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Gaussian fermionic matrix product states (GfMPS) form a class of ansatz quantum states for 1d
systems of noninteracting fermions. We show, for a simple critical model of free hopping fermions,
that: (i) any GfMPS approximation to its ground state must have bond dimension scaling super-
polynomially with the system size, whereas (ii) there exists a non-Gaussian fermionic MPS ap-
proximation to this state with polynomial bond dimension. This proves that, in general, imposing
Gaussianity at the level of the tensor network may significantly alter its capability to efficiently
approximate critical Gaussian states. We also provide numerical evidence that the required bond
dimension is subexponential, and thus can still be simulated with moderate resources.

The growing complexity of quantum many-body wave-
functions with increasing system sizes has motivated the
development of variational classes of states. By exploit-
ing simplifying features of a given problem, ansatz states
can help optimize numerical resources, as well as pro-
vide an insightful new perspective into the inner workings
of quantum correlations in these systems. For instance,
Gaussian states and their correlation matrix formalism
greatly facilitate computations involving non-interacting
particles. On the other hand, tensor network states have
become an essential theoretical framework and numerical
toolbox for quantum many-body physics, excelling at the
representation of area law and similarly low-entangled
states [1].

For systems of free (or weakly interacting) fermions,
both classes can be combined to give rise to Gaussian
fermionic tensor network states [2]. Relevant examples
include the ground state of the Kitaev-Majorana chain,
and models of topological insulators and superconduc-
tors [3–6]. In the 1d case, the resulting tensor network is
the Gaussian fermionic matrix product state or GfMPS,
which has been shown to outperform non-tensor network
based methods in free fermion computations for very
large systems [7]. This motivates the question about
the expressivity of GfMPS, namely what kind of free
fermionic states can be efficiently described by them.

In the case of general MPS, it was proved in [8] that
an efficient approximation (i.e. one with bond dimension
growing at most polynomially with the system size N)
exists whenever a certain Rényi entropy is bounded by
O(logN). This established the usefulness of MPS to ap-
proximate states with at most a logarithmic violation of
the area law, including the ground states of both gapped
and gapless (critical) local Hamiltonians. In the set-
ting of fermionic chains, it also applies to fermionic MPS
(fMPS). However, it is not known whether an analogous
result holds for GfMPS whenever the state being approx-
imated is Gaussian with similarly bounded entropies.

Here we answer this question in the negative: we pro-
vide a simple counterexample in the form of a critical
hopping fermion Hamiltonian, whose Gaussian ground
state can be efficiently approximated by fMPS but not
by GfMPS. The proof of this last fact combines a rigorous

bound on the error incurred by a fixed rank Gaussian ap-
proximation of a Gaussian state with specific knowledge
of the entanglement structure of the target ground state,
obtained from asymptotic Toeplitz determinant theory.
Furthermore, we provide evidence, both from conformal
field theory arguments and numerical results, that the
required bond dimension scaling for a good GfMPS ap-
proximation is nevertheless subexponential. This makes
the question about the existence of an efficient GfMPS
approximation a hard one to settle numerically, which
motivated our pursuit of an analytical proof.

Our result disproves the somewhat intuitive assump-
tion that the most bond dimension-efficient approxima-
tion to a Gaussian state would come from a Gaussian
tensor network. This can be relevant when optimizing re-
sources for computational applications, though it should
be noted that the savings due to having access to the
correlation matrix formalism may well compensate the
extra bond dimension derived from Gaussianity. Addi-
tionally, there are other situations where Gaussian tensor
networks have faced difficulty approximating Gaussian
states, as is the case for ground states of local, gapped,
quadratic Hamiltonians displaying chiral topological fea-
tures [3, 4]. In this context, our findings leave the door
open to the existence of better, non-Gaussian tensor net-
work approximations that bypass the no-go results.
Model— We consider a periodic chain of length N

with a single fermionic mode ai, a
†
i per site, satisfying

the usual canonical anticommutation relations,

{ai , a
†
j} = δij , {ai, aj} = {a†i , a

†
j} = 0, (1)

and study the free hopping Hamiltonian at half filling,

H = −1

2

N∑
j=1

a†jaj+1 + h.c. = −
∑
k

cos k a†kak, (2)

where we have defined the momentum modes in the usual
form, ak ≡ 1√

N

∑N
j=1 e

ikjaj with k ∈ 2π
N Z ∩ (−π, π]. In

this basis H is diagonal and its ground state, which is
Gaussian due to H being quadratic, can be determined
by filling the negative energy modes below the Fermi mo-
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mentum, kF = π/2 [28]. This is encoded in the momen-
tum space correlation matrix,

Ckq ≡ 〈a†kaq〉 = nkδk,q, nk ≡ Θ(kF − |k|), (3)

where Θ denotes the Heaviside step function. The po-
sition space correlation matrix Cij ≡ 〈a†iaj〉 can then
be obtained by an inverse Fourier transform. It exhibits
power-law decays as befits a gapless model (its explicit
form can be seen in Appendix C). Note that due to par-
ticle number conservation, 〈akaq〉 = 〈aiaj〉 = 0.

The entanglement structure of this state, which will be
key to the results presented next, can be obtained from its
correlation matrix. Given a bipartition of a pure Gaus-
sian state into complementary regions R, R̄, we can find
a basis of modes on each subsystem such that the state
decomposes as the tensor product of entangled fermion
pairs [9]. How entangled these pairs are is given by the
spectrum of the correlation matrix of either subsystem,
which is nothing but the corresponding submatrix of the
global correlation matrix,

CR ≡ (Cij)i,j∈R. (4)

For convenience and notational unity we will work with
the eigenvalues of VR ≡ 2CR − 1, which we denote
{λj} ⊂ [−1, 1], and call the Gaussian entanglement spec-
trum [29]. The Rényi entropy Sα then splits as a sum of
contributions from each entangled pair,

Sα =
∑
j

sα(λj), (5)

where

sα(λ) ≡ 1

1− α
log

[(
1 + λ

2

)α
+

(
1− λ

2

)α]
, (6)

so that the entanglement decreases with |λ| from λ = 0
(maximally entangled state) to λ = ±1 (product state).

For the ground state of H, the leading scaling of the
Rényi entropy of an interval of size L can be seen to be
logarithmic [10–12],

Sα(L) ∼ α+ 1

6α
logL, L→∞, (7)

which is consistent with it lying in the universality class of
the free boson conformal field theory (CFT) with central
charge c = 1 [13, 14].
Efficient approximation with fMPS — A fermionic ma-

trix product state (fMPS) [2] is defined in terms of a
series of so-called fiducial states of f physical fermions
and 2χ virtual fermions. The state represented by the
fMPS is obtained by contracting the virtual fermions,
i.e. projecting them onto maximally entangled pairs (see
Fig. 1). The dimension D of the virtual Hilbert space,
i.e. the bond dimension (b.d.) of the fMPS, is related to
χ via D = 2χ [30].

FIG. 1: (left) A (G)fMPS fiducial state of one physical
fermion and two virtual fermions. (right) A (G)fMPS is ob-
tained from projecting the virtual fermions onto entangled
pairs, leaving an entangled state of the physical fermions.

Definition 1. A family of states |ΨN 〉 for increasing
system sizes N is efficiently approximable by fMPS if
for any ε > 0 there exists a family of fMPS states |ΨMPS

N 〉
with b.d. D(N) = poly(N) and

‖|ΨN 〉 − |ΨMPS
N 〉‖2 ≤ ε ∀N. (8)

Theorem 1. The family of ground states of (2) is effi-
ciently approximable by fMPS.

Proof. Using the Jordan-Wigner transformation, we can
map our system to a spin chain model, the XX model.
Since we have a logarithmic bound (7) for the Rényi en-
tropies, in particular for α < 1, it follows from Lemmas
1 and 2 in [8] that the ground state of the XX model
is efficiently approximable by MPS. Then, undoing the
Jordan-Wigner transformation, we can find an efficient
fMPS approximation for the fermionic model (this is done
in detail in Appendix A).

In general, understanding the entanglement structure
of quantum states is key to obtain both approximability
and inapproximability results, since the bond dimension
of an MPS has a clear interpretation as the maximum
Schmidt rank for a bipartition of an MPS into connected
subsystems. In order to compare it with an analogous
result in the next section, we cite here the following

Lemma 1 (Low Schmidt rank approximation). Let
|Ψ〉 by a bipartite quantum state with Schmidt spectrum
{sj}nj=1 in descending order. Then for any bipartite state
|Ψ̃〉 of Schmidt rank at most r,

|〈Ψ|Ψ̃〉|2 ≤ 1−
n∑

j=r+1

s2j , (9)

and the bound is tight: the optimal |Ψ̃〉 can be found by
truncating the Schmidt decomposition of |Ψ〉.

Lemma 1 is a consequence of the Eckart-Young-Mirsky
theorem [15, 16], which states that the optimal low rank
approximation to a given matrix comes from truncat-
ing its singular value decomposition. It leads to a lower
bound for the error of an MPS approximation [31] (used
for instance in some of the inapproximability proofs in
[17]).
No efficient approximation with Gaussian fMPS — A

Gaussian fMPS (GfMPS) is an fMPS for which all fidu-
cial states are Gaussian. Since the contraction opera-
tion projects each pair of virtual modes onto a Gaussian
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state, the maximally entangled pair, the global state af-
ter contraction is necessarily Gaussian. The contraction
of GfMPS tensors can be done at the level of correlation
matrices via Schur complements [7, 18] (see Appendix
D).

An efficient approximation in terms of GfMPS can be
defined analogously to the fMPS case. Then, we have our
main result as

Theorem 2. The family of ground states of (2) is not
efficiently approximable by GfMPS.

The proof of Theorem 2 will follow from two lemmas.
The first one is the Gaussian version of Lemma 1. Given
the Gaussian entanglement spectrum {λj} of a bipartite
state, we call the number of eigenvalues λj 6= ±1 its
Gaussian rank. We then have

Lemma 2 (Low Gaussian rank approximation). Let |Ψ〉
be a bipartite Gaussian state, with Gaussian entangle-
ment spectrum {λi}ni=1, ordered so that |λi| ≤ |λi+1|.
Then for any Gaussian state |Ψ̃〉 of Gaussian rank at
most r,

|〈Ψ|Ψ̃〉|2 ≤
n∏

i=r+1

1 + |λi|
2

= exp
(
−Strunc
∞ [r]

)
, (10)

where Strunc
∞ [r] ≡

∑n
i=r+1 s∞(λi), and the bond is tight:

the optimal |Ψ̃〉 can be found by truncating the Gaussian
singular value decomposition of |Ψ〉.

We were not able to find a proof in the literature so
we provide one together with related results in Appendix
B. Lemma 2 can be used to lower bound the error of a
GfMPS approximation to a given state, since the Gaus-
sian rank of any GfMPS divided into two connected sub-
systems is upper bounded by χ. We then need informa-
tion on the entanglement spectrum of our target state,
which is provided by

Lemma 3. For the ground state of (2), let IL,N (µ) be
the number of eigenvalues λ from the Gaussian entangle-
ment spectrum of an interval of size L in a chain of N
sites that satisfy |λ| < µ, and let c > 0. Then there exists
µ < 1 such that

IL,N (µ) > c logN, (11)

as L,N →∞ with L/N fixed.

The proof of Lemma 3 can be found in Appendix
C. It starts by proving the equivalent property for the
Gaussian entanglement spectra of the infinite chain: in
the thermodynamic limit, we can exploit the theory of
Toeplitz determinants to lower bound the corresponding
IL,∞(µ) function in the asymptotic regime. Then we
use standard inequalities to show that the difference be-
tween the finite and infinite chain correlation matrices
is bounded in trace norm. This ensures that their re-
spective spectra are distributed similarly enough so that
Lemma 3 follows.

Proof (of Thm. 2). Suppose there exists a GfMPS ap-
proximation with polynomial b.d. D(N). Then we
can find c > 0 such that χ(N) = log2D(N) ≤ c logN .
Thanks to Lemma 3, we know there exists some µ < 1
such that IL,N (µ) > (c+ 1) logN , and we have

Strunc
∞ [χ(N)] ≥ (IL,N (µ)− χ(N))s∞(µ)

≥ s∞(µ) logN, (12)

which diverges as N → ∞. Since |Ψ̃N 〉 has Gaussian
rank bounded by χ(N) across the bipartition, Lemma 2
implies that the overlap between the ground state and its
GfMPS approximation goes to zero as the system size in-
creases. Thus, by contradicion, any approximation with
bounded error must have χ(N) growing faster than loga-
rithmically, and consequently D(N) grows superpolyno-
mially.

CFT argument — The techniques used in the proof
of Theorem 2 cannot be applied to obtain better lower
bounds, or upper bounds on the required b.d., for which
more accurate knowledge of the Gaussian entanglement
spectra of finite chains would be needed. Here we provide
evidence that this b.d. is subexponential. First, a heuris-
tic argument is made, based on conformal field theory
(CFT). In the next section, we present some numerical
results.

The low-lying entanglement spectrum of a critical
model is know to behave universally according to the
underlying CFT. With our notation, for an interval of L
sites in an chain of N sites, we have [19–22]

|λn| ' tanh

(
π2

2

εn
log `

)
, ` =

N

πa
sin

πL

N
(13)

where ` is the effective length of our interval in units of
some UV cutoff a, and the εn are fixed by the CFT. In
our model, this is the free compactified boson CFT, and

εn ≡
⌊n

2

⌋
+

1

2
=

1

2
,

1

2
,

3

2
,

3

2
,

5

2
,

5

2
. . . (14)

(More precisely, these numbers characterize the spectrum
of scaling dimensions of an associated boundary CFT.)
The CFT spectrum (13) not only satisfies the condition
in Lemma 3, but it also allows us to estimate the tail
contribution to the ∞-Rényi entropy,

Strunc
∞ [χ] ≈ 2 log `

π2
exp

(
− π2χ

2 log `

)
. (15)

Thus, if the CFT prediction were exact for the whole
spectrum, by Lemma 2 the required scaling for χ is

χ(N, ε) ≈ 2

π2
log ηN log

(
π2

2ε
log ηN

)
, (16)

for some proportionality constant ` = ηN . Here we used
the fidelity error ε ≡ 1 − exp (−Strunc

∞ [χ]) attached to
a single bipartition of the system. Our experience from
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FIG. 2: Bond dimension D(N) vs. system size N for our
(not necessarily optimal) ladder GfMPS approximation to the
ground state of H. δ is the error in energy, which upper
bounds the fidelity error ε. The lines represent (17) with
numerically optimized η ∼ 1.3.

MPS is that we should account for all bipartitions, with
different L/N and thus different η [8]. We do this coarsely
by replacing ε→ ε/N . This results in

D(N, ε) ≈ (ηN)
log 2

π2 log ( 2N log ηN

π2ε
), (17)

which is subexponential.
Numerics — We have also performed some numeri-

cal studies of this problem which seem to partially con-
firm the scaling from (16). We introduce them briefly
here, and elaborate on them in Appendix D. Essentially,
we defined a subclass of translation invariant GfMPS
(which we call ladder GfMPS), which exactly represent
states with the following occupation number in momen-
tum space:

nk =
p(cos k2 )2

p(cos k2 )2 + q(sin k
2 )2

, (18)

for p, q arbitrary real odd monic polynomials. Clearly,
to reproduce (3), we need to have p (resp. q) supported
mostly inside (resp. outside) the Fermi surface. We tried
several choices, the best of which is represented in Fig. 2.
There we have used δ ≡ 〈ΨMPS|Hfb|ΨMPS〉−E0, with Hfb
the flat band Hamiltonian with the same ground state
as H, and E0 its ground state energy, as a proxy for the
fidelity error ε, which it upper bounds. Further energy
optimization (as done in [23]), which we did not pursue,
could improve the results. Fig. 2 also shows the estima-
tion (17) for η ∼ 1.3 (resulting from optimization), which
gives an idea of the scaling of our numerical results.
Toy model — Finally, we present a simple toy model

of a family of Gaussian states, with no reference to a
Hamiltonian, that are efficiently approximable by fMPS
but not by GfMPS. We begin by explaining the intu-
ition behind it. Lemmas 1 and 2 highlight the differences

between Gaussian and non-Gaussian truncation of a bi-
partite state [32]. This dichotomy is also reflected in
different bounds for the truncation errors, εG and εNG
resp., in terms of the α < 1 Rényi entropy. Assuming
εG, εNG � 1, we have,

εG <∼ S
1/α
α χ−(1−α)/α, (19)

εNG <∼ S
1/α
α D−(1−α)/α. (20)

For the non-Gaussian case this is Lemma 2 in [8]. The
Gaussian case can be proved similarly by minimizing the
entropy over all possible Gaussian entanglement spectra
with a fixed Gaussian truncation error. Since χ ∼ logD,
we see that the bond for εG is much weaker, i.e. there ex-
ist states with small Sα and εNG but high εG for the same
bond dimension [33]. These states are usually character-
ized by Gaussian entanglement spectra involving many
low-entangled pairs.

We exploit this in our toy example, leveraging the ad-
dition of entangled pairs as we grow the system by mak-
ing their entanglement increasingly weaker. Consider a
family of states |ψN 〉 on rings of N sites obtained by dis-
tributing ν(N) entangled pairs between opposite sites in
the chain, each with strength λN , where

ν(N) ∼ (logN)1+β , λN ∼ 1− 2

ν(N)
, (21)

for some β > 0. The α < 1 Rényi entropy is maximal for
a bipartition of the ring into two equal halves, since all
pairs contribute to give

Sα(N/2) = ν(N)sα(λN ) ∼ (logN)(1−α)(1+β), (22)

which is upper bounded by O(logN) for α ∈
(

β
1+β , 1

)
.

Therefore, for any β > 0 an efficient fMPS approximation
exists. However, for any GfMPS approximation |ψ̃N 〉, the
error bound (10) reads

|〈ψN |ψ̃N 〉| ≤
(

1 + λN
2

)ν(N)−χ(N)

(23)

<∼

(
1− 1

ν(N)

)ν(N)−χ(N)

. (24)

Thus if |〈ψN |ψ̃N 〉| ≥ 1− ε, then for large enough N and
small enough ε we have

χ(N) >∼ (1− ε) ν(N) ∼ (logN)1+β , (25)

so thatD(N) >∼ N (logN)β . This scaling can be easily seen
to be sufficient (since χ(N) = ν(N) allows for an exact
representation), so that the required b.d. to approximate
|ψN 〉 is superpolynomial but still subexponential.
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Appendix A: fMPS approximations from (spin)
MPS approximations

Following [2], a fermionic MPS with f = 1 physical
fermions and 2χ = 2 virtual fermions per site can be
defined by means of a series of “projectors”

Qj ≡
∑

k,l,m = 0,1
k⊕l⊕m=p

[Aj ]
k
lm (a†j)

k αlj β
m
j , (A1)

where ⊕ denotes the sum in Z2, j is the position in-
dex along the chain, [Aj ]

k
lm is a coefficient tensor, and

aj , αj , βj are the physical, left virtual and right virtual
fermionic modes at site j, respectively. The restriction
on the indices ensures a well-defined fermionic parity p
for Qj . One also needs to define the operators

Hj =
1√
2

(
1+ β†jα

†
j+1

)
, (A2)

which generate entangled pairs of virtual fermions from
the vacuum. The fMPS state is then defined by the action
of both sets of operators on the global vacuum, followed
by projecting out the virtual fermions:

|Ψ〉 ≡ 〈0|virtual
∏
j

Qj
∏
j

Hj |0〉all. (A3)

The generalization to larger physical and/or bond dimen-
sions is straightforward. If we now interpret the fermionic
Fock space as the Hilbert space of a spin 1

2 chain (as is
done implicitly by the Jordan-Wigner transformation),
one can see that |Ψ〉 can be obtained from a standard
“spin” MPS, with local tensors that coincide with [Aj ]

k
lm,

possibly up to signs. Consequently, the set of 1d fMPS
states coincides with those obtained from MPS that sat-
isfy: (i) their bond dimension is a power of 2, and (ii)
each tensor has a well-defined parity.

In the case we are interested in, the Jordan-Wigner
transformation maps the fermionic Hamiltonian H from
(2) to the XX model spin chain,

HXX =
1

2

∑
j

[XjXj+1 + YjYj+1], (A4)

for which the results from [8] apply, since all its Rényi
entropies grow logarithmically (see Eq. (7)). The exis-
tence of an MPS approximation with polynomial bond
dimension then follows. Additionally, this spin MPS has
a global parity symmetry represented by the action of
the product of Z operators on each physical spin. To see
that this implies the existence of an fMPS approximation
to the ground state with polynomial b.d., we show that
we can make the spin MPS satisfy conditions (i) and (ii)
without a substantial increase in bond dimension.

Let D be the bond dimension of the spin MPS, and
[Bj ]

k
lm denote its tensors. Then there is q such that D ≤

2q < 2D, and we can embed the D ×D × 2-dimensional

MPS tensors into 2q × 2q × 2-dimensional ones without
changing the state just by padding each tensor with zeros,
i.e. by extending the range of l,m to 2q, and defining the
additional tensor elements as 0. Thus we can satisfy (i)
with less than twice the original bond dimension. To
get condition (ii), we modify the tensors by adding an
additional pair of indices l′,m′ ∈ {0, 1} such that

[Bj ]
k
ll′mm′ ≡ [Bj ]

k
lmδk⊕|l|⊕|m|⊕l′⊕m′ , (A5)

where |l|, |m| denotes the parity of the corresponding in-
dex. The new tensors are individually parity symmetric,
so that (ii) holds, and they can be seen to generate the
same state as the original ones (which is only possible
because said state has global parity symmetry). Thus it
follows that there exists an fMPS approximation to the
ground state of H, with less than four times the bond di-
mension of the spin MPS approximation to the XX model
ground state, which therefore grows at most polynomi-
ally.

Appendix B: Gaussian bipartite state overlaps and
Gaussian entanglement spectrum

In this Appendix we prove Lemma 2 as a corollary to
a more general result. For convenience, we work here
in the Majorana representation, introducing Majorana
operators

cj,1 ≡ aj + a†j , cj,2 ≡ i(aj − a
†
j), (B1)

{cj,s, cj′,s′} = 2δj,j′δs,s′ (B2)

so that the (Majorana) correlation matrix is a real, skew-
symmetric matrix defined as

[Γ]js,j′s′ ≡
i

2
〈[cj,s, cj′,s′ ]〉 s, s′ = 1, 2, (B3)

which satisfies ΓΓT ≤ 1, with equality for pure states.
The overlap of two Gaussian states of 2N Majorana
fermions can be computed from their correlation matrices
Γ, γ, [18]

|〈Γ|γ〉|2 = 2−N
√

det(1− Γγ). (B4)

Finally, we introduce the Gaussian singular value decom-
position (Gaussian SVD) [9], which states that, given Γ
the correlation matrix of a pure bipartite Gaussian state
on two subsystems of 2nMajorana fermions each [34], we
can find O,Q ∈ O(2n) that block diagonalize Γ,

Γ = (O ⊕Q)

 n⊕
j=1

W (θj)

 (O ⊕Q)T, (B5)

where the 4× 4 blocks are given by

W (θ) ≡
(

cos θJ sin θ1
− sin θ1 − cos θJ

)
, J ≡

(
0 1
−1 0

)
,

(B6)
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and the θj can all be chosen to lie on the first quadrant,
0 ≤ θj ≤ π

2 , in which case we have cos θj = |λj |. The
θj are another possible way to write the Gaussian en-
tanglement spectrum. Indeed, W (θ) is the correlation
matrix of a pair of fermionic modes, which is in a prod-
uct state for sin θ = 0 (|λ| = 1) and maximally entangled
whenever cos θ = 0 (λ = 0). The number r of entangled
pairs (sin θ 6= 0) is what we called in the main text the
Gaussian rank. Now we are ready to state and prove the
following

Theorem 3. Let |Γ〉, |Γ̃〉 be pure bipartite Gaussian
states on two subsystems of 2n Majorana fermions. Let
their correlation matrices be Γ, Γ̃ and their Gaussian en-
tanglement spectra be given by {θj}nj=1, {θ̃j}nj=1 respec-
tively. Then,

∣∣∣〈Γ|Γ̃〉∣∣∣2 ≤ max
σ∈Sn

n∏
i=1

cos2

(
θi − θ̃σ(i)

2

)
, (B7)

and the bound is tight (it is reached for some Γ, Γ̃).

Proof. We follow a strategy inspired by Thm. VI.7.1 in
[24]. Γ, Γ̃ will be of the form

Γ = (O ⊕Q)

 n⊕
j=1

W (θj)

 (O ⊕Q)T, (B8)

Γ̃ = (Õ ⊕ Q̃)

 n⊕
j=1

W (θ̃j)

 (Õ ⊕ Q̃)T, (B9)

for some O, Õ,Q, Q̃ ∈ O(2n). To begin with, we shall
assume that

θi, θ̃i ∈
(

0,
π

2

)
, ∀i, (B10)

θi 6= θj , θ̃i 6= θ̃j , i 6= j. (B11)

We are seeking to upper bound∣∣∣〈Γ|Γ̃〉∣∣∣2 = 2−2n
√

det(1− ΓΓ̃) = 2−2n
√

det (Γ + Γ̃),

(B12)
where we have used (B4) and the purity condition
Γ−1 = −Γ. In other words, our problem consists in de-
termining

max
O,Q,

Õ,Q̃

det((O⊕Q)W (O⊕Q)T+(Õ⊕Q̃)W̃ (Õ⊕Q̃)T) (B13)

where

W ≡

 n⊕
j=1

W (θj)

 , W̃ ≡

 n⊕
j=1

W (θ̃j)

 , (B14)

We know the maximum exists since we are optimizing
over a closed manifold. Further, we can assumeO,Q = 1,

which amounts to fixing the mode basis on which we
express our states and does not affect their overlap.

Assume that (Γ, Γ̃) constitute an extreme point of the
target function. This implies that no infinitesimal change
in the matrix Γ̃ will change the overlap, that is,

d

dt
det(Γ + et(o⊕q)Γ̃e−t(o⊕q))

∣∣∣∣
t=0

= 0, ∀o, q ∈ o(2n).

(B15)
By differentiating, and then using det(Γ + Γ̃) > 0 (since
we are looking for maxima) and the cyclicity of the trace,
we arrive at

det(Γ + Γ̃) tr
(

(Γ + Γ̃)−1[o⊕ q, Γ̃]
)

= 0,

tr
(

(o⊕ q), [Γ̃, (Γ + Γ̃)−1]
)

= 0. (B16)

Let [Γ̃, (Γ + Γ̃)−1], which is skew-symmetric, have the
following block structure (according to the bipartition of
our states),

[Γ̃, (Γ + Γ̃)−1] ≡
(

A B
−BT D

)
, (B17)

with A = −AT, D = −DT. Then condition (B16) implies

tr

((
o 0
0 q

)(
A B
−BT D

))
= tr (oA+ qD) = 0,

(B18)
which holds for every skew-symmetric o, q. This forces
A = D = 0 and we conclude

[Γ̃, (Γ + Γ̃)−1] =

(
0 B
−BT 0

)
. (B19)

We denote B ≡ [Γ̃, (Γ + Γ̃)−1] = −[Γ, (Γ + Γ̃)−1] for
brevity. We proceed by noting

{Γ, [Γ, (Γ + Γ̃)−1]} = [Γ2, (Γ + Γ̃)−1] (B20)

= [−1, (Γ + Γ̃)−1] = 0, (B21)

where {, } denotes the anticommutator. Thus

{Γ,B} = 0, (B22)

which further constrains the form of B. Indeed, because
of our assumption on O,Q, we have

Γ =

(
Γ11 Γ12

−ΓT
12 Γ22

)
, (B23)

where

Γ11 =

n⊕
i=1

cos θi J = −Γ22, (B24)

Γ12 =

n⊕
i=1

sin θi 1. (B25)
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Condition (B22) can be seen to imply

[Γ11, B] = 0, Γ12B
T = −BΓ12, Γ12B = −BTΓ12,

(B26)
which, thanks to our assumptions about the θi, is enough
to force

B =

n⊕
i=1

biJ, (B27)

for some bi ∈ R. Now we go back to (B19) and write

[Γ̃, (Γ + Γ̃)−1] = Γ̃(Γ + Γ̃)−1 − (Γ + Γ̃)−1Γ̃

= Γ̃(Γ + Γ̃)−1 − Γ(Γ + Γ̃)−1

= (Γ̃− Γ)(Γ + Γ̃)−1, (B28)

hence,

B(Γ + Γ̃) = (Γ̃− Γ) =⇒
=⇒ Γ̃ = (1− B)−1Γ(1− B), (B29)

where the inverse of 1 − B exists since det(1 − B) =
det(1+BTB) > 0. Defining βi ≡ 2 arctan bi, the expres-
sion above yields

Γ̃ =

n⊕
i=1

W (θi + βi), (B30)

which can be checked to be consistent with all the con-
ditions derived before, in particular

[W (θ + β), (W (θ) +W (θ + β))−1] = tan
β

2

(
0 J
J 0

)
.

(B31)
In conclusion, the pairs Γ, Γ̃ with maximal overlap for
fixed spectra satisfy that Γ and Γ̃ are simultaneously
singular-value-decomposable, by which we mean there
exists a basis in which

Γ =

n⊕
i=1

W (θi), Γ̃ =

n⊕
i=1

W (θ̃σ(i)), (B32)

for some permutation σ. The statement of the theorem
then follows from simply computing the overlap of these
states, and extends to the case of general {θi, θ̃i} by a
continuity argument.

The case described in Lemma 2 follows as a corollary
to the previous theorem by forcing all but r of the θ̃i to
be equal to 0. It can then be seen that the optimal choice
for the remaining ones is for them to equal the r largest
θi (the most entangled pairs) and for the permutation σ
to match them accordingly, so that the maximum overlap
is given by (10), once we express the Gaussian entangle-
ment spectrum back in terms of λj . The bound is tight
since an approximation with such an overlap can be ob-
tained by performing the Gaussian SVD of the target
state and setting all but the r largest θi to 0 (i.e., all but
the r smallest |λj | to 1).

Appendix C: Proof of Lemma 3

As we advanced in the main text, we begin by proving
a corresponding result in the thermodynamic limit:

Lemma 4. For the ground state of (2) on an infinite
chain, let IL,∞(µ) be the number of eigenvalues λ from
the Gaussian entanglement spectrum of an interval of size
L that satisfy |λ| < µ, and let c > 0. Then there exists
µ < 1 such that

IL,∞(µ) > c logL, (C1)

as L→∞.

Proof. Let CL,∞ be the correlation matrix of the interval
of length L, and VL,∞ ≡ 2CL,∞ − 1. Call DL(z) ≡
det(z1 − VL,∞), and let f(z) be a holomorphic function
on a domain that includes the interval [−1, 1] where all
the eigenvalues {λi} of VL,∞ lie. Since we have

DL(z) =

L∏
i=1

(z − λi), (C2)

it follows from Cauchy’s integral formula that

L∑
i=1

f(λi) =
1

2πi

∫
C
dzf(z)

d

dz
logDL(z), (C3)

where C is a contour within the domain of holomorphic-
ity of f encircling the interval [−1, 1]. Since VL,∞ is a
Toeplitz matrix with an adequate symbol, the asymptotic
value of DL(z) as L → ∞ is given to us by the Fisher-
Harwig conjecture, in particular by a subcase thereof
which was proven by Basor [25]. This property has been
exploited for various computations in the XX model [11].
In our particular case, it tells us

logDL(z) ∼ L log
√
z2 − 1

+
logL

2π2

[
log

(
z + 1

z − 1

)]2
(C4)

where by ∼ we mean both sides are equal up to O(1)
terms that do not grow with L. The right hand side of
(C3) then reads∮

dzf(z)
d

dz
logDL(z) ∼ (C5)

∼ L

2

∮
dzf(z)

(
1

z − 1
+

1

z + 1

)
(C6)

+
2 logL

π2

∮
dzf(z) log

(
z − 1

z + 1

)
1

z2 − 1
(C7)

Using complex variable techniques, this finally results in

L∑
i=1

f(λi) ∼ L
f(−1) + f(1)

2
+

2 logL

π2

∫ 1

−1
dλ

f(λ)

1− λ2
,

(C8)
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which is a strong constraint on the distribution of eigen-
values. It hints at the fact that they are asymptotically
distributed with a density 2 logL/(π2(1− λ2)) along the
interval [−1, 1], with the rest of them (a number of order
L) eventually clumping at the endpoints. We are now
in a position to bound the function IL,∞(µ). It can be
written as a sum over eigenvalues, with f the indicator
function of the interval [−µ, µ], which of course cannot
be extended to a holomorphic function. Still, to get in-
tuition, the result would be

IL,∞(µ) “ = ”
2 logL

π2

∫ µ

−µ
dλ

1

1− λ2
=

4 logL argtanhµ

π2
,

(C9)
and since the coefficient of logL diverges as µ → 1, we
would have the result. To make a proper statement, we
use the functions

fµ(λ) ≡ (1− λ2)(µ2 − λ2)

(2− µ2 − λ2)2
, (C10)

which lower bound the indicator function Θ(µ− |λ|) and
are holomorphic on a disk containing [−1, 1]. Thus we
can assure,

IL,∞(µ) ≥
L∑
i=1

fµ(λi) ∼
2 logL

π2

∫ 1

−1
dλ

fµ(λ)

1− λ2

=
4 logL

π2


argtanh

(
1√

2− µ2

)
(2− µ2)3/2

− 1

2− µ2


(C11)

and since the coefficient of logL on the rhs still diverges
as µ→ 1, the result follows.

Now we will show that the spectra of the correlation
matrices for the finite and infinite chains are close enough
that Lemmas 3 and 4 imply each other. Denote the
Frobenius norm by ‖ · ‖2 and the Schatten 1-norm (or
trace norm) by ‖ · ‖1. We then have,

Lemma 5. Let CL,N , CL,∞ be the correlation matrices
for an interval of L sites of a finite chain of N sites
and an infinite chain, respectively, and let L/N = ϕ stay
constant as we increase N . Then ‖CL,N − CL,∞‖1 is
bounded by a constant.

Proof. Both CL,N and CL,∞ are Toeplitz matrices. Their
matrix elements read

(CL,N )i,i+r =
1

N

sin
(π

2
r +

m

N
r
)

N sin
πr

N

, (C12)

(CL,∞)i,i+r =
1

N

sin
(π

2
r
)

πr
, (C13)

where m = 2, 1, 0,−1 whenever N ≡ 0, 1, 2, 3 mod 4 re-
spectively. Define L × L Toeplitz matrices T even

j , T odd
j

with elements(
T even
j

)
i,i+r

≡ cos
(πr

2

)
r2j , (C14)(

T odd
j

)
i,i+r

≡ sin
(πr

2

)
r2j+1. (C15)

By expanding and collecting terms cautiously in (C12),
it can be seen that

CL,N − CL,∞ =

∞∑
j=0

aj
N2j+1

T even
j +

∞∑
j=0

bj
N2j+2

T odd
j ,

(C16)
where aj , bj are the coefficients in the series expansion of
the holomorphic functions

sinmz

sinπz
=

∞∑
j=0

ajz
2j , (C17)

cosmz

sinπz
− 1

πz
=

∞∑
j=0

bjz
2j+1, (C18)

which are absolutely summable within their disc of con-
vergence (the unit disc). The trace norm of T even

j , T odd
j

can be bounded by using

rank(T even
j ) = 4j + 2, rank(T odd

j ) = 4j + 4, (C19)

together with the inequality

‖M‖1 ≤
√

rank(M)‖M‖2, (C20)

to find

‖T even
j ‖1 ≤

√
4j + 2‖T even

j ‖2

≤
√

4j + 2

√√√√√2

L∑
r=0
r even

r4j(L− r)

≤
√

4j + 2

√√√√√2L
L∑
r=0
r even

r4j

≤
√

4j + 2√
4j + 1

L2j+1, (C21)

and

‖T odd
j ‖1 ≤

√
4j + 4‖T even

j ‖2

≤
√

4j + 2

√√√√√2

L∑
r=1
r odd

r4j+2(L− r)

≤
√

4j + 2

√√√√√2L

L∑
r=1
r odd

r4j+2

≤
√

4j + 4√
4j + 3

L2j+2. (C22)
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Going back to (C16) this yields

‖CL,N − CL,∞‖1 ≤
∞∑
j=0

|aj |
N2j+1

‖T even
j ‖1 +

|bj |
N2j+2

‖T odd
j ‖1,

≤ 2

∞∑
j=0

|aj |
(
L

N

)2j+1

+ |bj |
(
L

N

)2j+2

,

(C23)

which converges and is thus bounded as N → ∞ with
constant L/N .

Finally, we have

Proof (of Lemma 3). We will argue by contradiction.
Assume therefore that there is c > 0 such that for all
µ < 1, IL,N (µ) ≤ c logL. Since Lemma 4 holds, we can
choose µ < µ′ < 1 such that

IL,∞(µ) > (c+ 1) logL ≥ IL,N (µ′) + logL. (C24)

Recall now the following inequality for the trace norm of
the difference of Hermitian matrices,∑

i

|αi − βi| ≤ ‖A−B‖1, (C25)

where αi, βi are the eigenvalues of A,B in descending or-
der [24]. We choose A = VL,N ≡ 2CL,N −1, B = VL,∞ ≡
2CL,∞ − 1. In our situation, there are asymptotically at
least logL eigenvalues of A that are at least µ′ − µ away
from their associated eigenvalues of B, thus the left hand
side of the inequality grows with L while the right hand
side is bounded by Lemma 5, a contradiction.

Appendix D: Numerical methods

Here we present some numerical results for the approx-
imation of the ground state of our hopping model (2)
with GfMPS. After a few generic optimizations within
the generic GfMPS class, we found that the numerical
optima always fell within a particular subclass of GfMPS,
which we dub ladder GfMPS, and introduce in what fol-
lows.

To begin with, we recall the basics of GfMPS contra-
tion in momentum space (we stay at one fermionic orbital
per site, the generalization to a higher number thereof is
straightforward). Once more, it is convenient to work in
the Majorana representation, where two Hermitian oper-
ators cj,1, cj,2 stand for each fermion mode aj , a

†
j ,

cj,1 ≡ aj + a†j , cj,2 ≡ i(aj − a
†
j). (D1)

A Fourier transform then maps these to complex Majo-
rana operators dk,1, dk,2,

dk,s =
1

N

N∑
j=1

e−ikjcj,s, s = 1, 2. (D2)

This is useful in the translation invariant case, for which
different momenta decouple. At the level of correlation
matrices, this implies that the Majorana correlation ma-
trix Γ,

[Γ]js,j′s′ ≡
i

2
〈[cj,s, cj′,s′ ]〉, (D3)

is block diagonalized by the Fourier transform F ,

FΓF† =
⊕
k

G(k), [G(k)]ss′ ≡
i

2
〈[dk,s, d

†
k,s′ ]〉. (D4)

Our translation invariant GfMPS will be determined by
a fiducial state of 2 Majorana fermions, χ left virtual Ma-
jorana fermions and χ right virtual Majorana fermions.
Note that in this Appendix χ differs by a factor of 2 from
χ in the main text, since it counts the number of virtual
Majorana fermions. Because we are working with peri-
odic boundary conditions, we can allow χ to be odd. In
fact, the parity of χ can have significant consequences for
the parity structure of the states in the variational class
[23], and in our case, odd χ is actually preferable. We
denote the correlation matrix of the fiducial state by

Γ =

(
A B
−BT D

)
, (D5)

where the block structure comes from separating the two
physical fermions (A is a 2×2 submatrix) from the virtual
fermions (D is a 2χ × 2χ submatrix). The correlation
matrix for the GfMPS state is obtained by projecting the
virtual Majorana fermions onto entangled pairs, which in
momentum space reads [2]

G(k) = A+B

[
D −

(
0 eik1

−e−ik1 0

)]−1
B. (D6)

Next we define a rail GfMPS, which is characterized by
a (f + χ)× (f + χ) orthogonal matrix O that is divided
in blocks

O =

(
O11 O12

O12 O22

)
, (D7)

where O11 is f × f and O22 is χ × χ. The correlation
matrix for the fiducial state of 2f physical fermions and
2χ virtual fermions for the rail GfMPS is defined to be

ΓO ≡


0 O11 0 O12

−OT
11 0 −OT

21 0
0 O21 0 O22

−OT
12 0 −OT

22 0

 . (D8)

Therefore, the 2f × 2f correlation matrix G(k) for the
resulting GfMPS state is

G(k) =

(
0 T (eik)

−T (eik)† 0

)
, (D9)

where

T (z) = O11 +O12(O22 − z1)−1O21 (D10)
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FIG. 3: (top) An f = 1, χ = 3 rail GfMPS. (bottom) An
f = 1, χ = 7 ladder GfMPS.

is a unitary matrix, or, in our f = 1 case, a complex
phase. In fact, readers familiar with the theory of discrete
linear time invariant (LTI) systems may recognize T (z)
as the transfer function of a lossless system whose state
space representation is given by the matrix O with the
blocking from (D7). This analogy could be exploited to
import techniques from the LTI system literature to the
GfMPS setting. Here we will not pursue it further. It
is nevertheless known that T (z) will be a finite Blaschke
product, i.e. a unimodular rational function [26], of the
form

T (z) = η

χ∏
j=1

1− ᾱjz
z − αj

, (D11)

where |η| = 1 and αj are the eigenvalues of O22, which
can be any conjugation invariant set of complex numbers
inside the unit disk [35].

An f = 1 ladder GfMPS is made from juxtaposing
two f = 1 rail GfMPS and projecting their respective
second physical Majorana fermions onto maximally en-
tangled pairs, to form the “rungs” of the ladder (see Fig-
ure 3). The resulting GfMPS has again f = 1 and a bond

dimension that equals the sum of those of the rails plus
one (from the rungs), χ = χ1 + χ2 + 1. Its correlation
matrix is given by

G(k) =

(
0 eikT1(eik)T2(eik)∗

−e−ikT1(eik)
∗
T2(eik) 0

)
(D12)

What was gained from this construction is that the prod-
uct T1(eik)T2(eik)∗ is now a unimodular rational function
with poles no longer confined to the unit disk, and thus
more general. It can be written in terms of an arbitrary
polynomial and its reciprocal polynomial, and a few ad-
ditional manipulations lead to the general form of nk we
showed in the main text,

nk =
p(cos k2 )2

p(cos k2 )2 + q(sin k
2 )2

, (D13)

for p, q arbitrary real odd monic polynomials of degree χ
(assuming χ is odd), or equivalently,

nk =
(1 + cos k)π(cos k)2

(1 + cos k)π(cos k)2 + (1− cos k) θ(cos k)2
,

(D14)
for π, θ arbitrary real monic polynomials of degree χ−1

2 .
We can then try to guess adequate families of polynomi-
als that make nk close to its exact value from Eq. (3) on
the allowed momenta k ∈ 2π

N Z∩(−π, π]. We tried expres-
sions based on Fourier expansions of the exact nk and on
Chebyshev polynomials, which nevertheless displayed a
clearly exponential b.d. Our best results came from pick-
ing p (resp. q) so that its zeros are exactly a subset of
the allowed momenta that are outside (resp. inside) the
Fermi surface. For those selected values, the GfMPS ap-
proximation reproduces the target state exactly. Several
approaches can be followed to choose which precise mo-
menta we make exact. Choosing all of them next to the
Fermi points still leads to exponential b.d., but spreading
them logarithmically (so that we still pick exponentially
more momenta that are close to the Fermi points), leads
to a very well-behaved ansatz family that gives rise to
the results shown in the main text.
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the other, additional blocks representing the remaining
fermions in product states have to be added. This does
not affect the rest of the discussion.

[35] Lacking a more intuitive proof, this can be seen as fol-
lows: let {αj} be the desired set of eigenvalues. The con-
straint that O22 is a submatrix of an orthogonal matrix
may be rephrased in terms of its singular values, demand-
ing all but one of them to be 1 (the latter must equal∏

j |αj |). Then O22 can be found as the matrix whose
eigenvalues and singular values are those we just pre-
scribed [27], and then extended to an orthogonal matrix
O.
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