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Band topology is both constrained and enriched by the presence of symmetry. The importance of
anti-unitary symmetries such as time reversal was recognized early on leading to the classification
of topological band structures based on the ten-fold way. Since then, lattice point group and non-
symmorphic symmetries have been seen to lead to a vast range of possible topologically nontrivial
band structures many of which are realized in materials. In this paper we show that band topology
is further enriched in many physically realizable instances where magnetic and lattice degrees of
freedom are wholly or partially decoupled. The appropriate symmetry groups to describe general
magnetic systems are the spin-space groups. Here we describe cases where spin-space groups are
essential to understand the band topology in magnetic materials. We then focus on magnon band
topology where the theory of spin-space groups has its simplest realization. We consider magnetic
Hamiltonians with various types of coupling including Heisenberg and Kitaev couplings revealing a
hierarchy of enhanced magnetic symmetry groups depending on the nature of the lattice and the
couplings. We describe, in detail, the associated representation theory and compatibility relations
thus characterizing symmetry-enforced constraints on the magnon bands revealing a proliferation of

nodal points, lines, planes and volumes.

I. INTRODUCTION

Most readers will be very familiar with the huge abun-
dance and diversity with which crystalline solids occur
in nature. Underlying the richness of the chemistry and
details of the structure is the set of lattice symmetries
which fall into one of 17 wallpaper groups in 2D materi-
als and 230 space groups in 3D materials [I]. The profu-
sion of structures and symmetries grows when we focus
on magnetic crystals as one is then forced to include the
role of time reversal and its interplay with magnetic or-
der. Altogether there are 80 magnetic space groups in
2D and 1651 in 3D [I]. These symmetry groups and the
point groups on which they are based form one of the
cornerstones of condensed matter physics as they place
constraints on couplings, dispersion relations, wavefunc-
tions and matrix elements [2].

Symmetry is essential also to understand the variety
of possible topological band structures [3]. While band
topology can be nontrivial in the complete absence of
symmetry it is greatly enriched by its presence as may
be appreciated by inspecting the ten-fold classification
of band topology with anti-unitary symmetries [3 [4].
The connectivity of bands in momentum space, includ-
ing the presence or absence of band touchings, is highly
constrained by lattice symmetries. Such constraints —
originating from space groups and their magnetic coun-
terparts — have been the subject of intense study in elec-
tronic band structures and underlie various partial clas-
sification schemes of band topology [BH7]. In turn, these
classification tables are important for identifying topo-
logical materials.

In strongly spin-orbit coupled magnetic materials, the
magnetic moments are typically locked to the lattice so
that transformations performed on the moments are per-
formed also in real space. However, as was noted long
ago by Brinkman and Elliott [8HI0] there are physically
natural settings where the spin and space transforma-

tions are wholly or partially decoupled. In this paper, we
investigate these enhanced symmetry groups — so-called
spin-space groups — in relation to band topology. Begin-
ning with a brief introduction to the spin-space groups,
we give an account of their importance to the understand-
ing of physically relevant condensed matter systems. We
then turn to the investigation of constraints on band
topology arising from the spin-space symmetries.

Our presentation concentrates on magnon band topol-
ogy which is the simplest context for studying symme-
tries in magnetic materials, though many of our consid-
erations carry over to the electronic band structures of
itinerant magnetic materials. For magnons, in common
with other bosonic excitations, particle-hole and chiral
symmetries are subsumed by time reversal resulting in
a three-fold rather than a ten-fold table [II]. For this
reason, crystalline symmetries and, more generally, spin-
space symmetries are especially important if magnons are
to be imbued with interesting band topology.

Magnon band structures emerge through symmetry
breaking from an underlying lattice of interacting mag-
netic moments. As we show, the symmetry of the band
structure of coherent single magnon excitations is teth-
ered both to the nature of the magnetic exchange Hamil-
tonian as well as to the magnetic structure. Such exci-
tations are routinely probed in bulk magnetic materials
in energy-momentum over the entire Brillouin zone using
inelastic neutron scattering.

One notable case where spin-space groups arise is in the
study of Kitaev-Heisenberg models [I2] that are of con-
siderable current interest [I3HI7] owing to the rich phe-
nomenology in such models and their relevance to materi-
als [I8H30]. Kitaev physics is known to range over quan-
tum spin liquid phases [31], complex ordered magnetic
structures [19] 24], rich magnetic field induced phase di-
agrams [32], nontrivial magnon band topology [33] [34]
and unusual heat transport properties [35]. In the follow-
ing pages we show that spin-space groups are essential to



understand the magnon band structures of such models
and conversely can be used as a means of establishing the
importance of Kitaev-Heisenberg terms in real materials.

Spin-space groups also arise in the study of other phys-
ically motivated magnetic models including Heisenberg
models, certain single ion anisotropies and certain anti-
symmetric exchange couplings as we discuss below. For
various models with spin-space symmetry we show direct
connections between the enhanced symmetry and a wide
variety of richly degenerate band structures with Dirac
points in 2D, Weyl points, 4-fold degenerate points, nodal
lines and planes and 2-fold degenerate volumes across the
Brillouin zone [36H40]. In addition, in the course of this
analysis we show in detail how to analyse band represen-
tations for spin-space groups including non-symmorphic
groups.

A. Outline of the paper

Spin-space groups characterize the symmetries of a
range of physically relevant interacting magnetic systems.
In such cases, the standard magnetic space groups are in-
sufficient to capture all the symmetries of the problem.

In the next section, we give a number of examples
where such enhanced magnetic symmetries arise. In fact,
such models are very common as they include Heisenberg
models that appear, to an excellent approximation, in
many materials with weak spin-orbit coupling. In such
models, the spin space transformations are completely
decoupled from the lattice transformations and there-
fore lie at the extreme end of possible spin-space sym-
metry groups. We show that spin-space groups appear
also in cases where spin-orbit coupling is important. For
example, for various kinds of single ion anisotropy, for
Kitaev-Heisenberg models and for certain kinds of anti-
symmetric or Dzyaloshinskii-Moriya exchange.

In Section [[TC| we briefly review spin wave theory
and show that spin-space symmetries are inherited by
magnons. Then, we give a short account of the band rep-
resentation theory of spin-space groups that is the tool
of choice to determine the symmetry constraints on the
magnon band structure (Section . Indeed, our analy-
sis is grounded in the representation theory of spin-space
groups and the associated compatibility relations. In
contrast to the representation theory of magnetic space
groups, this has not been worked out in detail and our
study of band topology relies on calculations of band rep-
resentations and their decomposition into irreducible rep-
resentations of spin-space groups from first principles.

Symmetry constraints on band topology have been ex-
tensively analysed for space groups and their magnetic
analogues. Here we show that the further enhancement
of symmetry in going to spin-space groups can lead to a
proliferation of band degeneracies including nodal points,
lines, planes and volumes. Here “nodal” refers to points,
curves, surfaces and volumes where pairs of bands be-
come degenerate.

We illustrate this through a number of examples be-
ginning with the particularly rich case of the Heisenberg-
Kitaev model on a hyperhoneycomb lattice with a sim-
ple collinear antiferromagnetically ordered ground state.
We show (Section , by direct calculation, that the
magnon band structure has a nodal plane that is punc-
tured by a number of nodal lines and that these fea-
tures survive a tuning of the Kitaev-Heisenberg couplings
within this phase suggesting that they originate from the
Hamiltonian symmetries.

We then enumerate all the symmetries of the magneti-
cally ordered state. These include a combination of non-
symmorphic symmetry elements, anti-unitary elements
and spin-space symmetries. The resulting group is not
isomorphic to any of the 1651 magnetic space groups and
is instead a concrete example of a spin-space group. Sec-
tion [VB| is a derivation of the nodal plane and other
degeneracies in the richly featured band structure on the
basis of the band representation theory of this group.

Having given one detailed calculation of the magnon
band structure from a spin-space group over the entire
Brillouin zone, we present a number of further examples.
The first set of examples comes from Heisenberg models
in Section[V] We make general observations about the na-
ture of the spin-space symmetries of collinear ferromag-
nets and antiferromagnets and their effect on magnon
bands. In the latter case, we describe how these symme-
tries can lead to nodal volumes.

In Section [V} we focus on the honeycomb lattice — one
of the most symmetric lattices in two-dimensions. The
recent literature on topological magnons includes the dis-
covery of magnon Chern bands in the Kitaev-Heisenberg
honeycomb model and in the case of the ferromagnet with
second-neighbor anti-symmetric exchange. In these mod-
els, the band topology can arise in the complete absence
of symmetry. We revisit them to show that their nontriv-
ial spin-space symmetries allow one to tune the appear-
ance of Dirac points in the magnon band structure. As a
corollary, the symmetry analysis reveals that the known
Chern band regimes have the necessary symmetry, or lack
of it, to allow for nontrivial Berry curvature.

Section [VII] is a detailed study of the Kitaev-
Heisenberg hyperhoneycomb ferromagnet. This model
beautifully illustrates some important features of magnon
band topology arising from spin-space groups because the
symmetry of the model can be tuned by simply rotating
the direction of the applied magnetic field. We give the
full (spin-space) symmetry group corresponding to each
of the symmetry-distinct moment directions revealing a
hierarchy of magnetic symmetries. We also give the sym-
metry group that one would naively anticipate purely
based on the invariance of the magnetic structure. The
latter is, by definition, a magnetic space group and there-
fore generally has lower symmetry than the spin-space
group for the same moment direction.

We then enumerate all the magnon band degeneracies
one would expect for each of these symmetry groups.
This reveals, at a glance, that the spin-space group has



various features including nodal lines and Weyl points
that would be absent for the corresponding magnetic
space group. For many of these cases we can give sim-
ple criteria or informal arguments for the appearance of
nodal features thereby circumventing the detailed repre-
sentation theory analysis.

We further show the surprising feature that the spin-
space groups arising for this model are frequently iso-
morphic to some magnetic space group albeit of higher
symmetry than the one that merely leaves the magnetic
structure invariant.
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FIG. 1. The upper figure shows the tri-coordinated network
of sites on a hyperhoneycomb lattice. The primitive unit cell
contains four sites labeled from 1 to 4. The primitive unit
vectors for the 4-site unit cell are given by a;. The color
of the bonds reflects the direction of the Kitaev interaction:
S?S5% (red), SYSY (green), and S*S* (blue) interactions re-
spectively. The lower panel shows the Brillouin zone of the
hyperhoneycomb lattice. The perpendicular planes are the
mirror plane of glides: di (red), d2 (yellow), ds (grey). The
high symmetry paths are: ' =Y - T - Z - T - X —
A=Y, T— X1; X > A— Zand ' — L. The coordinates
of the points are given in Appendix [A]

II. SPIN AND SPACE SYMMETRIES OF THE
MAGNETIC HAMILTONIAN

A. Spin-Space Groups and Magnetic Couplings

Given a magnetic Hamiltonian H, we shall identify all
symmetry operations that leave the Hamiltonian invari-
ant. This parent group will be denoted Gpg. In general,
the Hamiltonian will be invariant under lattice symme-
tries that form a space group G that includes the prim-
itive translations T as a normal subgroup and the space
group then admits a coset decomposition

G:U{Ra‘ta}T (1)

where a general coset representative of the space group is
conventionally denoted {R| ¢t} where R is a point group
element and t is a non-Bravais translation. These act on
a general position r in real space as {R|t}r = Rr +t
and so:

{Ra| t1} {Ra| to} = {RaRa| Ratz + 1} (2)
(Rt} ' ={R7!| -R't}. (3)

The identity is denoted { E| 0}. There are 17 such groups
in two dimensions — usually called the wallpaper groups
— and 230 in three dimensions. In the presence of time
reversal symmetry, we allow for the possibility of anti-
unitary elements T {S] w} leading to magnetic space
groups M that have coset decomposition

M = J{Ra| ta} T+ T [ J{Sor| war} T (4)

There are 80 magnetic space groups in two dimensions
and 1651 in three dimensions. Magnetic Hamiltonians
may have higher symmetry still: in general G is a direct
product of a magnetic space group and a group acting
only in spin space.

For example, consider the canonical Heisenberg model
on some lattice with, for concreteness, nearest neighbor
couplings

A~

H=7)5;-8;. (5)
The symmetries of this Hamiltonian include:

1. the primitive lattice translations forming group T,

2. the symmetry elements denoted {af t,} for a =
1,...,|G| belonging to space group G,

3. the time reversal symmetry operator 7 the oper-

. an T, a4
ator acts on spin as S — —S¥

4. and the group of global spin rotations R = SO(3).



and combinations of these. The parent group is therefore
Gy = (G &) 7'G) ®R where G&7T G on its own forms a

magnetic space group of type II in the notation of Bradley
and Cracknell [IJ.

We use the notation [B| {R|t}] to denote the general
symmetry element of those symmetry groups that allow
for decoupled spin-space and real-space elements where
B acts on spin space and {R| t} is the ordinary space
group element that does not act on spin-space [41]. Such
symmetry groups were named spin-space groups in the
original papers of Brinkman and Elliott [8,[9]. The action
of a spin-space group element on the lattice moments
JH(r) is the active transformation

Z det(B

where the determinant is present because magnetic mo-
ments are pseudovectors — for example they are invariant
under inversion. It follows that

[Bil[{Ra[t1}] [B2| {Ralt2}] =

[BI {RIt}] J*(xr )B* JY({R| t}r)  (6)

[B1Bz|| {R1R2|Rts + t1}]
(7)
[BI{R[t}]”" = [B'| {R'|-R~'t}]. (8)

In the case where the spin-orbit coupling vanishes, the
Hamiltonian is Heisenberg-like and the group elements
acting on spin space are completely decoupled from the
real space elements — the former being the 3D rotation
group. When spin-orbit coupling is present and Hamil-
tonian is not fine-tuned, the moments are usually locked
to the space group transformations. We then write

Z det(R

Since the magnetic Hamiltonian must be invariant under
lattice symmetries such locking is always possible and
the resulting group is one of the magnetic space groups.
There are cases where the moments transform under lat-
tice transformations but where there is a residual spin
space invariance — nontrivial elements that act purely
on spin space.

The magnetic Hamiltonian in many insulating mag-
nets is well approximated by a Heisenberg model in those
cases where the spin-orbit coupling is weak [42], where
the orbital part of the moment is quenched or frozen out
[43] or through the fortuitous cancellation of anisotropic
terms [44], [45]. Such couplings are allowed by symmetry
on all lattices as well as in amorphous solids. For ex-
ample, the parent material LagCuQOy of one prominent
high T, superconducting cuprate which has a Heisenberg
exchange scale of about 100 meV [42] while any mag-
netic anisotropies, for example inferred from the small
spin wave gap, are at most a hundredth of this scale [46].

In instances where there is spin-orbit coupling, the
crystal field may lead to single ion anisotropies that break
the spin rotation group from SO(3) to the local site sym-
metry group. The degree to which the moment preserves

[R| {R[t}] J*(r R)R™J'({R| t}r).  (9)

its spin-only character or is mixed with the orbital mo-
ment is dependent on the magnetic ion and the material
in which it appears but we now use JH to denote the mo-
ment operators. In general, the single anisotropy takes

the form
Hsia =) ) A0, (10)
i lym
where Oﬁ m 1S & Steven’s operator which is the operator

equivalent of spherical harmonic Y}, (6, #) and is polyno-
mial in the spin operators with degree [ < 6 as fixed by
the site symmetry.

We now give some concrete examples of possible spin
groups in lattices of moments arising from the single ion
anisotropy. While the single ion anisotropy has the site
symmetry of the magnetic ion, there may be a hierarchy
of scales. For example, in tetragonal KoCuFy, the cop-
per is almost isotropic with exchange scale J ~ 1 meV
because the spin-orbit coupling is weak. Nevertheless,
it does have a detectable easy plane anisotropy of about
10~2J with single ion Hamiltonian O3 = 3(J*)2—J(J+1)
and A3 > 0. There is a even weaker but detectable four-
fold anisotropy [47] that can be captured by a term in
Hgra of the form Of = (1/2)((J;")* + (J;)*). Thus, the
3D rotation group is broken by the easy plane anisotropy
down to U(1) X Zy. The weaker terms break this down to
the site symmetry D4 in principle allowing for five non-
vanishing Steven’s operator coefficients A2, A, Al, AS,
AS§. There are materials where the easy plane anisotropy
is much greater.

Analogous symmetry considerations guide our under-
standing of interactions between magnetic moments. We
mainly restrict our attention to couplings that are bilin-
ear in the moments:

H= ZJ’“’J“J” (11)

The Heisenberg coupling is J;;" = 6"¥J;; but, in gen-
eral, the exchange may have anisotropies that respect
the lattice symmetries. On a single bond, in the ab-
sence of symmetry constraints, there are nine allowed
couplings: three diagonal, three off-diagonal and anti-
symmetric and three off-diagonal and symmetric. Sym-
metry generally places constraints on these couplings.
For example, consider a simple cubic lattice and a near-
est neighbor & bond. The Cj about the axis through
the bond takes § — 2 fixing the J¥Y = J#*. The mir-
rors in the planes of the cubic faces are equivalent to
inversion and a Cs. Inversion leaves the magnetic mo-
ment invariant so only the Cs acts nontrivially thus forc-
ing the off-diagonal components to zero. The resulting
Jiire = diag(J¥®,J¥Y J¥¥) and the other nearest neigh-
bor bond coupling can be obtained from this using lattice
symmetries. Since the most general exchange Hamilto-
nian has only the lattice symmetries, the spatial and spin
transformations can be thought of as being locked to one
another and this is the limit of strong spin-orbit coupling.



In this case, the group Gy is just the group G & TG as
there are no residual spin-space transformations that are
decoupled from the real-space transformations. A de-
tailed worked example of this kind of argument is given
in Appendix [B]

However, this restriction, while strictly true in prin-
ciple, does not allow for the existence of a hierarchy of
exchange couplings. For example, as we noted above,
there are materials in which the Heisenberg coupling is
overwhelmingly the largest coupling. In other materials,
there are various well-understood mechanisms (as well as
cases with merely a degree of fine-tuning), that can lead
to certain anisotropic couplings being significantly larger
than others. We consider various examples.

Cobalt(II) in an octahedral crystal field has a relatively
small spin-orbit coupling that, in the presence of trigonal
distortion, may lead to a single ion ground state doublet
with easy plane anisotropy with a level splitting on the
order of the exchange scale. An example is CoTiOg for
which g1 /g ~ 1.7 [48]. It is natural to write down an ef-
fective spin one-half model to understand the magnetism
in this material and hence single ion anisotropy terms are
trivial. The easy-plane anisotropy must therefore be in-
cluded through the magnetic interactions. Indeed, in this
material the leading order description of the magnetism
is in terms of an XXZ model

N = o s
=30 Gy + 0 ) + g g (1)
2%
and further anisotropies are sub-leading. The spin-space
group is therefore U(1) x Zs. The same group appears
for Dzyaloshinskii-Moriya (or anti-symmetric) exchange
with collinear D vector which may appear, for example,

on second nearest neighbor bonds of the honeycomb lat-
tice and which may be important in the CrX3 magnets:

H=D )Y JrJj¢-Ji;. (13)
(i)

A further example is Kitaev exchange. Consider a hon-
eycomb lattice of magnetic moments with Ising couplings
along perpendicular directions on the three bonds origi-
nating from each lattice site. Thus:

H=K )Y JJ] (14)
(i),

where v runs over z,y, z and identically oriented bonds
belong to the same Ising component. If we now perform
a global spin-space rotation about any of the cubic spin-
space axes x, ¥y, z, the Hamiltonian will be left invari-
ant. So the spin-space group is isomorphic to point group
D,. Kitaev-Heisenberg models can arise on several lat-
tices with edge-sharing octahedra that supply a superex-
change mechanism to generate such couplings. Such lat-
tices include the honeycomb lattice, its three-dimensional
generalizations including the hyperhoneycomb, the py-
rochlore lattice, the kagome lattice and so on [12]. The

same group Do appears also for 90° compass models such
as the simple cubic lattice model with J§9 4 along the
& = &,9, 2 bonds.

An immediate implication of the above remarks for
magnon spectra is that given spin-space group of the
Hamiltonian Gy, the pure spin rotational part R of Gy
can be used to find new spin orientations that give the
same magnon spectrum. To take an almost trivial ex-
ample: in the Heisenberg case, spin rotation invariance
means that the magnon spectrum is completely invariant
to changes in the moment orientation.

So far we have discussed purely magnetic models with
the aim of studying magnon band topology. However,
spin-space groups that we discuss extensively here may
play a role in electronic systems too. For example, we
may minimally couple any of the spin-space symmetric
magnetic exchange models (with Hamiltonian Hp.g) to
electrons through a Kondo-like Hamiltonian

Z tl] zacja+hc +ZCIO¢J1M

(i,3),@ i,aB

ci,B + I;[mag

(15)
where the electronic band structure now inherits the spin-
space symmetry of the magnetic subsystem.

B. Symmetries of the Magnetically Ordered
Ground State

In this section, we show how the considerations of sym-
metry in the previous section must be adjusted in the
presence of magnetic order. Since we are ultimately inter-
ested in magnons, we suppose the magnetic ground state
is characterized by local order parameter (J!'). From the
parent group Gy — the group of operations that leave the
magnetic Hamiltonian invariant — we identify the sub-
group of transformations that leave the magnetic struc-
ture invariant G ;. Frequently, the onset of magnetic or-
der enlarges the unit cell thus breaking down the group
of primitive translations to a subgroup. The wavevector
associated to the magnetic order may even be incommen-
surate significantly lowering the symmetry. In addition
to the translation symmetries there will tend to be com-
binations of translations, point group operators on the
lattice and spin transformations that leave the magnetic
structure invariant. Unlike the parent group, G, is gen-
erally not a simple product group. Instead the spin and
space transformations tend to be coupled.

In the case where Gy = G & TG — in other words,
when the spin transformations are locked to the space
group transformations — the subgroup that leaves the
magnetic structure invariant is another magnetic space
group. Since the magnetic order breaks physical time
reversal symmetry and G contains the identity Gy can-
not be of the form G @ 7' G but must instead be a type I
group — one with no anti-unitary elements, or a type III
or IV magnetic space group of the form G @ AH where

=7TU is an antiunitary element and U is a nontrivial



unitary and H is a (unitary) space group.

In the other extreme case of Heisenberg models, mag-
netic order breaks the decoupled spin space and real
space transformations down to a discrete subgroup. For
example, if the magnetic structure is collinear then the
space group transformations acting only on real space
leave the moments invariant there are pure spin space
rotations about the axis of the moments as well as

T [Cay || {E|0}] where the Cy rotation is about an axis
perpendicular to the ordered moment.

C. Magnon Symmetries

Here we show in outline how to determine the sin-
gle magnon excitation spectrum and the relationship be-
tween the symmetries of the magnetic Hamiltonian and
those of the magnons. We consider the following general
exchange Hamiltonian for localized moments defined on
some lattice and including a Zeeman term

1 A s N
H=g5 > S Jady - B L. (16)
ia,jbia, B ia,a
The couplings have the symmetry property J?f b= Jfgm.
We are supposing that the moments have nonzero expec-
tation values either through spontaneous or field-induced
magnetic ordering. And we use the following notation,

S ° Ak
Hsw =5 2 X'(k) ( B () AL

where
Qg1
-t st At oA . s rem
Yi(k) = (g, - Qg k1 - - Gpm) T(k) = af ot
é\Likm
(21)

and the A, (k) and B,y (k) depend on the exchange cou-
plings in the local frame as follows:

Aab(k) = j:b_(k) - 6{117 Z jZ’z(O) (22)
Bas(k) = 5 (Jai (k) — Jip (k) — iJ3) (k) — 1%, (k)

=Jop (R). (23)

Note that these expressions with the factor one-half de-
fine ngﬁ for o, 8 = +.

DO | =

) ) Y (k)

6

<jle>, for the local order parameter with 7 running over

the N magnetic primitive cells and a running over the
m magnetic sublattices on a finite lattice. We further
suppose that the moments are written in a local quanti-
zation frame defined with local z component 2, along the

ordered moment direction as in <jﬁ1> = 50°* and with

uniform ordered moment from site to site. In principle,
we could consider ordered structures with ferrimagnetic
textures or models with different types of magnetic ion
via a straightforward extension of the methods described
here. Concurrently, we introduce local transverse direc-
tions, &, and gy, that may be chosen arbitrarily - ob-
servable quantities should not depend on the choice of
transverse axes - so there is a local phase invariance.

The angular momentum operators are bosonized
through the Holstein-Primakoff representation for spins
of size S

J*=5—-ata (17)
A ata ata

+_ _aa. _aal.
JT=v28 55 0 25(1 4S>a+... (18)
A ata ata

T = AT 1—L: AT 1—7 o 1
J V2Sa 55 254 ( 4S> +...(19)

where the bosons satisfy the usual commutation relations
[a,a'] = 1.

Expanding about the mean field ground state leads to
the quadratic Hamiltonian

2|

ST (k)M (k)Y () (20)
k

The diagonalizing transformation on Eq.[20]to find the
spin wave spectrum,
U' (k)M (k)U (k) = A(k)
U (kU (k) = n

where A(k) is diagonal, must preserve the commutation
relations

|:Ta7 TH = Tab (24)

where e,y = lifa=b<mandey, = —1lifa=b>m+1
and zero otherwise.
It is straightforward to see that

nM(k)U (k) = U(k)nA(k) (25)

so the diagonalizing transformation can be found by solv-
ing this non-Hermitian eigenvalue problem. This diago-
nalizing transformation has important consequences for
magnon band topology [49]. In short, the ten-fold way



that classifies single particle fermion problems in the ab-
sence of lattice symmetries, is reduced to a three-fold
way with only time reversal symmetry that can be either
absent, or present and squaring to £1. This has the con-
sequence of leaving only Chern insulators in 2D, or Zs
topological bands in 2D or 3D as gapped bands.

Symmetries of the spin wave Hamiltonian, Eq. [20]
are inherited from the symmetries of the full magnetic
Hamiltonian that leave the magnetic structure invari-
ant. In other words, the appropriate symmetry group
is G)s and a particular representation of the symmetry
elements is determined from the transformation proper-
ties of the transverse spin components in the local quan-
tization frame since the Holstein-Primakoff bosons are
related to them through

Ji = V2Saka (26)
Jo, = V2sal, . (27)

Under a unitary element of Gy, the transverse spin com-
ponents will transform into one another via a permuta-
tion of magnetic sublattices, a rotation — that, in the +
frame amounts to an overall phase — a transformation in
momentum space and a translation. More precisely, for
spin-space transformation [B|| {R|t}] we may write

Ugs Tam(B)US, =3 e B0t U], Tom(RE)  (28)
b

where [Ug],, is a matrix of phase factors e~ where
indices a and b are constrained by the real space transfor-
mation i+a = R(j+b)+t. The boson spinor T, is in-
dexed by sublattice a and particle-hole index m = 0, 1. In
order to treat antiunitary elements we require the trans-
formations under time reversal

TiTt=—i (29)
TJET 1= —JF (30)
TIET ' =—-JF,,. (31)

In ensuing sections, we describe in detail how to construct
band representations of the full spin-space group.
Before that, we make a couple of further important re-
marks. The first concerns the effect of higher order terms
in the spin wave expansion. Such magnon interaction
terms in general couple single magnon to multi-magnon
states leading to damping and renormalization of the sin-
gle magnon modes. In all of the following we assume
that the effect of magnon damping is sufficiently weak
that the single magnon states have a lineshape that is
negligible compared to the magnon bandwidth. In other
words, we shall rely on a robust single particle picture
throughout. In practice, this assumption is often very
reasonable. Indeed most magnetic materials are in such
a regime and magnon interaction effects tend to be se-
vere only in geometrically frustrated magnets with a high
density of low-lying states and especially those with non-
collinear moments or anisotropic exchange. Even where

magnon interactions are important their effect can be re-
duced, at least in principle, by applying a large enough
magnetic field. Although we shall not consider magnon
interactions further in this paper, it is worth mention-
ing that the symmetries of the magnetic Hamiltonian are
symmetries of the magnon Hamiltonian order-by-order in
the interactions. It follows that any symmetry protected
degeneracies in the single magnon spectrum cannot be
broken by higher order terms.

Although spin-space symmetries survive magnon inter-
actions, it is possible for the symmetries of the linear spin
wave Hamiltonian to be higher than one would expect
on the basis of the foregoing discussion. In other words,
the quadratic magnon Hamiltonian may have accidental
symmetries. These are most commonly discussed in rela-
tion to order-by-disorder where an accidental symmetry
appears at the mean field level and in linear spin wave
theory [48], [50H52]. One example is the U(1) symmetry
of strong spin-orbit coupled pyrochlore moments [53}, [54].
This U(1) is absent in the magnetic exchange but appears
in linear spin wave theory and is broken down to the dis-
crete lattice symmetries by magnon interactions. In the
case of order-by-disorder both the ground state and linear
spin wave spectrum have an accidental symmetry. There
are also cases where there is no order-by-disorder but still
the linear spin wave spectrum is more symmetric [55].
In this paper, we concentrate our attention on features
that survive magnon interactions as they are protected
by spin-space symmetries that appear to all orders of spin
wave theory.

III. REPRESENTATION THEORY AND
MAGNON BAND TOPOLOGY

In the following sections, we work out spin-space sym-
metry constraints on magnon band structures using rep-
resentation theory. The approach we take is to work
from the atomic limit and build band representations in-
troduced by Zak in Ref. 56. In this section we outline
how to construct band representations for magnons. The
reader who is content to skip the details can see an out-
line of the method in the next paragraph.

In a nutshell, the band representation ties together all
symmetry information about the band structure at dif-
ferent momenta using group elements and local atomic
orbitals as ingredients. From the band representation,
one may extract the irreducible representations at dif-
ferent symmetry-distinct momenta as well as informa-
tion about the connectivity of these irreps. The building
blocks of the band representation for magnons are the
on-site transverse spin components in the local quanti-
zation frame, JE. These components form a basis for a
representation of a group that leaves the lattice site in-
variant. Since this site symmetry group is a subgroup of
the full spin-space group one may carry out a well-defined
induction procedure to obtain a representation of the full
group that has dimension equal to the number of bands
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FIG. 2. (Main Panel, top left) Magnon spectrum for the Néel
phase and ¢ = 0.357 (where ¢ is defined following Eq.
with the band degeneracies indicated. Nodal lines between
bands (1,2) and (3,4) are shown as green lines and those be-
tween bands (2, 3) as red lines. There is a nodal plane (green
surface) and 4-fold degenerate points (black points). The in-
set at the bottom right shows the magnon dispersions along
the high symmetry path Y — Z — L in the vicinity of the
4-fold degenerate point showing the double degeneracy along
[YZ] in the nodal plane. Section accounts for all these
features through a symmetry analysis. (Insets) The insets at
the upper right show two coupling limits — the Kitaev limit
@ = 0.57 and Heisenberg AFM limit ¢ = 0. In the Kitaev
limit the bands (1,2) are degenerate everywhere in the zone,
bands (2,3) form two tilted nodal planes (red surfaces) and
bands (3, 4) nodal planes on the high symmetry surface (green
surfaces). The two types of nodal planes meet along line [['Z]
(black line) which is indeed 4-fold degenerate, and can be
seen as the continuous shrinking of the circular nodal loop at
¢ = 0.357. In the Heisenberg limit the modes form a doubly
degenerate nodal volume over the entire Brillouin zone be-
tween bands (1,2) and (3,4) (green volume). In addition the
bands are four-fold degenerate on some high symmetry lines
(black).

and that is also a function of momentum.

We now describe the process in more detail. Take a
point 7 in the primitive cell and act on it with elements
of the spin-space group g € Gg. Those elements that
leave the point invariant form a group G, called the site
symmetry group or stabilizer group — that may include
translations. By construction, elements of the stabilizer
group leave the magnetic moment invariant at the site.
The stabilizer group will generally have both unitary and
anti-unitary elements.

Now act on the point r with elements g € G that are
not in the stabilizer group. The set of points thus defined

{re =9a7|ga ¢ Gr} fora=1,....n (32)

is associated to a Wyckoff position with multiplicity n
where n is the number of points generated in this way
that live in the primitive cell. The stabilizer groups as-
sociated to these points are isomorphic.

Starting from the atomic limit, we take a set of or-
bitals — essentially maximally localized Wannier func-
tions Wi, (r) — forming a representation p of the sta-
bilizer group G,. Suppose there are n, such functions.
Then for each element h of the stabilizer group the rep-
resentation p;;(h) has indices that run from 1 to n,.

Now, given representation p of the stabilizer group, one
may induce to a representation of the full space group
that we write as p T G. In real space, the dimension
of the representation is (n, x n x N) x (n, x n x N)
where N is the number of primitive cells. In momentum
space, the translations are diagonalized and the momen-
tum dependent representation is a matrix of dimension
(nr X n) x (n, x n) that acts on the Fourier transformed
Wannier functions:

aia(kv T) = Z e_ik.tMWia<r - tu)- (33)

A formula for the induced representation for g € G is

(pG(g))ia;jb (k)ajb(kv T) = e_i(gk).tbapji (gb_l {E‘ _tba} gga) ajb(hk7 T) (34)

where
the = gTa — Tp (35)

is a Bravais lattice vector. To each site a there is exactly
one b and these are related through ggy, = {E| tpa} goh
where h € G,.. This band representation contains com-
plete symmetry information about the bands at the dis-

crete momentum space points of distinct symmetry in-
cluding constraints on the connectivity of the bands in
the Brillouin zone.

At each point in the Brillouin zone, k, the little group
Gy, consists of elements h € G such that hk = k which
is a momentum diagonal block in the band representa-
tion. We obtain a representation of the little group at



k, p’é = pg 4 Gg. By modding out translations we ob-
tain the little co-group, G at this wavevector that is
isomorphic to some spin point group. This is generally

composite and can be decomposed into irreps using the

orthogonality of irreps p( )

pe = @”ap(a)- (36)

Thus the number of times the irrep « occurs is given by
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2 EZ <a> ch() (37)

m=1

where the sum is over distinct relevant classes m, x, is
the character of the representation o, and h is the order of
the group. In this way, we obtain the symmetry distinct
modes at each wavevector. In practice, the decomposi-
tion requires the character table of the spin point group.
Later on we give some examples of this decomposition.

So far we have the representation theory for magnons
in the case where the spin-space group is unitary. When
there are anti-unitary elements there are some impor-
tant new features. The 1651 conventional magnetic space
groups appear in four types: (I) the ordinary space
groups (230 in all), (II) paramagnetic groups of the form
GoTG (230), (II) HO T (G —H) (674) and (IV) the
black and white magnetic groups G @ T {E| t} G (517).
It will be useful to bear these in mind as, in later sections,
we show that certain spin-space groups are isomorphic
to magnetic space groups. In general, a magnetic space
group takes the form G @& AG where A is some anti-
unitary element.

In principle one can construct the full band represen-
tation for the spin-space group including magnetic ele-
ments. Then at a given momentum one can determine
the decomposition into irreducible co-representations (or
coreps) of the magnetic little co-group. However, since
our principal focus is the symmetry-enforced degenera-
cies, it is possible to side-step this process and find the
band representation for the unitary part of the group
as described above. As above, we find the irreps from
the subduced representation at a given momentum. We
then determine irreducible co-representations (or coreps)
of the magnetic group associated to each unitary irrep us-
ing the following criterion requiring access only to char-
acters of the unitary elements that separates the coreps
into three classes (a), (b) and (c)

+Gl, (a)
S x(B) =< -G, ) (38)
o 0, (o)

where the sum runs over the anti-unitary elements B,.
Each class is associated to a canonical form for the corep
which, for class (a), has the same dimension as the uni-
tary irrep from which it is derived while, for classes (b)
and (c) the degeneracy is doubled in passing over to the
magnetic group.

Now consider two high symmetry points ki and ko
joined by a high symmetry line k1 +A(ka—k1). The sym-
metry group along the line is a subgroup of the groups at
the two endpoints. It follows that, at each high symmetry
point, the symmetry group associated to that point corre-
sponds to a set of irreducible representations X, that, in
general, are reducible under the subgroup along the line
connecting the endpoints. In terms of the characters, for
each irrep X, at a high symmetry point, and irreps Y
along the high symmetry line, there is a compatibility
relation

)= x(Ys) (39)
b

with a similar condition at the other endpoint of the line.
Representation theory therefore supplies a discrete no-
tion of band connectivity in momentum space. For, given
the magnon group representation at each high symmetry
point and line in the zone, there is a set of energy levels at
each labelled by some irrep. Then the compatibility rela-
tions constrain the ways in which these levels connect to
one another to form a continuous band structure through
the zone. Depending on the ordering of the irreps in en-
ergy — that is not fixed by symmetry — the compatibility
relations may enforce crossings between bands.

IV. NODAL POINTS, LINES AND PLANES
FROM SPIN-SPACE SYMMETRY: AN EXAMPLE

A. Model and Overview of Results

In this section, we illustrate the proliferation of nodal
features in band structures caused by spin-space symme-
tries using the example of a Kitaev-Heisenberg model on
a tri-coordinated lattice in three-dimensions: the hyper-
honeycomb lattice (Fig.[I)). The Hamiltonian is

H=JY Ji-Jj+K > JJ - hZJ (40)

<ij> <ij>4

— the Kitaev-Heisenberg interaction is parametrized us-
ing angle ¢ so that J = cosp and K = siny. As dis-
cussed in Section [[TA] the Heisenberg model alone has
decoupled spin and space degrees of freedom and the in-
clusion of the Kitaev exchange coupling breaks the SO(3)
spin group of the Heisenberg model down to Dy. With
the onset of magnetic order, the spin and space symme-
tries get broken down to a subgroup and become inter-
twined so that the group ceases to be a simple product
of spin and space transformations. We consider the hy-
perhoneycomb lattice primarily because these couplings
are allowed by symmetry. The lattice also has the attrac-
tive feature of having four sublattices thus allowing for
up to four-fold degeneracies for @ = 0 magnetic order.
The phases of the model in zero field as a function of ¢
were studied in Ref. [57] and this analysis was extended
to finite field in Ref. [58]. There are four phases in zero



field: the collinear ferromagnet, a Néel phase, and two
further antiferromagnetic phases called skew-stripey and
skew-zigzag.

The hyperhoneycomb lattice is also the iridium Ir**
sublattice in S-LisIrOs. The oxygen ions in this mate-
rial form a lattice of edge-sharing octahedra such that
the Ir-O-Ir bond angle is 90° and this geometry provides
the basis for a microscopic mechanism leading to Kitaev-
Heisenberg couplings [I8] 19]. The spiral ground state
of this magnet in zero field is suggestive of the presence
of significant off-diagonal symmetric, or I', exchange in
this system and, in general, we expect materials to de-
viate from the ideal Kitaev-Heisenberg model. However,
when there is a family of magnetic materials with similar
crystal structures a certain degree of fine-tuning is com-
patible with the existence of materials proximate to the
Kitaev-Heisenberg limit.

The particular example we take in this section is the
hyperhoneycomb Kitaev-Heisenberg Néel antiferromag-
net in zero applied magnetic field. We note that there is
an order-by-disorder mechanism that fixes the moments
to lie along one of the Cartesian axes and, without loss
of generality, we choose this to be the [001] direction.
This example will turn out to have enhanced magnetic
symmetry described by a spin-space group that is not iso-
morphic to a magnetic space group and, therefore, that
could not be inferred simply by requiring that the mag-
netic structure be left invariant by space group transfor-
mations.

Fig. [ illustrates features of the magnon spectrum
within the Néel phase for non-vanishing Kitaev coupling
(¢ = 0.35w). The main panel shows the band degen-
eracies within the first Brillouin zone. There is one
plane (shown in green) where the four magnon bands are
symmetry-enforced to pair up into two two-fold degen-
erate bands. This plane is intersected by several nodal
loops that can be inferred from compatibility relations.
They are protected by glide symmetry on their respec-
tive mirror planes. One of these, between bands two and
three, is confined to the plane through the I" point per-
pendicular to the nodal plane. The existence of this nodal
loop implies that the nodal plane bands meet at a four-
fold degenerate nodal point (shown in black) at the Z
point. The band structure in the vicinity of the Z point,
plotted with one axis in the I' — Z — Y plane and another
perpendicular to this plane, is therefore a double cone
emanating from a single point where the two cones touch

J
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along a plane. The magnon band dispersions through the
Z point in a nodal plane direction (Y — Z) and an out
of plane direction (Z — L) are shown in the lower panel
of Fig. 2l The aforementioned nodal loop shrinks as the
Heisenberg coupling is reduced, forming a 4-fold degen-
erate line along I' — Z in the Kitaev limit. One further
symmetry-enforced nodal line runs along the line Z — A
(and equivalently by reciprocal vector translation along
Y — Al).
B. Representation Theory

We saw in Section [[T] how to proceed from localized or-
bitals to band structures using symmetry considerations
alone. Here we show that the representation approach
allows us to account for the symmetry protected features
of a magnon model and enumerate the kinds of magnon
band topology that can arise for the given symmetry.

The full group is GNeel = Hyeel + T C% (8)Hyeel with
coset representatives

HNeel =

E+dy 4 d3 +C% 4+ C3Y(s) (P +dy + C% 4 C5) + C3(s)
(41)

giving 16 elements in all and then there are translations
in addition to these. Here we have used a notation for
the symmetry elements where pure spin transformations
are labelled with s and the remaining elements are com-
bined spin and space transformations — they are locked
to one another. All symmetry elements are defined in
Appendix [A] and a short introduction to group notation
is given in Appendix [C]

The hyperhoneycomb lattice belongs to Wyckoff posi-
tions 16g. The magnon band representation (BR) p’é is
induced from the representation p}g(ig of spin transverse
components (J 1, J~) around the ordering vector.

If we take as representative of the orbit the position

ing = 11, the spatial site-symmetry group is:

G o0 = {E| 0} + {2001] —1/4,-1/4,0} = C5  (42)

If we now consider also the possible additional spin ro-
tations we get the enhanced magnetic (spin-space) site-
symmetry group G§6Sg (noting that spin rotations leave
the position invariant):

[E[{E]0}] + [2010/| {E]0}] + [4g10]l {2001]=1/4, ~1/4,0}] + [4g10]l {2001|-1/4, —1/4,0}]

+ 2010 {E10}]" + [2101 [ {EI0}" + 21001l {2001/—1/4, =1/4,0}]" + [2001]| {2001|—1/4, —1/4,0})

Note that the a, b, ¢ coordinate system is used here and
in all the group theory calculation (see Appendix . In

(

addition we separate out the spin and space transforma-
tions using notation introduced in Section [[TA] The first



line is the unitary part which is isomorphic to the Cy
point group. In the second line there are anti-unitary
elements (prime sign) which always give [E||E] when
squared (the translation part is nonzero because of the
choice of origin and cancels out). From the anti-unitary
elements we obtain (a) coreps (see Eq. and so no
extra degeneracies in the irreps of Cy4 are expected.

The transverse components (J*,J7) therefore trans-
form as irreps of Cy. The symmetries act on the global
conventional frame, while the transverse components are
around the ordering directions, so in the local frames.
The spin t@/nsformations in local frames T’s are then ob-
tained as Tg = R?TSRZ- where index i appears in both
rotation matrices because the symmetries considered here
are site preserving. In this case, the matrix representa-
tion of the spin rotations in the local (J*,J7) basis is:

= (3 5),

Comparing with the character table of Cy we see that the
representation decomposes to:

o) = (5 1) -

11

and specifically p};'f = I's and p156,g = I'y. Here it is
important to note that these two reps are complex con-
jugates of each other, as required by the relationship be-
tween the transverse spin components S™ (that maps to
the Holstein-Primakoff a operator) and S~ (that maps
to af).

To mduce the local representation to the full group
(ps, = pS 59 4 GS5) we need to consider all the orbits of
the Wyckoff position {¢o = gaq1 | 9o € G}, a=1,...,n
with multiplicity n of the Wyckoff position. For 16g the
multiplicity inside the primitive cell is 4 (while 16 in the
conventional cell), therefore we can choose representative
Ja as:

= [E[[{E]|0}] , g2 = [2101] {2010[—1/4,—1/4,0}]
g3 = [E {mo10[1/4,0,1/4}] ; g4 = [2.101[| {-1[0}]

Now we have all the ingredients necessary to use the gen-
eral formula for induction. Since the characters of the
band representation include all the information we need,

169 =T3+Ty (44)  we can simply note that:
J
2o 0xp =i (Wk) - taaX, w0 (95" [EI{E|~taa}] hga) D€ G,
Xok . (h) = = (46)
Pa,s | 0 h ¢ Gqu

where t,, = hqa — g, The second line is always zero
since if h ¢ G55 e then the symmetry will permute the

sublattices glvmg an off-diagonal band representation
matrix. Therefore for the Néel case we will have:

X, (Zowoll {E]0}]) = —4 (47)
X, ([0l {2ooal-1/4,-1/4,0) =0 (48)

Now we have the full band representations and we can

subduce it to different little groups plgl =ps, 4 G’scs-
The representations of the enhanced magnetic little

groups GEg are straightforward to find for points k inside

J

S/T= [E|{El0}] +

+ [Ell{-1]o}

[2010[| { E£]0}] +
+ [2010/l {-1]0})

[4d10ll {m100]0,1/4,1/4}] +
+ 4510/l {210000,

(

the Brillouin zone and, for symmorphic groups, also on
boundary points. Indeed in these cases we need only find
the point group isomorphic to the little co-group G'gs (lit-
tle group without primitive and non-symmorphic transla-
tions) and decompose into the irreducible representations
of that group.

The Nodal Surface — For example we can explicitly
calculate the enforcement of nodal surface E = (0, u, w)
(plane I' — Z — T in conventional basis) for the Néel an-
tiferromagnet with [00 + 1] moments. The little group
(factored out primitive translations) on this high sym-
metry surface is:

[4010ll {m10010,1/4,1/4}]
,1/4,4/4}]/ + [4050ll {2100|07,1/4771/4}],

where we note that the spin and space transformations are coupled but distinct, highlighting the importance of the
enhanced symmetry coming from the internal spin symmetry. The unitary part is isomorphic to Cy with character

table [l The coreps will therefore be given by the test:

> Xp(hi) =

hkl

— |QE
2 (XE([E|| {E]0}]) + x5 ([2010]| {E|O}])) = {g = |G&l

Type (a) if p=E, Ef

49
Type (c) if p=E[, E5 (49)



where hg, are all the anti-unitary elements of
the little co-group (such that hgk = -k +
gi;)- We obtain therefore a doubly-degenerate corep
DE~(2) = (Ey, E5)(2) with x(2010]| {E|0}]) = —2 and
X([4510]l {m100/0, 1/4,1/4}]) = 0.

Since we know the band representation p’éy s, for ev-
ery k we can now subduce it to the surface E and from
its characters in Eqgs. and 47) we get (the number in
parenthesis indicates the dimension of corep):

pE, =2DE"(2) (50)

So we conclude, on the basis of spin-space symmetry, that
the magnons on plane E are two-fold degenerate where
the anti-unitary symmetry and the resulting binding of
irreps is responsible for the degeneracy.

Four-fold Degenerate Nodal Point — To analyse the
degeneracies of the E plane, we were able to rely on
the little co-group being isomorphic to a point group
and use standard tables to decompose the representa-
tion into irreps. But, when k is a boundary point and
there are non-symmorphic elements, the situation is, in
principle, more complicated and we may need to consider
projective representations. A representation is said to be
projective when A(h;)A(h;) = p(hi, hj)A(hy), where A
are matrix representations of group elements h; € GEq
and p(h;, h;j) = exp(—ig; - w;) is an element of the fac-
tor system, with g, = h;lk — k and w; the transla-
tion associated to h;. If p(h;,h;) = 1 for all cases
then we reduce to ordinary (non-projective) representa-
tions. If this is not the case we proceed by studying the
representations of the central extension of the little co-
group G’§S = G&, ® Z, with kernel Z,, the cyclic group
of integers 0,1,...,(¢9 — 1). The number g comes from
the parametrization of the factor system as p(h;, hj) =
exp(2mia(h;, hj)/g), where a(h;, h;) =0,1,...,(g—1) and
the group elements are of the kind (h;,«) with prod-
uct rule (h;,)(hy,B8) = (hihj,a + B + a(hi, hj)). Of
all the irreps of G’S“S we are interested only in the ones
giving the right factor system, that is the ones with
A(E,a) = exp(2mia/g)L. Since the set of elements
(hi,0) is isomorphic to G’S“S, we can now extrapolate the
character tables of those irreps and build the table of pro-
jective irreducible representations of G’§S (and therefore
the one of GEy, adding the right phase factors coming
from translations).

These considerations are relevant to the point Z =
(0,0,—1) (in the conventional basis), which in the Néel
[00 £ 1] case is four-fold degenerate. This point is highly
symmetric — the little group G%S is the full spin-space
group. The details of the representation theory for this
point can be found in Appendix [D} Here we summarize
the chain of reasoning. First of all one can show that the
factor system at the Z point is nontrivial. In particular,
p([2-101 [ {=1]0}]) = —1. _

We then find the central extension group for G%S with
g = 2. This is a group with 32 elements that is iso-
morphic to GZ; = Duj, + Dap x ([4810/| {m100/0}]). The
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irreps of G%S can be obtained by conjugating the ones
of the subgroup Dy, by the symmetry |41, {m100/0}].
Of these irreps we are only interested in the ones with
A([E|{E|0}],1) = —1. The table of relevant irreps
is given in Table [[V] and these are all two-dimensional.
We then return to the anti-unitary elements and look
for additional degeneracy in the corepresentations. The
standard test reveals that the magnon bands belong to
corep with class (c) binding two two-dimensional irreps.
The overall degeneracy is therefore four-fold as was to be
shown.

Other symmetry constraints on the band structure —
All the degeneracies of the Neel case can be seen in
Fig. 2] Here the group theory enforced degeneracies are
the nodal plane, the 4-fold degenerate points and the
straight lines A = [Z A],[Y A;]. All the other curved lines
are given by compatibility relations and are protected by
glide symmetries on mirror planes. The bands (2, 3) (red)
are degenerate on a chain of loops on mirror planes d;
and d3. The band (1,2) (green) has a closed nodal line
on mirror plane d3 intersecting the nodal plane.

V. SPIN-SPACE GROUPS AND NODAL
VOLUMES

Heisenberg models have the property that the spin
space part of the symmetry group is completely decou-
pled from the spatial part. In the paramagnetic phase,
this symmetry group is the three dimensional rotation
group. The effect of the spin group on the magnon band
structure for Heisenberg models has some general fea-
tures that we discuss in this section. While this section
largely reviews known results [8] [9], it is useful to re-visit
them and cement their spin-space origin before breaking
new ground.

The simplest case is that of the Heisenberg ferromagnet
on an arbitrary lattice. The ground state is collinear, the
magnetic structure preserves the translational symme-
try of the lattice and, because spin space and real space
are decoupled, the other lattice symmetries are also pre-
served. It follows that the symmetry group of the mag-
netic Hamiltonian that preserves the magnetic structure
is the space group of the underlying lattice times a spin-
space group Gj); = G ® Gg where the elements of Gg
are: axial rotations through angle ¢ about the moment
direction, T Co where the C, is about an axis perpen-
dicular to the moment direction — the choice of axis is
unimportant as a change in the axis may be absorbed
into an axial rotation. Because spin and real space have
decoupled, we label the magnon eigenstates with irreps
coming from the space group and an irrep from the spin
group. This means that there is no interplay between the
spin and space parts of the symmetry group.

The unitary part of the spin group is the continuous
group Co. This is the only nontrivial element of the lit-
tle cogroup at a general position in the zone for a general
ferromagnet. This symmetry element leads to an infinite
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G% | [EI{EI0}] | [2010[l {EI0}] | [4d10ll {m10010,1/4,1/4}] | [4g10ll {m100[0,1/4,1/4}] | Type Coreps
L2 1 1 £ 3 (2)
By 1 1 -€ -¢ (a)
By 1 -1 £ -€ (c)
Ly 1 -1 -§ £ (c)

TABLE I. Character table of the unitary part of G§s. The phase factor is £ = exp(i E- (05 1)) = exp(i 5 (u + w)).

number of irreps labelled by integers but the invariance
of the magnetic moment under the group operations im-
plies that the rotation is fixed to J= — eF*®J=. In other
words, the rotation of the transverse spin components
picks out irreps with n = +1 and also these rotation
operators are diagonal operators in the basis of trans-
verse components. Invariance of the magnon Hamilto-
nian under such axial rotations (or otherwise, inspection
of Eq. shows that Bgy (k) = 0 for collinear Heisenberg
ferromagnets. This ensures that magnons are eigenstates
of the global transverse spin rotations. Diagonalizing the
Hamiltonian unitarily then reveals that the upper A block
components and the lower A components are eigenstates
of the Hamiltonian but with different irrep label n. It
follows that the magnons are each labelled by a common
1D irrep of C. They also have an irrep label originating
from the space group symmetry. For collinear Heisenberg
ferromagnets, any degeneracy in the magnon spectrum
that is enforced by symmetry must come from the space
group symmetries.

For collinear ferromagnets with inversion symmetry
that maps magnetic sublattices into themselves, the non-
trivial part of the group at a general position is larger

GEy, = Ou(s) (E+TC5 (s)P) (51)

and, in particular, it contains an anti-unitary part. The
symmetries act on the moments like: P : Jf — JF,
T :Jf — —JF and Cy(s) : J&F — —JF (where we
choose C3 (s) = CY(s)). Therefore the additional ele-
ment 7C3-(s)P acts like an identity and does not mix
the irreps coming from the axial rotations.

The next simplest type of Heisenberg model is one with
a collinear antiferromagnetic ground state. The two mo-
ment directions may be related by

JE = —=Jy JY = T T — —Jf (52)

where 2z is the quantization direction. As in the ferromag-
netic case, C, is an element at a general position and
the oppositely oriented moments transform under irreps
of this group with opposite signs +1 and —1.

Let us first consider the classic example of a collinear
antiferromagnet on a black-and-white lattice that in-
cludes the cubic lattice with a simple Néel ground state
and the rutile lattice [8]. Rather than enumerating all
the symmetry elements we observe that there is a simple
translation 7 that maps the magnetic sublattices into
one another. Then the general position has symmetry

elements
Gitm,, = (Cl(s) + [Co[{E|T}]) = Dl(s)  (53)

The [C3 || {E|7}] mixes the two sublattices thus binding
the 1D irreps of C into 2D irreps of D.,. This accounts
for the double degeneracy of the modes. For certain lat-
tices of this sort including the cubic lattice, there is an
additional symmetry at the general position coming from
the lattice inversion symmetry that swaps the magnetic
sublattices

GRiMyyr = (ON(s) + [C I {EIT}]) (B + TP)
=~ Dl(s)(E+TP) (54)

The additional PT symmetry, taking the group into one
isomorphic to a type II magnetic dihedral point group
D, 1’, does not further bind irreps at the general position.
In passing, we mention a case where a volume degeneracy
can arise on a black-and-white lattice in the presence of a
single ion anisotropy of the form O%, thanks to inversion
symmetry [8]. Here the general position has

GSbui,. i = (C3(s) + [C5I{BITY)) (B + TC3(s)P)
=~ Dl(s) (E+TC3"(s)P) = D\(s)  (55)

The unitary part Dg(s) has 1D irreps, but anti-unitary
Cy are created by tilted C% elements and 7C5Y. The

final isomorphism is D;H(s), a type III magnetic point
group (explicitly 4’2’2, i.e. with anti-unitary C, rota-
tions) which has 2D irreps at the general position.

For collinear antiferromagnets that do not lie on black-
and-white lattices — lattices composed of a pair of sub-
lattices separated by a translation — such as the honey-
comb and hyperhoneycomb lattices, the magnon bands
are doubly degenerate originating from inversion sym-
metry. At the general position

GShy, = Cl(s) (E+TP). (56)

The key here is that the inversion symmetry swaps the
magnetic sublattices. The inversion acts as P : Jf =
—J;7, therefore PT : JF = JbjE mixes the two magnetic
sublattices, pairing the conjugate irreps into 2D irreps.
Indeed, in this case, GEFPMI is isomorphic to a type II
magnetic cyclic point group C, 1" which gives 2D irreps
for n > 2 (for Cy there are no conjugate irreps, only a
single real one). When there is inversion symmetry that



does not swap the magnetic sublattices, the analysis is
similar to the ferromagnetic case considered above.

We have established that the hyperhoneycomb antifer-
romagnet has a double degeneracy at the general posi-
tion. In fact, it has more degeneracy still enforced by
lattice symmetries at more symmetric wavevectors as we
show in Appendix [E]

VI. ANISOTROPIC HONEYCOMB LATTICE
MODELS

We turn now to the honeycomb lattice in 2D with
anisotropic exchange couplings of different types as in
Fig. [3land use k - p arguments to understand the role of
spin space symmetries in the protection of Dirac points
and how these can be gapped out leading to topological
bands.

The first model we consider is the much-studied nearest
neighbor Kitaev-Heisenberg model. The relevant point
group under which the exchange is left invariant is Dsq
with nontrivial symmetries including three-fold rotations
about the hexagonal centers, three two-fold rotational
symmetries about axes through opposite hexagonal ver-
tices and inversion symmetry again about the hexagonal
centers. In addition there is the pure spin space Do sym-
metry discussed above and time reversal symmetry.

The Kitaev-Heisenberg model has a rich semi-classical
phase diagram in an applied magnetic field [32]. In the
polarized phase — both the zero field ferromagnet and the
continuously connected field-polarized regime — the two
magnon bands are connected at Dirac points when the
field direction is along meridians [zy0], [£0z] and [Oyz]
relative to the Cartesian frame that defines the Kitaev
Ising directions. For other field directions, there is an
energy gap between the magnon bands and they carry
Chern number £1 [33] B4]. The sign of the Chern num-
ber swaps between the bands when crossing one of the
meridians. These facts can be understood on the basis
of the spin-space symmetries of the magnetically ordered
configurations.

As a reminder, the stability of Dirac points in hon-
eycomb tight-binding models follows from the presence
of time-reversal symmetry 7 and inversion P. Inversion
swaps sublattices and takes k — —k. A possible time
reversal operation is complex conjugation and k — —k.
The effective model in the vicinity of the Dirac point is:

Hy = dy (K)o, + dy(k)oy, + d.(k)o, (57)
that maps to

Hy = dy(k)oy + dy(k)oy, —d.(k)o. (58)
under PT so the mass term must vanish if P7T is a sym-
metry. Furthermore, the Dirac points are fixed at the K
and K’ points if C3, is also a symmetry.

Consider the highly symmetric situation where the mo-
ment points perpendicular to the honeycomb plane — the
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(a) Kitaev

ey

(b) Second neighbor Dzyaloshinskii-Moriya exchange

(c) Nearest neighbor Dzyaloshinskii-Moriya exchange

FIG. 3. Honeycomb tiling: (a) with different coloured bonds
indicating the pattern of distinct Ising couplings of the Kitaev
exchange, (b) showing the second neighbor bonds and arrows
indicating the direction of the DMI vector where the bond
orientation is always anti-clockwise on the triangles within
each hexagon, (c) showing the DMI vectors for the nearest
neighbor DMI for a single honeycomb layer on a substrate
where, here, the bond orientation is from the A to the B
sites.

[111] direction. The symmetries are then E, C3, C4T,
and P. CY} is a lattice symmetry but it reverses the mo-
ment direction which can be restored under the action of
T. Note that there are no spin space symmetries. The



only anti-unitary symmetries are combined with lattice
transformations and, in particular, the combination of
one of these elements with inversion does not map k to
itself. The result is there is no constraint that the gap
close between the magnon bands and since pure time re-
versal is broken, although inversion is present, the Berry
curvature may be non-vanishing. The model therefore
lies in the bosonic Altland-Zirnbauer class A [11] and the
bands may therefore be topologically nontrivial.

Now consider the case where moments are polarized
along the meridian [zy0]. The symmetry elements are
E, TC%(s), P and products of these. As in the case of
[111] moments, the time reversal operator is a composite
with a Cy symmetry. However, in this case, the Cy is
a pure spin space transformation that, therefore, does
not transform the momentum. The presence of inversion
symmetry and the 7C3(s) are sufficient to forbid the
mass term so Dirac points are present albeit not at the
K, K’ points owing to the absence of C5. It follows that
there are Dirac points whenever the field is aligned along
any one of the cubic meridians with one spin coordinate
vanishing.

As an aside, the [100] moment direction has Dirac
points but also more symmetry than a general point along
the cubic meridians. These elements include E, C§(s),
TCY(s), TC3(s), Co°T and P.

For a general moment direction [zyz] with none of
these vanishing, the only symmetries are FE, P so the
symmetry constraints are not sufficient to close the gap
between the magnon bands.

Spin-space symmetry is also important to understand
magnetic models with Dzyaloshinskii-Moriya exchange

where the D vector in D - (j, X j]> is collinear. In

this case, there is a continuous spin space rotation sym-
metry about an axis parallel to D. We now consider
the honeycomb ferromagnet with second nearest neigh-
bor Dzyaloshinskii-Moriya exchange with D perpendicu-
lar to the plane. When the moments are polarized along
D, the only manifestation of the spin-space symmetry
group is the CZ, that simply adds a quantum number +1
to the magnons as discussed for the case of Heisenberg ex-
change. The remaining symmetries are identical to those
of the Heisenberg-Kitaev model as discussed above so
there is a gap between the magnon bands and nonzero
Berry curvature. In fact, once again the magnon bands
have nonzero Chern number.

If, instead, the moments are aligned in the honeycomb
plane, all the honeycomb lattice symmetries are present
once we allow for rotations in spin space around the D
axis. There is, in addition, a TC%(s) symmetry that,
taken together with the inversion symmetry, ensures the
presence of Dirac points that now, owing to the C3, are
located at the K, K’ points.

We contrast the model with second neighbor
Dzyaloshinskii-Moriya exchange and parallel D vector
with the model with nearest neighbor Dzyaloshinskii-
Moriya with in-plane D that may be present for single
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layer honeycomb magnets grown or mounted on a sub-
strate. In this case, there are no spin space symmetries
and, with moments perpendicular to the plane, the only
nontrivial symmetry is C§. The two bands are therefore
gapped and topological. As noted in Ref. [55], linear spin
wave theory fails to capture this feature because there are
no O(S) quadratic terms coming from the antisymmetric
Sii S7 couplings. In this case, symmetry breaking due to
the presence of the D coupling comes from higher order
corrections.

VII. NODAL LINES, WEYL POINTS,
SPIN-SPACE GROUPS AND MAGNETIC SPACE
GROUPS

We now return to the case of the Kitaev-Heisenberg
model on the hyperhoneycomb lattice. In Section [[V] we
identified the Néel phase of this model as having non-
trivial spin-space group symmetry with dramatic conse-
quences for the magnon band structure including a nodal
plane, four-fold degenerate point and an abundance of
nodal lines. We now consider the collinear ferromag-
netic phase. This offers some important lessons about
spin-space symmetry groups for magnons and their ef-
fect on band topology. For, as we shall see, this phase
makes accessible a tower of different spin-space symme-
try groups, by tuning the direction of the moments, with
a variety of properties. For the several spin-space groups
relevant to this model, we present the features of the
band structures that are imposed by symmetry, includ-
ing Weyl points and nodal lines. For comparison we also
report the features expected on the grounds of invariance
of the magnetic structure thereby giving several examples
of how spin-space symmetry leads to richer band struc-
tures. We shall also see that spin-space groups may be
isomorphic to ordinary magnetic space groups including
type II groups — of the form G + 7 G — that ordinarily
would not describe magnetically ordered systems.

To begin, we add a Zeeman term to the Hamiltonian,
Eq. 0] At sufficiently large fields, the moments form
a collinear ferromagnetic state and both the symmetry
group associated with the magnetic order and the extent
of the polarized phase depend on the field direction. For
the [111] direction, Fig. shows the stability region of the
field-polarized ferromagnet as obtained from the conden-
sation of magnons within linear spin wave theory that
also gives the ordering wavevectors indicated. One ob-
serves that the polarized phase is continuously connected
to the zero field ferromagnetic phase over a broad swathe
of ¢. The phase diagram is qualitatively similar for all
field directions.

For this case, Fig. [5] shows the magnon band structure
along high symmetry directions in the Brillouin zone for
¢ = —37w/5 and zero applied field showing Goldstone
modes with quadratic dispersion at I'. At finite field, the
spectrum is completely gapped and details of the band
structure change. However, some features are robust to
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FIG. 4. Phase diagram of the Kitaev-Heisenberg model in
a [111] field. The phase boundary is obtained from the con-
densation of magnons in linear spin wave theory about the
collinear field-polarized ferromagnetic state. The condensa-
tion wavevector is indicated. The wavevector E, = (—2,0,0)
is the one characteristic of the vortex and AF vortex phase,
as in Ref. [58], which is indeed associated with a second order
phase transition.

changes of parameter ¢ and the magnitude of the field:
these are the Weyl point along the line I'Y and the double
degeneracy of the lower and upper magnon bands along
zone boundary lines: AZ, YT and Y A;. These nodal
lines cross at point Y.

We now examine the magnon band structure from the
point of view of symmetry. Once again, the spin space
part of the group Gy consists of SO(3) for the Heisen-
berg coupling alone. For the Kitaev coupling, the ex-
change on the z bond is

0
0 (59)
0

and the transformations that leave this invariant are the
axial rotations C% and perpendicular rotation CQOyZ
that together make up Ds. Taking the three in-
equivalent bonds together leaves the symmetry elements
{C3, CY, C5} = Dy. The paramagnetic parent group is
Gy =(G+T7G)®D;.

We now find the subgroup G,; < Gy that leaves the
collinear ferromagnetic structure invariant using separate
allowed real space and spin space transformations for the
[11z] direction with z # 0. This turns out to be

Gy =E+P+Ci(s)(dy +Cb)
+ T (dy + CS + C3(s)(ds + C5))  (60)

The group contains distinct spin space and real space
transformations as well as anti-unitary elements. How-
ever, the group is isomorphic to the magnetic space group
Fd'd'd as we shall discuss in more detail below.
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Now, in contrast, if we lock the spin and space transfor-
mations and determine the symmetries of the magnetic
structure — in other words those elements of the group
G + TG that leave the magnetic structure invariant —
we find

Gy = E+P+Tdo+TCE = (E+P)+Tdo( E+P) (61)

which is the magnetic space group C2'/c’.

The magnetic symmetry of the magnons is therefore
higher than that of the underlying magnetic structure
owing to the freedom to perform D, transformations in
spin space. This enhanced symmetry has important con-
sequences for the magnon band structure and band topol-
ogy. In particular, one can show that the lower sym-
metry magnetic group C2'/c’ enforces degeneracy along
line ZA but not along other directions. But when the
full symmetry group is taken into account, as we show
in Appendix [F] all the aforementioned observed magnon
band degeneracies are enforced by symmetry — the sym-
metry guarantees the presence of nodal lines. In addi-
tion to arguments based on representation theory we give
some more direct justification of zone boundary nodal
line degeneracies for the [111] hyperhoneycomb ferromag-
net protected by magnetic glides in Appendix [G]

In a similar way, the spin-space group may be found
for the remaining symmetry-distinct field directions. Ta-
ble [ summarizes the results for the collinear ferromag-
net and for three zero field antiferromagnetic phases —
simple Néel order, the skew-stripy phase and the skew-
zigzag phase. For the ferromagnetic phase, there are 10
different groups. One of these is the Heisenberg ferro-
magnet for which the group is independent of the field
direction. The remainder are for the Kitaev-Heisenberg
model for different high symmetry directions and the gen-
eral direction [zyz].

There are several observations to make about the
groups listed in the table. First of all, because the lat-
tice has inversion symmetry and the moments are invari-
ant under this operation, all the ferromagnetic spin-space
groups have inversion symmetry. They also all have spin-
space elements and non-symmorphic elements. Inspec-
tion of the anti-unitary part of the group reveals that,
for a random magnetic field direction, the group has no
magnetic elements. Then, of the more symmetric field di-
rections, two ([£141z] and [+1F 12]) have time reversal
multiplying a glide and the rest have time reversal mul-
tiplying an element that acts on spin space. As we saw
when discussing honeycomb lattice models, the TCs(s)
elements behave like pure time reversal symmetry be-
cause they simply reverse the sign of k. Since inversion is
also present, these cases have PT symmetry. Fig.[7]shows
the degeneracies in magnon band structures in instances
where there is effective P7T. Both have nodal lines in the
spectra protected by PT with the Heisenberg case (in
the left panel) having various zone boundary nodal lines
and one pinned to a bisecting plane in the Brillouin zone.
The less symmetric [20z] case (right panel) has interior
nodal lines that are not pinned.



rs
3.51

3.01
2.5<r1—
L0
1.51
1.0{7

DY,

bvy
0.5

r+
0.01*

r vyT zr X AlyTXl XA ZT L
wavevector

(b) ¢ = —0.6m

(¢) ¢ = =047

FIG. 5. Example of a field direction without P7T in the
magnetic group isomorphism, therefore allowing Weyl points.
Magnon band structure in [111] field and ¢ = —37/5 along
high symmetry paths in the Brillouin zone (top). Here the
irrep labels are marked for points I' and Y, showing how the
Weyl node along I'Y arises from compatibility relations. On
the bottom the degeneracies of the band structure are shown
for case ¢ = —3w/5 (left) and ¢ = —27/5 (right). The green
lines are nodal lines between bands (1,2) and/or (3,4), while
red lines are for nodal lines between (2, 3). The colored point
are Weyl points, between (1,2) (blue) and (2,3) (red). The
case ¢ = —3m/5 has a stable Weyl point along I'Y. Indeed
moving to ¢ = —2m/5 this point is still present (closer to
Y). At this fine-tuned point in parameter space, there is a
proliferation of other Weyl points. There are also new nodal
lines that are protected by the glide di (not by P7T) and which
are therefore constrained to the mirror plane.

A summary of the groups that appear by rotating the
field direction is given in Fig. [} This plot shows the
groups arranged by increasing symmetry with the most
symmetric group — that of the Heisenberg Hamiltonian
— at the top. The decoupled spin group SO(3) for the
Heisenberg exchange is broken down to Do by the Kitaev
coupling. The figure includes the groups that leave the
magnetic structure invariant without spin-space transfor-
mations allowed by the Hamiltonian (dark blue). The
figure also includes those groups that leave the mag-
netic structure invariant up to spin-space transformations
(cyan) and these are all indexed using isomorphic mag-
netic space group notation. The arrows connecting dif-
ferent groups reveal the symmetry enhancement in going
from dark blue to cyan groups.
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paramamate __y/Fddd1’ x SO(3) (s)

.

" [Fddd1’ x ClL(s)

Fddd1’ x Dy(s)
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"Fddd1'x Cls)"
.-*" Heisenberg-Kitaev
& T et paramagnetic

C2/c1"x Cli(s)

FIG. 6. The hierarchy of spin-space groups for the
Heisenberg-Kitaev ferromagnet on the hyperhoneycomb lat-
tice. At the top, there are the paramagnetic parent groups of
Heisenberg and Heisenberg-Kitaev coupling (magenta) and,
below, all the relevant subgroups for different ferromagnetic
directions. The paramagnetic spin-space group is enhanced
from the normal grey group Fdddl’ (dashed arrow). For
each ferromagnetic case, the magnetic group of the ground
state is given (dark blue) and its enhancement (arrow) by the
Hamiltonian spin-space symmetries to a group relevant for
the magnon spectra (cyan). The ground state symmetries are
enhanced in all cases as a result of the parent group pure spin-
space symmetry. For all groups we have used magnetic space
group notation. For most cases, the spin-space group is iso-
morphic to a magnetic space group. The only exception is the
[001] case. However, for [001], the group Fdddl’ x Cl(s) (dot-
ted cyan) nevertheless correctly captures the magnon band
degeneracies.

Table [[T] illustrates that, for the ferromagnet, the spin-
space groups are isomorphic to magnetic space groups
except for the [100] moment direction. In contrast, the
spin-space groups for the antiferromagnetic phases do not
coincide with any of the magnetic space groups. To un-
derstand these coincidences better, we first note that for
collinear ferromagnets the only possible net spin trans-
formations are axial rotations. These commute with one
another and, when they match the real space point group
transformation, the group multiplication table matches
that of a magnetic space group simply because the spin
space transformation is not distinct.

For example the FM [+£1 4 1 0] has unitary elements:

Hgs = E+P+ds+CS+C5(s) (dy+da+CE+C8). (62)



Elements like C3(s)C§S = (2100l {2001|—1/4,—1/4,0}]
can be mapped to real space symmetry only elements
[E|l{2001]—1/4,—1/4,0}] preserving the multiplication
table of the group. The isomorphic group is therefore
an usual magnetic group with unitary elements:

HISO=E+7)+d3+026+d1+d2+cg+02b, (63)

which corresponds to the unitary part of Fdddl’. The
[£1 £ 1 0] spin-space group, despite being isomorphic
to a normal magnetic space group, has an enhancement
with respect to the ground state magnetic group Fd'd'd
with fewer unitary elements:

Hgs=E+P+ds+C5 (64)

We further note that even where there is an isomor-
phism to a magnetic space group it is important to keep
track of the spin space transformations in representa-
tion computations. Secondly, not all ferromagnetic spin
space groups are isomorphic to magnetic space groups.
For example, for the direction [00 =+ 1], if we look for
a magnetic space group that is closest in form to the

spin-space group, we would find Fdddl’ x C’g (s). But if
we inspect the elements of the spin-space group we find
C3(s)C§ = [4d10l {2001|—1/4,—1/4,0}] which does not
respect the multiplication rule of the Fdddl’ group (triv-
ially the square of the element is not identity). Even so,

Fdddl’ x Cy (s) does correctly capture the band structure
degeneracies. This is because in this specific case, the de-
generacies are restricted to the Brillouin zone boundary,
and there the central extension groups of the two groups
are isomorphic because only spatial elements are rele-
vant. For AFM cases, spin space elements may include
rotations about axes perpendicular to the moment. Since
these generally do not commute with other spin space op-
erators one tends to find different multiplication tables to
the usual magnetic space groups.

So far we have commented on the types of spin-space
groups that can arise in the Kitaev-Heisenberg ferromag-
net. We now examine the consequences of these groups
for the magnon bands structures. Table [[Tl] summarizes
the symmetry enforced degeneracies for all high symme-
try moment directions for the hyperhoneycomb Kitaev-
Heisenberg model deduced from the representation the-
ory of the groups given in Table [[]] and, in particular,
both the groups expected for the ground state alone and
the full spin-space group. The spin-space group with its
enhanced symmetry leads always to a more degenerate
spectrum except for the [xy0] case.

As we have already observed, some of the spin-space
groups have a time reversal element multiplying a pure
spin space element. This is isomorphic to a pure time
reversal element and the system then has P7 symme-
try that imposes a reality condition on the Hamiltonian
that protects nodal lines and forbids the presence of Weyl
points as in Fig.[7] In the other cases ([zyz] and [11z]) we
have the opposite scenario, with presence of Weyl nodes
and no closed nodal lines (apart from the nodal line pro-
tected by glide symmetry constrained to its mirror plane)
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(a) Heisenberg

(b) FM [z0z]

FIG. 7. Example of field directions with P7 in the isomor-
phic magnetic space group with, therefore, nodal lines allowed
everywhere in the zone. The degeneracies of the band struc-
ture are shown for the Heisenberg case (left) and for field
direction [x0z] with ¢ = —3n/5 (right). The green lines are
nodal lines between bands (1,2) and/or (3,4), while red lines
are nodal lines between (2,3). The highly symmetric Heisen-
berg case has all possible enforced degeneracy boundary zone
lines (green) and the characteristic nodal line (red). The [z0z]
has a much lower symmetry, but still exhibits a nodal line
away from symmetric positions in the BZ, since it has pure
time reversal symmetry in the isomorphic magnetic group,
exactly as in the Heisenberg case, see Table E

as in Fig. In the AFM cases, since the symmetry is
highly enhanced, the presence of closed nodal lines is the
norm, and, as we discussed, nodal planes may also arise.

VIII. SUMMARY AND CONCLUSIONS

The study of band topology has been a gigantic enter-
prise in condensed matter physics over roughly the last
fifteen years. During that time, important insights have
arisen as more symmetries have been considered. The
first known topological band insulator was a Chern insu-
lator that was the inspiration for time reversal symmetric
gapped band topology. Later people devised topological
band structures with particle-hole and chiral symmetries
and, later still, lattice symmetries and their interplay
with time reversal symmetry. In this paper, we have ex-
tended this programme further to include yet more sym-
metric cases by including spin rotation symmetry and
analysing the resulting spin-space groups.

We have given a number of examples of magnetic cou-
plings where spin-space groups are the appropriate sym-
metry groups in the magnetically ordered phase. These
include Heisenberg models, Kitaev Heisenberg models,
collinear Dzyaloshinskii-Moriya couplings and various
kinds of single ion anisotropy.

For various cases, we have worked out the represen-
tation theory of the relevant spin-space group thus pro-
viding the underlying symmetry reason for topological
features in the magnetic excitations on top of magnet-
ically ordered states. These calculations show in un-
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Spin direction

Representative of the unitary subgroup Hgs

Spin-Space Group Gsgs

Isomorphism

Heisen. FM [z y 2]
Heisen. Néel [zy z]
[wy2]
[202],[0y 2]
[zy 0]
[+100],[0 £ 10]
[£1 £1 2]
[£1 F1 2]
[+1 +1 0]
[£1 F10]

(00 +1]
Néel [00 + 1]

Skew-Stripy [00 £ 1]

Skew-Zigzag [00 + 1

(E+P+di+C8+do+CS+ds+CS)(r) + CL(s)
(E +dy + da + CS)(r) + C3(8) [(P + ds + C2 + C£)(r)] + CL(s)
E+P+Ci(s)(di +C%)
E+P+C3i(s)(d +C%)
E+P+C3i(s)(dy +C%)
E+ P+ C5(s) (d1 + C%) + C/Y(s)

) )

)

~ o~ o~

E+P+Ci(s)(d +C%
E+7P+C5(s)(di+C3
E+P+ds+C5 + C5(
E+P+d2+C3 + C5(

dy +d2+C§+C§’)

s) (
s) (dv +ds + CS + C%)

E+P+di+C8+C2Y(s) (dg + ds + CF + C5) + C5(s)
E+di+ds+C§+CyY(s) (P4 da+ C3 4+ CS5) 4+ C3(s)
E+de+ds+CE+CyY(s)(P+di+CE+CS)+ Ci(s)
WE+P +do+ C¢ + CyY(s) (di + ds + CE + CS5) + C3(s)

Hgs + 7C5 (s) Hss
Hss + 7C5 (s) Hss
Hss

Hss + 7CY/"(s) Hss
Hss + 7C5(s) Hgs
Hss + 7C3(s) Hss
Hss + Td2 Hss

Hgs + 7ds Hss

Hgss + 7C5(s) Hgs
Hss + TC5(s) Hss
Hgss + TCQI’y(S) Hss
Hgss + TC5Y(s) Hgs
Hgss + 7C5Y(s) Hss
Hgss + 7C3Y(s) Hss

~ Fdddl’ x Cl(s)
>~ (C2/c
=~ C2/cl’
=~ C2/cl’
=~ (C2/cl’ x Cl(s)
~ pddd
~ pddd
~ Fdddl’
~ Fdddl’
~ "Fdddl’ x Cl(s)”

TABLE II. Spin-space groups Gss (and their relative unitary subgroups Hgg) for various phases of the Heisenberg-Kitaev
model on a hyperhoneycomb lattice. For the collinear ferromagnet, the symmetry groups for different moment directions are
listed. The right-most column indicates whether there is an isomorphism between the spin-space group and a magnetic space
group. The short-hand notation used for the symmetry elements is: pure spin transformations are labelled with s, pure real
space with r and the combined spin-space (locked) symmetry without extra label. Appendix |C|has further information about
the group theory notation.

H. Néel [z y z]|Néel [00 £1]|SZ [00 £1]{SS[00 £1]|H. FM [zyz]| [zyz] | [x0z] | [xy0] |[£1 £1 2]|{[£1 £1 0]{[00 £1]
IBZ GS SW |GS SW |GS SW |GS SW |GS SW |GS SW|GS SW|GS SW|GS SW |GS SW |GS SW
r v v v v
Y (4) v v v v v v |V Y
T (4) v v o @4 |V v v v Vv oV v IV
Z (4) v (4) v v v v v v VIV Vv v v v v
L v
A =[TY] v v v
A=[I"Z] v v v v
S = [[X] v v v
H=[YT] (4) v v v v v v |V Y
B =[ZT) (4) v v v v v v VIV Vv v v
A =[ZA] (4) v v v v VY vV
E = [[ZT] v v v
J=[[XZ] v
M = [[XY] v
GP v

TABLE III. Degeneracies in ordered Heisenberg-Kitaev models for the hyperhoneycomb lattice at all high symmetry points,
lines and surfaces. The first 4 cases are antiferromagnets (where SZ = skew-zigzag and SS = skew-stripy) while the others are
ferromagnets. For Heisenberg Néel and FM ground states the symmetries are given for a generic spin direction [z yz]. The
column G lists the degeneracies expected on the basis of the magnetic space group that leaves the magnetic structure invariant
(and are therefore independent of the coupling). The column SW lists those degeneracies coming from the spin-space group.
The excitations have not only all the degeneracies coming from the ground state invariance but also a significant enhancement
due to the presence of spin space symmetries (especially in the AFM cases thanks to the mixing of spin rotations with the
perpendicular axis). A checkmark represents a double degeneracy, while a number (4) a 4-fold degeneracy. Nodal planes are
present along F = [['ZT] for two AFM cases, while the nodal volume only in the Heisenberg Néel case (see general position

GP).

precedented

from the relevant group — methods that are applicable

detail how to work out band degeneracies

to any other spin-space group. In many of these cases
we have contrasted our findings with the expected band




structures one would obtain with foreknowledge only of
the magnetic structure and the corresponding magnetic
space group.

We have found that spin-space groups of various sorts
can lead to nodal points (Dirac points in 2D, Weyl points
and four-fold degenerate points in 3D), nodal lines (2-
fold and 4-fold degenerate) protected by non-symmorphic
spin-space groups, nodal planes including those with in-
tersecting nodal lines and, in some instances, degenerate
volumes. The rich band structures presented in this work
provide a mere glimpse of the types of gapless band topol-
ogy that can arise from spin-space groups in the magnons
of magnetic insulators and the electronic band structures
of itinerant magnetic materials. As we should expect of
groups of higher symmetry, magnetic groups including
spin rotations are particularly efficient at generating de-
generacies in band structures.

The magnetic space groups are a subset of spin-space
groups where the spin and real space point group ele-
ments are locked. However, we have also shown, for var-
ious ferromagnetic Kitaev-Heisenberg models, that cer-
tain spin-space groups with nontrivial spin rotation ele-
ments can also be isomorphic to magnetic space groups,
albeit groups of higher symmetry than one would expect
on the basis of the magnetic structure alone.

All of the models we have considered are in some
sense fine-tuned. That is to say that spin-orbit coupling
is almost omnipresent in condensed matter systems so
that the magnetic Hamiltonian will tend to include all
terms allowed by symmetry and the moments will then
be locked to real space. Nevertheless, all the couplings
we have included are physically allowed couplings and a
degree of fine-tuning is often feasible in condensed mat-
ter systems because the richness of chemistry admits an
exploration of possible couplings. So, for example, in
many first row transition metal magnets and elsewhere,
spin-orbit is weak compared to the principal exchange
scale and then Heisenberg models may be an excellent
approximation to the magnetism. Indeed Heisenberg ex-
change and XY exchange both of which admit nontrivial
spin-space symmetries have been the canonical models of
magnetism for decades and satisfactorily account for the
properties of a great many magnetic materials.

Going beyond Heisenberg couplings, antisymmetric ex-
change that often appears as the leading exchange con-
tribution in the spin-orbit coupling can be associated to
spin-space group symmetries. Also, Kitaev-Heisenberg
exchange has been argued to be the dominant set of cou-
plings in various magnets with magnetic ions in edge-
shared octahedral cages.

Even where the couplings depart from the spin-space
symmetric surfaces in parameter space, one can imag-
ine that there are materials where the magnon spectra
contain near degeneracies that arise from a nearby par-
ent Hamiltonian with spin-space symmetries and that
these degeneracies would be otherwise mysterious. In
fact, such near degeneracies could be used to diagnose
the presence of dominant Kitaev terms for example or
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at least the absence of certain symmetry breaking terms.
Similarly, even if symmetries are violated that would oth-
erwise protect topological surface states, the boundary
states can remain when the couplings are proximate to
symmetric surfaces in parameter space.

Our work also sheds some light on the phenomenon
of order-by-disorder where accidental mean field ground
state degeneracies are broken down by fluctuations. One
symptom of order-by-disorder is the presence of spurious
Goldstone modes in linear spin wave theory that cannot
be present in the full interacting model by symmetry.
One may ask whether linear spin wave theory may have
other incongruous features in the spectrum that may be
lifted by fluctuations. For the cases we have considered
in this paper where order-by-disorder is present — such
as the hyperhoneycomb Néel state — the answer is that
linear spin wave theory faithfully reflects the spin-space
symmetries of the magnetically ordered state up to the
appearance of Goldstone modes.

This paper points to a number of interesting future
directions most notably the considerable task of carry-
ing out a complete classification of physically relevant
spin-space groups, their representations and associated
band topology. More immediately, it would be inter-
esting to investigate in detail the implications of spin-
space symmetries for electronic systems such as spin-
orbit coupled magnetic semi-metals and to magnetic exci-
tons that are not magnons. More speculatively, one may
ask whether there are physically natural generalizations,
say for SU(N) magnets or exotic order parameters, of the
spin-space symmetries considered here to higher symme-
tries still such as the polychromatic groups.
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Appendix A: Hyperhoneycomb Lattice Conventions
and Symmetries

The hyperhoneycomb lattice is a three-dimensional lat-
tice based around a face-centered orthorhombic cell
with a four site basis belonging to the space group Fddd
(#70). The primitive lattice vectors in z, y, z Kitaev
coordinate system are

R; = (27470)7 Ry = (37372)7 R3 = (_17 172) (A]')

and the basis is

r1 =(0,0,0), 7o = (1,1,0), 3 = (1,2,1), r4 = (2,3,1).
(A2)
The orthorhombic conventional unit cell vectors are

a = (727270% b= (0a054)7 C= (65670) (AS)
The reciprocal lattice vectors are
1 11
Gl :27‘—(67_571)7
11 1
Ga=2r(-5.5-7):
1 1 1
Gs=2m|-,——=,—— ). A4
3 W(?)) 67 4) ( )

This coordinate system is useful to highlight the effect
of global spin rotations compatible with the Heisenberg-
Kitaev Hamiltonian.

Throughout the paper also another coordinate system
has been used, the one used by the Bilbao Crystallo-
graphic Server — the coordinate system of the conven-
tional unit cell a, b, ¢ with origin centered at the inver-
sion point. The latter is simpler for dealing with lattice
symmetries and has been used for all the group theory
calculations. In this coordinate system the primitive lat-
tice vectors are:

we

1

7), Ry — (o

2

11
7272

11

0 - =
) 2725

) me= (b
(A5)

and the reciprocal lattice vectors in the dual basis a*, b*,

dl : (Iayvz’l) =
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c* (such that for example a - a* = 27) are

Gl = (_1>17_1)»
G2 = (15 71771)7
G;=(-1,-11). (A6)

The high symmetry points in the first Brillouin Zone
in both coordinate systems reads:

= (07 0, O)myz = (07 0, O)abc
) = (Oa _17 O)abc
Tyz

2
i ™ ™
7= (55 3),,. = LD
™ ™
7 (_6’_E’O)W = (0,0, ~1)qpe
297 297
X = (% _%7())1.% = (—29/36,0, 0)ape
A = (%_%_g)y = (~11/36,~1,0)asc
197 T
X, — (_%7_%, _g)m = (7/36,—1, — 1) ape
137 37rm
A= (ﬁ _670)3%12 — (=25/36,0, —1)ape
= (5§D, e )

The first Brillouin zone together with the high symmetry
directions and points are shown in Fig. [T}

The lattice symmetries that constitute the space group
G of the hyperhoneycomb include:

e Primitive translations R;

e Inversion P at the bond center of sublattices 2,3
and 1,4 (green and red bonds in Fig. [1));

Three orthogonal Cy axes at the bond center of
bonds connecting sublattices 1,2 and 3,4 (blue
bonds). These axes are parallel to the face-
centered-orthorhombic lattice vectors a, b, and c.
Bonds 2,3 and 1,4 are interchanged via these Co
axes;

Glide planes, d;, do, d3, with translation R;/2 in-
terchanges bonds 1,2 and 3, 4.

Therefore we have for the 7 nontrival symmetry ele-
ments {R| t}, in z, y, z Kitaev coordinates with I sub-
lattice index and in a, b, ¢ system:

(A8)

= {m010|%7 Oa %}(Lbc
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(y,x,2,3), =1
(y,z,2,4), l= 1
dy: (z,y,2,1) = = 0, %, 7 rabe A9
20 (@3:2,1) (y+3,2+3,2+2,1), =3 {mool0, 1, g e (A9)
(y+3,z+3,2+2,2), l=4.
(—y,—az,z,4), l 1
(_yu_x7273)7 l_2 1 1
ds: (z,y,2,1) = = 4, 4,0 A10
si(n2l) (—y—1—z+1,2+2,2), =3 {mool, 3, 0Fase (A10)
(—y—1,—z+1,2+2/1), 1=4.
(_xa_ya Za4>7 l 1
- [=2
,P:dldgldg,l(l‘l,l‘g,xg,l): ( noY 2’3)’ = {—1‘0,0,0}(11)0 (All)
(71’7 Y, 252)7 l 3
(_xa_y, Zal)v l 4.
(_y7 -, _272)7 =1
_ —y,—x,—2,1) =2
0% = d-1dy (g2 ) = 4 TV, — {2,000, =1 —11.. A12
5 =dg di:(2,y,210) (g3 23 -2-94), =3 {21000, =5, =3 }ab (A12)
(—y—3,—2x—3,—2—2,3), l=4.
( z, yza2)a =1
1) [=2
Ct = 4=y s (2,2, 0) = 4 B AL = {2010] = 1,0, L }one A13
2 3 2 - ( Y ) ( T 2,_y_472’4)) =3 {010| 1 4}b ( )
(—x—2,—y—4,2,3), [=4.
(y,2,—2,1), I=1
=2
CS =dy Ny : (z,y,2,1) = (v, %, =2,2), = {2001] — %, =2, 0} ape Al4
2 2 dii(z,y,2,1) (y—i—lx 1,—2-2.3), (=3 {20011 = 3. =7, 0}tap (Al4)
(y+1l,z—1,—2-2,4), 1=4.

Appendix B: Hyperhoneycomb symmetry-allowed
exchange Hamiltonian

Here, taking the example of the hyperhoneycomb lat-
tice, we give an explicit example of how spin-orbit con-
strains the exchange Hamiltonian of a spin system and
how additional global spin symmetries can arise beyond
those allowed by spin-orbit coupling.

The hyperhoneycomb unit cell has i,5 = {1,2,3,4}
spins and it is tri-coordinated, so there are in total 6
bonds per unit-cell, (z,7). We consider for this system a
generic bilinear exchange Hamiltonian

H= Z S ey, (B1)

which accounting for the primitive translations can be

(

specified by 6 exchange 3 x 3 matrices, one for each bond.
Applying the space group symmetries in Appendix [A] we
obtain two sets of equivalent bonds. A set of equiva-
lent bonds contains bonds that can be transformed into
each other by symmetry operations, and therefore bonds
belonging to different equivalence sets are said to be in-
equivalent and have, in principle, independent exchange
Hamiltonians. We call set a the one with (1,2),,(3,4),
while set b the one (2, 3),, (2,3)y, (4,1)4, (4,1), where the
subscript a posteriori provides the Kitaev bond label.

In the absence of spin-orbit the application of the space
group symmetries does not act on the spins but only on
their positions. This would result in a generic bilinear
exchange Hamiltonian to that is completely specified by
only two generic symmetric matrices, one for each set of
equivalent bonds. However free spins are SU(2) symmet-



ric and the only possible isotropic coupling is Heisenberg.
In case spin-orbit is present, the symmetries will act

J

Ja T, -D
Jaz.=| Ta o D
D -D (Ja + Ka)

and for set b:

(Jp(ay) + Kp) T T

Jes), = I Ty Lo
r Ty Iz
Totay) I\ -1,
J(Q}g)y = T’ (Jb(zy) + Kb) -1
T, v Tos)

In total we count 10 possible exchange couplings.
We see that the lattice supports Heisenberg-Kitaev cou-
plings, antisymmetric or Dzyaloshinski-Moriya (DM)
coupling D for z bonds and different off-diagonal sym-
metric exchange I',. For a given bond, the couplings
are invariant under higher symmetries than the lattice as
a whole. For example, I'y, — Da(s) and D — Cuo(s).
However, only for a subset of the couplings, is there a
global residual symmetry: for the Heisenberg case (with
global spin rotation symmetry) and Heisenberg-Kitaev
with Dy symmetry.

In the main text, we make the standard approximation
that the Kitaev couplings on inequivalent bonds are the
same.

Appendix C: Magnetic Group Notation

In the main text, unless otherwise indicated, group
elements such as two-fold rotation C5 are assumed to
act both on spin and real space degrees of freedom.
This substantially abbreviates the full spin-space nota-
tion [Cy| {C2]0}]. Sometimes we also use an argument:
C3(s) to denote an operation acting only on spins and
Cy(7) acting only on real space.

The magnetic group notation used through the paper
is the one adopted in the International Tables For Crys-
tallography, i.e. Hermann—Mauguin notation. We do not
explain this notation in detail here but only give a general
overview so that the meaning of the symbols used in this
paper can be appreciated without a detailed knowledge
of these tables.

As an example we take the hyperhoneycomb space
group F'ddd and its subgroups C2/c and P-1. The sym-
bols always start with an uppercase letter describing
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also on spin-space as pseudo-vector transformations. Af-
ter a proper parametrization the constraints for set a are:

Jo Ty D
J(374)z = Fa Ja _D (B2)
-D D (J,+K,)

(Jo(ay) + Kb) -1

‘J(471)a: = I’ Jb(my) =T (BS)
—r =Ty Jy
Jo(ay) I T
J(4’1)y - Fl (Jb(my) + Kb) Iw (B4)
T, I

(

the Bravais lattice type, for example F' stands for face-
centered lattice, C for single-face centered — on C faces
only — and P for primitive. Right after the letter we
have the symmetry elements of the corresponding point
group (the group that remains if one removes all trans-
lational components from the space group). The order
of the symmetry elements follows the hierarchy of axes
if present, from the most symmetric to the lowest. The
possible symbols are: number n for rotations C,,, m for
mirror planes, -n for improper rotations S,,. Moreover
when two elements refer to the same axis they are writ-
ten as n/m. In case the group is non-symmorphic some of
the point group elements will be replaced by the symbol
for the screw axis (a number with a number subscript,
i.e. 21) or glide planes (letter a,b,c,n,d). Taking again
the examples above we have: F'ddd having 3 glide planes
with translation along a quarter of the 3 different face
diagonals ("diamond” glide plane), C2/c having a Cs ro-
tation and a perpendicular glide plane with a translation
along half the lattice vector of face C', P-1 having only
inversion. The standard form uses a short notation which
shows only the generators in the shortest unambiguous
way, i.e. the symmetry elements which, when composed,
gives all the others. As an example we observe that the
glide planes d1, d2, d3 generate all the other operations in
appendix [A]

For magnetic groups, the notation is extended by indi-
cating with a prime an anti-unitary operation. For type
II groups one has the symbol of the space group from
which it is derived plus a 1’ at the end, indicating the
pure time reversal operation. For type III groups the
space group symbols are modified adding a ’ to the sym-
metry elements which become anti-unitary. Finally for
type IV groups, the black and white Bravais lattice is
represented by the original uppercase letter lattice sym-



bol with an additional subscript. For example, the group
Fdddl’ is type II with pure time reversal and 3 normal
glides, while the group Fd'd'd is type I1I with one nor-
mal glide and two magnetic glides.

Appendix D: Central Extension Method for
hyperhoneycomb Néel Kitaev-Heisenberg Z Point

The representation theory of spin-space groups mirrors
that of (magnetic) space groups. One lesson coming from
space groups is that, for most wavevectors, the decom-
position of the little co-group of that wavevector into ir-
reps is simply a matter of identifying the associated point
group at that point and using standard tables. An im-
portant exception is for certain boundary points in non-
symmorphic groups where the group composition rule is
projective. Here we give an example of such a case: the Z
point in the Néel phase of the Kitaev-Heisenberg model
on a hyperhoneycomb lattice.

First we must determine the factor system as explained
in Section [[VB] The extra reciprocal lattice translation
for each spatial symmetry (noting that the spin part does
not act in reciprocal space) is:

9-1 = 92100 = 92010 = Gmoor = (0,0,2)
92001 = Gmioo = Gmoro = (07 0, O) (Dl)
The factor system will then have p(h;, hj) = £1 (as ex-

pected for glide symmetry with non-symmorphic trans-
lation equal to half of primitive vectors). For example,

n([2-101 [ {110}, [2001(| {m2001/1/4,1/4,0}])
= exp (—27i (0,0,2) - (1/4,1/4,0)) = +1

> X (hi) =

hk/
where hygs are all the anti-unitary elements for
which hgpk = -k + g;, so for Z are all
the anti-unitary elements in the full spin space

group. We get therefore a 4-degenerate coreps
DZ; (4) = (75, 73) with x(2o10] {EI0}]) = —4 and
X([4510] {m100[0,1/4,1/4}]) =

Since we know the characters of the band representa-
tions pG g, for every k we can now subduce it to the
point Z, therefore from its characters in [46] and [A7] we
get (the number in parenthesis indicates the dimension
of the corep):

P8, = DZ; (4) (D5)

4 O ([EI{E[0}]) + X7 ([2010]l {E]0}]))
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1([2-101 [ {=1]0}], [2010] {mo10[1/4,0,1/4}])

= exp (—2mi(0,0,2) - (1/4,0,1/4)) = —1.  (D2)
Since the factor system is not trivial we need to find the
projective irreducible representations. One way to do
this is by first finding the irreps of the unitary central
extension of the little co-group G & with g = 2 which is
a group with 32 elements. The element of this group are
of the kind (h;, @), where h; € G% and a € {0,1, ..., (g —
1)}. The group has the isomorphism G%S = Dyp, + Dy, X
([4¢10ll {m100]0}] ,0) where we can identify the elements
of Dy, as:

2001 — ([E]|{£]0}],1)

([
4301 = ([210011 {2100/0}] , 0)
—1—= ([2010/ {E|0}],0)
2100 = ([£]| {mo10/0}],0)
(

2110 = ([2100[| {m001|0}] , 0) (D3)
The irreps of Ggg can be obtained by conjugat-
ing the ones of the subgroup Dy, by the symmetry
([4¢10ll {m100]0}] ,0). Of these irres we are only inter-
ested in the one with A([E| {E|0}],1) = -1 (constrain

to get the proper phase factors), therefore Z5a(b) where

(a,b) label comes from the fact that Z5 of Dy, are
self-conjugated under ([4g;oll {m100/0}] ,0). Considering
only the elements (h;,0) and adding the right phase fac-
tors for translation we can build the character table of
the unitary part of G4 as in Table

Finally we can add now the anti-unitary elements and
compose the coreps. The test gives:

Type (a) if p= 24, ZJ,
Type (c) if p=Zs,, Zs,

0

Appendix E: Representation theory for Heisenberg
Néel antiferromagnet

For the Heisenberg coupling, space group symmetry el-
ements act only on real space (since we can always cancel
out their effect on the spins with a SO(3) rotation). In
the antiferromagnetic case we can then divide the space
group symmetries into two groups, those that do not
swap the magnetic sublattice G4+ and those that do. The
latter have to be coupled with an additional spin rotation
to preserve the magnetic order C3 (s) G4;. In addition,
we have to consider pure spin rotations about axes paral-
lel to moment directions Cﬂo(s) (rotations ¥,). The full
group is therefore Gg_Neel = Hu-Neel +7 Cy (8)HH_Neel
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G% | [EI{E]0}] | [2010[ {E]0}] | [4g10ll {m100]0,1/4,1/4}] | [4g10ll {m100[0,1/4,1/4}] | ... | Type Coreps
zt 2 2 2¢ 2¢ 0 (a)
z4 2 2 -2¢ -2¢ 0 (a)
Zs, 2 -2 2¢ -2¢ 0 (c)
Z, 2 -2 -2¢ 2¢ 0 (c)

TABLE IV. Character table giving the relevant irreps of the unitary part of GZ. The phase factor is £ = exp(i Z- (033)) = —i
and the dot (...) indicates irrelevant symmetries — those with trivial characters.

with elements:

Hy neel = CL(8) X G (r) x C3(5) Gy (1) = CL(s)+

(B +dy +dy + CE)(r) + C3-(8) (P + ds + C3 + C$)(r)]
(E1)

excluding primitive translations. Here we have used a
short-hand notation for the symmetry elements where
pure spin transformations are labelled with s and pure
real space with r. All symmetry elements are defined in
Appendix [A]

The representations of the enhanced magnetic little
groups G’gs are straightforward to find for points k inside
the Brillouin zone.

GP = (u, v, w) — the least symmetric (general) posi-
tion has little group:

G /T =Cl (s)(E+TP) = Cyol’ (E2)

and therefore doubly degenerate modes as explained in
Section [V1

I' = (0, 0,0) — the most symmetric point has little
group:

Gis/T =[(Gr(r) + CL(s)) x (E + C5 (s)P)]

x (E +TCy(s)) (E3)
where we have chosen C3 (s)P as a means of swapping
the magnetic sublattices. We can build the final coreps
in 4 steps. First, we consider only the real space group
G44(r) = Fdd2 which has only 1D irreps I';,. Second,
multiply C(8) into the group, which self-conjugates
each irrep of G44(r) to I'F (since transverse spin com-
ponents transform as m = £1 reps of Cy,). Third, we

J

Ggs/T =

add the representative Cj (s)P which mixes spin and
space transformations. In deducing the reps of this mixed
group we need to check the conjugation of elements with

Cs-(s)P:

(C3 (s)P) S(r) (C3 ()P) ™" = S(r) VS(r) € G(r)

(C5(8)P) 0=(s) (Cy (s)P) "' =0 (s) V. € ClL(s).
(E4)

Therefore the irreps will pair into two dimensional irreps
(T;F,T,,)(2). The last step is to consider anti-unitary ele-
ments 7 C5 (s). Coreps types are assessed by computing:

Do hi) =43 (20(s) +4 ) x,(E)

hk/ 79
2m
= 4/ 2c0s20 + 4n x,, (E)
0

=8n = [Hgs| Type (a) (E5)
where hgs are all the anti-unitary elements, n — oo is
the multiplicity of the class C5-(s) and x;, (E) = 2 for 2D
irreps. Since the coreps are type (a) there is no further
degeneracy.

Since the least symmetric and most symmetric points
inside the Brillouin Zone have the same degeneracy, all
the intermediate cases must have the same degeneracy.
Nevertheless the presence of non-symmorphic symmetries
can lead to extra degeneracies corresponding to projec-
tive representations on the zone boundaries.

B = (0, u, —1) — Using spin-space group notation the
[ZT] line has little group elements:

([0:1{E10}] + [9=]l {m100l0. 3. 3 }] + [2oll {mo0rl5, 3,0}] + [2.11{2010/-7.,0, =7 }])

+ ([-H{=110}" + [9:11 {2100[0, 5, =1}]" + (200 {20015, = 5,0}]" + [211 {rmowol 3,0, 3}])

where the elements of the kind [J.] {E|0}] (or
[2.]|{E|0}])) represent all the rotations around the
collinear axis (or 7 rotation around the infinite perpen-

(E6)

(

dicular axes). Also the anti-unitary elements are denoted
by a prime. Here the 2, rotations intertwine spin and
space transformations, making the little group not a sim-



ple direct product and therefore making it impossible to
use the tabulated space group projective representations.

To build the projective representations from scratch
we must determine first the factor system as explained
in Section [[VB] The extra reciprocal lattice translation
for each spatial symmetry (noting that the spin part does
not act on reciprocal space) is:

92010 = Gmoor = (0,0,2)
Gmigo = (07 0, O) (E7)
The factor system will then have p(h;, hj) = £1 and

therefore gives nontrivial projective irreducible represen-
tations.

The umtary central extension of the little co-group
GSS with ¢ = 2 is a group with 8n elements (n is,
again, the multiplicity of the perpendicular axis). The
group has the isomorphism GSBS* 2 Dooh + Doon X
([E|l {m100|0}],0) where we can identify the elements of

J

pr hi) = 2 pr ([29F 1 {E|0}]) + (1 + exp(i B - (

hk’

2
:2/ 2c0s29 =0 Type (c)
0

where hg are all the anti-unitary elements for which
hik = —k + g;, so for B are the anti-unitary elements
with real space transformation {moi0,2001,2100, —1}-
We get therefore a 4-fold degenerate co-representation
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D.p, as:

9. — ([0 {£]0}],0)
21 = ([201{2010/0}],
-1 = ([E]|{E]0}],1).

The irreps of GSBS* can be obtained by conjugat-
ing those of the subgroup Do with the symmetry
([E|| {m100]0}] ,0). Of these representations we are only
interested in the ones with A([F| {E|0}],1) = —1T (this
constraint ensures the correct projective phase factors)
and with A([9,| {FE|0}],0) = 2cos? (coming from the
transverse spin component band representation). This

points to B’ (b) . The (a,b) label comes from the fact that
By, of Dooh are self-conjugate under ([E|| {m100/0}],0).
Considering only the elements (h;,0) and adding the
right phase factors for translation we can build the char-
acter table of the unitary part of G&; as in Table

Finally we consider the anti-unitary elements and com-
pose the coreps. The test gives:

0)

1

2

1

2

pr [E] {E]0}])

For band representation p’é’ 5, We obtain:

p§. = DBiy(4). (E9)

DB, (4) = (B¢, Bb,)(4) with x([9Z| {E|0}]) = 4cos? The same argument carries through for the high sym-
and x([E]] {m100]0,1/4,1/4}]) = 0. metry line A = (u, 0, —1), which again is 4-degenerate
(line [Z A]).
H = (u, 0, —1) — Lastly the line [Y'T] line has little
group:
GE/T = (W:{EI0}] + [0:] {mi00l0, 3. 5 }] + [9=] {20011— 5, —1,0}] + [9:] {mool1,0, 1}])

1
4

3

+ ([9:01{=110})" + [0l {2100[0, — 1, ~
(CL(s) x Gyy(7)) x (E +PT).

Here the little group is a simple direct product of spin
and space. The final coreps are therefore easier to build,
exploiting tabulated projective irreps of group G44(r) =
Fdd2 which are the 2D H;(2). Adding the direct prod-
uct with C(8), the irreps H;(2) will self-conjugate un-
der these new elements, producing two new irreps H. 1i (2)
(since again the transverse spin component transform as

+ [9:] {monr] %, 3,0}]" +

1)

(E10)

[9: ] {2010/ 7,0

1
v T4

(

m = +1 irreps of Cy ). Finally we can consider the anti-
unitary P7T symmetry, which produces no extra degen-
eracy on the space part of the direct product (indeed the
irreps of F'dd2 x (E + PT) = Fddd' are still 2D), while
pairing up the irreps m = %1 of the spin part, therefore
giving a 4-fold degenerate line DH,(4) = (H;", H; )(4)
as well.



27

G& | [EI{E]0}] | [9: [ {E|0}] 00 [21][{2010/—1/4,0,-1/4}] | [E][{m100]0,1/4,1/4}] | Type Coreps
By, 2 2 cos® 0 2¢ (c)
B, 2 2 cos ¥ 0 -2¢ (c)

TABLE V. Character table giving the relevant irreps of the unitary part of G&s. The phase factor is £ = exp(i B - (Oii)) =
exp(i5 (v — 1)) and the dot (...) indicates here the infinite class of axial rotations.

Appendix F: Symmetry Analysis for [111] JK
Ferromagnet

To see this, we exploit the fact that the enhanced mag-
netic symmetry group is isomorphic to an ordinary mag-
netic space group — which need not be the case as we
shall see later — and use the tabulated character tables
at high symmetry points and lines to determine the en-
forced degeneracies. The enhanced magnetic group iso-
morphism for [111] is Fd'd'd:

Gu=E+P+d +Cl+T(dy+ds+C§+C%)
(F1)

I' = (0, 0, 0) — The little co-group elements of the uni-
tary subgroup of Gy at I' has all the elements E, d;, C%
and P. We may construct the matrix representation of
these elements for the magnons and find the characters.
These are computed to be

Xt (di) =0 x¢'(C3) =0 X' (P) =0
= I'M=2(Tf +Ty +TJ +1I5) (F2)

where the factor of two comes about because the diago-
nalization gives modes at k and —k which are identical
here because there is inversion symmetry.

We now include the effect of the anti-unitary elements
by finding

Sk (R #)°) =4 (F3)

for each irrep in Eq. [F2] which, according to the criterion
Eq. gives only class (a) coreps. We therefore find four
distinct bands at I'. In order of increasing energy these
are '}, T3, 77,15 .

Y = (0, =1, 0) — Similarly to I the little co-group
has elements F, d;, C% and P, the characters of the non-
identity elements are all zero and the irreps are

YM =20+ Y +Y, +Yy) (F4)

only now >, x4 ({jo t’a}2> = 0 so the coreps are of

type (c). The coreps therefore bind unitary irreps into
pairs and the pattern of pairing is DY; = (Y7, Y;) and
DYy = (Y,",Y;) so there are two doubly degenerate
bands at Y.

It follows from the results at I' and Y, the ordering of
the T' irreps in energy and compatibility relations that
a crossing of two bands between I' and Y occurs in this

model. There are two such Weyl points to be consistent
with fermion doubling on opposite sides of I" and, since
the ordering of the I' point energies is crucial to the exis-
tence of the point, it is evidently an accidental crossing.
This calculation therefore exposes the symmetry origin of
the Weyl point between bands 2 and 3 shown in Fig.

T = (0, -1, —1) — Like Y and T, the little co-group
at T contains all the elements F, d;, C%’ , P and the char-
acters of the nontrivial elements are zero giving T™ =
2(Ty + T1) where Ty is a 2D irrep. Inclusion of anti-
unitary elements reveals that the coreps belong to class
(a) so there are two two-fold degenerate bands.

Z = (0,0, —1) — From elements E,d;,C% P at
(0,0,—1) we obtain two copies of the 2D irrep Z; and
class (a) coreps so there are two two-fold degenerate
magnon modes at this point.

L= (%, %, %) — This point has only F and P elements,
zero character for the inversion symmetry and type (a)
coreps leading to four distinct modes.

B = (0, u, —1) — This is the line [ZT] with unitary
symmetry elements E and C%. The character for C¥ is
zero and therefore BM = 2(By + By + By + B). The
coreps are of type (a) leading to four 1D modes.

H = (0, -1, u) — We focus on the line [YT]. The
unitary symmetry elements along the line are F and d;
and the character for dq is zero. Then HM = 2(Hy +
H, + Hs + Hs) and the coreps are of type (¢) meaning
that there is a two-fold degeneracy of the magnon modes
where each mode has bound (Hy, Hy) irreps.

A = (u, 0, —1) — We focus now on the line [ZA] (and
equivalently on [Y A1]). As with the [Y'T] line, the uni-
tary elements along these lines are F and dy, there are
four 1D irreps that are bound into two copies of (A1, Az)
so the lines both have two two-fold degenerate bands.

Y = (u, 0, 0) — This is the line [['X] (and equivalently
[X1T]), which is different to [ZA] and [Y'T] although the
unitary element are identical leading to four 1D irreps.
This is because the anti-unitary elements lead to corep
criterion x(E) + exp(ik - (0,1/2,1/2)) = 2 meaning that
the coreps are type (a) and the modes are therefore singly
degenerate. Similar argument hold for line A = [T'Y] =
(0, u, 0) and A = [I'Z] = (0, 0, u).

We have accounted for all the degeneracies in the
magnon spectrum from the enhanced symmetry group. If
we had instead taken the symmetry group of the under-
lying magnetic structure neglecting the pure spin space
transformations available to the Kitaev-Heisenberg cou-
pled spins then the representation theory would have pre-
dicted a degeneracy along [ZA] and nowhere else.



Appendix G: Informal Arguments for Band
Touching

The analysis given in the main text based on rep-
resentation theory supplied the underlying symmetry
constraints on the observed robust degeneracies in the
magnon spectra. It is occasionally possible and certainly
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more illuminating to give a direct correspondence be-
tween a magnetic symmetry and any degeneracy. For
example, we have encountered time reversal glide sym-
metries, 7d;, in various cases. The action of the glide
is given in Egs. [A9] and For concreteness we
consider, Tdy acting on a magnon state at a given mo-
mentum k = klbl + kgbg + k’gbg

|k2_k37k‘27k2_k153>*, =1

Tdy : k1, ko, ks, 1) =

|ko — kg3, ko, ko — k1,4)", =
e27rik2|k2_k3,k2’k2_k171>*’ l:

627”%2|k27k37k27k27k172>*3 I=4.

From this (7d2)? = exp(+27iks) = —1 when ko = £1/2.
This has the implication that at invariant momenta sat-
isfying ko = £1/2 and k; — k3 = +1/2 — along a line at
the Brillouin zone boundary — Kramers theorem enforces
a degeneracy. For the Kitaev-Heisenberg ferromagnet in
[111] field, the magnetic symmetry includes 7 ds and Tds

(

and the presence of both relies on the existence of spin
and space transformations. The above straightforward
argument leads to the presence of crossing zone bound-
ary nodal lines. Similar arguments were employed to un-
derstand magnon nodal lines in the canted zig-zag order
in a magnetic field [59].
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