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We present an ansatz for the ground states of the Quantum Sherrington-Kirkpatrick model, a
paradigmatic model for quantum spin glasses. Our ansatz, based on the concept of generalized co-
herent states, very well captures the fundamental aspects of the model, including the ground state
energy and the position of the spin glass phase transition. It further enables us to study some previ-
ously unexplored features, such as the non-vanishing longitudinal field regime and the entanglement
structure of the ground states. We find that the ground state entanglement can be captured by a
simple ensemble of weighted graph states with normally distributed phase gates, leading to a volume
law entanglement, contrasting with predictions based on entanglement monogamy.

Introduction – Spin glasses are an important paradigm
in statistical physics. Besides their relevance in describ-
ing disordered classical magnets [1, 2], it was shown that
optimization tasks, such as the traveling salesman prob-
lem, can be mapped to solving for the ground states of
spin glass systems [1, 3, 4]. Classical spin glasses can
be promoted to quantum models by introducing a trans-
verse field. The resulting quantum spin glasses form by
themselves an important playground to study the inter-
play of disorder and frustration with quantum effects [5].
Moreover, there is evidence that the quantumness can
be exploited to shortcut optimization tasks, for instance
through quantum annealing [6–10].

The textbook example of a quantum spin glass
model is the Quantum Sherrington-Kirkpatrick (QSK)
model, a generalization of the classical Sherrington-
Kirkpatrick (SK) model [11, 12]. The QSK model has
been studied extensively in the literature both analyt-
ically [12–16] and numerically [17–27]. While the fa-
mous Parisi solution [28, 29] provides a full solution to
the classical SK model, many open questions remain for
the quantum SK model. Since the QSK model is an
all-to-all coupled model one might assume that a mean-
field product state ansatz well describes the ground state.
However, this ansatz predicts a quantum phase transi-
tion (QPT) from a quantum spin glass phase to a para-
magnetic phase at a critical transverse field gC ≈ 2 J [23].
Field theory approaches [15, 16] using the replica method
suggest instead a phase transition at gC ≈ 1.5 J . Numer-
ical calculations at small system sizes [21, 22] or obtained
at finite temperature [17, 18, 22, 26] confirm the latter.
So far no good ansätze have been found which can de-
scribe the zero temperature regime for large system sizes,
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preventing the study of further properties of the ground
state, such as entanglement.

Here, we consider a variational family which extends
the product state ansatz introducing a richer entangle-
ment structure. This ansatz is motivated by apply-
ing the concept of generalized group-theoretic coherent
states [30]. The special structure of these states allows
us to introduce non-trivial quantum correlations while
at the same time being able to efficiently compute varia-
tional ground states up to large system sizes of N = 200
spins. We additionally develop a method to study the
entanglement structure of the ground states. Our re-
sults show a volume law of entanglement, which indicates
that entanglement monogamy does not provide a scaling
constraint despite the fact that the QSK model involves
all-to-all spin interactions. Furthermore, the results for
the entanglement can be easily reproduced in terms of a
set of states that have been introduced in the Quantum
Information context, namely weighted graph states [31]
with normally distributed random phase gates.

The model – Concretely, the QSK model corresponds
to a mixed field Ising model with all-to-all couplings be-
tween the N spins and quenched disorder in the couplings
and longitudinal field,

HQSK = −1

2

N∑
n,m=1

Jnmσ
z
nσ

z
m−g

N∑
n=1

σxn−
N∑
n=1

hnσ
z
n , (1)

where σkn is the k’th Pauli-matrix acting on the n’th spin.
The longitudinal field hn and the couplings Jnm are inde-
pendently normally distributed numbers with zero mean
and variance h2

n = h2 and J2
nm = J/N , respectively.

Here and in the following we use the convention that an
overbar · indicates disorder average and we will mostly
concentrate on the case h = 0.

Variational ansatz – Our variational ansatz generalizes

ar
X

iv
:2

20
4.

02
92

3v
1 

 [
qu

an
t-

ph
] 

 6
 A

pr
 2

02
2

mailto:psch@pks.mpg.de
mailto:tommaso.guaita@mpq.mpg.de


2

the ansatz of atomic coherent states (CS) [32],

|φ(x)〉 = U(x) |↑, . . . , ↑〉 , (2)

where σz |↑〉 = + |↑〉 and U(x) = exp
(
−i
∑
n,k x

k
nσ

k
n

)
rotates each of the N spins individually on the Bloch
sphere. The simple CS ansatz is parametrized by xkn ∈ R
and corresponds to the set of normalized product states.

The generalization procedure [30] leads to the set of
generalized atomic coherent states (GCS)

|Ψ(x, y, M)〉 = U(y)V(M) |φ(x)〉 , (3)

where xkn, ykn and Mnm (n < m) are the variational pa-
rameters. U and |φ〉 are defined as in equation (2) and
the entangling unitary V(M) is given by

V(M) = exp

(
− i

4

∑
n<m

Mnmσ
z
nσ

z
m

)
, (4)

for any real symmetric matrix M . The states (3) have
previously been studied also in Refs. [33, 34].

The entangling unitaries V(M) contain two-spin terms
which give the states (3) a non-trivial correlation struc-
ture. Note, however, that when computing expectation

values of Pauli operators we have V(M)
†
σ±n V(M) =

σ±n exp(±i/4
∑
mMnmσ

z
m), that is the two-spin terms

cancel and we are left just with products of single spin
operators [30, 35]. This crucial property allows us to
find analytical expressions for the energy and the gra-
dient of the energy with respect to the variational pa-
rameters [36]. Thanks to this, we can efficiently obtain
the variational ground states of individual disorder real-
izations for large system sizes of up to N = 200 spins
through a natural gradient descent algorithm [37]. In
addition, we can also efficiently compute the Rényi-2 en-
tropy of the ground states [36].

In order to demonstrate the expressivity of the GCS
ansatz, we first consider the approximate ground state
energy. For small system sizes we can compare the vari-
ational energies with numerically exact results, obtained
via a Lanczos Exact Diagonalization Method (ED) [38],
see Fig. 1. We find good quantitative agreement of the
variational ground state energy with the exact ground
state energy over a broad range of transverse and longi-
tudinal field values. In particular a notable improvement
of the GCS ansatz upon the CS ansatz becomes visible.
For larger systems it is no longer possible to compare
to an exact solution. However we observe an extensive
improvement in energy upon the CS ansatz, suggesting
that the GCS ansatz gives a non-vanishing improvement
even in the thermodynamic limit, see inset of Fig. 1.

Quantum phase transition – Our variational ansatz
also allows us to study the QPT on the h = 0 line
of the model’s parameter space. In Fig. 2 we depict
the empirical (extensive) spin glass susceptibility χsg =

N−1
∑
n,m 〈σznσzm〉

2
, which is independent of the system

size in the paramagnetic phase (large g) and scales with

FIG. 1. Average error in energy density ε = ∆E/W as a
function of the transverse field for different methods (CS in
orange, GCS in blue and ED in purple) for different sys-
tem sizes N = 8, 12, 16 (light to dark). ∆E is the differ-
ence between the variational energy and the exact ground
state energy. It is normalised by the spectral bandwidth
W, i.e. the difference between the highest and lowest en-
ergies in the exact spectrum. Inset: Difference between
CS and GCS energies per site (ECS − EGCS)/N as a func-
tion of the system size N for different transverse field values
g/J = 0.1, 1.0, 1.5, 2.0, 3.0 (light to dark). All data is for
h = 0 and averaged over nsamples = 1000 disorder realiza-
tions.

the system size in the ordered spin glass phase (small
g) [1, 21, 24, 39, 40]. For small system sizes we find good
quantitative agreement of the variational results with nu-
merically exact (ED) results, see left panel of Fig. 2.
However, importantly the variational ansatz enables us
to study the phase transition at much larger system sizes,
see right panels of Fig. 2. Strikingly for the larger sys-
tem sizes N ≥ 100 finite size effects are almost absent
allowing us to read off the critical field value directly.
Notice, that both variational ansätze clearly indicate the
existence of a phase transition. However, in agreement
with the literature [23] we find that the CS underestimate
the quantum fluctuations leading to a phase transition at
roughly gC ≈ 2 J . In contrast, the GCS capture the true
critical point at gC ≈ 1.5 J . Thus, the additional entan-
glement structure introduced in the GCS not only leads
to an improvement in energy but also seems crucial in
capturing the physics of the QSK model in the thermo-
dynamic limit.

Entanglement structure of the ground state – The find-
ings above suggest that the GCS ansatz describes the
ground state of the QSK model very well for all system
sizes up to the thermodynamic limit. Having such an ex-
plicit expression for the ground state wavefunction allows
us to study in detail its entanglement properties. Before
looking into the numerical results, we will consider some
hypotheses about the expected entanglement behaviour.
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FIG. 2. Left Panel: Spin Glass susceptibility χsg as a function
of the transverse field g for ED (purple circles) and GCS (blue
squares). Right Panels: Spin Glass susceptibility per site
χsg/N for GCS (top, blue) and CS (bottom, orange) for dif-
ferent system sizes N = 20, 100, 200 (from light to dark). All
data is for h = 0 and averaged over nsamples = 1000 disorder
realizations.

First, let us try to understand the role of the additional
two-spin entangling gates contained in V(M) by taking
a closer look at the matrix elements Mnm. Considering
the probability distribution p(Mnm) over many disorder
realizations, we observe that it resembles a Gaussian dis-
tribution with zero mean and variance scaling as 1/N .
In addition, we find that the mean level spacing ratio av-
eraged over many realizations yields 〈r〉 ≈ 0.53 roughly
independent of the transverse field value g > 0 and sys-
tem size N , which is in agreement with the result of the
Gaussian Orthogonal Ensemble (GOE) [41].

This implies that most two-spin entangling gates ap-
proach the identity as N →∞. This may seem compati-
ble with the naive hypothesis that, due to the mean-field
nature of the model, product states should well describe
the ground state, at least in the thermodynamic limit.
This assumption would predict the entanglement entropy
between any two subsystems going to zero as N →∞.

However, we emphasize that the number of entangling
gates acting on each individual spin diverges in the ther-
modynamic limit, suggesting that a non-trivial entangle-
ment structure is still possible also in this limit. Indeed,
let us consider a subsystem A composed of the first L
spins. We quantify the entanglement between these L
spins and the rest of the system by computing the second
Rényi entropy S2(L) of the subsystem’s reduced density
matrix. Given the all-to-all connectivity of our ansatz,
there exist L(N−L) two-spin entangling gates acting be-
tween spins in A and in its complement Ac. Each of these
gates individually generates a two-spin state with an av-
erage entanglement entropy proportional to M2

nm ∼ 1/N .
The cancellation of these two scalings could lead to a
second hypothesis, i.e. that the entanglement entropy
between A and Ac is proportional to L in the thermody-
namic limit N →∞. This expectation can also be made
more rigorous with an argument based on the Central
Limit Theorem [36].

FIG. 3. Top panel: Average Renyi-2 entanglement entropy
of the QSK ground state as a function of the subsystem size
L, computed for g = 1 J , h = 0 and various total system
sizes (N = 50, 100, 150, 200 from light to dark blue markers).
The data is fitted with the function (6) (orange dashed lines).
Fits of similar quality can be obtained also for other values
of the fields g and h. Bottom panel: Average Renyi-2 entan-
glement entropy of an ensemble of weighted graph states (7)
as a function of the subsystem size L, computed for various
total system sizes (N = 50, 100, 150, 200 from light to dark
green markers). Also in this case the data is well fitted by the
function (6) (orange dashed lines).

As a third alternative, we may compare the model to a
related but analytically solvable model, namely a model
with all-to-all interactions and invariant under any per-
mutation of the spins. Notice that in our case, due to
the disordered nature of the QSK model, individual re-
alizations of the couplings Jnm and hn are not permuta-
tionally invariant. However, invariance is present upon
disorder averaging, so the permutationally invariant case
may still provide a useful comparison. In such case the
ground state |Ψ〉 must possess a Schmidt decomposition

|Ψ〉 =
∑
k

λk |ϕk〉 |ηk〉 , (5)

where |ϕk〉 and |ηk〉 are orthonormal states of A and Ac

respectively. Due to the permutational invariance of the
system, the states |ϕk〉 must in particular belong to the
subspace of permutationally invariant states of A. Such
subspace has dimension L + 1, so there can be at most
L + 1 terms in the sum (5). It follows that the entan-
glement entropy of A is bounded by S2(L) ≤ log(1 + L).
This scaling of the entanglement can be viewed as a con-
sequence of entanglement monogamy [42, 43].

We would like now to compare our results with these
hypotheses. To this end, we have developed an efficient
method to numerically compute S2(L) for the states (3),
reducing the problem to the one of computing averaged
properties of a related classical model using Monte Carlo
methods [36]. The results, see top panel of Fig. 3, are
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FIG. 4. Coefficient C(N) extrapolated from the Rényi entan-
glement entropy fit as a function of the transverse field g at
h = 0 for different system sizes N (different shades of blue).

well fitted by the empirical functional form

S2(L;N) = A(N) log

[
1 +

B(N)

π
sin

(
πL

N

)]
. (6)

Notice that, in the large N limit, this functional form
may alternatively represent a S2(L) ∼ L scaling, a

S2(L) → 0 scaling or a S2(L) ∼ logL scaling of the en-
tropy, depending on the behaviour of the fit parameters
A(N) and B(N).

In the range of system sizes that we were able to ex-
plore (N ≤ 200) we observe that the parameter B(N)
converges to a finite constant as N → ∞. Similarly,
the product C(N) ≡ A(N)B(N)/N also converges to
a constant C. This suggests the asymptotic behaviour
S2(L;N) = CL+O(1/N) in the thermodynamic limit. In
other words, we observe an entanglement scaling larger
than both the one of a product state description and
the one of a permutationally invariant model. It instead
scales proportionally to the volume L of the considered
subsystem.

Finally, we point out that the entanglement structure
of the ground states appears to encode very clearly some
information about the phase transition of the model.
More specifically, if we compute the fit coefficient C(N)
defined above as a function of the transverse field g at
h = 0, we will see that this function develops, in the
thermodynamic limit, a discontinuity in its derivative at
the critical value gC ≈ 1.5J , as shown in Fig 4.

Comparison to random weighted graph states – The
uncomplicated form of the matrix M , which appears to
be distributed according to a GOE, suggests that the
entanglement structure of the QSK ground states could
be described in an even simpler way. Consider indeed the
set of states parametrized as

|Ψ(M)〉 = V(M) |+, . . . ,+〉 , (7)

where |+〉 = 1√
2
(|↑〉 + |↓〉). These are a subset of the

full variational class (3) and, in the context of Quantum
Information Theory, are referred to as weighted graph
states [31]. Let us then consider a random ensemble of

FIG. 5. Behaviour of the spin glass susceptibility per
site χsg/N (green squares) and entropy coefficient C (blue
circles) as functions of g for different values of h/J =
0, 0.1, . . . 1 (dark to light) at N = 150. We observe that both
functions develop a singularity typical of a phase transition
only in the h = 0 limit.

such states constructed by drawing the matrix M from
a GOE with variance M2

nm = 1/N .
We can compute the average subsystem entanglement

entropy S2(L) for this ensemble of states, similarly to
what we did for the ground states. We find that this en-
tropy is fitted by the same functional form (6), see bot-
tom panel of Fig. 3, and that the fit parameters A(N) and
B(N) obey the same large N scalings as in the ground
state case. It is also possible to show analytically that
the entanglement of these states must scale according to
a volume law, as confirmed by these fits [36].

Let us stress that the actual ground states contain
more elaborate features than the states (7). The state
|φ(x)〉 appearing in the variational ansatz (3) is in gen-
eral not equal to |+, . . . ,+〉. Rather, we observe that
|φ(x)〉 transitions from being polarized in the z-direction
at small transverse fields g to being almost fully polarized
in the xy-plane of the Bloch sphere for large g. Further-
more, the proportionality constant between M2

nm and
1/N also shows a non-trivial dependence on g and h.

Nonetheless, the qualitative entanglement structure
that we observe in the ground states appears to be
present already in the simplified form (7) if one samples
M from a GOE. In view of this, we conclude that the
ground state of the QSK model can be seen as a weighted
graph state, where the entangling weights are random
variables taken from a Gaussian distribution, while the
underlying product state encodes information about the
model’s phase.

Phase transition at finite longitudinal fields – Another
non-trivial feature of the QSK model which can be stud-
ied thanks to our method is the presence of a phase tran-
sition at h > 0. It has been conjectured that the model’s
spin glass phase survives also for non-vanishing longitu-
dinal fields h. This would suggest the existence of a line
of quantum phase transitions between the spin glass and
paramagnetic phases that extends from the g = gC , h = 0
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critical point into the h > 0 plane (often referred to as
the quantum de Almeida-Thouless line) [26, 44]. This
conjecture is however debated and decisive evidence has
yet to be collected in its favour.

Our analysis can provide a new contribution towards
answering this question. Indeed, we can extend our anal-
ysis to variational ground states in the whole parameter
space of the model, including h > 0. What we observe
is that all indicators of a phase transition vanish as soon
as h > 0.

More specifically, the spin glass susceptibility χsg be-
comes a smooth function of g whenever h > 0, no longer
presenting the discontinuity in its derivative typical of
a phase transition, even at large N . Similarly, the co-
efficient C characterizing the entropy behaviour of the
ground states clearly shows a singular behaviour at h = 0
but not for finite h. These results are illustrated in Fig. 5.
In conclusion, our analysis was not able to identify any
sign of the presence of a phase transition in the h > 0
region of the model’s parameter space.

Conclusion – We have shown that generalized atomic
coherent state capture relevant properties of the ground
state of the QSK model. We have shown that the sub-
set that approximates such ground state contains a non-
trivial entanglement structure, displaying a volume law.
This feature is captured by the set of weighted graph
states with random phase gates. It is remarkable that

the GCS resemble the QAOA ansatz [45, 46] for the QSK
model with one Ising interaction layer sandwiched be-
tween two product operators. In our case, however, the
parameters of these layers do not necessarily correspond
to those of the QSK Hamiltonian. Our results can thus
inspire other quantum computing variational eigensolvers
for QSK-like models, which build on top of the states (3),
something that deserves a more detailed research.
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Supplemental Material

Variational Method

In this appendix we will present the algorithm used
to find the variational ground states for the generalized
atomic coherent states of the form

|Ψ〉 = U(y)V(M) |φ(x)〉 ,

defined in the main body of this work.
Optimization Procedure – The GCS variational ground

state is described by the parameters ζ? = (y?, x?, M?)
which minimize the energy E(ζ) = 〈Ψ(ζ)|H |Ψ(ζ)〉,
where H is the Hamiltonian of the system. For opti-
mization of the parameters we used the natural gradient
descent (natural GD) algorithm [37]. Like for standard
gradient descent (GD), natural GD starts at some initial
state and iteratively updates the parameters, with an up-
date based on the local structure, until a minimum in the
energy is reached. However, while the parameters in GD
are updated in the direction X of the energy gradient
X = −∇E, the direction for natural gradient descent is
defined by

gX = −∇E (8)

and encodes additional information on the curvature in
terms of the local metric gµν = 2Re 〈Vµ|Vν〉, where the
tangential vectors |Vµ〉 are specified below. Natural GD
in general leads to enhanced convergence compared to
GD, however, like GD can get stuck in local, non-optimal
minima of the energy. In order to avoid this, we employ
an adiabatic updating procedure. Thereby, we start at
g = 0, where the system is exactly described by a prod-
uct state and apply the natural GD algorithm to a large
number of random initial CS (usually 10.000) and use
the state with minimal energy as the variational ground
state for both CS and GCS at g = 0. Then, iteratively for
increasing transverse field values g > 0, we use ζ?(g) +η,
that is the variational ground state parameters of the
point g with some small perturbation η, as the starting
point of the natural GD algorithm to find the optimal
parameters ζ?(g + δg) for the point g + δg.

Analytical Expressions of desired Quantities – In order
to perform the optimization procedure described above,
we will need to compute quantities of the form

〈Ψ|H |Ψ〉 , 〈Ψ|H |Vµ〉 , 〈Vµ|Vν〉 , (9)

corresponding to the energy of the state, the derivative
of the energy with respect to the variational parameters
and the local structure of the variational manifold, re-
spectively. The |Vµ〉 are the so called tangential vectors,
describing the change in the state |Ψ〉 upon infinitesimal
change in the variational parameters

|Vµ〉 = QΨ
∂

∂ζµ
|Ψ〉 ,

where we take the derivative with respect to the µ’th
variational parameter. The projection QΨ |φ〉 = |φ〉 −
〈Ψ|φ〉 |Ψ〉 removes all directions which lead only to a
change in phase or amplitude of the state |Ψ〉, i.e. which
would not change the physical state.

There are three different kinds of tangential vectors

|X an 〉 = QΨU(y)V(M)U(x)(iσan) |↑〉⊗N ,

|Mpq〉 = QΨU(y)V(M)

[
−i
4
σzpσ

z
q

]
|φ(x)〉 ,∣∣Ybm〉 = QΨU(y)

(
iσbm

)
V(M) |φ(x)〉 .

(10)

corresponding to the three kinds of variational parame-
ters xan, Mpq and yan, respectively.

To evaluate the quantities (9) let us first observe that
the adjoint action of the rotation unitaries U(x), defined
below equation (2), on a product of Pauli operators sim-
ply results in independently rotating each Pauli operator
according to

U(x)
†
σanσ

b
m . . .U(x) =

(∑
a′

Raa
′

n σa
′

n

)(∑
b′

Rbb
′

m σb
′

m

)
. . .

(11)
with the orthogonal matrices Rn(x) = Rn(xn) depend-
ing only on the parameters for the n’th spin xan, where
a = x, y, z. Hence, for any of the quantities in equa-
tion (9), we can take care of the action of U(y) simply
by rotating the Pauli operators that appear in H.

Let us now consider product operators O =
⊗N

n=1On,
where On acts only on the n’th spin, since any operator is
a linear combination of such product operators. Another
direct consequence of equation (11) is that for two CS |φ〉
and |χ〉 the quantity 〈φ|O |χ〉, where O is an arbitrary
product operator, factorizes into a product of N single-
spin terms

〈χ|O |ψ〉 =
∏
n

〈χn|On |ψn〉 (12)

and is thus efficiently calculable.
Finally, in order to compute expectation values for

GCS, the key observation is

V(M)
†
σαnV(M) = σαn exp

(
αi

4

∑
m

Mnmσ
z
m

)
(13)

≡ Oαn(M) ,

for α ∈ {+, −, 0} and σα=0 ≡ σz. Note that in what
follows Greek superscripts α, β, . . . will refer to +, −, 0.
The relation (13) is a direct consequence of the commu-
tation relations [σαn , σ

z
m] = αδnmσ

α
n .

Notice that the operator Oαn(M) is a product opera-
tor. Moreover, for multiple Pauli operators we can insert
identities 1 = VV†, such that

V†σαnσβm . . .V = V†σαnVV†σβmVV† . . .V
= OαnOβm . . .
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is again a product operator.
Thus, using the special relation (13), as well as the ex-

plicit form of the GCS (3) and the tangential vectors (10),
one immediately finds that the quantities (9) are simply
sums of expectation values of product operators with re-
spect to the CS part |φ(x)〉 of the GCS and can thus be
computed efficiently.

Let us point out that the procedure described above
for the computation of expectation values

〈
σanσ

b
m . . .

〉
Ψ

with respect to a GCS |Ψ〉 scales polynomially in the
system size, but at the expense of scaling exponentially in
the number of Pauli operators. However, for the present
application one will have to compute expectation values
of products of at most 4 Pauli operators, so this scaling
does not pose a problem.

Rényi-2 Entropy

In this appendix we will present a method that can be
used to efficiently estimate numerically the second Rényi
entropy of entanglement for states of the form

|Ψ〉 = U(y)V(M) |φ(x)〉 ,

that is GCS as defined in (3).
Numerical computation – Let us consider a system of

N spins and a partition of the spins into two sets A
and Ac constituted of L and N − L spins, respectively.
We are interested in computing the Rényi-2 entropy
S2 = − log2 (qA) of the reduced state ρA = trAc |Ψ〉 〈Ψ|,
where qA is the purity qA = tr

(
ρ2
A

)
. Notice that the local

unitaries contained in U(y) do not modify this quantity
in any way, so in what follows we will assume them to be
all equal to the identity.

We will show that the quantity qA can be rewritten in
terms of a sampling problem of a set of L classical spin-1
variables, taking values −1, 0 and +1. That is, we have

qA =
∑

j1,...,jL=−1,0,+1

P1(j1) · · ·PL(jL)F (j1, . . . , jL) ,

(14)
for a certain function F and certain probability distribu-
tions Pn. Thus, one can estimate qA by sampling con-
figurations of the classical spins {jn} according to the
product probability distribution P1 · · ·PL and comput-
ing the expectation value 14 as the mean value of F . To
achieve an error ε on qA it is sufficient to sample ∼ 1/ε2

configurations, rather than compute all the exponentially
many terms in the sum (14). Notice, that the entropy S2

is invariant if one exchanges the sets A and Ac, so we can
always choose A to be the smallest of the two.

To rewrite qA let us consider an ancillary system, also
made up of N spins and prepared to be in a copy of
the state |Ψ〉. We will denote quantities relative to this
ancillary system with primes. We then have

qA = 〈Ψ, Ψ| SAA′ |Ψ, Ψ〉 , (15)

where SAA′ is the swap operator acting between the spins
in A and the corresponding ancillas in A′.

Note that the terms in V(M) that only connect spins
within A or within Ac do not contribute to (15). We can
therefore replace V(M) with

Ṽ(M) = exp

(
− i

4

∑
n∈Ac

σzn
∑
m∈A

Mnmσ
z
m

)
.

We will also assume that |φ(x)〉 =
⊗N

n=1 |φn〉 with
|φn〉 = c0n |↑〉+ c1n |↓〉.

We can then write

qA = 〈φ(x), φ(x)| Ṽ†Ṽ ′†SAA′ ṼṼ ′SAA′ |φ(x), φ(x)〉 ,

where we exploited the fact that SAA′ |φ(x), φ(x)〉 =
|φ(x), φ(x)〉 to add an extra swap operator. We then

act with the swap operators on ṼṼ ′ (exchanging system
and ancilla operators in A) to obtain

Q ≡ Ṽ†Ṽ ′†SAA′ ṼṼ ′SAA′

= exp

(
i

4

∑
n∈Ac

(σzn − σz′n )
∑
m∈A

Mnm(σzm − σz′m)

)

=
∏
n∈Ac

exp

(
i

4
(σzn − σz′n )

∑
m∈A

Mnm(σzm − σz′m)

)
≡
∏
n∈Ac

Qn .

Each operator Qn has support on the single spin n ∈ Ac
and on all of A. We can therefore first take the expecta-
tion value of each Qn on the term |φn, φn〉 corresponding
to the spin n (of the system and of the ancilla) within
the product state |φ(x), φ(x)〉. We easily find

〈φn, φn|Qn |φn, φn〉 = 1−4pn sin2

[
1

4

∑
m∈A

Mnm(σzm − σz′m)

]
,

where we set pn = |c0n|2|c1n|2.
We then proceed to take the expectation value of∏
n∈Ac 〈φn, φn|Qn |φn, φn〉 on the remaining part of the

state |φ(x), φ(x)〉 corresponding to the subsystem A
which leads to the expression (14), once we define

Pm(0) = |c0m|4 + |c1m|4

Pm(+1) = Pm(−1) = |c0m|2|c1m|2 ,

which gives rise to a well-defined probability distribution.
The function F turns out to be

F (j1, . . . , jL) =
∏
n∈Ac

[
1− 4pn sin2

(
1

2

∑
m∈A

Mnmjm

)]
,

which can be evaluated efficiently for any configuration
of js. Note how the classical spin-1 variables jm emerge
as the possible eigenvalues of the operators (σzm−σz′m)/2.
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Volume law scaling of entanglement – The form (14)
of the purity can also be used to prove that the ensemble
of random weighted graph states discussed in the main
text around equation (7) must have a volume law scaling
of the entanglement.

For this, let us use the fact that S2 is invariant under
exchange of A and Ac to rewrite (14) as

S2(L) = − log2

∑
{j}

P (jL+1) · · ·P (jN )F (jL+1, . . . , jN )


= − log2

∑
{j}

P (jL+1) · · ·P (jN )

L∏
n=1

f(Xn)

 ,
(16)

where f(x) = 1 − sin2 x and Xn are random variables
defined by

Xn =
1

2

N∑
m=L+1

Mnmjm . (17)

Notice, that in the case of weighted graph states where
we fix |φ(x)〉 = |+ · · ·+〉 the probability distributions Pn
are all the same for each jn and are given by P (0) = 1/2,
P (±1) = 1/4.

The variablesXn are the sum of a large number of inde-
pendently distributed random numbers. By the Central
Limit Theorem we can therefore assume that, in the limit
of large N (and fixed L), the variables Xn are distributed
according to normal distributions with mean and vari-
ance given by

〈Xn〉 = 0 (18)〈
X2
n

〉
=

1

8

N∑
m=L+1

M2
nm , (19)

where by 〈 · 〉 we denote averaging over the variables j.
Note that each entry Mnm of the matrix M is an in-
dependent identically normally distributed variable. We
can therefore assume that in the large N limit the sum∑
mM

2
nm will approximate the variance of Mnm. More

precisely

N∑
m=L+1

M2
nm ≈ (N − L)M2

nm = (N − L)
1

N
. (20)

It follows that
〈
X2
n

〉
→ 1/8 for N →∞.

We can also assume that the variables Xn are inde-
pendently distributed. Indeed, their correlator is given
by

〈XnXm〉 =
1

8

N∑
l=L+1

MnlMml . (21)

For n 6= m this correlator has vanishing average with
respect to the disorder of M . Its variance is a function
of M2 and can be seen to decay as 1/N .

From all these considerations we can conclude that
equation (16) will ultimately reduce to

S2(L) = − log2

〈
L∏
n=1

f(Xn)

〉
(22)

= − log2

L∏
n=1

〈f(Xn)〉 (23)

= −
L∑
n=1

log2 〈f(Xn)〉 (24)

= −
L∑
n=1

log2

1 + e−2〈X2
n〉

2
. (25)

The factorisation in (23) is valid only up to corrections
containing the correlator 〈XnXm〉, however we have seen
that this correlator will go to zero at least as 1/N in the
limit N →∞. In step (25) we have simply computed the
average of f(x) over a normally distributed variable with
zero mean and variance

〈
X2
n

〉
.

In the preceding paragraphs we have seen how, in the
large N limit, the variances

〈
X2
n

〉
actually neither de-

pends on n nor on the specific realization of M , but
rather all tend to 1/8. We can therefore arrive at the
result

S2(L) = L

(
− log2

1 + e−
1
4

2

)
= C L (26)

which shows that the volume law entanglement entropy
scaling holds in the limit of large N and fixed L. The
value of the constant C that we have derived analyti-
cally here coincides numerically with the one that can be
extracted from the functional fits discussed in the main
body of this paper.

A similar behaviour can be expected also in the case
of the QSK ground states. There, however, the prod-
uct state |φ(x)〉 has some structure which will make the
distributions Pn(j) depend on n. It follows, that the vari-
ances

〈
X2
n

〉
will also depend on n in a non-trivial way.

However, they will still be of order 1 in the large N limit
and therefore the expression (25) remains extensive in L.
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