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Water drops moving on surfaces are a common phenom-
enon. The lateral adhesion of drops can be a nuisance; 
for example, nature developed sophisticated surface 

structures to keep feathers, fur or plant leaves dry. Science and tech-
nology have adopted these surface modifications to keep drops from 
sticking on textiles, in microfluidics, or to keep window screens and 
glasses clear in the rain1–4. In other applications, the resistance of 
sessile drops to sliding motion is essential, for example, in coating, 
painting, flotation and deposition of insecticides and herbicides5,6. 
Still, a full description of forces acting on moving drops remains elu-
sive. Closing this gap of knowledge has become more imperative due 
to the recent endeavour to generate electricity from moving drops7–15. 
This direct form of harvesting hydrovoltaic energy without moving 
parts promises to expand the range of hydroelectricity generation 
to small-scale devices applicable in remote and off-grid areas, or as 
emergency generators. The efficiency of energy conversion, how-
ever, is still too low. Here the poor understanding of moving drops 
still hampers the development of useful hydrovoltaic generators.

In accepted studies in the literature, drop motion is determined 
by viscous dissipation due to hydrodynamic flow in the drop and by 
activated processes, in which the contact line has to overcome local 
energy barriers leading to contact-line friction6,16–22. The viscous 
force of a sliding drop is commonly split in two components. Both 
are, to the first order, proportional to slide velocity U. One com-
ponent comes from the viscous dissipation in the bulk, Fb, and the 
other from the wedge of the drop, Fw (refs. 23–25). Viscous dissipation 
in the wedge and contact-line friction change the macroscopically 
observed advancing and receding contact angles, namely, Θa(U) 
and Θr(U), respectively. As a result, the capillary force acting on a  
sliding drop4,26,27

Fc = wγk (cosΘr − cosΘa) (1)

depends on the velocity. Here w is the width of the contact area of 
the drop, γ is the surface tension of the liquid and k ≈ 1 is a geometri-
cal factor that depends on the detailed shape of the drop24,27–30. Bulk 
viscous dissipation, which is much lower than viscous dissipation 
in the wedge, can be approximated by Fb ≈ η πlw

2H U  (Supplementary 
Section 1). Here η denotes the dynamic viscosity of the liquid, l is 
the length of the drop and H is its height.

Here by a simple tilted-plate experiment, we demonstrate that the 
motion of drops cannot be accurately predicted by these forces. In 
a tilted-plate experiment, a defined gravitational force Fg = mgsinα 
is acting in the lateral direction21,25,31–36. Here m is the mass of the 
drop, g = 9.81 m s–2 is the standard acceleration of gravity and α is 
the tilt angle.

Two observations demonstrate that the trajectories of the sliding 
drops require more than hydrodynamics and activated processes. 
First, on surfaces with identical surface chemistry but different 
substrate conductivities and substrate thicknesses, we see differ-
ent average velocities. For example, in Fig. 1a–d, we show sur-
faces coated with perfluorooctadecyltrichlorosilane (PFOTS): a 
silicon wafer with ~2 nm oxide layer, a 1-mm-thick SiO2 plate and a 
5-mm-thick SiO2 plate. The first drop on each surface had an aver-
age velocity of 0.25 m s–1 (Fig. 1a), 0.18 m s–1 (Fig. 1b) and 0.06 m s–1 
(Fig. 1c), respectively. When substrate conductivity was higher than 
that in the wafer, we observed even faster drop motion. Gold sur-
faces coated with a monolayer of perfluorodecanethiol (Fig. 1e) and 
Teflon (Fig. 1f) films have surface chemistry comparable to PFOTS, 
yet with average velocities of 0.42 and 0.48 m s–1, respectively. Water 
drops move faster on these surfaces than on PFOTS-coated SiO2 
surfaces. This simple experiment alone demonstrates that there is an 
important contribution missing in the description of drop motion.

Our second piece of evidence is that for a series of drops, sliding 
speeds become dependent on the drop number and thus dependent  
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on surface history. For example, the drop 50 sliding down a 
PFOTS-on-5-mm-SiO2 plate is faster than the drop 1 (Fig. 1d). The 
surface chemistries of the three samples mentioned are identical 
and thus one expects identical capillary and viscous forces; however, 
the sliding speed of the drops varied by more than a factor of two, 
both between samples and between successive drops.

We believe that one logical explanation for this missing force is 
electrostatics. It is known that on bulk Teflon samples, fluorinated 
insulators and superhydrophobic surfaces, sliding water drops 
deposit negative electric charges, whereas the drops acquire a posi-
tive charge8,9,11,37–42. It is commonly believed that the surface charges 
behind sliding water drops are remnants of interfacial charges 
generated spontaneously at the water–solid interface8,11,37,43,44. 
Hydrophobic surfaces usually charge negatively in water. The rea-
son for this charge is still debated45. The most popular explana-
tion is an enrichment of hydroxyl ions at the interface. Alternative 
hypotheses speculate the origin of interfacial charge in the  
asymmetry of the hydrogen-bond network46, adsorption of bicar-
bonate/carbonate ions47 or the flow of electrons from water to  
the polymer15.

Surface charges generate an electric field in the air above the 
surface. A charge q on top of an infinitely extending dielectric 
half-space with a relative permittivity εS generates an electric field

E =
q

2πε0 (εS + 1) r2 . (2)

Here, ε0 is the vacuum permittivity and r is the distance from the 
charge. If we now place a charged drop atop this charged surface, 
the drop will experience a Coulomb force that scales with 1/(1 + εS).

Given the importance of moving drops in our daily lives, we will 
address the following questions: is it possible to quantitatively mea-
sure electrostatic forces on moving drops? How? Can electrostatic 
forces explain the measured drop trajectories? Specifically, why and 
how does the substrate influence drop motion? Why is the motion 
of a drop influenced by previous drops? To answer these ques-
tions and to directly measure the forces acting on moving drops, 

we developed a new method to analyse tilted-plate experiments  
(Fig. 2a and Supplementary Section 2).

We prepared smooth, hydrophobic surfaces with receding and 
advancing contact angles ranging within 77–110° and 93–122°, 
respectively (Fig. 2b and Supplementary Section 3). All the sur-
faces had a root-mean-squared roughness of ≤1 nm, as determined 
by scanning force microscopy (SFM; Supplementary Section 4). 
To find out how strong the electrostatic forces are, we varied the 
substrate and its thickness d with respect to a grounded metal 
back-electrode. We chose SiO2 plates (εS = 3.7; Supplementary 
Section 5) as a low-permittivity substrate and Si wafers with only 
a natural oxide layer as a high-permittivity sample (εS = 11.7; data 
from the supplier, Silicon Materials). The stability of the coat-
ings was confirmed by measuring the drop velocity, advancing 
and receding contact angles, and morphology before and after 
1,000 water drops sliding down the reference surfaces. None of the 
parameters had changed (Supplementary Section 6). In the pres-
ence of the grounded metal back-electrode, the field is screened by 
image charges. The distance to the grounded metal layer defines the 
screening length.

To describe the results and analysis, we first concentrate on 
PFOTS-coated samples (Fig. 3a and Supplementary Section 7). For 
the PFOTS-on-Si sample, the first, second and subsequent drops 
showed similar velocity profiles (Fig. 3a, green symbols). In contrast 
to common expectation, on 1-mm- and 5-mm-thick SiO2 substrates 
(Fig. 3a, blue and red symbols), the velocity profiles of the first, sec-
ond and subsequent drops were distinctly different, although all the 
samples have similar contact angles. First, the velocities tended to be 
lower on SiO2 than the silicon wafer. Second, often, rather complex 
traces occurred. Although complex, these traces are systematic and 
reproducible. For example, on the PFOTS-on-5-mm-SiO2 sample, 
the first drop shows a monotonically increasing velocity (Fig. 3a, 
red squares). However, for drop number 100 (Fig. 3a, red stars), the 
velocity increased for the first 3 cm, but then decreased again.

We draw two conclusions. First, the drop motion is not simply 
determined by viscous dissipation and activated dynamics at the 
contact line. Second, there is a fundamental difference between 
static and dynamic wetting. The static shape of a drop is largely 
determined by the properties of the top-most 1 nm of the sur-
face; the substrate underneath has little influence (except in the  
case of strong externally applied electric fields such as in electrowet-
ting48). In contrast, the dynamic properties such as the sliding  
speed are influenced by the substrate down to a thickness of the 
order of 1 mm.

To quantify the extra force, we analyse the equation of the motion 
of a drop:

m∗
dU
dt = mg sin α − Fr (U)− Fne (U, L). (3)

In the acceleration term (m∗ dU
dt ), we take into account the roll-

ing components in drop motion6,16,21,36,49,50. Therefore, we used the 
effective mass m∗, which was determined by the direct numerical 
diffuse-interface simulations of the flow pattern inside sliding drops 
(Supplementary Section 8). These simulations gave an estimate of 
m∗/m = 1.05 as a good mean value for the velocity range covered 
by our experiments.

All the forces acting on the drop in the absence of electrostatic 
effects are summarized in the reference force, Fr(U). The refer-
ence force depends on the velocity U but not on the slide length 
L, because the surfaces are homogeneous. For the extra force Fe, 
the subscript ‘e’ indicates ‘extra’ or presumably ‘electrostatic’. It may 
depend on the velocity, slide length and drop number n.

To obtain the reference force, we assume that on Si wafers, elec-
trostatic forces are negligible. This assumption is in line with the 
fact that no differences in velocity were observed between successive 

PFOTS-on-Si, drop 1

PFOTS-on-1-mm-SiO2, drop 1

Thiols-on-gold, drop 1

PFOTS-on-5-mm-SiO2, drop 1

PFOTS-on-5-mm-SiO2, drop 50

Teflon-on-gold, drop 1
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Fig. 1 | Movement of drops on different surfaces. Water drops (33 µl) 
sliding down a plate tilted by 50° after detaching from a grounded 
electrode and imaged every 10 ms with a side-view camera.
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drops (Fig. 3a). With equation (3), we obtain Fr = mg sin α −m∗ dU
dt . 

The acceleration is obtained from the measured velocity traces, U(t). 
The reference forces increase linearly in the velocity range up to 
0.4 m s–1 (Fig. 3b). This increase is correlated with an increase 
in length and decrease in width of the drops (Supplementary  
Section 9).

By inserting the respective drop widths as well as the advancing 
and receding contact angles into equation (1), we calculated the cap-
illary force with k = 1 (Supplementary Fig. 9, red symbols). The cap-
illary forces, which include wedge viscous forces (Supplementary 
Section 1), make up for most of the measured reference forces 
(Supplementary Fig. 9, black symbols). The bulk viscous forces 
(Supplementary Fig. 9, blue symbols) contribute less than 10% to 
the reference force (Supplementary Section 10).

With the reference force Fr(U) obtained from the experiments 
on Si wafers, we use U(t) curves measured on SiO2 to calculate 
the extra force using equation (3) as Fne = mg sin α −m∗ dU

dt − Fr  
(Fig. 3c and Supplementary Section 11). These extra forces are sub-
stantial, they depend on the drop number, n and they show complex 
distance dependency. Usually, the first and second drops experi-
enced a strong force of 60–100 µN (up to 50% of the reference force), 
which then decayed over the observation range of 4 cm. The force 
is positive, hindering the drop motion. After around five drops, the 
initially high, decaying force gradually changed to an initially low, 
increasing extra force. Drop 100 showed almost an inverted profile 
of drop 1: starting at around 30 µN, it typically increased to 60 µN 
after 4 cm slide length.

To determine the origin of the extra force, we measured the drop 
charges (Supplementary Section 12). In agreement with earlier 
results39, on SiO2 substrates, the drops gained a positive charge and 
left behind a negative surface charge. For the first drop, the charge 
was typically Q1 = 1.0–1.5 nC on 1 mm and 5 mm SiO2 (Fig. 3d  
and Supplementary Table 2). It decreased with subsequent drops 
until it reached a saturation value of the order of 0.4 nC. In con-
trast, on silicon wafers, the drop charges were typically 5–10 times 
lower. We used these values of drop charges to model the  
electrostatic force.

Modelling the electrostatic force allowed us to explain the shapes 
and magnitudes of the measured extra force. We derive the electric 
field by integrating the field strength (equation (2)) for the surface 
charge density σn(x). We then multiply it with the drop charge Qn(x) 
to obtain the electrostatic force of the nth of drop:

Fne (L) = −

wQn(L)
2πε0(εS+1)

(

L
∫

0

σn(x)
(L+a−x)2 dx−

Lend
∫

L+l

σn−1(x)
(x−L−a)2 dx

)

.
(4)

Here, x is a coordinate along the path of the drop itself and the 
path of previous drops. The first integral represents the interaction 
of the drop with surface charges behind the drop. The second inte-
gral represents the interaction with charges deposited by previous 
drops ahead of the current drop (Supplementary Section 13). The 
parameter a characterizes the centre position of the charge of the 
drop; it is the horizontal distance to the rear rim (Supplementary 
Section 13 and Supplementary Fig. 13). Its value was obtained from 
numerical calculations of the electric-field distribution and electro-
static force (Supplementary Section 13).

We use a previously derived model to obtain plausible expressions 
for σn(x) and Qn(x) (ref. 39). Briefly, surface charges behind a sliding 
drop are the remnants of interfacial charges spontaneously generated 
at the water–solid interface8,11,37,43 (Fig. 4a). Hydrophobic surfaces usu-
ally charge negatively in water, probably by the adsorption of hydroxyl 
ions. Some of these charges fail to neutralize at the rear of the slid-
ing drop and remain on the surface. As a result, the drop becomes 
positively charged. However, the transfer of charges to the solid–air 
surface decreases with an increasing drop potential39. As a result, 
the density of the deposited surface charges decreases with distance: 
σ1 = σ0e–x/λ. Here σ0 is the initial surface charge density and λ is the 
decay length (Supplementary Section 14). In addition, we allow the 
neutralization of surface charges with time. It is not yet clear which 
processes dominate surface neutralization, for example, flow of elec-
trons through the grounded substrate or via the surface, ions in the 
air, or the ejection of electrons8,42. Neutralization is characterized by 
an exponential process with a relaxation time constant τ of typically 
10 s. Based on the independent parameters σ0, λ and τ (Supplementary 
Section 12 and Supplementary Table 2), the surface charge density can 
be written as a function of the position and drop number.

Using equation (4), we obtain an analytical expression for 
the electrostatic force on the first drop (equation (14) in the 
Supplementary Information) and for higher drop numbers (n → 
∞; equation (21) in the Supplementary Information). The calcu-
lated electrostatic force yields the same order of magnitude as the  
experimental results (Fig. 4b), and it explains the observed flip in 
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the slope of Fe versus L curves when going from the first to subse-
quent drops with n ≥ 10.

All the drops start with zero charge and thus zero electrostatic 
force. The first drop deposits a negative charge on the neutral 
surface and acquires a positive charge within a distance of L ≈ λ  
(Fig. 4b, top-left schematic). The increase in drop and surface 
charges leads to a steep increase in the retarding electrostatic force, 
with a peak at L ≈ 0.8λ. As a result of drop charging, the drop poten-
tial increases, which hinders further charge deposition, and the 
drop charge saturates. As the drop reaches saturation and moves 
further from the strongly charged region of the surface, the retard-
ing electrostatic force decreases (Fig. 4b, bottom-right schematic).

The maximum value predicted by the analytical solution at the 
beginning was missing in the experiments (Fig. 4b, red symbols). 
This could be the effect of an additional negative surface charge 
deposited right after the drop impacts the surface before touch-
ing the first grounded electrode. As a result, the maximum value 
would be outside our observation range. It was observed on other 
substrates described below.

For higher drop numbers (Fig. 4b, blue line, and Supplementary 
Fig. 15), the electrostatic retardation increases with slide distance 
because of two effects. First, the surface charge density is already 

high from previous drops. As a result, the drop needs to cover a 
larger distance to reach its saturation charge (Fig. 4b, top-right sche-
matic). Thus, the increase in force (for the first drop, it happens in 
the first 1 cm) is stretched to a distance of ≥4 cm. Second, the sur-
face charges in front of the drop that are left behind by previous 
drops lead to an acceleration. At the end of the path, the electro-
static force increases even more steeply because there are no more 
attractive charges ahead since the sample ends.

The good agreement between experiment and electrostatic 
theory indicates that on PFOTS-coated insulators, the extra forces 
are predominantly caused by electrostatic charging. To find out  
how ubiquitous electrostatic forces are, we performed experi-
ments on other hydrophobic samples. When using conductive sub-
strates or high-permittivity substrates (polystyrene (PS)-on-gold, 
Teflon-on-gold, polydimethylsiloxane (PDMS)-on-Si and thiols- 
on-gold substrates), the first, second and subsequent drops 
showed similar velocity profiles (Supplementary Section 15 and 
Supplementary Fig. 18). Thus, electrostatic effects are negligi-
ble. In contrast, on 1-mm- and 5-mm-thick SiO2 coated with PS, 
Teflon or PDMS, the velocity profiles of the first, second and sub-
sequent drops were distinctly different (Supplementary Section 15 
and Supplementary Fig. 19). This observation indicates that drop 
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motion is substantially influenced by electrostatic forces. The charg-
ing of drops was detected on all the hydrophobic surfaces on SiO2 
(Supplementary Section 12 and Supplementary Fig. 12). In con-
trast, for the PS-on-gold, Teflon-on-gold and PDMS-on-Si samples, 
charging was at least ten times lower.

A complex variety of Fne  versus L graphs were observed, depend-
ing on the drop number, tilt angle and substrate thickness. Two 
typical examples are plotted in Fig. 5; a full set of results is shown in 
Supplementary Sections 16 and 17. On several samples, such as the 
Teflon-on-1-mm-SiO2 sample, we observed the maximum in the 
force versus slide length curves predicted by the electrostatic theory 
for the first drop (Fig. 5a). We assume that a slight increase in decay 
length (λ) shifts the maximum value into our observation win-
dow. The charge measurements confirmed that indeed on Teflon, 
λ = 2.5 cm (compared with λ = 1.5 cm on PFOTS; Supplementary 
Table 2). For higher drop numbers, the maximum value became 
weaker and for drop numbers n ≥ 10, an increasing extra force 
started to dominate at larger slide lengths, in agreement with equa-
tion (21) in the Supplementary Information.

Figure 5a, however, also shows the limits of the simple model. 
It does not predict the minimum value in the electrostatic force 

for n ≥ 10 at shorter slide lengths. This deficit could be related to 
the assumption that charge deposition is independent of the slide 
velocity. Since the deposition of charges is a non-equilibrium pro-
cess, it most likely depends on the velocity. At a low velocity, charge 
deposition is probably less pronounced than assumed. A velocity 
dependence of charge deposition is most likely also the reason for 
the oscillating electrostatic forces observed, for example, on the 
PS-on-5-mm-SiO2 sample (Fig. 5b). The oscillation period was not 
related to drop vibrations, which were at 50 Hz or faster. Thus, a 
future refinement of the description of charge deposition needs to 
include the velocity of the receding contact line.

Electrostatic retardation is not restricted to pure water. In aque-
ous drops containing 0.1–1,000.0 mM NaCl, electrostatic forces 
made up to 50% of the total force when sliding down the PFOTS-on-
1-mm-SiO2 sample (Supplementary Section 18 and Supplementary 
Fig. 24). For drops of ethylene glycol (εS = 37, γ = 0.048 N m–1, 
η = 0.016 Pa s, V = 18.6 µl) on the Teflon-on-1-mm-SiO2 sample, the 
electrostatic forces for the first and second drops were of the order 
of 100 µN; they were even stronger than those for water despite the 
high viscosity and slow motion of drops (Supplementary Section 18 
and Supplementary Fig. 25).
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One additional consequence of electrostatic retardation is that 
impacting drops rebound differently depending on the conduc-
tivity and permittivity of the substrates. For example, 20 µl water 
drops falling from a height of 2.5 cm fully rebound from the 
Teflon-on-gold substrate. In contrast, the same drops stick on the 
Teflon-on-SiO2 substrate (Supplementary Section 19). When tilting 
the surface by 10°, drops rebound on the Teflon-on-gold substrate 
and roll off completely. On SiO2, drops do not rebound but split 
apart and stick to the surface. In particular, in printing and coat-
ing applications, for the production of window screens and glasses 
or in heat exchangers, this variation in electrostatic force may con-
trol whether impacting drops rebound from or stick to a surface. In 
general, the insight that surface permittivity influences drop motion 
opens new avenues towards engineering surfaces with desired wet-
ting properties.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
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Methods
Tilted-plate experiments. To measure the forces acting on sliding drops, 33 µl 
drops of distilled water (<1 µS cm–1; Gibco, Thermo Fisher Scientific), 1 M NaCl 
solution (Carl Roth), 0.1 mM NaCl solution (made from 10 µl M NaCl solution 
and 100 ml distilled water) and ethylene glycol (99.8%; Sigma-Aldrich) were 
deposited at intervals of 1.3 s at the top of a tilted sample by a grounded syringe 
needle (1.5 mm outer diameter, Dosiernadel Vollmetal), which was connected to 
a peristaltic pump (MINIPULS 3, Gilson) (Supplementary Fig. 1). Before every 
series of drops, the surfaces were neutralized by an ionizing air blower for 10 min 
(Aerostat PC ionizing air blower, Simco-Ion). The drops fell ~5 mm, just enough 
so that they detached from the syringe before touching the surface. To make 
sure the drops start sliding without any initial charge, they were neutralized by 
a 0.025-mm-diameter grounded tungsten wire, right after they landed on the 
surface. The position where the drops detach from the grounded wire corresponds 
to the zero slide length (L = 0). The observation range starts where the full drop 
has detached from the grounded wire and the wire is not in the image anymore, 
that is, at L = 0.5 cm. Then, we imaged the drop with a frame rate of 1,000 frames 
per second in the side and front views over a length of typically 4.5 cm with a 
high-speed camera (FASTCAM Mini UX100 (Photron) with a TitanTL telecentric 
lens, ×0.268, one inch, C-mount (Edmund Optics)). By applying two parallel 
mirrors (25 × 36 mm2 protected silver mirror; PFR10-P01, Thorlabs) on both sides 
of the sample to guide the backlight from the telecentric backlight illuminator 
(138 mm; Edmund Optics), we also imaged the front view of the sliding drops 
at the same time. After typically Lend = 6 cm, the rim of the sample was reached 
and the drops fell off. To access a wide velocity range, we varied the tilt angle 
(Supplementary Fig. 6a). On longer samples, we verified that after a slide length of 
~10–15 cm, the drops reach a steady-state velocity (Supplementary Fig. 6b). From 
video images, we extract slide length L, drop velocity U, contact angles at the front 
(advancing contact angle, Θa) and rear (receding contact angle, Θr), and length and 
width of the drop. All the parameters vary with time and thus with position. To 
extract Θa(U) and Θr(U) from the videos, we adapted the open drop-shape analysis 
from MATLAB (DSAfM) version 9.5.0.944444 (R2018b). The dynamic contact 
angles were determined by applying a polynomial fit to every contour image 
(Supplementary Section 2). All the measurements were conducted at a temperature 
of 20 ± 1 °C and a humidity of 15–30%.

Sample preparation. Five types of surface were prepared. (1) PFOTS 
monolayers on Si wafer, 1-mm-thick and 5-mm-thick SiO2 slides were 
prepared by chemical vapour deposition. After O2-plasma cleaning at 300 W 
for 10 min (Femto low-pressure plasma system, Diener electronic), the Si wafer 
(native oxide layer of 1.6 ± 0.3 nm as measured by ellipsometry; resistivity, 
<0.005 Ω cm; thickness, 525 ± 25 µm; Silicon Materials) and the SiO2 slides 
were placed in a vacuum desiccator containing a vial with 0.5 ml 1H,1H,2H,
2H-perfluorooctadecyltrichlorosilane (97%; Sigma-Aldrich). We used 1-mm-thick 
SiO2 slides (76.2 × 25.4 × 1.0 mm3; Thermo Fisher Scientific) and 5-mm-thick 
SiO2 slides (75.0 × 25.0 × 5.0 mm3; Präzisions Glas & Optik). The desiccator was 
evacuated to less than 100 mbar, closed, and the reaction was allowed to proceed 
for 30 min. Before measurement, the PFOTS surfaces were rinsed with ethanol to 
remove any unbound silanes. (2) PS films on gold, 1-mm-thick and 5-mm-thick 
SiO2 slides were prepared by dip coating. To get gold substrates, 30 nm gold 
was sputtered onto 75 × 25 mm2 glass slides that had been precoated with 5 nm 
chromium to improve adhesion. The solution consisted of 1 wt% PS (molecular 
weight, 192 kg mol–1, ε = 2.6; Sigma-Aldrich) in toluene. After moving down the 
substrates at a speed of 90 mm min–1 into the solution and waiting for 10 s, the 
substrates were moved up again at a speed of 90 mm min–1. Finally, the films 
were annealed in an oven at 120 °C under a vacuum for 24 h. The PS films were 
20 nm thick measured by a profiler (P-7 stylus profiler, KLA-Tencor). (3) Teflon 
AF1600 (Teflon) films on gold, 1-mm-thick and 5-mm-thick SiO2 slides were 
prepared by dip coating. Sputter-coated gold glass slides (see above) or SiO2 slides 
were immersed into 1 wt% Teflon AF1600 (ε = 1.9; Sigma-Aldrich) in FC-43 
(Sigma-Aldrich) at a speed of 90 mm min–1. After being immersed for 10 s, the 
substrates were withdrawn from the solution at a constant speed of 10 mm min–1. 
Finally, the films on the substrates were annealed at 160 °C in a vacuum for  
24 h. Teflon AF1600 films were 60 nm thick to avoid dewetting. We determined 
that the roughness increased with an increase in film thickness (Supplementary 
Section 20). (4) PDMS polymer brushes on Si wafers, 1-mm-thick and  
5-mm-thick SiO2 slides were prepared as described elsewhere51. After O2-plasma 
cleaning (see above), few PDMS drops (molecular weight, 6 kg mol−1; Alfa Aesar) 
were deposited on a Si wafer or SiO2. After the PDMS drop spread and covered the 
substrates, the samples were kept at 22−23 °C and 30−60% relative humidity for 
24–48 h. Then, they were rinsed with toluene and sonicated in toluene, ethanol and 
deionized water for 10 min each to wash away any unbound PDMS. The brushes 

were ~3 nm thick1. (5) 1H,1H,2H,2H-perfluorodecanethiol (thiols) monolayers 
on gold: directly after the preparation of the gold-coated glass slide (see above), 
the surfaces were immersed in a 1 mM ethanolic thiol (≥96.0%; Sigma-Aldrich) 
solution for 24 h. Then, the surfaces were rinsed by pure ethanol and dried by  
Ar2 blowing.

SFM imaging. All the hydrophobic surfaces were studied using SFM (Dimension 
Icon, Bruker) in the tapping mode (Supplementary Fig. 2). The SFM tips with a 
nominal resonance frequency of 300 kHz and spring constant of 26 N m–1 were 
used (160AC-NA, OPUS). The root-mean-squared roughness was determined on 
the areas of 0.5 × 0.5 μm2 for each sample. The error was around 0.1 nm, except 
for the thiols-on-gold and PFOTS samples, where it was 0.2 nm. The errors were 
determined from variations observed at different positions on the samples and 
variations in the different samples.

Static contact angle measurements. ‘Static’ advancing and receding contact angles, 
namely, Θ0

a and Θ0
r , respectively, were measured with sessile water drops (OCA 35, 

DataPhysics Instruments). An 8 μl water drop was deposited on the surface. Then, 
16 μl deionized water was pumped into the drop and subsequently sucked out at 
the rate of 0.5 μl s–1 by a Hamilton syringe connected to a hydrophobic needle. 
The process was repeated three times without interruption. During inflation and 
deflation, the drops were imaged in the side view. Then, Θ0

a and Θ0
r  were calculated 

by fitting an ellipse model to the contour images.

Data availability
Source data are provided with this paper. All other data that support the 
plots within this paper and other findings of this study are available from the 
corresponding authors upon reasonable request.
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