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THICKNESS OF SKELETONS OF

ARITHMETIC HYPERBOLIC ORBIFOLDS

HANNAH ALPERT AND MIKHAIL BELOLIPETSKY

Abstract. We show that closed arithmetic hyperbolic 3–dimensional orb-
ifolds with larger and larger volumes give rise to triangulations of the under-
lying spaces whose 1–skeletons are harder and harder to embed nicely in Eu-
clidean space. To show this we generalize an inequality of Gromov and Guth
to hyperbolic n–orbifolds and find nearly optimal geodesic triangulations of
arithmetic hyperbolic 3–orbifolds.

1. Introduction

Consider a closed hyperbolic n–dimensional manifold X with n ≥ 3. In [GG12],
Gromov and Guth found a remarkable inequality which relates the hyperbolic vol-
ume of X , its isoperimetric Cheeger’s constant, and retraction thickness of an em-
bedding of X into RN . Our first result is a generalization of this inequality to
hyperbolic orbifolds, but with combinatorial thickness instead of retraction thick-
ness.

We define a closed piecewise hyperbolic pseudomanifold to be a finite sim-
plicial complex in which the top-dimensional simplices form a fundamental cycle
under mod 2 coefficients, and each simplex is isometric to a geodesic hyperbolic
simplex. A closed hyperbolic orbifold X endowed with a good triangulation is
a piecewise hyperbolic pseudomanifold, where by a good triangulation of X we
mean a triangulation of its underlying space such that all simplices are geodesic and
for every dimension ℓ, the ℓ–stratum of the singular set of the orbifold is contained
in the ℓ–skeleton of the triangulation.

Let X1 denote the 1–skeleton of a pseudomanifold X . Following Gromov and
Guth in [GG12], we say that an embedding of a graph G into RN has com-

binatorial thickness at least 1 if disjoint vertices and edges have disjoint 1–
neighborhoods; that is, every two distinct vertices have distance at least 2, as do
every two edges without a vertex in common and every edge and a vertex other
than the edge’s two endpoints. Let V1,N (X1) denote the infimum, over all embed-
dings of X1 into RN with combinatorial thickness at least 1, of the N–dimensional
volume of the 1–neighborhood of the image of the embedding.

We define the Cheeger constant h(X) of a closed n–orbifold X as the greatest
number such that for all open subsets A ⊆ X with Hausdorff measurable boundary
∂A, we have

h(X) ≤
Area ∂A

min{VolA,VolX \A}
.

We can now state our first result.
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Theorem 1. Let X be a closed piecewise hyperbolic pseudomanifold of dimension

n ≥ 3, triangulated with vertex degree at most D. Then for all N ≥ 3, we have

V1,N (X1) ≥ const(n,N,D) ·

(

h(X)

h(X) + 1
·VolX

)
N

N−1

,

where the constant is positive and X1 denotes the 1–skeleton of X.

The inequality in Theorem 1 is sharp. To show this consider a sequence Xk of
congruence coverings of a closed arithmetic hyperbolic orbifold Y endowed with
the natural triangulations obtained by lifting a fixed triangulation of Y . The
Cheeger constants h(Xk) are bounded uniformly from below by const(n) > 0 (see
e.g. [GG12, Appendix]). Therefore, we have

V1,N (X1
k) ≥ const(n,N,D, Y ) · (VolXk)

N

N−1 .

On the other hand, the skeletons X1
k have bounded degree of the vertices and the

number of vertices proportional to VolXk. In [KB93], Kolmogorov and Barzdin
showed that every graph G with vertex degree at most D admits an embedding
into RN with

V1,N (G) ≤ const(N,D) · |V (G)|
N

N−1 ,

where |V (G)| denotes the number of vertices, and so for our congruence coverings
this implies that the skeletons X1

k admit embedding into RN with

V1,N (X1
k) ≤ const(N,D, Y ) · (VolXk)

N

N−1 .

(Strictly speaking, Kolmogorov and Barzdin considered only the case N = 3 but
their proof generalizes immediately to embeddings of graphs in higher dimensional
spaces.) Let us note that sharpness of the Gromov–Guth inequality for retraction
thickness is not known (see a related discussion after the statement of Theorem 3.2
in [GG12]).

Our second main result implies that the inequality in Theorem 1 is nearly sharp
for a much bigger class of spaces which include any sequence of congruence arith-
metic 3–orbifolds, not necessarily covering the same space or commensurable to
each other. To this end we show that arithmetic orbifolds admit good triangula-
tions with close to optimal number of simplices. (If the number of simplices were
optimal, meaning actually proportional to the hyperbolic volume, then instead of
“nearly sharp”, we would say that Theorem 1 is sharp for these sequences of arith-
metic hyperbolic orbifolds, using Kolmogorov and Barzdin’s theorem.)

Theorem 2. For any δ > 0 and dimension n = 3, there is a constant V0 = V0(δ, n)
such that any closed arithmetic hyperbolic n–orbifold of volume Vol(O) ≥ V0 has

a good triangulation with at most Vol(O)1+δ simplices and vertex degree bounded

above by a constant D = D(n).

The proof of Theorem 2 uses some deep results about volumes of arithmetic
orbifolds and their relation to Lehmer’s problem in number theory, to bound the
injectivity radius. This approach to triangulations of hyperbolic 3–orbifolds was
first suggested in [Bel17]. A good triangulation is then obtained as a barycentric
subdivision of a certain equivariant Voronoi complex in the hyperbolic 3–space.
These triangulations may have independent interest. The proof relies on Lemma 4
which uses the classification of finite subgroups of SO(3), but it seems plausible
that both Lemma 4 and Theorem 2 are true for all n ≥ 3.
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Combining together Theorems 1 and 2 we obtain a corollary stated as follows.

Corollary 1. Let {Xk}
∞
k=1 be a sequence of closed arithmetic pairwise non-isometric

hyperbolic orbifolds of dimension n = 3 such that the Cheeger constants h(Xk) are
uniformly bounded below by C > 0.

Then for any fixed dimension N ≥ 3 and any δ > 0, there exist triangulations

of the underlying spaces of the orbifolds Xk such that

(a) the 1–skeletons X1
k have at most const(n, δ) · (VolXk)

1+δ vertices;

(b) X1
k have a uniform bound on the number of edges at each vertex; and

(c) we have

V1,N (X1
k)

#vertices(X1
k)

→ ∞.

Proof of Corollary 1. First note that the assumption that the orbifoldsXk are pair-
wise non-isometric implies that VolXk → ∞. This follows from the Borel–Prasad
finiteness theorem applied to the arithmetic groups of isometries of the hyperbolic
spaces [BP89].

Given N , we choose δ < 1
N−1 and apply Theorem 2 to triangulate each suffi-

ciently large Xk with vertex degree at most D and with

#simplices(Xk) ≤ (VolXk)
1+δ.

We have
#vertices(Xk) ≤ (n+ 1) ·#simplices(Xk),

and thus

1 ≥
1

n+ 1
·#vertices(Xk) · (VolXk)

−(1+δ).

The result is a closed piecewise hyperbolic pseudomanifold, so we may apply The-
orem 1 to get

V1,N (X1
k) ≥ const(n,N,D) ·

(

h(Xk)

h(Xk) + 1
·VolXk

)
N

N−1

≥

≥ const(n,N,D) ·

(

C

C + 1

)
N

N−1

·

·
1

n+ 1
·#vertices(Xk) · (VolXk)

N

N−1
−(1+δ),

and thus
V1,N (X1

k)

#vertices(Xk)
→ ∞.

�

This result is most relevant when the orbifolds Xk all have the same underlying
space, such as, for example, the sphere S3. In that case it does not appear to be
known whether there exist piecewise hyperbolic pseudomanifolds whose 1–skeletons
satisfy the conclusion of the corollary. If no such family of triangulations exists,
it would imply that certain families of orbifolds, known to have Cheeger constant
bounded below and to have the underlying space with bounded topology, must have
only finitely many elements.

We can draw a connection between this problem and the expander graphs. It was
shown by Kolmogorov and Barzdin in the 1960’s that expander graphs are hard to
embed in RN [KB93]. Hence properties (b) and (c) of Corollary 1 would be satisfied
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if we have a sequence of triangulations of, say, S3 whose 1–skeletons form a fam-
ily of expanders. Existence of such triangulations is a well known problem which
has attracted considerable attention throughout the years. We can refer to Kalai’s
chapter 19 of the Handbook of Discrete and Computational Geometry for a related
discussion [Kal18]. More recently, Lackenby and Souto came up with a nice con-
struction of such triangulations [Lac19]. Their simplicial complexes can be turned
into hyperbolic orbifolds; however, these orbifolds will be non-arithmetic and, what
is more essential, we expect that the number of simplices in the Lackenby–Souto
triangulations would grow much faster than the volumes of the associated orbifolds.
So these expander skeletons are far from optimal from our viewpoint: for them the
inequality in Theorem 1 is far from sharp. The existence of triangulations of a
sphere or other topological manifold whose skeletons form a sequence of geometric

expanders by satisfying the properties (a)–(c) of Corollary 1 remains unknown.
In Section 2 we prove Theorem 1, and in Section 3 we prove Theorem 2.

Acknowledgments. We thank Larry Guth for bringing us together and for point-
ing out a mistake in an earlier version of Theorem 1. We thank Marc Lackenby
for explaining to us his work with Juan Souto. We thank the referee for carefully
reading the manuscript and helpful comments. H. Alpert is supported by the Na-
tional Science Foundation under Award No. DMS 1802914, and M. Belolipetsky is
partially supported by CNPq, FAPERJ and Math-AmSud grants and by the MPIM
in Bonn.

2. Slicing piecewise hyperbolic manifolds

In this section we prove Theorem 1, based on the proof of Theorem 3.2 of [GG12].
For convenience we restate it below.

Theorem 1. Let X be a closed piecewise hyperbolic pseudomanifold of dimension

n ≥ 3, triangulated with vertex degree at most D. Then for all N ≥ 3, we have

V1,N (X1) ≥ const(n,N,D) ·

(

h(X)

h(X) + 1
·VolX

)
N

N−1

,

where the constant is positive and X1 denotes the 1–skeleton of X.

Proof. Let i : X1 →֒ RN be an embedding of the 1–skeleton into RN . Let N1(X
1)

denote the 1–neighborhood of the image, and let V1(X
1) denote its volume. The

Falconer slicing inequality (from [Fal80], recalled in [GG12]) guarantees that we can
rotate the coordinates of RN to get the xN coordinate pointing in a good direction so
that for every t ∈ R, the (n−1)–dimensional volume of the slice N1(X

1)∩{xN = t}

is at most const(N) · V1(X
1)

N−1

N .
We view RN as broken into slabs,

Slab(j) = {j ≤ xN ≤ j + 1}.

For each Slab(j), we let Sj be the subcomplex of X consisting of all simplices that
have a 1–dimensional edge that intersects Slab(j). We claim that the number of

top-dimensional simplices in Sj is at most const(n,N,D) · V1(X
1)

N−1

N . To show
this, suppose that there are M top-dimensional simplices in Sj . Select one edge
of each of these simplices that intersects Slab(j). Because each edge is in at most
(

D−1
n−1

)

= const(n,D) top-dimensional simplices, after removing duplicates we have

at least const(n,D)−1 · M edges through Slab(j). Because each edge is incident
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to at most 2D − 2 other edges, we may greedily choose a subset of disjoint edges
containing at least (2D− 1)−1 · const(n,D)−1 ·M = const(n,D) ·M of the original
edges. On each edge in this matching, we select a point in Slab(j); the 1–balls
around these points are disjoint and are contained in the union of Slab(j − 1),
Slab(j), and Slab(j + 1). From the Falconer slicing inequality, we may assume

that each slab has volume at most const(N) · V1(X
1)

N−1

N , so because the balls are
contained in three slabs, we have

Vol(balls) ≤ const(N) · V1(X
1)

N−1

N · 3,

and thus

M ≤ const(n,N,D) · V1(X
1)

N−1

N .

Next, we extend the embedding i to a map

i : X → RN

that is smooth on each simplex—it doesn’t matter whether it is an embedding—
such that the image of a given simplex intersects Slab(j) only if it is in Sj . We also
assume that every integer j is a regular value of the restriction of xN ◦ i to every
open simplex; by Sard’s theorem this can be achieved by slightly perturbing the
slab boundaries for every j.

The remainder of the proof is very much like the proof of Theorem 3.2 in [GG12].
We let Xj be the preimage i−1 Slab(j) in X , and view it as a chain in homology
with coefficients in Z2, so that

[X ] =





∑

j

Xj



 .

We let Zj be the preimage i−1{xN = j} in X , so that

∂Xj = Zj + Zj+1.

We homotope the identity map on X to a map that sends each Zj to the (n− 1)–
skeleton of X , with the property that the image of each Xj remains in Sj. We can
find this homotopy by choosing in each top-dimensional simplex a small ball not in
any Zj, and stretching that ball to cover the simplex so that the rest of the simplex
maps to the boundary of the simplex.

Let X ′
j be the image of eachXj under this homotopy. Taking the degree mod 2 of

X ′
j with respect to each top-dimensional simplex, we can replace X ′

j by a simplicial

chain Xj , so that the fundamental class [X ] is the sum

[X ] =





∑

j

Xj



 .

Similarly, we define Z ′
j and Zj so that

∂Xj = Zj + Zj+1.

Because each Sj has at most const(n,N,D) ·V1(X
1)

N−1

N top-dimensional simplices,

each Xj and each Zj has at most const(n,N,D) · V1(X
1)

N−1

N simplices also.
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Notice that each Zj is null-homologous because it is the boundary of
∑

i<j Xj .

Thus, the definition of the Cheeger constant h(X) implies that for every Zj we can

find a chain Y j with ∂Y j = Zj that satisfies

VolY j ≤ h(X)−1 · AreaZj .

In the sum
∑

j

(Xj + Y j + Y j+1),

each Y j is counted twice and cancels, so we can write the fundamental class [X ] as
the sum of cycles

[X ] =
∑

j

[Xj + Y j + Y j+1].

Thus, not every Xj + Y j + Y j+1 can be null-homologous, and so at least one of
them must be homologous to [X ] and must have total volume at least VolX . Thus,
using the fact that geodesic hyperbolic simplices have volume bounded above, for
this j we have

VolX ≤ VolXj + VolY j +VolY j+1 ≤

≤ const(n,N,D) · V1(X
1)

N−1

N + 2 · h(X)−1 · const(n,N,D) · V1(X
1)

N−1

N ≤

≤ const(n,N,D) · (1 + h(X)−1) · V1(X
1)

N−1

N .

�

When a pseudomanifold X is a closed hyperbolic n–manifold both our Theo-
rem 1 and the Gromov–Guth Theorem 3.2 can be applied to it, and it would be
interesting to compare the results. This leads to a question about the relation be-
tween combinatorial thickness and the retraction thickness from [GG12]. We recall
the definitions:

Definition 1. AmanifoldX embedded in RN is said to have retraction thickness

at least T if the T –neighborhood of X retracts to X .

Definition 2. A pseudomanifold X whose 1–skeleton is embedded in RN with
combinatorial thickness T is said to have thickness at least T .

Given a subset Y ⊂ RN , denote by VT (Y ) the N–dimensional volume of its T –
neighborhood. Now assume that a closed hyperbolic manifold of dimension n ≥ 3
has an embedding i : X →֒ RN with retraction thickness T . One can then try to
construct a triangulation of the image i(X) whose 1–skeleton has a combinatorial
thickness T (or at least T − ε for an arbitrary small ε > 0). If there is such
a triangulation, then we can apply the simplex straightening to its simplices and
obtain a piecewise hyperbolic pseudomanifold isometric toX such that VT−ε(X

1) ≤
VT (i(X)). It would then allow us to deduce Theorem 3.2 from [GG12] from our
Theorem 1.

Reciprocally, suppose that we have an embedding ι : X1 →֒ RN with combina-
torial thickness T . Assuming that the codimension is large compared to n, we can
extend it to an embedding ι̃ : X →֒ RN . Can this embedding have retraction thick-
ness T ′ close to T and the volume VT ′(ι̃(X)) bounded in terms of VT (ι(X

1))? If
yes, this would have implications for sharpness of the inequality from Theorem 3.2
in [GG12].

We leave these questions for future research.
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3. Triangulating arithmetic hyperbolic orbifolds

In this section we prove Theorem 2 restated below.

Theorem 2. For any δ > 0 and dimension n = 3, there is a constant V0 = V0(δ, n)
such that any closed arithmetic hyperbolic n–orbifold of volume Vol(O) ≥ V0 has

a good triangulation with at most Vol(O)1+δ simplices and vertex degree bounded

above by a constant D = D(n).

Arithmeticity of the orbifolds is essential for Theorem 2. We begin with recalling
the definition of arithmetic subgroups. Let H be a linear semisimple Lie group with
trivial center and let G be an algebraic group defined over a number field k such
that G(k⊗QR) is isogenous to H×K, where K is a compact Lie group. Consider a
natural projection φ : G(k⊗QR) → H . The image of the group of k–integral points
φ(G(Ok)) and all subgroups of H which are commensurable with it are called
arithmetic subgroups of H defined over k. Arithmetic subgroups are lattices,
i.e., they are discrete and have finite covolume in H . Their quotient spaces are
called arithmetic orbifolds. In our case, H = PO(n, 1) is the group of isometries
of the hyperbolic space Hn and the quotient orbifolds are hyperbolic n–orbifolds.
We refer to [Mor15] for a comprehensive introduction to the theory of arithmetic
subgroups.

Let O = Hn/Γ be a closed hyperbolic orbifold with singular set Σ, and let
π : Hn → O be the covering map. The elements of the group Γ fall into two types:
elliptic are those which have fixed points in Hn and hyperbolic are those which
act freely. For a hyperbolic isometry γ ∈ Γ its displacement at x ∈ Hn is defined
by ℓ(γ, x) = dist(x, γx) and the displacement of γ (also called its translation

length) is

ℓ(γ) = inf
x∈Hn

ℓ(γ, x).

It is equal to the displacement of γ at the points of its axis. We will define the
orbifold injectivity radius by rinj(O) = inf{ 1

2ℓ(γ)}, where the infimum is taken
over all hyperbolic elements γ ∈ Γ. It is equal to half of the smallest length of a
closed geodesic in O. When O is a manifold, this definition is equivalent to the
usual definition of the injectivity radius as the supremum of r such that any point
p ∈ O admits an embedded ball B(p, r) ⊂ O. This is not the case in general; the
points in the singular set only admit embedded folded balls (see [Sam13] for the
definition of folded balls).

We will first assume that rinj(O) ≥ r > 0 and that any finite subgroup F < Γ
has order |F | ≤ q. A similar problem was considered before by Gelander and
Samet (see [BGLS10, Section 2] and [Sam13]). The difference in our case is that
we require an explicit control over the constants and that we want to construct a
good triangulation of O, not just a simplicial complex homotopy equivalent to it.

By the Margulis lemma there exist constants µn > 0 and mn ∈ N depending
only on the dimension n, such that any subgroup of Γ generated by the elements
whose displacements at some point x are bounded above by µn contains a normal
nilpotent subgroup of index at most mn. We refer to [BGS85, Theorem 8.3] for the
general statement and the proof of the lemma. We will use this result to obtain
certain constraints on the position of the singular set in O.

Lemma 3. For n = 3 let O = Hn/Γ be a closed hyperbolic orbifold, and let

ε = min{µn

8 , r
16mn

}, where µn and mn are dimensional constants arising from the
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Margulis lemma, and r ≤ rinj(O). Then there is a good triangulation T of O such

that the vertex degree is bounded by D(n) and the number of simplices is bounded by

C(n) qVol(O)
vε

, where C(n) and D(n) are dimensional constants, q is the maximum

size of a finite subgroup F < Γ, and vε denotes the volume of a ball of radius ε in

Hn.

Proof. Let S be any maximal 2ε–separated set of points in O that are not in the
singular set, let S be the set of lifts of those points in Hn, and let P be the Voronoi
decomposition of Hn corresponding to S. It is a cell decomposition with one top-
dimensional cell for each point of S, and this top-dimensional cell is equal to the
convex hyperbolic polytope consisting of all points of Hn that are closer to our
selected point than to any other point of S.

We define a barycentric subdivision of P as follows. For any convex hyperbolic
polytope, there is a unique point that minimizes the sum of squared distances
to the vertices of the polytope; this is because squared distance to a point is a
strictly convex function on Hn [BO69, Theorem 4.1(2)]. We refer to this point
as the barycenter of the polytope. The barycenter is in the relative interior of
the polytope, because for every point, the negative gradient of the sum of squared
distances to the vertices is a sum of vectors pointing toward the vertices. Thus, we
can form a triangulation T of Hn, in which the vertices are the barycenters of all
the faces of P of all dimensions, and the simplices (all equal to the convex hulls
of their vertices) correspond to chains of faces of P , under the partial ordering by
inclusion of closures. Because P is Γ–invariant, so is T , and so we can set T to be
the triangulation of O corresponding to T .

First we check that T is a good triangulation, that is, that for every dimension
ℓ, the ℓ–stratum of the singular set of O is contained in the ℓ–skeleton of T . Let
x ∈ O be any point, and let d be the least dimension of any simplex of T containing
x. Consider the stabilizer in Γ of any lift x of x. Any g ∈ Γ that fixes x must send
the whole d–simplex containing x to itself. But the d + 1 vertices of this simplex
all come from different-dimensional faces of P , so g cannot permute them in any
way other than by the identity. Thus the whole d–simplex is in the fixed-point set
of the stabilizer of x, and so if x is in the ℓ–stratum, then ℓ ≥ d.

Next we check that there is a bound on the vertex degree that depends only on
the dimension n. For i = 0, 1, . . . , n, let Pi be the set of vertices of T that are
the images in O of barycenters of i–dimensional faces of P . First, for each vertex
v ∈ Pn, let us bound the number of neighbors of v in Pn−1. This is equivalent to
counting top-dimensional cells in P that neighbor the cell of a lift of v. Let x be
the point of S that corresponds to a lift v of v, and let y1, . . . , yk be the points of
S such that the cells of y1, . . . , yk share an (n − 1)–dimensional face with the cell
of x. Each yi is within 4ε of x. Suppose first that the projections of x, y1, . . . , yk
to O are distinct. In this case the ε–balls around x, y1, . . . , yk are all disjoint. The
number of disjoint ε–balls that can fit within 4ε of a given point in Hn is monotonic
in ε, so because we have assumed ε ≤ µn

8 , we have a dimensional upper bound on
k in this case of disjoint projections.

The projections of x, y1, . . . , yk to O may not all be distinct; that is, the cell
of v may be adjacent to itself one or more times, or may be adjacent to another
cell multiple times. We need to bound these multiplicities. First we claim that ε
has been chosen such that if a 4ε–ball in Hn contains several points of the same
Γ–orbit, then there is a finite subgroup H of Γ such that these points are in the
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same H–orbit. The constants µn and mn in the Margulis lemma have the following
property. For any p ∈ Hn and any t ∈ R, let Γt(p) denote the subgroup of Γ
generated by the elements that move p by distance less than t. Then if t ≤ µn

and if Γt(p) is infinite, there is an element in Γ of infinite order that moves p by
distance less than 2mnt [Sam13, Lemma 2.3]. We have chosen ε such that 8ε ≤ µn

and 2mn(8ε) ≤ r ≤ rinj(O). By definition, every element in Γ of displacement less
than rinj(O) has a fixed point and therefore has finite order. Thus, Γ8ε(p) must be
finite for all p ∈ Hn. Let p1, . . . , pk be points in some 4ε–ball in Hn that all map
to the same point of O. Then they are all in the orbit of p1 under Γ8ε(p1), which
we choose to be our finite subgroup H .

Suppose that one or more of the neighbors y1, . . . , yk of x project to the same
point x ∈ O as x does. From the previous paragraph we know that all such points
are in the orbit of a finite subgroup H , and all elements of H have a common
fixed point. Using the assumption that we are in dimension n = 3, we may apply
Lemma 4 below to get a uniform bound on the number of neighbors y1, . . . , yk in
the orbit of x. Similarly, suppose that one or more of y1, . . . , yk project to the
same point y1 ∈ O as y1 does, distinct from x. These points are in the orbit of
a finite subgroup H , and to bound how many of them may be neighbors of x, we
examine the Voronoi decomposition of Hx ∪ Hy1 and apply Lemma 4 to get a
uniform bound.

We have a bound on how many y1, . . . , yk with distinct projections to O can
be neighbors of x, and in the case of dimension n = 3 we have a bound on the
multiplicity with which they have the same projections as either x or each other.
In total this gives a bound d1(n) on the number of Pn−1–neighbors of each v ∈ Pn

in the case n = 3.
Then, we can use this bound to bound the total number of neighbors of each

vertex v ∈ Pn. Consider the cell in P of a lift v of v. The point s in S corresponding
to this cell is not in the singular set of O, and we claim that this implies that the
interior of this cell maps injectively to O. Suppose to the contrary that some
nontrivial element g of Γ takes this cell to itself. Then it fixes the barycenter v of
the cell but must move the lift s of s because s is not in the singular set, but this
means that v is equidistant between s and gs, contradicting the definition of the
Voronoi decomposition because we know that v is in the interior of the cell. Thus
every top-dimensional cell in P maps injectively to O.

This implies that when the closure of the cell of v in P is mapped to O, the
(n−1)–dimensional faces are identified in at most pairs; no three (n−1)–dimensional
faces can be identified, because the nearby parts of the interior of the cell do not
get identified. Thus, the total number of (n− 1)–dimensional faces of the cell of v
is at most 2d1(n). Every subset of (n − 1)–dimensional faces intersects in at most
one arbitrary-dimensional face of the cell of v, so the total number of faces of the
cell of v is at most 22d1(n), and thus the total degree of v is at most 22d1(n).

Similarly, if instead we let v be a vertex in any Pi, we can bound the number of
adjacencies to vertices in Pn. Counting with multiplicity is a little tricky here. If v
is a lift of v, and y1 and y2 are the points of S corresponding to cells that have v
as a boundary point, then the segments from v to y1 and y2 give the same edge in
T if some element of Γ takes y1 to y2 while fixing v; otherwise, the two segments
give two different edges in T . Let y1, . . . , yk be the points of S corresponding to all



10 HANNAH ALPERT AND MIKHAIL BELOLIPETSKY

of the cells that have v as a boundary point. They are the closest points in S to
the point v, so they are within 2ε of v.

We can bound the number of distinct projections of y1, . . . , yk to O because their
ε–balls in Hn are disjoint and so we can take the minimum number of balls that
fit when ε = µn

8 . Next we need to bound the multiplicity with which v may have
different adjacencies to the same projection to O; to do this, we use n = 3 and
apply Lemma 4 to Hv ∪ Hy1, where H is the finite subgroup of Γ taking y1 to
all other yi that are in its Γ–orbit. The case where v is fixed by H does not give
rise to different adjacencies, so Lemma 4 gives a bound on the number of different
adjacencies from v to any vertex in Pn. Putting the bounds together, for n = 3
we get a dimensional upper bound d2(n) on the number of Pn–neighbors of each
v ∈ Pi.

We can bound the vertex degree of T using the bound on the number of neighbors
in Pi of each element of Pn and the bound on the number of neighbors in Pn of
each element of Pi. Given any vertex v ∈ Pi, if u is any neighbor of v, then u and
v have a common neighbor w ∈ Pn. Thus, the total number of neighbors of v is at
most d2(n) · 2

2d1(n), and so we set D(n) = d2(n) · 2
2d1(n).

Finally, we prove the bound on the number of top-dimensional simplices in T .

Each simplex has one vertex in Pn, and each vertex in Pn is in at most
(

D(n)
n

)

simplices, so the total number of simplices is at most
(

D(n)
n

)

times the number of
points in our original 2ε–separated set S, and therefore it suffices to show that

|S| ≤
qVol(O)

vε
.

To show this, we claim that every ε–ball in Hn maps to O with multiplicity at most
q at each point. This is because we have shown above that if p1, . . . , pk ∈ Hn are in
the same 4ε–ball and also in the same Γ–orbit, they are also in the same H–orbit for
some finite subgroup H of Γ. Because we have assumed that every finite subgroup
of Γ has at most q elements, we must have k ≤ q.

Thus, the ε–balls around the points of S are disjoint in O and each has volume
at least vε

q
, where vε denotes the volume of a ball of radius ε in Hn. In total, the

volume is at most Vol(O), so we have |S| ≤ qVol(O)
vε

, and thus

#simplices(T ) ≤

(

D(n)

n

)

·
qVol(O)

vε
= C(n) ·

qVol(O)

vε
.

�

The proof above relies on the following additional lemma to bound the degree
of the triangulation that arises from the Voronoi decomposition. Although this
lemma seems like it may be true more generally, we only know how to prove it in 3
dimensions. Proving this lemma is the only part of this paper where the assumption
n = 3 is needed.

Lemma 4. There is a constant M such that the following is true. Let H be a

finite group of rotations of H3 with a common fixed point, ∗. Let p and q be points

not fixed by any nontrivial elements of H. Consider the Voronoi decomposition

corresponding to the set Hp ∪ Hq. Then each 3–dimensional cell has at most M
2–dimensional facets.
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Proof. The finite groups of rotations of S2 are classified: H must be either a cyclic
group, a dihedral group, or a group of rotations of a Platonic solid. If H is a group
of rotations of a Platonic solid, we have a uniform bound on |H | and thus on the
number of 3–cells. Two 3–cells share at most one 2–dimensional facet, so there are
at most 2 |H | − 1 facets per 3–cell in this case.

Suppose that H is cyclic, and that the common axis of the rotations is verti-
cal. We consider separately the Voronoi decomposition corresponding to Hp and
the Voronoi decomposition corresponding to Hq. If two cells of the (Hp ∪ Hq)–
decomposition share a facet, then either they correspond to two elements of Hp
that have adjacent cells in the Hp–decomposition, or they correspond to two ele-
ments of Hq that have adjacent cells in the Hq–decomposition, or they correspond
to one element of Hp and one element of Hq.

To see how many Hp–neighbors an element of Hp can have, we observe that the
Hp–decomposition looks like |H | congruent vertical wedges, so each wedge has two
neighbors. Similarly each element of Hq has at most two Hq–neighbors.

Suppose that two cells are neighbors, one from an element of Hp and the other
from an element of Hq. Without loss of generality, suppose that these elements are
p and q. Then on the facet between the two cells, each point of the facet is closer
to p than to any other point of Hp, and it is closer to q than to any other point of
Hq. Thus, in the Hp–decomposition, this point is in the cell of p, and in the Hq–
decomposition, it is in the cell of q. By examining the geometry of the congruent
vertical wedges, we can see that the cell of p in the Hp–decomposition intersects
two cells of the Hq–decomposition, unless the Hp– and Hq–decompositions are
identical, in which case it intersects only one cell of the Hq–decomposition. Thus,
in the (Hp ∪ Hq)–decomposition, the cell of p can neighbor at most two cells of
points in Hq.

In total, each cell of the (Hp ∪ Hq)–decomposition can neighbor at most two
cells of its own type and at most two cells of the other type, for a total of at most
four cells in the case where H is cyclic.

The argument when H is dihedral is very similar. Suppose that H = D2k, and
that in its cyclic subgroup Ck the common axis of the rotations is vertical. The unit
sphere around the fixed point ∗ has a north pole and a south pole on this vertical
axis. Looking at the Voronoi decompositions with respect to Hp and Hq separately,
we see that each has k wedges touching the north pole, and k wedges touching the
south pole, rotated from each other by some offsets depending on p and q. The cell
in the Hp–decomposition containing p has at most four neighbors from Hp: two
touching the same pole, and at most two touching the other pole. It also intersects
at most four cells in the Hq–decomposition: at most two touching the same pole,
and at most two touching the other pole. Thus, in the (Hp ∪Hq)–decomposition,
each cell can neighbor at most eight cells in the case where H is dihedral. �

This completes the proof of Lemma 3. We now bring in the arithmetic informa-
tion for estimating the number of simplices in terms of volume.

Given an integral monic polynomial P (x) of degree d, its Mahler measure is
defined by

M(P ) =

d
∏

i=1

max(1, |θi|),

where θ1,. . . , θd are the roots of P (x).
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Let γ ∈ Γ be a hyperbolic transformation. By [Gre62, Proposition 1(1,4)], the
eigenvalues of γ considered as an element of O(n, 1) are e±ℓ(γ) and n−1 eigenvalues
whose absolute value is 1. We would like to relate eℓ(γ) to the Mahler measure of
a certain polynomial naturally associated to γ. To this end we can adapt the
argument of [Gel04, Section 10]. Let H◦ be the identity component of the group
H = Isom(Hn). It is center-free and connected so we can identify it with its
adjoint group Ad(H◦) ≤ GL(g), where g denotes the Lie algebra of H . We have
Γ′ = Γ ∩H◦, a cocompact arithmetic lattice, and γ2 ∈ Γ′. Since Γ′ is arithmetic,
there is a compact extension H◦ × K of H◦ and a Q–rational structure on the
Lie algebra g × k of H◦ × K, such that Γ is the projection to H◦ of a lattice Γ̃,
which is contained in (H◦×K)Q and commensurable to the group of integral points
(H◦ ×K)Z with respect to some Q–base of (g× k)Q. By changing this Q–base we

can assume that Γ̃ is contained in (H◦ ×K)Z. This means that the characteristic

polynomial Pγ̃ of any γ̃ ∈ Γ̃ is a monic integral polynomial of degree (n+1) deg(k),
where k is the field of definition of the arithmetic group. Since K is compact,
any eigenvalue of γ̃ with absolute value different from 1 is also an eigenvalue of its
projection in H◦. Therefore,

eℓ(γ
2) = M(Pγ̃2);

(1) ℓ(γ) ≥
1

2
logM(Pγ̃2).

This implies that rinj(O) ≥ min{ 1
4 logM(Pγ̃)}, where the minimum is taken over

all γ̃ ∈ Γ̃ which project to hyperbolic elements in Γ′. Moreover, our argument
shows that the degrees of the irreducible integral monic polynomials whose Mahler
measures appear in this bound satisfy

(2) d ≤ (n+ 1) deg(k).

Let us mention in passing that more precise versions of inequalities (1) and (2)
for arithmetic subgroups of the simplest type were obtained in [ERT16].

Now recall that the celebrated Lehmer’s problem says that the Mahler measures
of non-cyclotomic polynomials are expected to be uniformly bounded away from 1.
A special case of this conjecture also known as the Margulis conjecture implies
a uniform lower bound for the lengths of closed geodesics of arithmetic locally
symmetric n–dimensional manifolds (see [Gel04, Section 10]). These conjectures
have attracted a lot of interest but still remain wide open. Nevertheless, there are
some quantitative number-theoretic results towards Lehmer’s problem which we
can use for our estimates.

In [Dob79], Dobrowolski proved the following lower bound for the Mahler mea-
sure:

(3) logM(P ) ≥ c1

(

log log d

log d

)3

,

where d is the degree of the polynomial P and c1 > 0 is an explicit constant.
We can relate the degree d to the volume by using an important inequality

relating the volume of a closed arithmetic orbifold and the degree of its field of
definition:

(4) deg(k) ≤ c2 logVol(O) + c3.
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For hyperbolic orbifolds of dimension n ≥ 4 this inequality follows from [Bel07,
Section 3.3] and Minkowski’s bound for discriminant. In dimensions 2 and 3 this
inequality is a result of Chinburg and Friedman [CF86], and in the form stated here
it can be found in [BGLS10, Section 3].

For sufficiently large x the function log x
x

is monotonically decreasing, hence for
sufficiently large volume we obtain

(5) rinj(O) ≥
c1
4

(

log log logVol(O)c

log logVol(O)c

)3

.

We note that this is a very slowly decreasing function.
Next we need to bound the order q of finite subgroups F < Γ in terms of volume.

This can be done using the Margulis lemma once again, this time applied to the
discrete subgroups of O(n). The details for arithmetic subgroups of the simplest
type can be found in [ABSW08, Lemma 4.4 and Corollary 4.5]. A similar argument
applies in general: Consider a k–embedding of Γ into GL(m, k) with m = n+ 1 if
n is even, m = 2(n + 1) if n is odd and 6= 7 (cf. [Mor15, Proposition 6.4.8]), and
m = 24 if n = 7. The last embedding comes from the fact that an adjoint simple
group of type D4 over k is a connected component of the automorphism group of a
trialetarian algebra [KMRT98, Chapter X]. Starting from this place we can repeat
the proof of the lemma and the corollary cited above. The resulting inequality is

(6) q ≤ c4 deg(k)
c5 ,

with the constants c4, c5 > 0 depending only on n.
Together with (4) it implies

(7) q ≤ c6(logVol(O))c5 .

It remains to apply inequalities (5) and (7) for estimating the number of simplices
in a good triangulation provided by Lemma 3. For sufficiently large volume, we
have

rinj(O) ≥
c1
4

(

log log logVol(O)c

log logVol(O)c

)3

≥

≥
c1
4

(

1

log log Vol(O)c

)3

≥

≥
c1
4

(

1

logVol(O)

)3

,

so for ε = min
{

µn

8 , r
16mn

}

we have

vε ≥ C(n) · εn ≥ C(n) ·

(

1

logVol(O)

)3n

.

Thus for sufficiently large volume we obtain

# simplices(T ) ≤ C(n) · q ·Vol(O) ·
1

vε
≤

≤ C(n) · (log Vol(O))c5 ·Vol(O) · (logVol(O))3n ≤

≤ Vol(O)1+δ.

This finishes the proof of the theorem. �
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Remark 1. Let us note that even assuming the solution to Lehmer’s problem or
the Margulis conjecture our method would not allow us to deduce a better bound
for the size of a good triangulation. This is because of the contribution of the
singularities of large order to the volume estimates. A more careful analysis under
this assumption may allow one to produce a linear upper bound but we will not
pursue it here.
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