), and (126):

If we regard on the left side of the differential equation (126) for ϕε
n only all the expansion terms up to the

first expansion order O(ε), Eq. (126) is approximated as a Pauli equation that takes this form (where we note the
approximative wave function solving this equation as ϕε

p):

ih̄ ∂tϕ
ε
p = 1

2me
�̂

2
ϕε
p − eVϕε

p + εeh̄

2me
σBϕε

p . (129)

Moreover, if we take into account on the right side of the differential equation (112) for the wave function ϕε just
all the expansion terms up to the first expansion order O(ε) and approximate the wave function ϕε as ϕε

p, we find
again the Pauli equation (129). This result can be explained in this way:

As discussed in Sect. 5.6, on the right side of Eq. (112) the operators Ĥa, a ∈ {1, 2, . . . , 6}, act on the wave
function ϕε and on the right side of Eq. (126) their Hermitian parts Ĥah act on the wave function ϕε

n . Among these
six operators Ĥa , three operators areO(ε0) orO(ε)—these three operators are Ĥ1, Ĥ2, Ĥ3, and all three of them are
Hermitian. Thus, they appear in the same form in Eqs. (112) and (126). In addition, the operators Ĥ4, Ĥ5, Ĥ6 and
their respective Hermitian parts are O(ε2)—so, these operators are neglected if we take into account just operators
up to the order O(ε).

Therefore, it is comprehensible that Eq. (112) becomes the Pauli equation (129), too, if we approximate it
analogously to the derivation of the Pauli equation starting from Eq. (126), where we took into account only all the
expansion terms up to the first expansion order O(ε).

Furthermore, if we regard on the right side of Eq. (106) only the expansion terms up to the expansion orderO(ε)

and substitute the electronic part ϕε+ of the upper two-spinor ϕε by the wave function ϕε
p, then we find the Pauli

equation (129) again. This finding can be cleared up in the following way: using Eqs. (91), (98), and (108), we
realize that

ϕε+ = ϕε + ε2e

4m2
e

[A p̂ − i σ
(A × p̂

)]
ϕε + O(ε3),

	⇒ ϕε+ = ϕε + O(ε2). (130)

Thus, we find this consequence of the transformations from the differential equation (106) for the wave function
ϕε+ to the differential equation (112) for the wave function ϕε :

Because of Eq. (130), these transformationsmodify only the kind of operators on the right side of these equations,
which are at leastO(ε2). Therefore, both on the right side of Eq. (106) and on the right side of Eq. (112), up to the
expansion order O(ε) just the same operators Ĥ1, Ĥ2 and Ĥ3 act on the wave functions ϕε+ and ϕε , respectively.
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Therefore, both Eqs. (106) and (112) can be transformed into the Pauli equation (129) within the approximations
for these equations described above.

Thus, the discussion above clarifies why we can derive the Pauli equation from all three differential equations
(106) for ϕε+, (112) for ϕε , and (126) for ϕε

n—and so, we could verify the result of Mauser and his coworkers given
in [8–10], where they derived the Pauli equation from a differential equation for the wave function ϕε+.

However, if we are interested to find a differential equation in the Schrödinger form containing relativistic
corrections up to the second order in ε that coincides with the literature results derived with the Foldy–Wouthuysen
scheme [16], it is not sufficient to take into account just the electronic partϕε+ for thewave function in this differential
equation. Instead, we have to take into account both the electronic part ϕε+ and the positronic part ϕε− of the upper
two-spinor ϕε . This is done in this work within the derivation from Eqs. (106) to (112) in Sect. 5.5. Furthermore,
we have to make an another transformation to obtain a normalized wave function ϕε

n , what can be found in this
work within the derivation from Eqs. (112) to (126) in Sect. 5.6.

6 Summary

In this paper, we further developed the works [8–11] of Mauser and his coworkers, where they developed an ansatz
how to split the Dirac equation into a set of two differential equations: there is one equation, where an eigenfunction
for a free moving electron and another equation including an eigenfunction for a free moving positron appears. In
our work, we addressed the question how to find a differential equation of the Schrödinger form plus relativistic
corrections using the ansatz ofMauser. Here, we regard all relativistic corrections up to second order in the reciprocal
of the speed of light—and we find for these corrections, in coincidence with other literature results derived with
the Foldy–Wouthuysen scheme, a first order term related to the Zeeman splitting and three second-order terms: a
relativistic correction to the kinetic energy, the spin–orbit interaction and the Darwin term.

To find these results, we had to regard several aspects in our calculations.
The first point is that one has to regard carefully how the electromagnetic potentials and their spatial derivatives

depend on the reciprocal of the speed of light—we analyze a scenario which is typical for the interaction of a laser
pulse with a molecular system, where the scalar potential and its spatial derivations of it do not depend in general
in the lowest expansion order on the reciprocal of the speed of light. However, not the vector potential itself but
another quantity, which we call the scaled vector potential being the vector potential divided by the speed of light,
is independent in lowest expansion order of the reciprocal of the speed of light. In addition, each spatial derivative
applied on the scaled vector potential increases its leading lowest expansion order related to the reciprocal of the
speed of light by one.

The next critical question is which wave function does one analyze: we analyze in our work the complete upper
two-spinor of the four-spinor appearing in the Dirac equation. In particular, we realized as a further development
to the analysis in [9,10] that it is not sufficient for the reproduction of the literature results derived using the Fouly–
Wouthuysen scheme for all relativistic corrections of the Schrödinger equation up to second order in the reciprocal
of the speed of light if one regards only the part of the wave function related to a free moving electron. At least,
regarding just this part of the wave function is sufficient to derive the Pauli equation that contains the relativistic
corrections of the Schrödinger equation up to first order in the reciprocal of the speed of light.

As a last point, one has to regard for the derivation of relativistic corrections of the Schrödinger equation up to
second order in the reciprocal of the speed of light to bring the Hamiltonian into a Hermitian, norm-conserving
form.

Therefore, with our calculations, we have found the missing link between the ansatz of Mauser and the approx-
imation of the Dirac equation derived in the literature using the Foldy–Wouthuysen scheme.

123



K. Renziehausen et al.

Appendix A: The positronic wave function φε−

In this Appendix A, we transform the six summands in Eq. (76) that we give here again for clarity:

φε− = ε

2me
πε−

(
eAkα

kφε+
)

+ ε

2me
πε−

(
eAkα

kφε−
)

− ε2

2me
πε−

(
eVφε+

)− ε2

2me
πε−

(
eVφε−

)
− ε2

2me

p̂2

2me
φε− − ih̄ε2

2me
∂tφ

ε− + O(ε5).

Then, we simplify the sum of these six summands and doing so, we derive a result for the positronic wave function
φε− up to the third order in ε.

Now, we start with the calculation of the first summand.

Analysis for the first summand:
The first summand in Eq. (76) is rewritten as

ε

2me
πε−

(
eAkα

kφε+
)

= ε

2me

(
π0− + ih̄

2

ε

me
αl∂l − h̄2

4

ε2

m2
e

β�

)(
eAkα

kφε+
)

+ O(ε4)

= 1

2

ε

me
eAkα

kπ0+φε+ + ih̄

4

ε2

m2
e

αl∂l

(
eAkα

kφε+
)

− h̄2

8

ε3

m3
e

β�
(
eAkα

kφε+
)

+ O(ε4)

= 1

2

ε

me
eAkα

k
(

πε+ + ih̄

2

ε

me
αl∂l − h̄2

4

ε2

m2
e

β�

)
φε+

+ ih̄

4

ε2

m2
e

αl∂l

(
eAkα

kφε+
)

− h̄2

8

ε3

m3
e

β�
(
eAkα

kφε+
)

+ O(ε4), (A.1)

hence

ε

2me
πε−

(
eAkα

kφε+
)

= εe

2me
Akα

kφε+ + iε2eh̄

4m2
e

αkαlAk∂lφ
ε+ − ε3eh̄2

8m3
e

αkβAk�φε+

+ iε2eh̄

4m2
e

αlαk∂lAkφ
ε+ − ε3eh̄2

8m3
e

βαk�Akφ
ε+ + O(ε4)

= εe

2me
Akα

kφε+ + iε2eh̄

4m2
e

(
αkαlAk∂l + αlαk∂lAk

)
φε+

−ε3eh̄2

8m3
e

(
αkβAk� + βαk�Ak

)
φε+ + O(ε4)

= εe

2me
Akα

kφε+

+ iε2eh̄

4m2
e

[(
αkαl + αlαk

)
Ak∂l + αlαk (∂lAk)

]
φε+

−ε3eh̄2

8m3
e

[(
αkβ + βαk

)
Ak�

+2βαk (∂nAk) ∂n + βαk (�Ak)
]
φε+ + O(ε4), (A.2)

where in the last step

� f g = (� f )g + 2(∂n f )∂ng + f �g (A.3)
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was used.
For the further transformation of Eq. (A.2), we apply Eqs. (79), (80), (82), and regard that because of Eq. (19)

the following formula is true for m-th component of the magnetic field vector B:

Bm = 1

ε
[∇ × A]m = 1

ε
εlkm(∂lAk). (A.4)

In addition, we take into account Eq. (31) and that for the k-th component of the scaled vector potentialA because
of the Coulomb gauge (6) and because of Eq. (16) these equations are true:

∂kAk = 0, (A.5)

∂nAk = O(ε), (A.6)

�Ak = O(ε2). (A.7)

Then, we transform Eq. (A.2) in the following way:

ε

2me
πε−

(
eAkα

kφε+
)

= εe

2me
Akα

kφε+ + iε2eh̄

4m2
e

[
2Ak∂k + (∂kAk) + iεlkm�m (∂lAk)

]
φε+

−ε3eh̄2

8m3
e

βαk [2 (∂nAk) ∂n + (�Ak)]φ
ε+ + O(ε4)

= εe

2me
Akα

kφε+ − ε2e

2m2
e
Ak p̂kφ

ε+ − ε3eh̄

4m2
e

�Bφε+ + O(ε4), (A.8)

and finally, we find for the first summand in Eq. (76):

ε

2me
πε−

(
eAkα

kφε+
)

= εeAk

2me

(
αk − ε

p̂k
me

)
φε+ − ε3eh̄

4m2
e

�Bφε+ + O(ε4). (A.9)

Analysis for the second summand:
Using φε− = O(ε), see Eq. (78), the second summand in Eq. (76) is rewritten as

ε

2me
πε−

(
eAkα

kφε−
)

= ε

2me

(
π0− + ih̄

2

ε

me
αl∂l

)(
eAkα

kφε−
)

+ O(ε4)

= 1

2

ε

me
eAkα

kπ0+φε− + ih̄

4

ε2

m2
e

αl∂l

(
eAkα

kφε−
)

+ O(ε4)

= 1

2

ε

me
eAkα

k
(

πε+ + ih̄

2

ε

me
αl∂l

)
φε−

+ ih̄

4

ε2

m2
e

αl∂l

(
eAkα

kφε−
)

+ O(ε4), (A.10)

hence

ε

2me
πε−

(
eAkα

kφε−
)

= iε2eh̄

4m2
e

αkαlAk∂lφ
ε− + iε2eh̄

4m2
e

αlαk∂lAkφ
ε− + O(ε4)

= iε2eh̄

4m2
e

(
αkαlAk∂l + αlαk∂lAk

)
φε− + O(ε4)

= iε2eh̄

4m2
e

[(
αkαl + αlαk

)
Ak∂l + αlαk (∂lAk)

]
φε− + O(ε4). (A.11)

Using Eqs. (31), (79), (80), (A.4), (A.5), and φε− = O(ε), we get

ε

2me
πε−

(
eAkα

kφε−
)

= iε2eh̄

4m2
e

[
2Ak∂k + (∂kAk) + iεlkm�m (∂lAk)

]
φε− + O(ε4)
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= − ε2e

2m2
e
Ak p̂kφ

ε− − ε3eh̄

4m2
e

�Bφε− + O(ε4)

= −ε2eAk

2me

p̂k
me

φε− + O(ε4). (A.12)

Using Eqs. (76), (A.8), i. e.

φε− = ε

2me
πε−

(
eAlα

lφε+
)

+ O(ε2)

= εeAl

2me
αlφε+ + O(ε2), (A.13)

Equations (31), and (A.6), we finally obtain

ε

2me
πε−

(
eAkα

kφε−
)

= −ε2eAk

2me

p̂k
me

εeAl

2me
αlφε+ + O(ε4)

= iε3e2h̄Ak

4m3
e

αl∂kAlφ
ε+ + O(ε4)

= iε3e2h̄Ak

4m3
e

αl [Al∂k + (∂kAl)]φ
ε+ + O(ε4)

= iε3e2h̄AkAl

4m3
e

∂kα
lφε+ + O(ε4)

= −ε3e2AkAl

4m2
e

p̂k
me

αlφε+ + O(ε4)

= −ε3eAk

2me
αk eAl p̂l

2m2
e

φε+ + O(ε4). (A.14)

Analysis for the third summand:
The third summand in Eq. (76) is rewritten as

− ε2

2me
πε−

(
eVφε+

) = − ε2

2me

(
π0− + ih̄

2

ε

me
αk∂k

) (
eVφε+

)+ O(ε4)

= −1

2

ε2

me
eVπ0−φε+ − ih̄

4

ε3

m2
e

αk∂k
(
eVφε+

)+ O(ε4)

= −1

2

ε2

me
eV

(
πε− − ih̄

2

ε

me
αk∂k

)
φε+ − ih̄

4

ε3

m2
e

αk∂k
(
eVφε+

)+ O(ε4), (A.15)

hence

− ε2

2me
πε−

(
eVφε+

) = iε3eh̄

4m2
e

αkV ∂kφ
ε+ − iε3eh̄

4m2
e

αk∂kVφε+ + O(ε4)

= iε3eh̄

4m2
e

αk (V ∂k − ∂kV ) φε+ + O(ε4)

= iε3eh̄

4m2
e

αk [V ∂k − V ∂k − (∂kV )]φε+ + O(ε4)

= − iε3eh̄

4m2
e

(∂kV ) αkφε+ + O(ε4). (A.16)

Analysis for the fourth summand:
Using φε− = O(ε), see Eq. (78), the fourth summand in Eq. (76) is rewritten as

− ε2

2me
πε−

(
eVφε−

) = − ε2

2me
π0−

(
eVφε−

)+ O(ε4)
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= −1

2

ε2

me
eVπ0−φε− + O(ε4)

= −1

2

ε2

me
eVπε−φε− + O(ε4)

= −ε2eV

2me
φε− + O(ε4). (A.17)

Using Eq. (A.13), we finally obtain

− ε2

2me
πε−

(
eVφε−

) = −ε3e2VAk

4m2
e

αkφε+ + O(ε4)

= −ε3eAk

2me
αk eV

2me
φε+ + O(ε4). (A.18)

Analysis for the fifth summand:
Using Eq. (31), p̂2 = p̂2k = −h̄2∂2k , and Eqs. (A.6), (A.7), and (A.13), the fifth summand in Eq. (76) is rewritten

as

− ε2

2me

p̂2

2me
φε− = ε2h̄2

4m2
e

∂2k φε−

= ε3eh̄2

8m3
e

αl∂2kAlφ
ε+ + O(ε4)

= ε3eh̄2Al

8m3
e

αl∂2k φε+ + O(ε4)

= −ε3eAk

8me
αk p̂2l

m2
e

φε+ + O(ε4). (A.19)

Analysis for the sixth summand:
Using Eq. (A.13), the sixth summand in Eq. (76) is rewritten as

− ih̄ε2

2me
∂tφ

ε− = − iε3eh̄

4m2
e

αk∂tAkφ
ε+ + O(ε4)

= − iε3eh̄

4m2
e

(∂tAk) αkφε+ − iε3eh̄Ak

4m2
e

αk∂tφ
ε+ + O(ε4). (A.20)

To obtain the differential equation for φε+ up to zeroth order in ε, we use Eqs. (51), (63), and (74) to get

ih̄ ∂tφ
ε+ = − h̄2

2me
�φε+ + πε+

(
1

ε
eAkα

kφε − eVφε

)
+ O(ε2)

= − h̄2

2me
�φε+ + 1

ε
πε+

(
eAkα

kφε+
)

+ 1

ε
πε+

(
eAkα

kφε−
)

−πε+
(
eVφε+

)− πε+
(
eVφε−

)+ O(ε2). (A.21)

Using Eqs. (31), (80) and (A.6), we obtain for the second term

1

ε
πε+

(
eAkα

kφε+
)

=
[
1

ε
π0+ − ih̄

2me
αl∂l + O(ε)

] (
eAkα

kφε+
)

= e

ε
Akα

kπ0−φε+ − ieh̄

2me
αlαk∂lAkφ

ε+ + O(ε)

= e

ε
Akα

kπ0−φε+ − ieh̄

2me
αlαkAk∂lφ

ε+ + O(ε)

= e

ε
Akα

kπ0−φε+ − ieh̄

2me

(
2δkl − αkαl

)
Ak∂lφ

ε+ + O(ε)
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= e

ε
Akα

kπ0−φε+ + e

me
Ak p̂kφ

ε+ + e

ε
Akα

k iεh̄

2me
αl∂lφ

ε+ + O(ε)

= e

ε
Akα

k
(

π0− + iεh̄

2me
αl∂l

)
φε+ + e

me
Ak p̂kφ

ε+ + O(ε)

= e

ε
Akα

kπε−φε+ + e

me
Ak p̂kφ

ε+ + O(ε)

= eAk
p̂k
me

φε+ + O(ε). (A.22)

For the third term, we obtain with φε− = O(ε), Eqs. (79), (A.13), and A × A = 0

1

ε
πε+

(
eAkα

kφε−
)

= 1

ε
π0+

(
eAkα

kφε−
)

+ O(ε)

= e

ε
Akα

kπ0−φε− + O(ε)

= e

ε
Akα

kπε−φε− + O(ε)

= e

ε
Akα

kφε− + O(ε)

= e2AkAl

2me
αkαlφε+ + O(ε)

= e2AkAl

2me

(
δkl + iεklm�m)φε+ + O(ε)

= e2A2
k

2me
φε+ + O(ε). (A.23)

Furthermore, we easily get for both last terms:

− πε+
(
eVφε+

) = −π0+
(
eVφε+

)+ O(ε)

= −eVπ0+φε+ + O(ε)

= −eVπε+φε+ + O(ε)

= −eVφε+ + O(ε), (A.24)

−πε+
(
eVφε−

) = −π0+
(
eVφε−

)+ O(ε)

= −eVπ0+φε− + O(ε)

= −eVπε+φε− + O(ε)

= O(ε). (A.25)

Then, along with these equations and Eq. (31), the differential equation (74) for φε+ up to zeroth order in ε is
rewritten as

ih̄ ∂tφ
ε+ = 1

2me

(
p̂2k + 2eAk p̂k + e2A2

k

)
φε+ − eVφε+ + O(ε)

= 1

2me

[
p̂2k + e( p̂kAk) + 2eAk p̂k + e2A2

k

]
φε+ − eVφε+ + O(ε)

= 1

2me

(
p̂2k + e p̂kAk + eAk p̂k + e2A2

k

)
φε+ − eVφε+ + O(ε)

= 1

2me

(
p̂k + eAk

)2
φε+ − eVφε+ + O(ε)

= 1

2me
�̂

2
φε+ − eVφε+ + O(ε), (A.26)
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where in the last steps we used Eq. (A.5), i.e., ∂kAk = p̂kAk = 0, Eq. (32), and �̂
2 = 
̂2

k . Then, the sixth summand
in Eq. (76) is obtained from Eq. (A.20) as

− ih̄ε2

2me
∂tφ

ε− = − iε3eh̄

4m2
e

(∂tAk) αkφε+ − ε3eAk

8m3
e

αk
(
p̂2l + 2eAl p̂l + e2A2

l

)
φε+

+ε3eAk

2me
αk eV

2me
φε+ + O(ε4). (A.27)

Result:
With Eqs. (A.9), (A.14), (A.16), (A.18), (A.19), (A.27), the positronic wave function φε− (74) up to third order

in ε is rewritten as

φε− = εeAk

2me

(
αk − ε

p̂k
me

)
φε+ − ε3eh̄

4m2
e

�Bφε+ − ε3eAk

2me
αk eAl p̂l

2m2
e

φε+

− iε3eh̄

4m2
e

(∂kV ) αkφε+ − ε3eAk

2me
αk eV

2me
φε+ − ε3eAk

8me
αk p̂2l

m2
e

φε+

− iε3eh̄

4m2
e

(∂tAk) αkφε+ − ε3eAk

8m3
e

αk
(
p̂2l + 2eAl p̂l + e2A2

l

)
φε+

+ε3eAk

2me
αk eV

2me
φε+ + O(ε4)

= εeAk

2me

(
αk − ε

p̂k
me

)
φε+ − ε3eh̄

4m2
e

�Bφε+ − iε3eh̄

4m2
e

(∂kV + ∂tAk) αkφε+

−ε3eAk

8m3
e

αk
(
2 p̂2l + 4eAl p̂l + e2A2

l

)
φε+ + O(ε4). (A.28)

Using Eq. (18), i. e. Ek = −(∂kV + ∂tAk) and Eq. (32) with p̂lAl = 0, we get

φε− = εeAk

2me

(
αk − ε

p̂k
me

)
φε+ − ε3eh̄

4m2
e

�Bφε+ + iε3eh̄

4m2
e

Ekα
kφε+

−ε3eAk

4m3
e

αk
(
p̂2l + 2eAl p̂l + e2A2

l

)
φε+ + ε3eAk

8m3
e

αke2A2
l φ

ε+ + O(ε4)

= εeAk

2me

(
αk − ε

p̂k
me

)
φε+ − ε3eh̄

4m2
e

�Bφε+ + iε3eh̄

4m2
e

Ekα
kφε+

−ε3eAk

4m3
e

αk
(
p̂2l + 2eAl p̂l + e2A2

l

)
φε+ + ε3eAk

2me
αk e

2A2
l

4m2
e

φε+ + O(ε4)

= εeAk

2me

(
αk − ε

p̂k
me

)
φε+ − ε3eh̄

4m2
e

�Bφε+ + iε3eh̄

4m2
e

Ekα
kφε+

−ε3eAk

2me
αk �̂

2

2m2
e

φε+ + ε3eAk

2me
αk e

2A2

4m2
e

φε+ + O(ε4) (A.29)

and obtain the final result
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φε− = εeAk

2me

(
αk − ε

p̂k
me

− ε2αk 2�̂
2 − e2A2

4m2
e

)
φε+ − ε3eh̄

4m2
e

(
�B − iEkα

k
)

φε+ + O(ε4). (A.30)

Appendix B: The differential equation for the wave function φε+

In this Appendix B, we derive an differential equation for the wave function φε+ up to second order in ε. As the
starting point for our calculation, we use Eq. (88):

ih̄ ∂tφ
ε+ = − h̄2

2me
�φε+ − ε2h̄4

8m3
e

�2φε+ + 1

ε
πε+

(
eAkα

kφε+
)

+ 1

ε
πε+

(
eAkα

kφε−
)

−πε+
(
eVφε+

)− πε+
(
eVφε−

)+ O(ε4).

As we mention in Sec. 5.2, as a first step, we simplify now the last four of the six summands on the right side of
Eq. (88) in front of the O(ε4) term. After that, we sum up these six summands, bring their sum in a compact form
and doing so, we will find the result for the differential equation for φε+ up to second order in ε.

Therefore, we begin our calculations with the simplification of the third of the above-mentioned six summands.

Analysis for the third summand:
We use Eqs. (43) and (47) to rewrite the third summand of Eq. (88) as

1

ε
πε+

(
eAkα

kφε+
)

=
[
1

ε
π0+ − ih̄

2me
αl∂l + εh̄2

4m2
e

β� − iε2h̄3

4m3
e

αl∂l� + O(ε3)

] (
eAkα

kφε+
)

= e

ε
Akα

kπ0−φε+ − ieh̄

2me
αlαk∂lAkφ

ε+ + εeh̄2

4m2
e

βαk�Akφ
ε+

− iε2eh̄3

4m3
e

αlαk�∂lAkφ
ε+ + O(ε3)

= e

ε
Akα

kπ0−φε+ − ieh̄

2me
αlαkAk∂lφ

ε+ − ieh̄

2me
αlαk(∂lAk)φ

ε+

+εeh̄2

4m2
e

βαk�Akφ
ε+ − iε2eh̄3

4m3
e

αlαk�Ak∂lφ
ε+

− iε2eh̄3

4m3
e

αlαk�(∂lAk)φ
ε+ + O(ε3). (B.1)

Then, we use Eqs. (31), (79), (80), (A.4), and (A.5) to obtain

1

ε
πε+

(
eAkα

kφε+
)

= e

ε
Akα

kπ0−φε+ − ieh̄

2me
(2δkl − αkαl)Ak∂lφ

ε+

− ieh̄

2me
(δkl + iεlkm�m)(∂lAk)φ

ε+ + εeh̄2

4m2
e

βαk�Akφ
ε+

− iε2eh̄3

4m3
e

(2δkl − αkαl)�Ak∂lφ
ε+

− iε2eh̄3

4m3
e

(δkl + iεlkm�m)�(∂lAk)φ
ε+ + O(ε3)
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= e

ε
Akα

kπ0−φε+ + e

me
Ak p̂kφ

ε+ + e

ε
Akα

k iεh̄

2me
αl∂lφ

ε+

+ εeh̄

2me
�Bφε+ + εeh̄2

4m2
e

βαk�Akφ
ε+ − iε2eh̄3

2m3
e

�Ak∂kφ
ε+

+ iε2eh̄3

4m3
e

αkαl�Ak∂lφ
ε+ + ε3eh̄3

4m3
e

�m�Bmφε+ + O(ε3). (B.2)

With Eqs. (82) and (A.3), we get

1

ε
πε+

(
eAkα

kφε+
)

= e

ε
Akα

kπ0−φε+ + e

me
Ak p̂kφ

ε+

+ e

ε
Akα

k iεh̄

2me
αl∂lφ

ε+ + εeh̄

2me
�Bφε+

+εeh̄2

4m2
e

(�Ak)βαkφε+ + εeh̄2

2m2
e

(∂nAk)βαk∂nφ
ε+

− e

ε
Akα

k ε2h̄2

4m2
e

β�φε+ − iε2eh̄3

2m3
e

(�Ak)∂kφ
ε+

− iε2eh̄3

m3
e

(∂nAk)∂k∂nφ
ε+ − iε2eh̄3

2m3
e

Ak∂k�φε+

+ iε2eh̄3

4m3
e

(�Ak)α
kαl∂lφ

ε+ + iε2eh̄3

2m3
e

(∂nAk)α
kαl∂l∂nφ

ε+

+ e

ε
Akα

k iε
3h̄3

4m3
e

αl∂l�φε+ + ε3eh̄3

4m3
e

�m(�Bm)φε+

+ε3eh̄3

2m3
e

�m(∂n Bm)∂nφ
ε+ + ε3eh̄3

4m3
e

�B�φε+ + O(ε3). (B.3)

Now, we use the fact that for the kind of systems which we analyze Eqs. (A.6), (A.7) hold, and because of Eq. (22),
the following equations are true, too:

∂n Bm = O(ε), (B.4)

�Bm = O(ε2). (B.5)

Then, Eq. (B.3) is simplified to

1

ε
πε+

(
eAkα

kφε+
)

= e

ε
Akα

k
(

π0− + iεh̄

2me
αl∂l − ε2h̄2

4m2
e

β� + iε3h̄3

4m3
e

αl∂l�

)
φε+

+ e

me
Ak p̂kφ

ε+ + εeh̄

2me
�Bφε+ + εeh̄2

2m2
e

(∂lAk)βαk∂lφ
ε+

− iε2eh̄3

2m3
e

Ak∂k�φε+ + O(ε3). (B.6)

Using the definition for πε−, see Eq. (47), and Eqs. (31), (69), we obtain the final result for the third summand of
Eq. (88) as

1

ε
πε+

(
eAkα

kφε+
)

= e

me
Ak p̂kφ

ε+ + εeh̄

2me
�Bφε+ − εe

2m2
e

βαk( p̂lAk) p̂lφ
ε+

− ε2e

2m3
e
Ak p̂k p̂2φε+ + O(ε3)
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= eAk
p̂k
me

(
1 − ε2p̂2

2m2
e

)
φε+ + εeh̄

2me
�Bφε+

−ε2

2
βαk

(
1

ε

p̂l
me

eAk

)
p̂l
me

φε+ + O(ε3). (B.7)

Note that we should always remind that because of Eq. (A.6), p̂lAk = −ih̄∂lAk = O(ε), hence p̂lAk/ε = O(ε0).

Analysis for the fourth summand:
We use Eqs. (31), (43), (48), (79), (80), (86), (87), and (A.6), to obtain the fourth summand of Eq. (88) as

1

ε
πε+

(
eAkα

kφε−
)

=
[
π0+ − iεh̄

2me
αm∂m + ε2h̄2

4m2
e

β� + O(ε3)

]
eAkα

k

·
[
eAl

2me

(
αl − ε

p̂l
me

− ε2αl 2�̂
2 − e2A2

4m2
e

)

−ε2eh̄

4m2
e

(
�B − iElα

l
)

+ O(ε3)

]
φε+

= e2

2me
AkAlα

kαlπ0+φε+

−ε2e2

4m2
e
Ak

(
Al

2�̂
2 − e2A2

2me
− ih̄El

)
αkαlπ0+φε+

+ iεe2h̄

2m2
e
AkAlα

k∂lπ
0−φε+ − ε2e2h̄

4m2
e

αk�BAkπ
0−φε+

− iεe2h̄

4m2
e

αmαkαl∂mAkAlφ
ε+ + ε2e2h̄2

4m3
e

αmαk∂mAkAl∂lφ
ε+

+ε2e2h̄2

8m3
e

βαkαl�AkAlφ
ε+ + O(ε3)

= e2

2me
AkAlα

kαlπ0+φε+

−ε2e2

4m2
e
Ak

(
Al

2�̂
2 − e2A2

2me
− ih̄El

)
αkαlπ0+φε+

+ iεe2h̄

2m2
e
AkAlα

k∂lπ
0−φε+ − ε2e2h̄

4m2
e

αk�BAkπ
0−φε+

− iεe2h̄

4m2
e

(∂mAkAl) αmαkαlφε+ − iεe2h̄

4m2
e
AkAlα

mαkαl∂mφε+

+ε2e2h̄2

4m3
e

AkAlα
mαk∂l∂mφε+ + ε2e2h̄2

8m3
e

AkAlβαkαl�φε+ + O(ε3)

= e2

2me
AkAl

(
δkl + iεklm�m)π0+φε+

−ε2e2

4m2
e
Ak

(
Al

2�̂
2 − e2A2

2me
− ih̄El

) (
δkl + iεklm�m)π0+φε+

+ iεe2h̄

2m2
e
AkAlα

k∂lπ
0−φε+ − ε2e2h̄

4m2
e

αk�BAkπ
0−φε+
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− iεe2h̄

4m2
e

(∂mAkAl) αm (δkl + iεkln�
n)φε+

− iεe2h̄

4m2
e
AkAlα

m (δkl + iεkln�n) ∂mφε+

+ε2e2h̄2

4m3
e

AkAl

(
2δkm − αkαm

)
∂l∂mφε+

+ε2e2h̄2

8m3
e

AkAlβ
(
δkl + iεklm�m)�φε+ + O(ε3). (B.8)

WithA × A = 0, we then get

1

ε
πε+

(
eAkα

kφε−
)

= e2

2me
A2π0+φε+

−ε2e2

4m2
e

[
A2 2�̂

2 − e2A2

2me
− ih̄AE + h̄� (A × E)

]
π0+φε+

+ iεe2h̄

2m2
e
AkAlα

k∂lπ
0−φε+ − ε2e2h̄

4m2
e

αk�BAkπ
0−φε+

− iεe2h̄

4m2
e

(
∂kA2

)
αkφε+ − iεe2h̄

4m2
e
A2αk∂kφ

ε+

+ε2e2h̄2

2m3
e

AkAl∂k∂lφ
ε+ − ε2e2h̄2

4m3
e

AkAlα
kαm∂l∂mφε+

+ε2e2h̄2

8m3
e

A2β�φε+ + O(ε3)

= e2A2

2me

(
π0+ − iεh̄

2me
αk∂k + ε2h̄2

4m2
e

β�

)
φε+

−ε2e2

4m2
e

[
A2 2�̂

2 − e2A2

2me
− ih̄AE + h̄� (A × E)

]
π0+φε+

+ iεe2h̄

2m2
e
AkAlα

k∂l

(
π0− + iεh̄

2me
αm∂m

)
φε+

−ε2e2h̄

4m2
e

αk�BAkπ
0−φε+ − iεe2h̄

4m2
e

(
∂kA2

)
αkφε+

+ε2e2h̄2

2m3
e

AkAl∂k∂lφ
ε+ + O(ε3). (B.9)

Using Eqs. (31), (48), (49), (68), (69), and (A.6), it is simplified to

1

ε
πε+

(
eAkα

kφε−
)

= e2A2

2me
φε+

−ε2e2

4m2
e

[
A2 2�̂

2 − e2A2

2me
− ih̄AE + h̄� (A × E)

]
φε+

− iεe2h̄

4m2
e

(
∂kA2

)
αkφε+ + ε2e2h̄2

2m3
e

Ak∂kAl∂lφ
ε+ + O(ε3)
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= e2A2

2me
φε+ − ε2e2A2

8m3
e

(
2�̂

2 − e2A2
)

φε+

−ε2e2h̄

4m2
e

[� (A × E) − iAE]φε+ − ε2

2me

(
eA p̂

me

)2

φε+

+ ε2

4me
αk
(
1

ε

p̂k
me

e2A2
)

φε+ + O(ε3), (B.10)

where we note that because of Eq. (A.6), p̂kA2 = −ih̄∂kA2 = −2ih̄Al∂kAl = O(ε).
Equation (B.10) is the final result of the fourth summand of Eq. (88).

Analysis for the fifth summand:
Using Eqs. (48) and (68), we calculate for the fifth summand of Eq. (88):

− πε+
(
eVφε+

) = −
(

π0+ − ih̄

2

ε

me
αk∂k + h̄2

4

ε2

m2
e
β�

) (
eVφε+

)+ O(ε3)

= −eV

(
π0+ − ih̄

2

ε

me
αk∂k + h̄2

4

ε2

m2
e
β�

)
φε+

+ iεeh̄

2me
αk (∂kV ) φε+ − ε2eh̄2

4m2
e

β (�V − V�) φε+ + O(ε3)

= −eVπε+φε+ + iεeh̄

2me
αk (∂kV ) φε+

−ε2eh̄2

4m2
e

β (�V − V�)φε+ + O(ε3)

= −eVφε+ + iεeh̄

2me
αk (∂kV ) φε+

−ε2eh̄2

4m2
e

β (�V − V�)φε+ + O(ε3). (B.11)

Analysis for the sixth summand:
We use Eqs. (31), (43), (48), (49), (68), (69), (79), (80), (87), and (A.6) to obtain the sixth summand of Eq. (88)

as

− πε+
(
eVφε−

) = −
(

π0+ − iεh̄

2me
αk∂k

)
eV

εeAl

2me

(
αl − ε

p̂l
me

)
φε+ + O(ε3)

= − εe2

2me
VAkα

kπ0−φε+ − iε2e2h̄

2m2
e

VAk∂kπ
0+φε+

+ iε2e2h̄

4m2
e

αkαl∂kVAlφ
ε+ + O(ε3)

= − εe2

2me
VAkα

kπ0−φε+ − iε2e2h̄

2m2
e

VAk∂kπ
0+φε+

+ iε2e2h̄

4m2
e

(∂kV ) αkαlAlφ
ε+ + iε2e2h̄

4m2
e

αkαl VAl∂kφ
ε+ + O(ε3)

= − εe2

2me
VAkα

kπ0−φε+ − iε2e2h̄

2m2
e

VAk∂kπ
0+φε+

+ iε2e2h̄

4m2
e

(∂kV )
(
δkl + iεklm�m)Alφ

ε+

+ iε2e2h̄

4m2
e

(
2δkl − αlαk

)
VAl∂kφ

ε+ + O(ε3)
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= − εe2

2me
VAkα

kπ0−φε+ − iε2e2h̄

2m2
e

VAk∂kπ
0+φε+

+ iε2e2h̄

4m2
e

(∇V )Aφε+ − ε2e2h̄

4m2
e

� [(∇V ) × A]φε+

+ iε2e2h̄

2m2
e

VAk∂kφ
ε+ − iε2e2h̄

4m2
e

αkαl VAk∂lφ
ε+ + O(ε3)

= − εe2

2me
VAkα

k
(

π0− + iεh̄

2me
αl∂l

)
φε+

− iε2e2h̄

2m2
e

VAk∂k

(
π0+ − 1

)
φε+

+ε2e2h̄

4m2
e

{� [A × (∇V )] + iA (∇V )} φε+ + O(ε3). (B.12)

Thus, we find for the sixth summand:

− πε+
(
eVφε−

) = ε2e2h̄

4m2
e

{� [A × (∇V )] + iA (∇V )} φε+ + O(ε3). (B.13)

Result:
With Eqs. (31), (82), (B.7), (B.10), (B.11), and (B.13), the differential equation for the electronic wave function

φε+ (88) up to second order in ε is rewritten as

ih̄ ∂tφ
ε+ = p̂2

2me
φε+ − ε2p̂4

8m3
e

φε+ + eAk
p̂k
me

(
1 − ε2p̂2

2m2
e

)
φε+ + εeh̄

2me
�Bφε+

−ε2

2
βαk

(
1

ε

p̂l
me

eAk

)
p̂l
me

φε+ + e2A2

2me
φε+

−ε2e2A2

8m3
e

(
2�̂

2 − e2A2
)

φε+ − ε2e2h̄

4m2
e

[� (A × E) − iAE]φε+

+ ε2

4me
αk
(
1

ε

p̂k
me

e2A2
)

φε+ − ε2

2me

(
eA p̂

me

)2

φε+

−eVφε+ + iεeh̄

2me
αk (∂kV ) φε+ − ε2eh̄2

4m2
e

β (�V − V�) φε+

+ε2e2h̄

4m2
e

{� [A × (∇V )] + iA (∇V )} φε+ + O(ε3)

=
[

1

2me

(
p̂2 + 2eAp̂ + e2A2

)
− eV

]
φε+

+ εeh̄

2me

[
�B + iαk (∂kV )

]
φε+

− ε2

8m3
e

[
p̂4 + e2A2

(
2�̂

2 − e2A2
)

+ 4eAp̂p̂2 + 4e2
(Ap̂

)2]
φε+

+ ε2e

2m2
e

αk
[(

1

ε
p̂kAl

)
eAl + β

(
1

ε
p̂lAk

)
p̂l

]
φε+

+ε2e2h̄

4m2
e

{� [A × ((∇V ) − E)] + iA [E + (∇V )]} φε+

−ε2eh̄2

4m2
e

β (�V − V�)φε+ + O(ε3). (B.14)
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Using Eq. (18), i. e. Ek = −(∂kV + ∂t Ak) and Eq. (32)—here we regard that p̂kAk = 0 because of the Coulomb
gauge given in Eq. (6)—we get

ih̄ ∂tφ
ε+ =

(
1

2me
�̂

2 − eV

)
φε+ + εeh̄

2me
�Bφε+ + iεeh̄

2me
αk (∂kV ) φε+

− ε2

8m3
e

[
p̂4 + 4eAp̂p̂2 + 2e2A2p̂2

+4e2
(Ap̂

)2 + 4e3A2Ap̂ + e4A4
]
φε+

+ ε2e

2m2
e

αk
[(

1

ε
p̂kAl

)
eAl + β

(
1

ε
p̂lAk

)
p̂l

]
φε+

−ε2e2h̄

4m2
e

{� [A × (E − (∇V ))] + iA (∂tA)} φε+

−ε2eh̄2

4m2
e

β (�V − V�)φε+ + O(ε3). (B.15)

Now, we evaluate �̂
4
using Eq. (32), regarding p̂kAk = 0 because of Eq. (6) and p̂kAl = O(ε) because of Eq.

(A.6), as

�̂
4 =

(
�̂

2
)2

=
[(
p̂k + eAk

)2]2
=
(
p̂2 + 2eAp̂ + e2A2

)2
= p̂4 + 2ep̂2Ap̂ + 2eAp̂p̂2 + e2p̂2A2 + e2A2p̂2

+4e2
(Ap̂

)2 + 2e3Ap̂A2 + 2e3A2Ap̂ + e4A4

= p̂4 + 4eAp̂p̂2 + 2e2A2p̂2 + 4e2
(Ap̂

)2 + 4e3A2Ap̂ + e4A4 + O(ε) (B.16)

to obtain the final result of the differential equation for the electronic wave function φε+ up to second order in ε as

ih̄ ∂tφ
ε+ =

(
1

2me
�̂

2 − eV

)
φε+ + εeh̄

2me
�Bφε+ + iεeh̄

2me
αk (∂kV ) φε+

− ε2

8m3
e

�̂
4
φε+ + ε2e

2m2
e

αk
[(

1

ε
p̂kAl

)
eAl + β

(
1

ε
p̂lAk

)
p̂l

]
φε+

−ε2e2h̄

4m2
e

{� [A × (E − (∇V ))] + iA (∂tA)} φε+ − ε2eh̄2

4m2
e

β (�V − V�)φε+ + O(ε3). (B.17)

Appendix C: The differential equation for the wave function ϕ̃ε+

At the beginning of Sect. (5.4), we derived Eq. (104), which is

ih̄ ∂tπ
0+φε+ =

(
1

2me
�̂

2 − eV

)
π0+φε+ + εeh̄

2me
�Bπ0+φε+ + iεeh̄

2me
αk (∂kV ) π0−φε+

− ε2

8m3
e

�̂
4
π0+φε+ + ε2e

2m2
e

αk
[(

1

ε
p̂kAl

)
eAl −

(
1

ε
p̂lAk

)
p̂l

]
π0−φε+
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−ε2e2h̄

4m2
e

{� [A × (E − (∇V ))] + iA (∂tA)} π0+φε+

−ε2eh̄2

4m2
e

(�V − V�)π0+φε+ + O(ε3).

In this Appendix C, we use this equation as a starting point to derive a differential equation for the wave function
ϕ̃ε+ up to the second order in ε. But as a preparation of the transformations of Eq. (104), we take into account first
that from Eqs. (49) and (69) follows that

π0− = πε− − ih̄

2

ε

me
αk∂k + h̄2

4

ε2

m2
e
β� + O(ε3) (C.1)

	⇒ επ0−φε+ = επε−φε+ − ih̄

2

ε2

me
αk∂kφ

ε+ + O(ε3)

= − ih̄

2

ε2

me
αk∂kφ

ε+ + O(ε3). (C.2)

From Eq. (C.2) directly follows by multiplication with ε:

ε2π0−φε+ = O(ε3). (C.3)

Using Eqs. (79), (93), (C.2), and (C.3), we then transform Eq. (104) in the following manner:

ih̄ ∂t ϕ̃
ε+ =

(
1

2me
�̂

2 − eV

)
ϕ̃ε+ + εeh̄

2me
�Bϕ̃ε+ + ε2eh̄2

4m2
e

αkαl (∂kV ) ∂lφ
ε+

− ε2

8m3
e

�̂
4
ϕ̃ε+ − ε2e2h̄

4m2
e

{� [A × (E − (∇V ))] + iA (∂tA)} ϕ̃ε+

−ε2eh̄2

4m2
e

(�V − V�) ϕ̃ε+ + O(ε3)

=
(

1

2me
�̂

2 − eV

)
ϕ̃ε+ + εeh̄

2me
�Bϕ̃ε+ + ε2eh̄2

4m2
e

(
δkl + iεklm�m) (∂kV ) ∂lφ

ε+

− ε2

8m3
e

�̂
4
ϕ̃ε+ − ε2e2h̄

4m2
e

{� [A × (E − (∇V ))] + iA (∂tA)} ϕ̃ε+

−ε2eh̄2

4m2
e

(�V − V�) ϕ̃ε+ + O(ε3)

=
(

1

2me
�̂

2 − eV

)
ϕ̃ε+ + εeh̄

2me
�Bϕ̃ε+ − ε2

8m3
e

�̂
4
ϕ̃ε+

+ε2eh̄2

4m2
e

(∇V ) ∇φε+ − ε2eh̄

4m2
e

�
[
(∇V ) × p̂

]
φε+

−ε2e2h̄

4m2
e

{� [A × (E − (∇V ))] + iA (∂tA)} ϕ̃ε+

−ε2eh̄2

4m2
e

(�V − V�) ϕ̃ε+ + O(ε3). (C.4)

Before we continue to transformEq. (C.4), we first make the following side calculation, where we derive an equation
that relates terms of the form ε2φε+ and ε2ϕ̃ε+:
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We start this derivation by taking the limit ε → 0 of Eq. (68) and get

π0±φ0± = φ0±. (C.5)

Using Eq. (C.5) and taking the limit ε → 0 for the +-case of Eq. (93), we find that

ϕ̃0+ = π0+φ0+ = φ0+. (C.6)

Therefore, using Eq. (C.6) the following result can be found for terms of the form ε2φε+:

ε2φε+ = ε2φ0+ + O(ε3)

= ε2ϕ̃0+ + O(ε3)

= ε2ϕ̃ε+ + O(ε3). (C.7)

Having finished the side calculation, now we use Eq. (C.7) for the following transformation of Eq. (C.4):

ih̄ ∂t ϕ̃
ε+ =

(
1

2me
�̂

2 − eV

)
ϕ̃ε+ + εeh̄

2me
�Bϕ̃ε+ − ε2

8m3
e

�̂
4
ϕ̃ε+

−ε2eh̄

4m2
e

�
[
(∇V ) × p̂ + eA × (E − (∇V ))

]
ϕ̃ε+

−ε2eh̄2

4m2
e

[�V − (∇V )∇ − V�] ϕ̃ε+

−ε2eh̄

4m2
e
[ieA (∂tA)] ϕ̃ε+ + O(ε3). (C.8)

Using Eq. (32),[
(∇V ) × p̂ + eA × (E − (∇V ))

]
ϕ̃ε+ =

[
(∇V ) ×

(
�̂ − eA

)
+eA × (E − (∇V ))] ϕ̃ε+

=
[
(∇V ) × �̂ + eA × E

]
ϕ̃ε+ (C.9)

and

[�V − (∇V )∇ − V�] ϕ̃ε+ = [(�V ) + 2 (∇V )∇ + V� − (∇V ) ∇ − V�] ϕ̃ε+
= [(�V ) + (∇V )∇] ϕ̃ε+
= ∇ (∇V ) ϕ̃ε+, (C.10)

we get the differential equation for ϕ̃ε+ up to second order in ε as

ih̄ ∂t ϕ̃
ε+ =

(
1

2me
�̂

2 − eV

)
ϕ̃ε+ + εeh̄

2me
�Bϕ̃ε+ − ε2

8m3
e

�̂
4
ϕ̃ε+ − ε2eh̄

4m2
e

�
[
(∇V ) × �̂ + eA × E

]
ϕ̃ε+

−ε2eh̄

4m2
e
[h̄∇ (∇V ) + ieA (∂tA)] ϕ̃ε+ + O(ε3). (C.11)

Appendix D: Calculation of the term ih̄ ∂t ϕ̃
ε+

In Sect. 5.5 is discussed that we have to transform the term ih̄ ∂t ϕ̃
ε+ into a term, where the wave function ϕ̃ε appears,

and for this calculation, we have to find an equation that expresses the electronic wave function ϕ̃ε+ by the wave
function ϕ̃ε .
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As a first step for this task, we calculate another formula that rewrites the wave function φε+ as an expression,
where the wave function φε appears:

If we regard just terms up to second order in ε, we find that from Eq. (87) follows:

φε− = εe

2me
Akα

k φε+ − ε2e

2m2
e
Ak p̂k φε+ + O(ε3). (D.1)

Therefore, we realize that using the abbreviations

f̂1 = e

2me
Akα

k, (D.2)

f̂2 = − e

2m2
e
Ak p̂k, (D.3)

Eq. (D.1) for the wave function φε− can be rewritten as

φε− = ε f̂1 φε+ + ε2 f̂2 φε+ + O(ε3). (D.4)

Then, we derive the following formula using Eq. (63), i.e., φε = φε+ + φε−, and (78), i. e. φε− = O(ε):

ε2φε+ = ε2φε − ε2φε−
= ε2φε + O(ε3). (D.5)

Now, we add φε+ to Eq. (D.4) and use Eqs. (63) and (D.5). Thus, we get:

φε+ + φε− = φε+ + ε f̂1 φε+ + ε2 f̂2 φε+ + O(ε3)

	⇒ φε = φε+ + ε f̂1 φε+ + ε2 f̂2 φε + O(ε3)

	⇒ φε+ = φε − ε f̂1 φε+ − ε2 f̂2 φε + O(ε3). (D.6)

Then, we further transform the equation above using Eqs. (63), (D.4), and (D.5)

φε+ = φε − ε f̂1
(
φε − φε−

)− ε2 f̂2 φε + O(ε3)

= φε − ε f̂1φ
ε + ε f̂1

(
ε f̂1 φε+ + ε2 f̂2 φε+

)
− ε2 f̂2 φε + O(ε3)

= φε − ε f̂1φ
ε + ε2 f̂ 21 φε+ − ε2 f̂2 φε + O(ε3)

= φε − ε f̂1φ
ε + ε2

(
f̂ 21 − f̂2

)
φε + O(ε3). (D.7)

Now we insert into Eq. (D.7) the abbreviations (D.2) and (D.3) for the operators f̂1 and f̂2. Then, we find the
following result to express the wave function φε+ with φε :

φε+ = φε − εe

2me
Akα

kφε + ε2e2

4m2
e
AkAlα

kαlφε + ε2e

2m2
e
Ak p̂kφ

ε + O(ε3). (D.8)

As a side result, by combining Eqs. (63) and (D.8), we directly find the following equation to express the wave
function φε− with φε :

φε− = εe

2me
Akα

kφε − ε2e2

4m2
e
AkAlα

kαlφε − ε2e

2m2
e
Ak p̂kφ

ε + O(ε3). (D.9)
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As the next step, we transform Eq. (D.8) into an equation, where the wave function ϕ̃+ is expressed by a formula
containing the wave function ϕ̃. Therefore, we apply the projector π0+ on Eq. (D.8) and regard Eqs. (43), (63), (93),
and (100). Therefore, we find:

π0+φε+ = π0+φε − π0+
εe

2me
Akα

kφε + π0+
ε2e2

4m2
e
AkAlα

kαlφε

+ π0+
ε2e

2m2
e
Ak p̂kφ

ε + O(ε3)

	⇒ ϕ̃ε+ = ϕ̃ε − εe

2me
Akα

kπ0−
(
φε+ + φε−

)+ ε2e2

4m2
e
AkAlα

kαl ϕ̃ε

+ ε2e

2m2
e
Ak p̂k ϕ̃

ε + O(ε3). (D.10)

Now, we make a separate discussion for the term − εe
2me

Akα
kπ0−

(
φε+ + φε−

)
appearing in Eq. (D.10). Therefore, we

use Eqs. (49) and (D.9). Then, we find:

− εe

2me
Akα

kπ0−
(
φε+ + φε−

) = − εe

2me
Akα

k(πε− − ih̄

2

ε

me
αl∂l)

(
φε+ + φε−

)+ O(ε3)

= − εe

2me
Akα

k φε− + iε2eh̄

4m2
e

αkαl Ak∂lφ
ε + O(ε3)

= − εe

2me
Akα

k
(

εeAl

2me
αlφε

)

+ iε2eh̄

4m2
e

αkαl Ak∂lφ
ε + O(ε3)

= −ε2e2

4m2
e

αkαl AkAl φ
ε

+ iε2eh̄

4m2
e

αkαl Ak∂lφ
ε + O(ε3). (D.11)

In addition, from Eq. (D.11) follows

− εe

2me
Akα

kπ0−
(
φε+ + φε−

) = O(ε2), (D.12)

thus, Eq. (D.10) has the consequence

ϕ̃ε+ = ϕ̃ε + O(ε2). (D.13)

Now, we regard that using Eqs. (63), (78), (C.7), and (D.13), we find these side results:

ε2φε = ε2
(
φε+ + φε−

)
= ε2φε+ + O(ε3)

= ε2ϕ̃ε+ + O(ε3)

= ε2ϕ̃ε + O(ε3). (D.14)
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Then, we insert Eq. (D.14) into Eq. (D.11). In addition, we use Eq. (31) and get this result:

− εe

2me
Akα

kπ0−
(
φε+ + φε−

) = −ε2e2

4m2
e
AkAl α

kαl ϕ̃ε − ε2e

4m2
e

αkαl Ak p̂l ϕ̃
ε + O(ε3). (D.15)

As the next step, we insert the result from Eq. (D.15) for the term − εe
2me

Akα
kπ0−

(
φε+ + φε−

)
into Eq. (D.10), and

apply then Eq. (79). Therefore, we get

ϕ̃ε+ = ϕ̃ε − ε2e2

4m2
e

αkαl AkAl ϕ̃
ε − ε2e

4m2
e

αkαl Ak p̂l ϕ̃
ε

+ ε2e2

4m2
e

αkαl AkAl ϕ̃
ε + ε2e

2m2
e
Ak p̂k ϕ̃

ε + O(ε3)

= ϕ̃ε + ε2e

4m2
e

(
2Ak p̂k − αkαlAk p̂l

)
ϕ̃ε + O(ε3)

= ϕ̃ε + ε2e

4m2
e

[
2Ak p̂k − (

δkl + iεklm�m)Ak p̂l
]
ϕ̃ε + O(ε3)

= ϕ̃ε + ε2e

4m2
e

(Ak p̂k − iεklm�mAk p̂l
)
ϕ̃ε + O(ε3). (D.16)

Therefore, we find this result that transforms the wave function ϕ̃ε+ into a expression that contains the wave function
ϕ̃ε :

ϕ̃ε+ = ϕ̃ε + ε2e

4m2
e

[A p̂ − i�
(A × p̂

)]
ϕ̃ε + O(ε3). (D.17)

Now, we can evaluate the first term ih̄ ∂t ϕ̃
ε+ on the right side of Eq. (107) by combining Eqs. (105) and (D.17):

ih̄ ∂t ϕ̃
ε+ =

(
1

2me
�̂

2 − eV

)
ϕ̃ε+ + εeh̄

2me
�Bϕ̃ε+ − ε2

8m3
e

�̂
4
ϕ̃ε+

−ε2eh̄

4m2
e

�
[
(∇V ) × �̂ + eA × E

]
ϕ̃ε+

−ε2eh̄

4m2
e
[h̄∇ (∇V ) + i eA (∂tA)] ϕ̃ε+ + O(ε3)

=
(

1

2me
�̂

2 − eV

){
ϕ̃ε + ε2e

4m2
e

[A p̂ − i�
(A × p̂

)]
ϕ̃ε

}

+ εeh̄

2me
�Bϕ̃ε − ε2

8m3
e

�̂
4
ϕ̃ε

−ε2eh̄

4m2
e

�
[
(∇V ) × �̂ + eA × E

]
ϕ̃ε

−ε2eh̄

4m2
e
[h̄∇ (∇V ) + i eA (∂tA)] ϕ̃ε + O(ε3)

=
(

1

2me
�̂

2 − eV

)
ϕ̃ε + εeh̄

2me
�Bϕ̃ε − ε2

8m3
e

�̂
4
ϕ̃ε + ε2e

4m2
e

(
1

2me
�̂

2 − eV

) [A p̂ − i�
(A × p̂

)]
ϕ̃ε

−ε2eh̄

4m2
e

�
[
(∇V ) × �̂ + eA × E

]
ϕ̃ε − ε2eh̄

4m2
e
[h̄∇ (∇V ) + i eA (∂tA)] ϕ̃ε + O(ε3). (D.18)

With Eq. (D.18), we have found now the result for the term ih̄ ∂t ϕ̃
ε+, which we were looking for.
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Appendix E: Calculation of the term ih̄ ∂t ϕ̃
ε−

In this Appendix E, the second term ih̄ ∂t ϕ̃
ε− on the right side of Eq. (107) is rewritten in a form, where the wave

function ϕ̃ε appears.
We start this calculation by applying π0+ ih̄ ∂t on Eq. (D.1). For the left side of this equation, we find because of

Eqs. (58) and (93):

π0+ ih̄ ∂tφ
ε− = ih̄ ∂t ϕ̃

ε−, (E.1)

what is just the term we want to calculate. Therefore, regarding Eq. (E.1), we find after applying π0+ ih̄ ∂t on Eq.
(D.1):

ih̄ ∂t ϕ̃
ε− = π+

0

[
ih̄ ∂t

(
εe

2me
Akα

kφε+ − ε2e

2m2
e
Ak p̂kφ

ε+
)]

+ O(ε3)

= iεeh̄

2me
π+
0 (∂tAk) αkφε+ + εe

2me
π+
0 Akα

k ih̄ ∂tφ
ε+

− iε2eh̄

2m2
e

π+
0 (∂tAk) p̂kφ

ε+ − ε2e

2m2
e
π+
0 Ak p̂k ih̄ ∂tφ

ε+ + O(ε3). (E.2)

By inserting Eq. (89) into Eq. (E.2), we find:

ih̄∂t ϕ̃
ε− = iεeh̄

2me
π0+ (∂tAk) αkφε+

+ εe

2me
π0+Akα

k
{(

1

2me
�̂

2 − eV

)
+ εeh̄

2me

[
�B + iαl (∂l V )

]}
φε+

− iε2h̄e

2m2
e

π0+ (∂tAk) p̂kφ
ε+ − ε2e

2m2
e
π0+Ak p̂k

(
1

2me
�̂

2 − eV

)
φε+ + O(ε3)

= iεeh̄

2me
π0+ (∂tAk) αkφε+ + εe

2me
π0+Akα

k
(

1

2me
�̂

2 − eV

)
φε+

+ ε2e2h̄

4m2
e

π0+Akα
k
[
�B + iαl (∂l V )

]
φε+ − iε2eh̄

2m2
e

π0+ (∂tAk) p̂kφ
ε+

− ε2e

2m2
e
π0+Ak p̂k

(
1

2me
�̂

2 − eV

)
φε+ + O(ε3). (E.3)

In the intermediate result (E.3), five summands appear. In our next calculation step, we will evaluate them:

Analysis for the first summand:
For the calculation of the first summand, we apply Eqs. (43) and (49). Then, we find

iεeh̄

2me
π0+ (∂tAk) αkφε+ = iεeh̄

2me
(∂tAk) αkπ0−φε+

= iεeh̄

2me
(∂tAk) αk

(
πε− − iεh̄

2me
αl∂l

)
φε+ + O(ε3). (E.4)
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As the next step, we combine Eqs. (C.7), (D.13) and get

ε2φε+ = ε2ϕ̃ε + O(ε3). (E.5)

Then, we transform Eq. (E.4) by applying Eqs. (31), (69), (79), and (E.5) and find the following result for the first
summand:

iεeh̄

2me
π0+ (∂tAk) αkφε+ = iε2eh̄

4m2
e

αkαl (∂tAk) p̂lφ
ε+ + O(ε3)

= iε2eh̄

4m2
e

αkαl (∂tAk) p̂l ϕ̃
ε + O(ε3).

= iε2eh̄

4m2
e

(
δkl + iεklm�m) (∂tAk) p̂l ϕ̃

ε + O(ε3)

= iε2eh̄

4m2
e

(∂tA)p̂ ϕ̃ε − ε2eh̄

4m2
e

�
[
(∂tA) × p̂

]
ϕ̃ε + O(ε3). (E.6)

Analysis for the second summand:
For the analysis of the second summand, we take into account that because of Eqs. (31), (32) and (A.6) holds:

ε2Ak
̂l = ε2Ak
(
p̂l + eAl

)
= ε2

(
p̂l + eAl

)Ak − ih̄ε2 (∂lAk)

= ε2
̂lAk + O(ε3). (E.7)

Therefore, using Eqs. (31), (43), (49), (69), (79), (E.5), and (E.7), we get for the second summand:

εe

2me
π0+Akα

k
(

1

2me
�̂

2 − eV

)
φε+ = εe

2me
Akα

k
(

1

2me
�̂

2 − eV

)
π0−φε+

= εe

2me
Akα

k
(

1

2me
�̂

2 − eV

)(
πε− − iεh̄

2me
αl∂l

)
φε+ + O(ε3)

= ε2e

4m2
e

αkαlAk

(
1

2me
�̂

2 − eV

)
p̂lφ

ε+ + O(ε3)

= ε2e

4m2
e

(
δkl + iεklm�m) ( 1

2me
�̂

2 − eV

)
Ak p̂l ϕ̃

ε + O(ε3)

= ε2e

4m2
e

(
1

2me
�̂

2 − eV

)
A p̂ ϕ̃ε

+ iε2e

4m2
e

(
1

2me
�̂

2 − eV

)
�
(A × p̂

)
ϕ̃ε + O(ε3). (E.8)
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Analysis for the third summand:
Applying Eqs. (43), (49), (68), (69), (79), (86), and (E.5), we derive for the third summand:

ε2e2h̄

4m2
e

π0+Akα
k
[
�B + iαl (∂l V )

]
φε+ = ε2e2h̄

4m2
e
Akα

k
[
�Bπ0− + iαl (∂l V ) π0+

]
φε+

= ε2e2h̄

4m2
e
Akα

k
[
�Bπε− + iαl (∂l V ) πε+

]
φε+ + O(ε3)

= iε2e2h̄

4m2
e

αkαlAk (∂l V ) ϕ̃ε + O(ε3)

= iε2e2h̄

4m2
e

(
δkl + iεklm�m)Ak (∂l V ) ϕ̃ε + O(ε3)

= iε2e2h̄

4m2
e

A (∇V ) ϕ̃ε − ε2e2h̄

4m2
e

� [A × (∇V )] ϕ̃ε + O(ε3). (E.9)

Analysis for the fourth summand:
Using Eqs. (49), (68), and (E.5), we calculate for the fourth summand:

− iε2eh̄

2m2
e

π0+ (∂tAk) p̂kφ
ε+ = − iε2eh̄

2m2
e

(∂tAk) p̂k π0+φε+

= − iε2eh̄

2m2
e

(∂tAk) p̂k πε+φε+ + O(ε3)

= − iε2eh̄

2m2
e

(∂tAk) p̂k φε+ + O(ε3)

= − iε2eh̄

2m2
e

(∂tA ) p̂ ϕ̃ε + O(ε3). (E.10)

Analysis for the fifth summand:
Taking into account Eqs. (31), (43), (49), (68), (E.5), and (E.7), we find for the fifth summand:

− ε2e

2m2
e
π+
0 Ak p̂k

(
1

2me
�̂

2 − eV

)
φε+ = − ε2e

2m2
e
Ak p̂k

(
1

2me
�̂

2 − eV

)
π0+φε+

= − ε2e

2m2
e
Ak p̂k

(
1

2me
�̂

2 − eV

)
πε+φε+ + O(ε3)

= − ε2e

2m2
e
Ak p̂k

(
1

2me
�̂

2 − eV

)
φε+ + O(ε3)

= − ε2e

2m2
e
A p̂

(
1

2me
�̂

2 − eV

)
ϕ̃ε + O(ε3)

= − ε2e

2m2
e

(
1

2me
�̂

2 − eV

)
A p̂ ϕ̃ε

− iε2e2h̄

2m2
e

A (∇V ) ϕ̃ε + O(ε3). (E.11)
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Having calculated terms for the five summands, we insert the results (E.6), (E.8), (E.9), (E.10), and (E.11) into Eq.
(E.3) for the term ih̄ ∂t ϕ̃

ε− and find:

ih̄ ∂t ϕ̃
ε− = iε2eh̄

4m2
e

(∂tA)p̂ ϕ̃ε − ε2eh̄

4m2
e

�
[
(∂tA) × p̂

]
ϕ̃ε

+ ε2e

4m2
e

(
1

2me
�̂

2 − eV

)
A p̂ ϕ̃ε

+ iε2e

4m2
e

(
1

2me
�̂

2 − eV

)
�
(A × p̂

)
ϕ̃ε

+ iε2e2h̄

4m2
e

A (∇V ) ϕ̃ε − ε2e2h̄

4m2
e

� [A × (∇V )] ϕ̃ε

− iε2eh̄

2m2
e

(∂tA ) p̂ ϕ̃ε

− ε2e

2m2
e

(
1

2me
�̂

2 − eV

)
A p̂ ϕ̃ε

− iε2e2h̄

2m2
e

A (∇V ) ϕ̃ε + O(ε3). (E.12)

After simplifying Eq. (E.12), we finally find this result for the term ih̄ ∂t ϕ̃
ε−:

ih̄ ∂t ϕ̃
ε− = − iε2eh̄

4m2
e

[
(∂tA)p̂ + A(∇V )

]
ϕ̃ε − ε2eh̄

4m2
e

�
[
(∂tA ) × p̂ + eA × (∇V )

]
ϕ̃ε

− ε2e

4m2
e

(
1

2me
�̂

2 − eV

) [A p̂ − i�
(A × p̂

)]
ϕ̃ε + O(ε3). (E.13)

Appendix F: The differential equation for the wave function ϕ̃ε

In this Appendix F, we demonstrate how a differential equation for the wave function ϕ̃ε up to the second order in
ε can be calculated by inserting Eq. (109) for the term ih̄ ∂t ϕ̃

ε+ into Eq. (107), and Eq. (110) for the term ih̄ ∂t ϕ̃
ε−

into Eq. (107).
Therefore, by applying this insertions and simplifing the resulting equation, we find this intermediate result for

the differential equation for the wave function ϕ̃ε :

ih̄ ∂t ϕ̃ =
(

1

2me
�̂

2 − eV

)
ϕ̃ε + εeh̄

2me
�Bϕ̃ε − ε2

8m3
e

�̂
4
ϕ̃ε

+ ε2e

4m2
e

(
1

2me
�̂

2 − eV

) [A p̂ − i�
(A × p̂

)]
ϕ̃ε

− ε2eh̄

4m2
e

�
[
(∇V ) × �̂ + eA × E

]
ϕ̃ε

− ε2eh̄

4m2
e
[h̄∇ (∇V ) + i eA (∂tA)] ϕ̃ε

− iε2eh̄

4m2
e

[
(∂tA)p̂ + eA(∇V )

]
ϕ̃ε
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− ε2eh̄

4m2
e

�
[
(∂tA ) × p̂ + eA × (∇V )

]
ϕ̃ε

− ε2e

4m2
e

(
1

2me
�̂

2 − eV

) [A p̂ − i�
(A × p̂

)]
ϕ̃ε + O(ε3)

=
(

1

2me
�̂

2 − eV

)
ϕ̃ε + εeh̄

2me
�Bϕ̃ε − ε2

8m3
e

�̂
4
ϕ̃ε

− ε2eh̄

4m2
e

�
[
(∇V ) × �̂ + eA × E + (∂tA) × p̂ + eA × (∇V )

]
ϕ̃ε

− iε2eh̄

4m2
e

[−ih̄ ∇(∇V ) + eA (∂tA) + (∂tA) p̂ + eA(∇V )
]
ϕ̃ε + O(ε3). (F.1)

Now, we start an analysis for the two terms

T̂1 := (∇V ) × �̂ + eA × E + (∂tA) × p̂ + eA × (∇V ) , (F.2)

T̂2 := −ih̄ ∇(∇V ) + eA (∂tA) + (∂tA) p̂ + eA(∇V ), (F.3)

which appear both in [...] brackets in Eq. (F.1).
We start our calculations with the transformation of the term T̂1. Therefore, we use Eqs. (18), (32), and (F.2)—

then, we find:

T̂1 = (∇V ) × �̂ + eA × E + eA × (∇V ) + (∂tA) × p̂

= [(∇V ) + (∂tA) − (∂tA)] × �̂ + eA × [E + (∇V )] + (∂tA) × p̂

= −E × �̂ − (∂tA) × �̂ − eA × (∂tA) + (∂tA) × p̂

= −E × �̂ − (∂tA) ×
(
�̂ − eA − p̂

)
= −E × �̂. (F.4)

Having found the compact result (F.4) for the term T̂1, we start now with the transformation of the term T̂2.
For this task, we regard that because of Eqs. (31) and (A.6) the equation

(∂tA)p̂ = p̂(∂tA) + O(ε) (F.5)

holds.
Then, using Eqs. (18), (31), (32), (F.3), and (F.5), we find:

T̂2 = −ih̄ ∇(∇V ) + eA (∂tA) + (∂tA) p̂ + eA(∇V )

= p̂ (∇V ) + eA (∂tA) + p̂ (∂tA) + eA (∇V ) + O(ε)

= (
p̂ + eA )

[(∇V ) + (∂tA)] + O(ε)

= −�̂E + O(ε). (F.6)

As the next step, we insert the results (F.4) and (F.6) into Eq. (F.1) and find:
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ih̄ ∂t ϕ̃ =
(

1

2me
�̂

2 − eV

)
ϕ̃ε + εeh̄

2me
�Bϕ̃ε − ε2

8m3
e

�̂
4
ϕ̃ε

+ ε2eh̄

4m2
e

�
(
E × �̂

)
ϕ̃ε + iε2eh̄

4m2
e

�̂Eϕ̃ε + O(ε3). (F.7)

Now, we make an intermediate calculation for the operator �
(
E × �̂

)
appearing in Eq. (F.7). Therefore, we use

Eqs. (18), (31), (32), (A.6), ∇ × ∇V = 0, and find:

�
(
E × �̂

)
= εklm �k El
̂m

= εklm

[

̂m�k El − �k

(
p̂m El

)]
= εklm 
̂m�k El + ih̄ εklm �k {∂m [(∂l V ) + (∂tAl)]}
= εklm 
̂m�k El + ih̄ εklm �k(∂l∂mV ) + O(ε)

= �̂ (� × E) + ih̄ � (∇ × ∇V ) + O(ε)

= �̂ (� × E) + O(ε). (F.8)

Inserting Eq. (F.8) into Eq. (F.7), we find as a result this differential equation for the wave function ϕ̃ε up to the
second order in ε:

ih̄ ∂t ϕ̃
ε = 1

2me
�̂

2
ϕ̃ε − eV ϕ̃ε + εeh̄

2me
�Bϕ̃ε − ε2

8m3
e

�̂
4
ϕ̃ε + ε2eh̄

4m2
e

�̂ (� × E) ϕ̃ε + iε2eh̄

4m2
e

�̂Eϕ̃ε + O(ε3).

(F.9)
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