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Abstract
Electrophysiological power spectra typically consist of two components: An aperiodic part usually following an 1/f power 
law P ∝ 1∕f � and periodic components appearing as spectral peaks. While the investigation of the periodic parts, commonly 
referred to as neural oscillations, has received considerable attention, the study of the aperiodic part has only recently gained 
more interest. The periodic part is usually quantified by center frequencies, powers, and bandwidths, while the aperiodic 
part is parameterized by the y-intercept and the 1/f exponent � . For investigation of either part, however, it is essential to 
separate the two components. In this article, we scrutinize two frequently used methods, FOOOF (Fitting Oscillations & 
One-Over-F) and IRASA (Irregular Resampling Auto-Spectral Analysis), that are commonly used to separate the periodic 
from the aperiodic component. We evaluate these methods using diverse spectra obtained with electroencephalography 
(EEG), magnetoencephalography (MEG), and local field potential (LFP) recordings relating to three independent research 
datasets. Each method and each dataset poses distinct challenges for the extraction of both spectral parts. The specific spectral 
features hindering the periodic and aperiodic separation are highlighted by simulations of power spectra emphasizing these 
features. Through comparison with the simulation parameters defined a priori, the parameterization error of each method 
is quantified. Based on the real and simulated power spectra, we evaluate the advantages of both methods, discuss common 
challenges, note which spectral features impede the separation, assess the computational costs, and propose recommenda-
tions on how to use them.
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Introduction

Analysis of macroscopic electromagnetic brain activ-
ity (e.g., by EEG and MEG) has long been focusing on 
the investigation of ‘rhythmic’ neural oscillations. In the 
frequency domain, neural oscillations appear as distinct 

spectral peaks, also referred to as the periodic part of the 
spectrum (Buzsáki & Draguhn, 2004; Engel et al., 2001; 
Schnitzler & Gross, 2005). The full spectrum, however, 
also consists of a continuous component whose analysis 
has, so far, seen less attention. This aperiodic or ‘arrhyth-
mic’ part of the spectrum (Freeman & Zhai, 2009; Miller 
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et al., 2009) has been related to the integration of underly-
ing synaptic currents (Buzsáki et al., 2012). Since the time 
series of the aperiodic part is typically self-similar across 
many temporal scales, it is also referred to as “fractal” or 
“scale-free” activity. The power spectral density (PSD) 
of the aperiodic component follows a power law P ∝ 1∕f � 
(Miller et al., 2009) and is sometimes called 1/f activity 
for that reason. In this text, we will refer to the scaling 
exponent � in this equation as 1/f exponent.

The investigation of neural oscillations has received 
much attention in electrophysiological studies (Buzsáki 
& Draguhn, 2004; Singer, 1999; Ward, 2003). However, 
the standard analysis of assessing periodic power through 
bandpass filtering is problematic because the pass-band 
comprises both periodic and aperiodic activity. If the 
power of aperiodic activity changes between two condi-
tions, analyzing neural oscillations in bandpass filtered 
signals would hence be confounded by these changes in 
the aperiodic part of the spectra. For that reason, estimat-
ing the 1/f component before determining the power of 
periodic activity has recently been suggested (Donoghue 
et al., 2021; Wen & Liu, 2016).

Besides investigating neural oscillations, the investigation 
of the aperiodic component has recently gained considerable 
interest (He, 2014; Kello et al., 2010). For example, the 1/f 
exponent was shown to change with task (Ouyang et al., 2020; 
Podvalny et al., 2015; Waschke et al., 2021), age (Bódizs 
et al., 2021; Dave et al., 2018;  Waschke et al., 2017; Cel-
lier et al., 2021; He et al., 2019; Schaworonkow & Voytek, 
2021; Voytek et al., 2015),  psychoactive drug administra-
tion (Muthukumaraswamy & Liley, 2018; Stock et al., 2020; 
Timmermann et al., 2019), and disease (Molina et al., 2020; 
Robertson et al., 2019; Veerakumar et al., 2019; van Heumen 
et al., 2021; Ostlund et al., 2021, Karalunas et al. 2022) and it 
decreases with cortical depth (Halgren et al., 2021). Further-
more, using computational modeling, (Gao et al., 2017) sug-
gested the 1/f exponent � as an estimator of excitation–inhibi-
tion (E–I) balance. Many studies comparing conscious states 
to unconscious states seem to support this concept. Conscious 
states are associated with increased excitation while uncon-
scious states, such as NREM sleep and anesthesia, are associ-
ated with pronounced inhibitory processes. Experiments com-
paring the 1/f exponent in these two conditions did indeed find 
larger values for NREM sleep (Lendner et al., 2020; Miskovic 
et al., 2019) and anesthesia (Colombo et al., 2019; Muthuku-
maraswamy & Liley, 2018;Waschke et al., 2021; Zhou et al., 
2021) compared to awake states.

But how to best estimate the 1/f exponent? This will 
be the main question discussed in this study. One option 
is to simply fit a straight line using (robust) linear regres-
sion. (Gao et al., 2017) used this method in the frequency 
ranges apart from pronounced oscillatory peaks in elec-
trocorticography (ECoG) data and identified distinct 1/f 

exponents during wakefulness and anesthesia. However, 
in the presence of periodic components, this method is 
error-prone because larger periodic peaks will bias the 
linear regression fit.

Irregular-resampling autospectral analysis (IRASA) (Wen 
& Liu, 2016) aims to separate periodic components from the 
aperiodic part of the spectrum. Due to their fractal nature, ape-
riodic time series remain robust against resampling, whereas 
periodic components are strongly affected by this procedure. 
IRASA takes advantage of this dichotomy and ‘removes’ the 
periodic parts from a spectrum. The–ideally–pure aperiodic 
part of the spectrum obtained with this method can then be 
used for fitting the 1/f exponent.

Another method, ‘fitting oscillations & one over f’ 
(FOOOF) (Donoghue et al., 2020), aims at modeling the 
periodic components: It iteratively applies Gaussian fits to 
all periodic components and hereby obtains a model of the 
periodic part. This model of periodic activity is subtracted 
from the spectrum to obtain an–ideally–pure aperiodic com-
ponent which can be used for fitting � . In addition, the peri-
odic model allows for analyzing the periodic components 
(e.g., regarding center frequencies, bandwidths, and power) 
without the bias from aperiodic activity.

This article highlights and discusses the general chal-
lenges of estimating 1/f exponents. In addition, we also dis-
cuss method-specific challenges of FOOOF and IRASA, the 
most commonly used algorithms for that purpose.

In the Methods section, we will introduce our simula-
tions, our datasets, and both algorithms FOOOF and IRASA. 
We will analyze challenges by the example of FOOOF in 
section FOOOF and by the example of IRASA in the sec-
tion IRASA. To aim for broad applicability of our assess-
ment, we will apply these methods to simulations with known 
ground truth in addition to various electrophysiological signals 
obtained from empirical EEG, gradiometer MEG, magnetom-
eter MEG, source-reconstructed voxel activity from MEG, and 
subthalamic nucleus-(STN-)LFP data acquired by three inde-
pendent research groups. We will discuss these challenges in 
the section Discussion, and we will provide some guidance on 
how to use these methods in the Conclusion section.

Methods

Simulations

We simulate aperiodic 1/f activity by constructing a Fourier 
power spectrum following a preset 1∕f � power-law. The cor-
responding phases of the Fourier spectrum are distributed 
uniformly randomly. To add oscillations, we add Gaussian-
shaped peaks to the Fourier power spectrum with amplitudes 
A and a spectral extent given by center frequencies fcenter and 
variances �2

f
 . The corresponding time series, consisting of 



Neuroinformatics	

1 3

both ‘neural’ oscillations and aperiodic activity, is then 
obtained by applying the inverse fast Fourier transform. The 
simulated time series either have a duration of 180 s at a 
sampling rate of fsample = 2400 Hz or are matched to the 
empirical data to which a simulation might be compared. If 
noted in the text, Gaussian white noise may be added to the 
time series afterward. Since most algorithms to generate 1/f 
activity lead to identical power spectra, the specific choice 
of the algorithm has no impact on the present analysis.

Empirical Data

We compare the results from our simulations to three empir-
ical datasets.

Dataset 1

Dataset 1 was re-analyzed from (Litvak et al., 2010, 2011) 
and contains MEG and LFP data of 14 Parkinsonian patients 
after bilateral implantation of subthalamic nucleus (STN) 
stimulation electrodes (Medtronic, Minneapolis, MN, USA 
with four platinum-iridium cylindrical surfaces of diameter 
1.27 mm, length 1.5 mm, and center-to-center separation 
2 mm) for deep brain stimulation (DBS). The joint ethics 
committee of the National Hospital of Neurology and Neu-
rosurgery and the University College London Institute of 
Neurology approved the study, and all patients gave their 
written informed consent. The patients were recorded three 
days after surgery when the electrode leads were still exter-
nalized. The recordings were obtained during a Parkinso-
nian state OFF medication (after overnight withdrawal) and 
an ON medication state. MEG (275 channels, CTF/VSM 
MedTech, Vancouver, Canada) and DBS-LFP were recorded 
simultaneously during three minutes of resting-state at a 
sampling rate of fsample = 2400 Hz. The LFP recordings 
were referenced to the right mastoid during recording and 
later re-referenced to a bipolar montage between adjacent 
electrode contacts. This results in 3 bipolar LFP channels 
per hemisphere. All data were bandpass filtered in hardware 
between 1–600 Hz. MEG source reconstruction was per-
formed with varying regularization by Linearly Constrained 
Minimum Variance beamformer (Van Veen et al., 1997). 
Aside from the six LFP channels, the dataset contains three 
MEG channels per patient from voxels located in the sup-
plementary motor area (SMA), left primary motor cortex 
(M1), and right M1. In this study, we draw examples from 
voxel data located in the supplementary motor area (SMA) 
of patients 5 and 6 and bipolarly recorded LFPs from the 
STN of patients 9 and 10. Details regarding the data record-
ing, processing, and inverse modeling can be obtained from 
the original publications of this dataset (Litvak et al., 2010, 
2011). In this study, we further process this dataset by apply-
ing a notch filter at 100, 150, …, 600 Hz power line noise 

for visualization purposes (multi-taper estimation of sinusoi-
dal components “spectrum_fit” of MNE python (Gramfort 
et al., 2013). Note, that a notch filter should not be applied 
to frequency ranges used for FOOOF fitting. Therefore, we 
exclude 50 Hz from the notch filter (see SI Fig. 1).

Dataset 2

Dataset 2 contains EEG data from a 12-year-old boy with 
absence epilepsy recorded at the Department of Epileptol-
ogy at the University of Bonn (Gerster et al., 2020). The uni-
versity’s ethics committee approved the study, and a parent 
gave written informed consent that the clinical data might 
be used and published for research purposes. EEG data were 
acquired at a sampling rate of fsample = 256 Hz (16-bit A/D 
conversion) within a bandwidth of 0.3–70 Hz from 19 elec-
trodes in a bipolar montage. The locations and nomencla-
ture of these electrodes are standardized by the American 
Electroencephalographic Society (Sharbrough, 1991). The 
EEG was recorded over several hours and contains 5 absence 
seizures. In this study, we present 40 s of the bipolar EEG 
channel “F3 − C3” during one absence seizure.

Dataset 3

Dataset 3 contains MEG recorded with gradiometers and mag-
netometers and LFP data from a Parkinsonian patient recorded 
at the Universitätsklinikum Düsseldorf. The data were acquired 
using a whole-head MEG system with 306 channels (Elekta 
Vectorview, Elekta Neuromag, Finland), and segmented 
“1–3–3–1” electrode DBS-LFP (Abbott St. Jude Medical model 
6172, contact height: 1.5 mm with 0.5 mm vertical spacing) 
during the ON- and OFF-medication state (after overnight with-
drawal). The patient was recorded 1 day after surgery when 
the electrode leads were still externalized. The resting-state 
was recorded for 10 min at a sample rate of fsample = 2400 
Hz. The LFP recordings were referenced to the right mastoid 
during recording and later re-referenced to a bipolar montage 
between adjacent electrodes. The data were offline band-pass 
filtered between 0.3 Hz and 600 Hz and notch-filtered at 50, 
100, …, 600 Hz power line noise (with a second-order IIR filter 
of bandwidth 1 Hz). Note that notch filtering in the fitting range 
at 50 Hz is unproblematic with using IRASA. The patient gave 
written consent to participate in the study, which was approved 
by the Ethics committee of the Universitätsklinikum Düssel-
dorf. In this study, we analyze data from one gradiometer chan-
nel, one magnetometer channel, and one LFP channel of the 
subject.

Power Spectral Densities (PSDs)

We calculate the PSDs from the simulated and recorded time 
series using the Welch algorithm. We use a segment length 
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of 1 s which corresponds to a frequency resolution of 1 Hz, 
and the Hann-windowed segments overlap by 50%. Please 
note that other segment lengths can be used depending on 
the properties of the data. However, for FOOOF, the PSDs 
should be sufficiently smooth to avoid fitting noise peaks. 
IRASA receives time series as input and calculates the PSDs 
internally. For IRASA, the PSD resolution should be suf-
ficiently high. We, therefore, use a segment length of 4 s 
(corresponding to a resolution of 0.25 Hz), Hann windows, 
and 50% overlap.

Irregular‑Resampling Auto‑Spectral Analysis 
(IRASA)

Irregular-resampling auto-spectral analysis (IRASA) aims 
at separating periodic components from the aperiodic part 
of the signal (Wen & Liu, 2016). In contrast to FOOOF, 
the algorithm requires time series as input (Fig. 1a) and 
does not explicitly model the signals’ spectra. The input 
time series is upsampled by a set of predefined resam-
pling factors hi∈ hset . By default, hset ranges from 1.1 to 

1.9 with increments of 0.05, yielding 17 resampling fac-
tors hset = {1.1, 1.15, ..., 1.9} . In addition, the time series 
is downsampled by all inverse resampling factors 1∕hi , 
with hi∈ hset . For each of the 17 pairs of up- und downsam-
pled spectra (Fig. 1b), the geometric mean of the PSD is 
calculated (Fig. 1c). For illustration purposes in Fig. 1, we 
use a very small hset = {1.3, 1.6, 2} . Finally, the median is 
calculated from all 17 geometric means, yielding the aperi-
odic component (Fig. 1d). The compound oscillatory part of 
the spectrum is obtained by subtracting the aperiodic com-
ponent from the original PSD. After applying IRASA, the 
slope � can be obtained by fitting the aperiodic component 
in double logarithmic space in the predefined fitting range.

As parameters, IRASA requires the fitting range, the 
resampling factors hset , and the segment length for the PSD 
calculation. In this study, we vary the fitting range and the 
hset but keep the segment length at 4 s. IRASA’s Python 
implementation used for this article was adapted from the 
YASA toolbox (Vallat, 2019) and is published along with 
the complete code for this study on GitHub at https://​github.​
com/​moritz-​gerst​er/​oscil​lation_​and_1-​f_​separ​ation.

Fig. 1   Algorithms for 1/f estimation. IRASA: a) Simulated time 
series. b) PSDs of resampled time series on the y-axis and frequen-
cies on the x-axis. In this figure, the time series is upsampled by the 
resampling factors hi of the hset = {1.3, 1.6, 2} and downsampled by 
1∕hi . c) The geometric mean of all resampling pairs ( hi , 1∕hi ) is cal-
culated. d) The aperiodic component (orange) is the median of the 
geometric means. A final fit (dashed-blue) estimates the y-intercept 
and the 1/f exponent � . FOOOF: e) A PSD is calculated from the time 

series. f) FOOOF applies an initial linear fit (dashed-blue) to the PSD 
in log–log space and g) subtracts the obtained linear trend from the 
spectrum. h) A Gaussian model (dotted-green) is fitted to the largest 
peak exceeding the thresholds (dashed-grey) and removes it. The rela-
tive threshold is recalculated from the peak-removed flattened spec-
trum (pink). The procedure is repeated until no peak exceeds the rela-
tive threshold. d) Subtraction of all Gaussian models from the original 
PSD yields the aperiodic component, which is then finally re-fit

https://github.com/moritz-gerster/oscillation_and_1-f_separation
https://github.com/moritz-gerster/oscillation_and_1-f_separation
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Fitting‑Oscillations‑&‑One‑Over‑F (FOOOF)

FOOOF was introduced to parameterize neural power spectra 
as a combination of an aperiodic component and peaks repre-
senting oscillatory processes (Donoghue et al., 2020). The 
Python-based toolbox works as outlined in Fig. 1. First, the PSD 
of the time-series of interest (Fig. 1a) is calculated and input into 
the algorithm, Fig. 1e. Next, FOOOF calculates an initial robust 
linear fit of the spectrum in double logarithmic space, Fig. 1f, 
and subtracts the result from the spectrum, Fig. 1g. In this flat-
tened spectrum, a relative threshold is calculated based on the 
standard deviation (SD) of the spectrum, Fig. 1h. The relative 
threshold is set to two times the SD, by default 
threshrel = 2 ⋅ SD . Optionally, FOOOF also allows setting an 
additional absolute threshold for the peak heights, but it is set to 
0 by default ( threshabs = 0 ). A Gaussian function is fitted to the 
largest peak of the flattened PSD exceeding both thresholds and 
then subtracted from the spectrum. Note, that this fit is not 
applied to negative peaks in the spectrum subceeding both 
thresholds. Therefore, spectral dips caused by notch filtering 
should be avoided. This procedure is iterated for the next largest 
peak after subtracting the previous peak until no peaks are 
exceeding the thresholds. The oscillatory components are finally 
obtained by fitting a multivariate Gaussian to all extracted peaks 
simultaneously. After the iterations, the initial fit is added back 
to the flattened peak-free PSD, which results in the aperiodic 
component of the PSD, Fig. 1d. Afterward, this aperiodic com-
ponent is fitted again, leading to the final fit with y-intercept and 
slope � as parameters. The fitted Gaussian functions are param-
eterized by center frequency fcenter(“CF”), amplitude Af (“PW”), 
and bandwidth 2 ⋅ �2

f
 (“BW”).

The algorithm can be used with the following parameters: 
“peak_width_limits” allows setting the minimum and maxi-
mum peak width limits of the Gaussian fits. The default is set 
to 0.5 Hz and 12 Hz, respectively. “max_n_peaks'' determines 
the maximum number of peak fitting iterations. The default is 
set to infinity. “min_peak_height” is the absolute threshold and 
corresponds to the smallest peaks that will be fitted in the units 
of the input data. The absolute threshold is set to 0 by default. 
“peak_threshold” is the relative threshold in SD multiples that 
peaks must exceed to be fitted and defaults to “peak_thresh-
old” = 2 SD. The peak fitting stops when all remaining peaks are 
below either of these two thresholds. “aperiodic mode” allows 
for two modes of modeling: “fixed” and “knee” which allows 
modeling a bend (i.e., a “knee”) in the PSD of the aperiodic 
component. The default is “fixed.” Finally, FOOOF accepts a 
fitting range for which the algorithm performs the given steps. 
For a detailed description of this algorithm, we refer the reader 
to the methods section of the original publication (Donoghue 
et al., 2020).

In this study, we keep FOOOF at the default parameters if 
not stated otherwise and input PSDs with a spectral resolu-
tion of 1 Hz.

FOOOF

Challenge 1: The Spectral Plateau Disrupts the 1/f 
Power Law

The 1/f power law is sometimes called “scale-free” because 
log-transformed power is typically approaching a linear 
function across an extended range of log-transformed fre-
quencies. For electrophysiological PSDs, however, this con-
cept should be exercised carefully. For example, (He et al., 
2010) measured different values for the slope β for frequency 
ranges 0.01–0.1 Hz and 1–100 Hz and found a small plateau 
in the range from 0.1 Hz to 1 Hz. In many studies, these 
low-frequency ranges < 0.1 Hz are eliminated by a hardware 
high-pass filter. However, this finding underlines the impor-
tance of selecting a representative frequency range to fit the 
1/f slope.

In addition to the aforementioned low-frequency plateau, 
one regularly encounters a high-frequency spectral plateau 
(or flattening) in spectra of electrophysiological data. Such 
plateaus might be due to the presence of Gaussian noise 
which appears as a horizontal line with a slope � = 0 in 
double-logarithmic space and disrupts the 1/f power law. 
The origin of such white noise is often due to EMG artifacts 
and electronic noise of the recording system (Waterstraat 
et al., 2015b). It has been shown in EEG (Scheer et al., 2006; 
Waterstraat et al., 2015a) and MEG (Waterstraat et al., 2021) 
that extremely low-noise recording devices can shift this 
high-frequency plateau into the kHz range – leaving a wider 
unaffected frequency range for fitting the spectra. In conven-
tional data, however, spectral plateaus are regularly present 
and will be discussed in this section because this can pose 
a severe challenge for estimating the aperiodic exponent: it 
shrinks the frequency range at which the 1/f exponent may 
be examined.

In Fig. 2a, a simulation of an aperiodic PSD with an expo-
nent of � = 2 is shown. By adding white noise, a plateau 
can be observed starting at 100 Hz in the high-frequency 
range. Here, we define the onset of the plateau as the lowest 
frequency of a 50 Hz frequency interval with a vanishing 
exponent (i.e., flattening of the spectrum). Specifically, we 
apply FOOOF without periodic peak fitting to measure the 
slope from 1–50 Hz. We then gradually shift this interval 
by 1 Hz towards higher frequencies and fit the slope again. 
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We repeat this procedure until the estimated slope reaches a 
value below �thresh = 0.05.

We apply FOOOF in the frequency intervals 1-10 
Hz, 1-50 Hz, 1-100 Hz, and 1-200 Hz which yields esti-
mated 1/f exponents of � = 1.97 , � = 1.64 , � = 1.17 , and 
� = 0.70 , respectively. The spectral plateau gradually 
biases the estimated 1/f exponents towards smaller values 
starting already at 10 Hz. This challenge might be to some 

extent alleviated if the analysis aims to study differences 
between groups or experimental conditions such that rela-
tive changes of the exponent are most important. How-
ever, when the precise onset of the spectral plateau varies 
across conditions, the upper fitting range border should 
be chosen as low as possible to minimize this unequal 
bias. Even if the plateaus seem to be similar across con-
ditions, a lower upper fitting range border will increase 

Fig. 2   The spectral plateau disrupts the 1/f power law. The x-axis and 
the y-axis indicate frequency and PSD, respectively. a) Simulation of 
an aperiodic PSD (black) with a plateau starting at 100 Hz (grey). The 
spectrum starts to deviate from the ground truth (dashed line) after 
around 10 Hz. Applying FOOOF yields smaller 1/f exponent esti-
mates with larger upper fitting range borders. b) A Parkinsonian LFP 

spectrum from the subthalamic nucleus shows large oscillations that 
hinder the plateau onset’s precise detection. c) Adding oscillations of 
various powers and widths on top of different aperiodic ground truths 
yields the same 1/f estimation of � ≈ 0.77 in FOOOF. The ground 
truths are � = 1 (blue), � = 1.5 (green), and � = 2 (orange)
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the signal-to-noise ratio of the exponent estimates if we 
define the 1/f ground truth as signal and the impact of 
the plateau as (possibly Gaussian) noise. We, therefore, 
recommend choosing low upper fitting range borders and 
determining the precise onset of the plateau across condi-
tions in order to estimate the exponents under equivalent 
conditions.

Yet, measuring the onset of the plateau can be diffi-
cult in practice if oscillatory peaks mask it. For example, 
the spectrum in Fig. 2b appears to have a spectral pla-
teau onset at 120 Hz. The presence of the high-frequency 
oscillation peaking at 360 Hz, however, produces a posi-
tive slope between 160 and 320 Hz, potentially masking 
a continued 1/f trend of the spectrum. Accordingly, one 
cannot exclude the possibility that the actual onset of the 
plateau is at a higher frequency value (e.g., 200 Hz). On 
the other hand, the large oscillation ranging from 6 to 
100 Hz, peaking in the beta range at 25 Hz, counteracts 
this effect: In theory, one also cannot exclude that the 
actual flattening occurs already at 20 Hz.

To demonstrate this effect, for Fig. 2c we simulate 
three power spectra with three different 1/f exponent 
ground truths of � = 1 (blue), � = 1.5 (green), and � = 2 
(orange). Next, we add eight oscillations at 3 Hz, 5 Hz, 
10.5 Hz, 16 Hz, 23 Hz, 42 Hz, 50 Hz, and 360 Hz and 
tune the oscillation amplitude and width parameters in all 
three examples to match the recording of Fig. 2b (purple). 
Finally, using FOOOF, we estimate the 1/f exponent in 
the frequency range from 1-95 Hz in the three simulated 
and the real PSD. Despite strongly diverging 1/f expo-
nent ground truths, FOOOF estimates an 1/f exponent 
of about � ≈ 0.77 in all four cases. The diverging ground 
truths are apparent in Fig. 2c because the true aperiodic 
component (which is shown in light grey and is invisible 
to FOOOF) has a plateau onset at high frequencies in the 
blue curve, at intermediate frequencies in the green, and 
at low frequencies in the orange curve. However, neither 
for FOOOF nor for the experimental observer, it is pos-
sible to know which of these three scenarios best reflects 
the real spectrum in Fig. 2b. Therefore it is difficult to 
determine at which frequency scale an 1/f estimate might 
be valid.

Note that this challenge applies not only to cases where 
the goal is to estimate the 1/f exponent but also when 
such an estimate is used in order to remove the aperiodic 
component from the spectrum. While fitting a “shoulder” 
allows for modeling such a plateau, the strongly varying 
“shoulder” onsets in Fig. 2c cannot be captured, given that 
the three power spectra share the same appearance. Spe-
cifically, the oscillation power estimates based on FOOOF 
would be almost identical in all three spectra. However, in 
the simulation, the oscillation power increases consider-
ably from the blue to the green to the orange curve.

Recommendations

Scenario A - the power spectra have a plateau onset at higher 
frequencies, and oscillations do not mask it:

Challenge 1 does not Apply
Scenario B - the power spectra have a plateau onset at lower 
frequencies, and the onset is easily discernible (because no 
or just small oscillations are present):

Determine the precise plateau onsets across conditions. 
Choose the upper fitting range border as low as possible to 
increase SNR.
Scenario C - the power spectra potentially have a plateau 
onset at lower frequencies, but oscillations mask the exact 
onset:

The upper fitting range border must be lower than the 
onset of the masking oscillation. If the remaining frequency 
range is too small (as in Fig. 2b), aperiodic fitting should 
be avoided.

Challenge 2: Avoiding Oscillations Crossing Fitting 
Range Borders

When choosing the fitting range to model the aperiodic 
component, oscillations crossing the fitting range borders 
must be avoided for all investigated power spectra. FOOOF 
assumes all oscillation peaks lying within the fitting range 
because it does not fit partial Gaussian peaks. Consequently, 
the estimated 1/f exponent error becomes large if the lower 
or upper fitting range border overlaps with a spectral peak.

In the upper panel of Fig. 3a, we simulate a PSD with a 
slope of � = 2 and oscillation peaks at 5 Hz, 15 Hz, and 35 
Hz (black graph). We fix the upper fitting range border at 
100 Hz and measure the 1/f exponent for all lower fitting 
ranges from 1–100 Hz up to 80–100 Hz. The lower panel in 
Fig. 3a indicates the absolute error of the estimated slope as 
a function of the lower fitting range border (red). The error is 
the absolute deviation from the ground truth ||�truth − �FOOOF

|
| . 

Note that the error function resembles the oscillatory peaks, 
with the greatest errors occurring approximately at the peak 
center frequencies. The FOOOF parameters are kept at the 
default setting.

If the peaks do not completely lie within the fitting range, 
very error-prone fits are obtained, as shown in another exem-
plary STN-LFP recording from a Parkinsonian patient (pur-
ple) in Fig. 3b. The fit from 30–45 Hz (turquoise), a fre-
quency range commonly used for estimation of E–I balance, 
measures the slope of the beta-to-gamma peak, not of the 
aperiodic component. For this fit, we set the FOOOF param-
eter for the maximum number of allowed peaks (max_n_
peaks) to 0 since this frequency range is usually chosen to 
avoid oscillations altogether. Therefore, FOOOF just fits a 
straight line without peak modeling. The 40–60 Hz range 
(green) lies on top of the beta-to-gamma peak, too. Here, we 
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set (max_n_peaks) to 1 to account for the power line noise. 
Further, the 1–45 Hz range (orange) is inappropriate because 
its upper fitting range border at 45 Hz lies in the middle 
of the gamma peak. While these are obvious examples of 

ill-chosen fitting ranges, in practice more subtle (but similar) 
errors might occur. Therefore the presence of oscillations 
at fitting range borders must be carefully checked for every 
single PSD of interest.

Fig. 3   Oscillations must not cross fitting range borders. a) Upper 
panel: PSD of a simulated spectrum with β = 2 and oscillations at 
5 Hz, 15 Hz, and 35 Hz (black). The x-axis and the y-axis indicate 
frequency and PSD, respectively. Lower panel: The exponent � is 
measured using FOOOF for all 80 frequency ranges from 1–100 Hz 
to 80–100 Hz (red). The x-axis indicates the lower fitting range bor-
der, while the y-axis shows the absolute deviation from the ground 
truth. b) Various frequency ranges commonly used for E–I estima-
tion are applied to an STN-LFP PSD of a Parkinsonian patient (pur-
ple). Since many of the chosen ranges overlap with spectral peaks, 
the estimated exponents � are strongly differing. FOOOF parameters: 

max_n_peaks = 0 (for 30–45 Hz); max_n_peaks = 1 (for 40–60 Hz); 
peak_width_limits = (1, 100) (for 1–45  Hz and 1–95  Hz). c) The 
simulated PSD in the middle panel (green) was tuned to match the 
empirical PSD in b) (purple). FOOOF estimates a similar aperiodic 
exponent for the simulated and the real spectrum (β = 0.61). When 
decreasing the power of the 2  Hz delta oscillation (blue), the esti-
mated aperiodic exponent decreases (β = 0.50) despite a constant 
exponent for the simulated spectrum. When increasing the power 
of the delta oscillation (orange), the estimated aperiodic exponent 
increases (β = 0.72)
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The 1–95 Hz range (purple dotted) seems to be the only 
acceptable range for this spectrum: The upper fitting range 
border extends beyond the beta-to-gamma peak but ends 
before the onset of the spectral plateau. The estimated expo-
nent has a value of �FOOOF = 0.61 . For these two frequency 
ranges (1–45 Hz and 1–95 Hz), we increased the peak width 
limits from 0.5–12 Hz (default) to 1–100 Hz to account for 
the chosen spectral resolution (1 Hz) and enable modeling 
of the very broad (> 12 Hz) beta-to-gamma peak. The cor-
responding FOOOF fits of Fig. 3b are shown in SI Fig. 2.

While the 1–95 Hz range seems best, it appears almost 
impossible to avoid low-frequency oscillations crossing the 
lower fitting range border. If some delta oscillations are 
present, they lead to a steepening of the spectrum which 
impacts the estimation of the 1/f exponent. We visualize this 
effect by reproducing the empirical LFP spectrum in three 
simulations in Fig. 3c. We set the oscillation frequencies to 
2 Hz, 12 Hz, 18 Hz, 27 Hz, 50 Hz (gamma), 50 Hz (power 
line), and 360 Hz. In the panels in Fig. 3c from left to right, 
we only vary the delta power at 2 Hz while keeping the 
aperiodic component and all other oscillations’ amplitudes 
and widths fixed. Since the delta oscillation has a bandwidth 
crossing the lower fitting range border of 1 Hz, FOOOF-
estimates of the 1/f exponent diverge strongly between the 
three scenarios (same FOOOF parameters as for the 1–95 Hz 
range in Fig. 3b). While the aperiodic (white noise-free) 
ground truth remains unchanged at � = 1.5 for all three 
simulations, FOOOF estimates an 18% lower 1/f exponent 
(blue, � = 0.50 ) if the delta oscillation from the middle 
panel (green, � = 0.61 ) is removed. On the other hand, it 
estimates an 18% larger 1/f exponent (orange, � = 0.72 ) if 
we double the power of the delta oscillations. The power of 
the true delta oscillations in the purple curve is, of course, 
unknown.

Overall, fitting and removing delta oscillation peaks 
seems unfeasible since they rarely occur as a single distin-
guishable peak in the double logarithmic representation. 
Furthermore, FOOOF requires smooth input spectra to 
reduce the impact of noise which at the same time hinders 
fitting sharp peaks. Therefore, we recommend 1/f estima-
tion for a higher lower-border of the fitting range to avoid 
the impact of these low-frequency oscillations. For high 
lower borders of the fitting range, oscillations can be better 
avoided, and if they are present, they likely have less impact 
on the estimation.

Estimating the power of low-frequency oscillations by 
removing the aperiodic part of the spectrum poses a spe-
cial challenge in this regard. Many studies (Donoghue et al., 
2020; El Boustani et al., 2009; Fransson et al., 2013; Free-
man & Zhai, 2009; Miller et al., 2009; Wen & Liu, 2016) 
have conceptualized the aperiodic part of the spectrum 
as self-similar, or fractal, across a wide range of frequen-
cies, such that the estimation of the 1/f exponent should be 

independent of the chosen fitting range. If this assumption 
does not hold, however, the aperiodic component must be fit-
ted in the given frequency range of interest. If this frequency 
range of interest coincides with low-frequency oscillations, 
this challenge cannot be avoided.

The impact of (sub-)delta oscillations should therefore be 
kept in mind as a limitation. If one finds a difference of the 1/f 
exponent between groups of investigation, one should check 
whether the delta power of the FOOOF-fits varies across con-
ditions. If delta power is similar across conditions but the 
slope varies, it seems likely that indeed the aperiodic compo-
nent causes these differences in the estimated slopes and not 
a distortion by delta oscillations. If delta power does change 
across conditions (without a global offset of the PSD across 
all frequencies), the change of slopes could either be caused 
by a change of oscillatory delta activity (as shown in SI Fig. 1) 
or by a change in the aperiodic component itself, and these 
two possibilities cannot be differentiated with full certainty.

Recommendation

Scenario A - the 1/f exponent needs to be estimated:
Use a fitting range at higher frequencies (for example 

40–60 Hz) to avoid distortion by low-frequency oscillations.\
newline
Scenario B - the aperiodic component needs to be removed 
from the PSD:

If the assumption of self-similarity across a wide range 
of frequencies holds for the aperiodic part of the spectrum, 
both slope and intercept of its linear fit could theoretically 
be obtained from any frequency range. In reality, different 
exponents could be present in different frequency ranges. In 
that case, the exponent should be estimated in the broadband 
range starting at very low frequencies. For this lower fitting 
range border (starting often at around 1 Hz), the challenge 
cannot be avoided and should be kept in mind as a potential 
limitation of the results.

Challenge 3: FOOOF Cannot Characterize Oscillation 
Peaks that are not Clearly Distinguishable

As illustrated in Fig. 1, FOOOF models oscillations as 
Gaussian functions fitted to peaks in the flattened PSD. 
While this does not impose a severe challenge for clearly iso-
lated peaks, the modeling becomes complicated when peaks 
overlap partially. If many different peaks overlap, the result-
ing PSD can be caused by various combinations of oscilla-
tions with different frequencies and powers that are impos-
sible to disentangle on a single spectrum. Furthermore, 
whereas spectral leakage from oscillations at neighboring 
frequencies but same Fourier phase can add up in different 
combinations to yield similar power spectra, oscillations at 
different phases can also subtract power from other peaks.
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In the right panel of Fig. 4a, we present a real PSD that 
might exemplify a spectrum containing many strongly over-
lapping oscillation peaks. The underlying time series was 
recorded from a subject with epilepsy during an absence sei-
zure using a bipolar montage of EEG electrodes F3-C3. Pre-
seizure activity is highlighted in turquoise, seizure activity 
in red, and post-seizure activity in yellow. Absence seizures 
are proposed to be related to cortico-thalamic E–I dysbal-
ance (Onat et al., 2013) caused by reduced cortical inhibi-
tion (Tan et al., 2007), hyperexcitable somatosensory neu-
rons (Karpova et al., 2005), GABAB receptor dysfunctions 
(Inaba et al., 2009; Merlo et al., 2007), changes in NMDA 
(D’Arcangelo et al., 2002; Pumain et al., 1992), or mGLU2/3 
receptors (Ngomba et al., 2005). It would be interesting to 
complement these molecular rodent studies by non-invasive 
human electrophysiological recordings. Specifically, using 
the 1/f exponent as a biomarker of E–I balance before, dur-
ing, and after the seizure might help to gain new insights 
into absence seizures. However, the non-sinusoidal 3 Hz 
spike-wave discharges might create many harmonic peaks 
throughout the spectrum. Applying FOOOF (default param-
eters) in a frequency range of 1–100 Hz yields estimated 1/f 

exponents of �pre = 1.52 , �seiz = 2.31 , and �post = 1.52 . One 
could interpret this finding as an increase of the aperiodic 
1/f exponent during the seizure, indicating (quite counterin-
tuitively) stronger neural inhibition. However, even though 
FOOOF subtracts a substantial part of the harmonic peaks 
by modeling them as four broad peaks with center frequen-
cies at 11 Hz, 22 Hz, 37 Hz, and 50 Hz (see SI Fig. 3), it is 
not clear whether it can correctly estimate the peak heights. 
A peak height is the power of an oscillation on top of the 
aperiodic component. However, there is no reference point 
for the aperiodic component from which the height could 
be measured in the scenario of many overlapping oscilla-
tions. Hence, it might be that the aperiodic exponent does 
not change during the absence seizure–instead, the inaccu-
rately removed 3 Hz-harmonics likely caused the increased 
1/f exponent value.

Figure 4b shows a time series of simulated 1/f noise 
with an exponent of �sim = 1.8 . During the same time 
interval in which the absence seizure in Fig. 4a occurs, we 
add a saw-tooth oscillation of 3 Hz to the signal. As in the 
example of the real seizure in Fig. 4b, FOOOF estimates 
a strongly increased 1/f exponent even though the ground 

Fig. 4   FOOOF cannot characterize oscillation peaks that are not 
clearly distinguishable. a) Left: Time series of an absence seizure 
measured using EEG. Turquoise: Pre-seizure, red: seizure, yellow: 
post-seizure activity. Right: Corresponding PSDs and aperiodic 

FOOOF fits. Note the increase of the 1/f exponent during the seizure. 
b) Left: Simulated 1/f noise and temporarily (red) added 3 Hz saw-
tooth signal. Right: Aperiodic FOOOF fits. Note the increase of the 
1/f exponent despite constant ground truth of �truth = 1.8
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truth exponent remains constant. The corresponding model 
(default parameters) is shown in SI Fig. 3.

Note that it is possible to enable FOOOF fitting of the 
many harmonious peaks by reducing the maximum peak 
width limits to 1 Hz. While it is not feasible to tune the 
parameters across conditions (there is an alpha peak with a 
peak width larger than 1 Hz in the pre-and post-condition), 
even with the specifically tuned parameters, FOOOF returns 
increased 1/f exponents � = 2.28 and �sim (tuned) = 1.91 for 
real and simulated data, respectively SI Fig. 3.

Recommendation

Scenario A - the PSD appears as a straight line with well-
distinguishable peaks on top of this line:

Challenge 3 does not apply.
Scenario B - the PSD might contain overlapping peaks:

The more peaks overlap, the less accurate the model 
results will be. The lower and upper fitting range borders 
must vastly extend the overlapping oscillation peaks (chal-
lenge 2) to enable peak removal. Estimating the power of 
overlapping peaks will be difficult.
Scenario C - almost the full PSD seems to consist of over-
lapping peaks (as in Fig. 4):

Avoid fitting the aperiodic component.

IRASA

Challenge 1: The Evaluated Frequency Range 
is Larger than the Fitting Range

While FOOOF tries to iteratively fit all oscillatory peaks to 
obtain a periodic model, IRASA takes the median of spec-
tra after up- and down-sampling to eliminate the peaks, as 
shown in Fig. 1. As a result, it aims to obtain the pure ape-
riodic component that is assumed to be invariant to resam-
pling. As an advantage over FOOOF, IRASA can overcome 
challenge 2: Even if a peak crosses the fitting range border 
(at the original sampling rate), it can be removed success-
fully due to the resampling procedure.

In Fig. 5a, we replot the spectrum of Fig. 3a and estimate 
the 1/f exponent for all frequency ranges between 1–100 Hz 
and 80–100 Hz. In contrast to FOOOF, IRASA has minimal 
errors for all frequency ranges. The reason is that the fit-
ting range of FOOOF has well-defined borders: If the lower 
border is set to 5 Hz (the center frequency of the first peak), 
it cannot identify and model the 5 Hz peak correctly. On 
the other hand, for IRASA, the fitting range is blurry: By 
up- and down-sampling the spectrum, the peaks are shifted 
towards lower and higher frequencies. Therefore, the evalu-
ated frequency range of IRASA is much more extensive than 
the actual fitting range.

For example, if we chose only two resampling fac-
tors hset = {2, 3} , the spectrum would be up-sampled by 
hup1 = 2 and hup2 = 3 and down-sampled by hdown1 = 1∕2 
and hdown2 = 1∕3 . As a result, a fitting range of 10–100 Hz 
would correspond to four evaluated frequency ranges of 
20–200 Hz, 30–300 Hz, 5–50 Hz, and 3.3–33 Hz. Of these 
four resampled spectra, IRASA takes the median. The lower 
border of the evaluated frequency range feval. min can be cal-
culated from the minimum fitting range border ffit min divided 
by the maximum resampling factor hmax according to Eq. (1). 
The upper evaluated frequency border feval. max corresponds 
to the upper fitting range border ffit max multiplied by hmax 
according to Eq. (2).

While evaluating a larger frequency range than the actual 
fitting range can be advantageous, as shown in Fig. 5a, it can 
also lead to severe challenges, as shown in Fig. 5b. Here, we 
simulate an aperiodic PSD with � = 2 , which is highpass 
filtered at 1 Hz. We then apply IRASA in a fitting range of 
2–30 Hz for three different h-sets with maximum resampling 
factors hmax = 2 , hmax = 8 , and hmax = 15 , respectively. The 
fitting ranges, indicated in green, orange, and red, are the 
same, but the evaluated frequency ranges, shown in the cor-
responding transparent colors, increase with increasing hmax.

Note that the highpass filter disrupts the 1/f power law 
for low frequencies and violates IRASA’s assumption of a 
resampling-invariant aperiodic component. With increasing 
hmax , IRASA evaluates substantially larger parts of the low-
frequency stopband which increasingly biases its 1/f esti-
mates towards smaller values. A good agreement with the 
ground truth of � = 2 is only obtained for hmax = 2, which 
corresponds to an evaluated frequency range of 1–60 Hz, 
avoiding the stopband of the highpass-filtered spectrum.

Apart from low-frequency fitting artifacts due to highpass 
filtering, care must also be taken to avoid fitting artifacts at 
high frequencies. For example, in Fig. 5c, the high-frequency 
spectral plateau disrupts the 1/f power law. Even though the 
upper fitting range border of IRASA is set well below the 
plateau onset to ffit max = 30 Hz, IRASA does nevertheless 
evaluate the plateau due to the upsampling step. Therefore, 
with growing hmax , IRASA biases the 1/f estimates towards 
smaller values again.

Even in the absence of a spectral plateau, care must 
be taken to avoid the resampled Nyquist frequency. For 
example, for a sampling rate of fsample = 2400 Hz and 
hmax = 10 , the resampled Nyquist frequency reduces from 
fNyquist = 1200 Hz to fNyquist resampled = 120 Hz. Accord-
ingly, the upper fitting range border must not exceed this 
value. The same holds true for a potentially applied lowpass 

(1)feval. min = ffit min∕hmax

(2)feval. max = ffit max ⋅ hmax
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filter. In general, to avoid accidentally fitting spectra above 
Nyquist frequency or in the stopbands of lowpass or high-
pass filters, it is advisable to choose hmax as small as pos-
sible. Furthermore, the evaluated frequency range should 
always be checked by calculation from the fitting range and 
hmax.

Given that IRASA evaluates a more extensive frequency 
range than the fitting range, the meaning of the fitting range 
becomes imprecise. For example, if we are interested in fit-
ting the 1/f exponent from 1–30 Hz and use hmax = 2 , we 
should choose 2–15 Hz as a fitting range for the IRASA 

algorithm. However, since only the minimum and maximum 
resampled spectra contain the 1 Hz and 30 Hz borders of 
interest, IRASA emphasizes the estimation of the 1/f expo-
nent from intermediate frequency values above 1 Hz and 
below 30 Hz. Therefore, 1/f exponents estimated by IRASA 
cannot be directly compared to 1/f exponents estimated by 
FOOOF.

We visualize this effect for a spectrum of voxel data 
obtained by MEG source reconstruction in the lower pan-
els d) – f) of Fig. 5. In d), FOOOF estimates an 1/f expo-
nent of �FOOOF = 1.41 in the fitting range of 1–30 Hz. Due 

Fig. 5   IRASA’s evaluated frequency range is larger than the fitting 
range. a) Upper panel: Same simulation as in Fig. 3a. Lower panel: 
The lower fitting range border is shown on the x-axis, the absolute 
deviation from the ground truth on the y-axis. IRASA correctly 
estimates the 1/f exponent for all used fitting ranges. b) Simulated 
aperiodic PSD with a ground truth of � = 2 . A 1 Hz highpass filter 
disrupts the 1/f power law. IRASA’s fitting range for the maximum 
resampling factor hmax ∈ {2, 8, 15} is indicated as bright-colored 
lines upon the fitted aperiodic components, with the evaluated fre-
quency ranges after up- and down-sampling indicated in correspond-

ing transparent colors. IRASA’s error of the 1/f estimation increases 
with larger resampling rates hmax (and lower resampling rates 1/hmax , 
respectively). c) Same as b) with a spectral plateau disrupting the 1/f 
power law. d) FOOOF 1/f estimate within 1–30  Hz for a spectrum 
obtained from voxel data after MEG source reconstruction. e) IRASA 
1/f estimates for an evaluated frequency range of 1–30  Hz (green) 
and an evaluated frequency range of 0.3–90 Hz (green-dashed, corre-
sponding to a fitting range of 1–30 Hz at hmax = 3). f) FOOOF (blue) 
and IRASA (green) estimates of the 1/f exponent for the same fitting 
range of 1–30 Hz
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to the highpass filter, IRASA obtains a lower value of 
�IRASA = 1.09 for the same fitting range which, however, 
actually corresponds to an evaluated frequency range of 
0.33–90 Hz at hmax = 3 (Fig. 5e). Hence, setting the evalu-
ated frequency range to 1–30 Hz (by setting the fitting range 
to 3–10 Hz) yields �IRASA = 1.38 which is similar to the 
FOOOF estimate.

Matching the evaluated frequency range of IRASA to 
the fitting range of FOOOF is not always possible, though. 
Consider, for example, the fitting range of 30–45 Hz shown 
in Fig. 5e. At hmax = 3 , the evaluated frequency range of 
IRASA is 10–135 Hz. Due to the spectral plateau, IRASA 
estimates a much smaller exponent of �IRASA = 1.22 com-
pared to �FOOOF = 2.11 . This time, we cannot shrink IRA-
SA’s fitting range to match its evaluated frequency range 
with FOOOF’s fitting range. At hmax = 3 , the lower fitting 
range border of IRASA must be 3 ⋅ 30 Hz = 90 Hz to match 
the lower fitting range border of FOOOF at 30 Hz. However, 
the upper fitting range border needs to be 45 Hz ∕3 = 15 
Hz to match the upper fitting range border of FOOOF. This 
would lead to an inverse fitting range of 90–15 Hz. Here, it 
cannot be avoided that IRASA evaluates a much more exten-
sive frequency range than 30–45 Hz. As a result, FOOOF 
and IRASA cannot yield comparable 1/f estimates for this 
frequency range.

Recommendations

Always calculate the evaluated frequency range from the 
fitting range and hmax according to Eqs. (1) and (2). Choose 
the maximum resampling factor hmax as small as possible in 
order to 1) avoid fitting artifacts, 2) to improve comparability 
with other methods, and 3) to improve the interpretability of 
the investigated frequency range.

Set the evaluated frequency range–and not the fitting 
range–to the frequency range of interest.

Challenge 2: Broad Peak Widths Require Large 
Resampling Factors

In challenge 1, we recommend choosing the maximum 
resampling factor hmax as small as possible. However, for 
IRASA to work correctly, the resampling factors must be 
sufficiently large. This is because IRASA shifts the peaks 
in the frequency scale up and down through up- and down-
sampling. Therefore, a single peak appears multiple times 
on the frequency scale (Fig. 1b). For a range of sufficiently 
large (and small) resampling factors, the resampled peaks 
are completely separated and, by taking the median of their 
geometric mean, subsequently eliminated. However, if 

the range of resampling factors is too small or the peaks 
too broad, the resampled peaks overlap. In that case, peak 
removal by taking the median will not be successful.

In Fig. 6a, we replot Fig. 5a. However, by increasing the 
peak widths from the left to the right panels, the 1/f estima-
tion error of IRASA increases strongly. This is because the 
peaks cannot be fully separated. As a result, IRASA’s calcu-
lated aperiodic component, shown in grey, still contains the 
up and downsampled peaks after taking the median. Note 
that not the peak width Δf  itself must be sufficiently small 
to get separated, but instead, Δflog , as it appears in the loga-
rithmic frequency scale, the logarithmic peak width needs to 
be sufficiently small. For this reason, a peak width of 4 Hz 
at a center frequency of 5 Hz has a similar effect as a peak 
width of 12 Hz at a center frequency of 35 Hz.

We visualize this effect in panel Fig. 6b by simulating a 
PSD with two oscillations at f

1
= 30 Hz and f

2
= 300 Hz. 

The peak width of the second peak is 70 Hz and therefore 
10 times as large as the peak width of the first peak. How-
ever, on the logarithmic frequency axis, they appear with 
the same width. A maximum resampling factor of hmax = 2 
is sufficient to remove the peaks correctly. Thus, they are 
fully eliminated from the aperiodic component shown in 
turquoise. However, when the peak widths are increased to 
a logarithmic value of 0.2 log(Hz), hmax = 2 is not sufficient 
anymore: The up- and down-sampled peaks remain visible 
in the estimate of the aperiodic component. If we increase 
hmax to a value of 8, however, peak removal works well. 
For a further increase of the logarithmic peak width to 0.3 
log(Hz), however, hmax = 35 is necessary. We visualize this 
challenge on empirical data of MEG and LFP data of dataset 
3 in SI Fig. 4.

We calculated the logarithmic peak width as Eq.  (1) 
Δflog = log

10
(f

2
∕f

1
) where f

1
 corresponds to the lower 

bound of the peak and f
2
 to the upper bound of the peak. The 

bounds were found by calculating the first bin of the PSD, 
which deviates above a threshold of 0.001 from the aperiodic 
ground truth. Note that there is no exact equation/heuristic 
to calculate the minimum hmax as a function of peak width 
because always many resampling factors h are calculated, 
which will lead to a gradual peak removal depending on the 
degree of peak separation.

Recommendations

Choose hmax as small as possible (challenge 1) while keeping 
it large enough to obtain peak-free estimates of the aperiodic 
component (challenge 2). If the peaks are very broad and 
hmax cannot be chosen sufficiently large without avoiding 
challenge 2, IRASA cannot be applied.
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Challenge 3: IRASA Cannot Characterize Oscillation 
Peaks that are not Clearly Distinguishable

Similar to FOOOF, IRASA cannot separate strongly overlap-
ping peaks. However, as shown in Fig. 7b, IRASA performs 
quite well for dataset 2 because the harmonic peaks do not 
strongly overlap above 10 Hz. Instead, many local power 
minima in between the harmonic peaks are very close to 
the power of the aperiodic ground truth. As a consequence, 
adding the 3 Hz sawtooth signal only slightly increases the 
estimated 1/f exponent from �pre/post = 2.24 to �seiz = 2.46 . 
In the middle panel of SI Fig. 5b, the extracted oscillatory 
component of IRASA is shown in orange, indicating a good 
extraction of harmonic peaks at multiple integers of 3 Hz.

If, however, we now add two strongly overlapping oscil-
lations at 10 Hz and 25 Hz, IRASA is no longer capable of 
successfully removing the peaks. As a result, it now esti-
mates an exponent of �seiz = 3.05 – much larger than the 
ground truth at �truth = 1.8.

Discussion

Both periodic and aperiodic components of power spectra 
are frequent targets of investigation in electrophysiologi-
cal studies. The separation of both components before 
analysis helps to disentangle their relative contribution 
to the spectrum. FOOOF and IRASA are commonly used 
for this purpose. It should be highlighted, though, that 

Fig. 6   Broad peak widths require large resampling factors. a) Upper 
panel: Similar as in Fig.  5a) but with increasing peak widths from 
left to right. Note that removal of peaks from the aperiodic compo-
nent (grey) worsens with broader peak widths. Lower panel: The 
lower fitting range border is on the x-axis, the absolute deviation 
from the ground truth on the y-axis. The 1/f exponent estimation 

error increases with larger peak widths. b) Simulation of a 30 Hz and 
300  Hz peak with increasing peak widths from left to right. Larger 
peak widths require larger resampling factors. Note that not the abso-
lute peak width but rather the logarithmic peak width Δflog deter-
mines the minimum resampling factors
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the methods follow different concepts: Whereas FOOOF 
models periodic components and a single aperiodic 
component and outputs the corresponding parameters, 
IRASA only separates them, allowing further independ-
ent processing. Other methods to separate periodic and 
aperiodic PSD components exist too, for example, eBOSC 
(Kosciessa et al., 2020). However, they cannot overcome 
the method-unspecific challenges in electrophysiological 

PSDs such as 1) spectral plateau onsets at relevant fre-
quencies, 2) hidden low-frequency oscillations, and 3) 
overlapping peaks.

Here, we evaluated common challenges of the separation 
procedure based on two popular methods and summarized both 
general and method-specific challenges. These challenges apply 
to EEG, MEG, and LFP data obtained by independent research 
groups, indicating the general applicability of the results.

Fig. 7   IRASA cannot characterize oscillation peaks that are not 
clearly distinguishable. a) and b) left panel: Same as Fig.  4 a) and 
b) Right panel: Same as Fig.  4 but showing the 1/f fits by IRASA. 

c) IRASA’s performance on the simulation drops significantly if 
two strongly overlapping peaks in the alpha (10 Hz) and beta range 
(25 Hz) are added. Ground truth: �truth = 1.8
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Neurophysiological Interpretation

Spectral Plateau

The spectral plateau can hinder a correct separation of the PSD 
components. If the fitting range of FOOOF or the evaluated 
frequency range of IRASA includes a spectral plateau, the 1/f 
exponent will be estimated too low. In the presence of periodic 
components at the spectral flattening, a faulty aperiodic power 
estimation will lead to a faulty periodic power estimation. In 
addition, large periodic components could hide the onset of the 
spectral plateau. This hinders a proper decision on the choice of 
the upper fitting range border. If the 1/f exponent is estimated too 
low due to the spectral flattening, this could be misinterpreted as 
an increased E–I ratio since typically flatter spectra are associ-
ated with more pronounced excitability (Gao et al., 2017).

E–I balance estimation is usually applied to estimate rela-
tive 1/f differences between conditions. If the spectral pla-
teau onset were to occur at exactly the same frequency for 
all spectra, a relative 1/f comparison would still be viable. A 
random fluctuation of the onset would introduce noise to the 
estimates, and a systematic difference of the plateau onset 
between conditions would lead to type 1 errors.

The origin of the spectral plateau at high frequency is 
likely rooted in Gaussian properties of amplifier noise and 
impedance noise (Scheer et al., 2006; Waterstraat et al., 
2015a, b). (Waterstraat et al., 2021) showed that the onset of 
the plateau starts at higher frequencies if recordings are done 
with a low-noise MEG system. In addition to system noise, 
biological high-frequency noise caused by electromyography 
(EMG) from the head muscles can contribute to spectral 
flattening, although EMG does not necessarily have a flat 
spectrum (Muthukumaraswamy, 2013). However, even when 
recording LFPs from the subthalamic nucleus using a low-
noise amplifier, which can be considered as hardly affected 
by EMG activity, a spectral plateau could be observed one 
order of magnitude above the system's noise level (unpub-
lished data). Neuronal population spiking activity probably 
contributes to this spectral plateau (Belluscio et al., 2012; 
Buzsáki et al., 2012; Zanos et al., 2011). Better understand-
ing the origins of the spectral plateau is of major interest 
and requires further research. If it is caused by noise such as 
systems noise or EMG, an identification of the origin could 
help to clean the data from this high-frequency plateau. If it 
has a neurophysiological origin, a thorough analysis of the 
plateau might yield novel neurophysiological insights.

Fitting Ranges

The choice of the fitting range depends on the goal of the 
study and the properties of the data. In the literature, the 
1/f exponent was investigated for different frequency ranges 
such as 0.01–0.1 Hz (He et al., 2010), 0.5–35 Hz (Miskovic 

et al., 2019), 1–10 Hz (Schaworonkow & Voytek, 2021), 
1–20  Hz (Bédard et  al., 2006), 1–30  Hz (Wen & Liu, 
2016), 1–40 Hz (Colombo et al., 2019), 1–20 and 20–40 Hz 
(Colombo et  al., 2019), 1-15 and15-125 Hz (Chaoul & 
Siegel, 2021), 1–100 Hz (He et al., 2010), 2–24 Hz (Voytek 
et  al., 2015), 3–30  Hz (Pereda et  al., 1998), 3–55  Hz 
(Waschke et al., 2021), 10–100 Hz (Freeman & Zhai, 2009), 
20–65 Hz (Bédard et al., 2006), 30–50 Hz (Gao et al., 2017; 
Lendner et al., 2020; Stolk et al., 2019) and 40–60 Hz (Gao 
et al., 2017).

If a study using FOOOF aims to generally estimate an 
1/f exponent and is free to choose any fitting range for that 
purpose, we generally recommend avoiding low lower fit-
ting range borders. It is unknown how hidden low-frequency 
oscillations at the lower fitting range border might impact 
the 1/f estimate. For example, if the 1/f exponent is com-
pared between two conditions and in one condition there 
are larger delta oscillations, a fitting range starting from 
1 Hz could have a larger y-intercept due to the presence 
of low-frequency oscillations. This could lead to a larger 
1/f exponent and could be misinterpreted as stronger neural 
inhibition. The same holds for any other lower fitting range 
border. Therefore, the lower border should be chosen to best 
avoid known oscillation frequencies, depending on the study.

The same problem applies to IRASA but less severely 
since this method is not based on a single frequency range 
but rather, due to up- and downsampling, to a set of differ-
ent frequency ranges. This comes at the cost of only vaguely 
defined upper and lower fitting range borders, hindering an 
easy comparison with fitting ranges used in other studies.

In general, there is no one-range-fits-all fitting range 
applicable to all kinds of PSDs. Therefore, we recommend 
examining the PSDs of interest carefully and choosing the 
fitting range that best avoids the challenges discussed so far 
in addition to further possible data-specific or goal-specific 
challenges.

Finally, if the purpose of the 1/f estimation is not to obtain 
the 1/f exponent but rather the removal of the aperiodic com-
ponent for better periodic power assessment, a broadband 
range (such as 1–100 Hz) should be chosen.

Overlapping Peaks

The stronger periodic components overlap, the more difficult 
estimating their power becomes. In the shown exemplary 
data, overlapping peaks occurred mainly in STN data and 
in dataset 2. MEG and EEG cortical data of healthy par-
ticipants typically have peaks in the ranges 8–13 Hz and 
18–25 Hz which does not impose considerable challenges 
for the estimation of the aperiodic part of the spectrum. 
Assessing the 1/f exponent is still feasible if the overlap-
ping periodic components make up only a minor part of the 
fitting range. On the other hand, if the overlapping peaks 
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make up a majority of the frequency range to investigate, 
as in Figs. 4, 7, and 8b, a separation of the periodic and 
aperiodic components is not recommended and will likely 
lead to imprecise results. In the case of the absence seizure 
shown in Figs. 4 and 7, neural inhibition during the seizure 
is likely overestimated due to overlapping peaks leading to 
a false 1/f estimation.

Broad Peak Widths

In contrast to FOOOF, IRASA cannot handle very broad 
peaks well. This limitation is especially severe for the analy-
sis of LFPs of Parkinsonian patients (datasets 1 and 3). In 
the original article (Wen & Liu, 2016), IRASA was only 
evaluated on pure sine oscillations, for which the method 
works very well. We, therefore, do not recommend using 
IRASA if the peaks seem to have broad logarithmic peak 
widths Δflog . It is not possible to give a threshold value for 

a maximum logarithmic peak width as IRASA is, in theory, 
able to fit any peaks if the h-values are chosen sufficiently 
large. However, in practice, the h-values must not exceed a 
certain range to avoid too low (highpass, Fig. 5b) or too high 
(spectral plateau, Fig. 5c) fitting ranges, calculated using 
Eq. (1) and (2).

Estimating E–I Balance

(Gao et al., 2017) proposed to use the 1/f exponent as an 
indicator of E–I balance. Subsequent studies indicated the 
usefulness of this idea also for non-invasive EEG/MEG 
data (Colombo et al., 2019; Gao et al., 2017; Lendner 
et al., 2020; Miskovic et al., 2019; Waschke et al., 2021). 
While we outlined that 1/f exponent estimation is affected 
by many possible error sources, we do not argue that it 
should be avoided altogether. While proper 1/f estimation 
seems to be beyond reach for some PSDs (for example, 

Fig. 8   “Easy” and “hard” PSDs. a) Left: Voxel MEG PSD of a Par-
kinsonian patient on a semilogarithmic scale. Right: Same PSD on 
a double logarithmic scale. FOOOF, IRASA, and simply connecting 
the PSD value at 1 Hz to the PSD value at 95 Hz as a straight line 
(“straight”) yield similar 1/f exponents. We regard such a PSD as 

“easy” because it avoids all the discussed challenges. b) LFP data of 
a Parkinsonian patient on a semilogarithmic scale. Right: Same PSD 
on a double logarithmic scale. FOOOF, IRASA, and “straight” yield 
different 1/f exponents. We regard such a spectrum as “hard” because 
it contains many challenges
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the one shown in Fig. 8b), it seems to be a promising 
measure for others (Fig. 8a). Thus we suggest that exist-
ing methods could be enhanced by more elaborate data 
cleaning, such as spatio-spectral decomposition (SSD) 
(Nikulin et al., 2011), independent component analysis 
(ICA), or inverse modeling. Moreover, it might be possi-
ble to develop new methods that measure the 1/f exponent 
more reliably than the ones discussed in the present study. 
For example, if the periodic and aperiodic components 
are assumed to vary over time independently, it could 
be possible to disentangle them using machine learning 
algorithms such as non-negative matrix factorization (Lee 
& Seung, 1999). And it might become possible to measure 
E–I balance through other electrophysiological measures 
thus further validating the 1/f exponent of the PSD. We 
elaborate on this below.

(Bruining et al., 2020), for example, proposed to meas-
ure E–I balance based on the alpha band amplitude enve-
lope and its detrended fluctuation analysis (DFA) exponent 
(Peng et al., 1995). (Stephani et al., 2020) related the N20 
of somatosensory evoked potentials to cortical excitabil-
ity. Other researchers related spontaneous fluctuations of 
alpha-band power to E–I balance (Romei et al., 2008) and 
(Iemi et al., 2019) found alpha- and beta-band power to 
predict suppression of ERP-components, which was inter-
preted as increased inhibition. This relationship held true 
even after controlling for fluctuations in the 1/f exponent, 
which correlates with alpha power (Muthukumaraswamy  
& Liley, 2018). It might be possible to estimate E–I bal-
ance by measuring transcranial magnetic stimulation 
(TMS) evoked potentials using EEG. By combining these 
two methods, (Massimini et al., 2005) showed a break-
down of effective cortical connectivity during non-rapid 
eye movement (REM) sleep. Effective connectivity was 
also related to the 1/f exponent by (El Boustani et al., 
2009). The perturbational complexity index (Casali et al., 
2013) follows these lines to separate unconscious states 
of low excitability (non-REM sleep, anesthesia) from 
conscious states of high excitability (wakefulness, REM 
sleep). Indeed, (Colombo et  al., 2019) could link this 
index to the 1/f exponent during wakefulness and anesthe-
sia yielding similar results with both methods. However, 
it should be noted that REM sleep (a conscious state of 
mind) is associated with a larger 1/f exponent compared to 
NREM sleep (unconscious) while NREM sleep is associ-
ated with a larger 1/f exponent compared to wakefulness 
(conscious) (Lendner et al., 2020). These findings agree 
with in vivo calcium imaging measurements of E–I bal-
ance in mice during wakefulness, NREM sleep, and REM 
sleep (Niethard et al., 2016).

In the best scenario, different methods used for E–I esti-
mation will lead to similar results and might be used in 
conjunction. So far, the relationship between 1/f exponent 

and E–I balance remains a hypothesis to be further 
validated.

Computational Cost and Parameter Tuning

From a computational perspective, FOOOF is much faster 
than IRASA. When applied to 9 time series of dataset 1 (ca. 
180 s at fsample = 2400 Hz corresponding to ≈ 9 × 440, 000 
data points), parameterization with FOOOF was about 50 
times faster than separation with IRASA when the PSD cal-
culation time was included. FOOOF was 100 times faster 
if the PSDs were precalculated. For the comparison, we 
used 7 runs and fitted a frequency range from 1–30 Hz. 
For FOOOF, the default parameters were chosen, and for 
IRASA a window length of 4 s and a set of 17 resampling 
factors hset = {1.1, 1.15, ..., 1.9} was used. FOOOF computa-
tion slows down when the PSDs have a very high resolution 
leading to many iterations of fitting noise peaks. IRASA 
computation slows down when the number of resampling 
factors is increased and when their values are increased.

Increasing IRASA’s resampling values can help with very 
broad peak widths (challenge 2) but simultaneously enlarges 
the evaluated frequency range (challenge 1). Increasing the 
number of resampling factors beyond 17 or changing the 
window length does not help with the challenges presented 
in this article. FOOOF requires extensive parameter tun-
ing for optimum results, but the posed challenges cannot be 
resolved by parameter selection. In general, the fitting range 
of FOOOF and the evaluated frequency range of IRASA are 
the most critical parameters for each method.

Conclusion

To study either periodic or aperiodic PSD components, it is 
useful to disentangle both components. As there are theoreti-
cally infinite solutions to this inverse problem, it is probably 
neither possible to perfectly separate them nor to evaluate 
and verify a performed separation since the ground truth 
remains unknown. Some PSDs seem to be particularly easy 
to separate because they avoid most of the discussed chal-
lenges. For those PSDs, we generally recommend perform-
ing a separation to study the periodic or aperiodic compo-
nents in a more isolated manner. We give an example of such 
an “easy” PSD in Fig. 8a.

These “easy” PSDs appear as an almost straight line in 
double logarithmic space with some well-distinguishable, 
narrow periodic peaks on top of it. There is no spectral 
plateau disrupting the 1/f power law and the y-axis of the 
PSD extends over 4 orders of magnitude. When applying 
FOOOF and IRASA from 1–95 Hz or simply connecting 
values at 1 Hz and 95 Hz to a straight line in double loga-
rithmic space, similar values ( �FOOOF = 1.65 , �IRASA = 1.71 , 
�straight =

1.53 ) are obtained for the 1/f exponent.
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Other PSDs seem to be very difficult to separate. For 
such, we recommend avoiding the separation since the 
results will be arbitrary and might lead to ill-informed 
interpretations. An example of such a “hard” PSD is shown 
in Fig. 8b. These spectra do not appear as a straight line. 
They have very broad and overlapping peaks and a spectral 
plateau onset at lower frequencies. As a result of this pla-
teau, the y-axis spans only one order of magnitude. When 
applying FOOOF, IRASA, or a straight-line connection 
between 1 and 95 Hz, strongly diverging 1/f exponent 
values ( �FOOOF = 0.82 , �IRASA = 1.10 , �straight = 0.62 ) are 
obtained.

Checking PSDs for the challenges discussed in this work 
will help to decide whether a technique to separate neural 
oscillations from aperiodic 1/f activity should be applied, 
which algorithm to use, and which parameters to choose.
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