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On the Hilbert scheme of smooth curves in
P
4 of degree d = g + 1 and genus g with

negative Brill-Noether number

Changho Keem and Yun-Hwan Kim

Abstract. We denote by Hd,g,r the Hilbert scheme of smooth curves,
which is the union of components whose general point corresponds to a
smooth irreducible and non-degenerate curve of degree d and genus g in
P
r. In this article, we show that for low genus g outside the Brill-Noether

range, the Hilbert scheme Hg+1,g,4 is non-empty whenever g ≥ 9 and
irreducible whose only component generically consists of linearly normal
curves unless g = 9 or g = 12. This complements the validity of the
original assertion of Severi regarding the irreducibility of Hd,g,r outside
the Brill-Nother range for d = g + 1 and r = 4.
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14H10.

Keywords. Hilbert scheme, algebraic curves, linear series.

1. An overview, preliminaries and basic set-up

Given non-negative integers d, g and r ≥ 3, let Hd,g,r be the Hilbert scheme of
smooth curves parametrizing smooth irreducible and non-degenerate curves
of degree d and genus g in Pr.

It seems that the irreducibility of Hd,g,r was first announced by Severi
in the papers [25] & [26]. Severi asserts with an incomplete proof that Hd,g,r
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is irreducible for d ≥ g + r and more generally, Hd,g,r is irreducible in the
Brill-Noether range

ρ(d, g, r) := g − (r + 1)(g − d+ r) ≥ 0.

After Severi, the irreducibility of Hd,g,r has been studied by several
authors. Ein proved irreducibility of Hd,g,r in the range d ≥ g + r for r = 3
and r = 4; cf. [8, Theorem 4] and [9, Theorem 7].

For families of curves in P3 of lower degree d ≤ g+2, the most updated
result is that any non-empty Hd,g,3 is irreducible for every d ≥ g; cf. [17,
Theorem 1.5], [18, Proposition 2.1 and Proposition 3.2 ], [15, Theorem 3.1]
and [20]. Note that even in the range d ≥ g and r = 3, the Brill-Noether
number may well become negative, however there is no reducible Hd,g,3 in
this range. The reducible examples of Hd,g,3 occur only when d ≤ g − 1, e.g.
H8,9,3 or H9,10,3 both of which have two components. In every such known
reducible example of Hd,g,3 when d ≤ g − 1, the Brill-Noether numbers is
negative.

For families of curves in P4 of lower degree d ≤ g + 3 beyond the range
d ≥ g + 4, there has been some extensions of the result of Ein. Hristo Iliev
proved the irreducibility of Hd,g,4 for d = g + 3, g ≥ 5 and d = g + 2,
g ≥ 11; cf. [15]. Note that the genus restriction on the genus g in these re-
sults is equivalent to the condition ρ(g+3, g, 4) > 0 or ρ(g+2, g, 4) > 0. The
non-negativity (or positivity) of the Brill-Noether number indeed assures the
existence of a distinguished unique component of the Hilbert scheme domi-
nating the moduli space Mg and sometimes this makes the problem rather
easier to handle. However, outside the Brill-Noether range, i.e. in the range
ρ(d, g, r) < 0, the problem usually becomes more subtle and one needs some-
what thorough knowledge or case by case analysis of the classes of projective
curves under consideration.

For a fixed value d near to the genus g and small r, the genus be-
comes rather small if the Brill-Noether number is negative. Indeed methods
of the proof of the irreducibility of Hg+2,g,4 for low genus cases - which is
an extension of the result of H. Iliev regarding the irreducibility of Hg+2,g,4

- significantly differ from those in the Brill-Noether range; cf. [21, Corollary
2.2].

On the other hand, there are several examples violating the original
Severi’s assertion due to many authors; cf. [9, Proposition 9], [16], or [7]. De-
spite all these denumerably many counterexamples to the Severi’s assertion,
it is worthwhile to stress that all the reducible counterexamples (in the Brill-
Noether range) are those such that all the extra components consist of non
linearly normal curves. In this regard, we denote by HL

d,g,r the union of those
components of Hd,g,r whose general element is linearly normal. For a detailed
explanation and sources in the literature regarding the Hilbert scheme of lin-
ear normal curves HL

d,g,r, the reader are advised to refer [5] or [19, Remark

1.1] and references therein.
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In this article, we show that Hg+1,g,4 is non-empty for g ≥ 9 and irre-
ducible except for g = 9 and g = 12 outside the the Brill-Noether range; i.e.
g ≤ 14.

The following remarks would help the readers to get down to the main
issues of the Hilbert scheme business of this kind.

Remark 1.1. (1) It has been shown in [19] that any non-empty HL
g+1,g,4 is

irreducible for g 6= 9, inside or outside the Brill-Noether range. Note that
a non-empty Hd,g,4 is known to be irreducible only in the range d ≥ g + 2
by those results due to Ein, H. Illiev and the authors which were already
mentioned.

(2) However, at least to the knowledge of the authors, the irreducibility of
Hg+1,g,4 has not been fully settled yet. In [19] the irreducibility of HL

g+1,g,4

was shown by the irreducibility of the Severi variety and the fact that the
family of complete linear systems on moving curves corresponding to HL

g+1,g,4

has the expected dimension, which is not directly applicable to other possible
components consisting of non-linearly normal curves.

(3) In this paper the author would like to make an attempt for a settlement of
the irreducibility of Hg+1,g,4 outside the Brill-Noether range, and hopefully
the methods we employ in this article may shed light on handling the cases
inside the Brill-Noether range as well.

The organization of this paper is as follows. After we briefly recall several
basic preliminaries in the remainder of this section, we start the next section
with the two reducible examples of Hg+1,g,4 for g = 9 and g = 12.

We then proceed to deal with the irreducibility of HL
g+1,g,4 for some low

genus g, e.g. g = 10 or g = 11.

For notations and conventions, we usually follow those in [2] and [3];
e.g. π(d, r) is the maximal possible arithmetic genus of an irreducible and
non-degenerate curve of degree d in Pr. Throughout we work over the field
of complex numbers.

Before proceeding, we recall several related results which are rather well-
known; cf. [3]. Let Mg be the moduli space of smooth curves of genus g. For
any given isomorphism class [C] ∈ Mg corresponding to a smooth irreducible
curve C, there exist a neighborhood U ⊂ Mg of the class [C] and a smooth
connected variety M which is a finite ramified covering h : M → U , as well
as varieties C, Wr

d and Grd proper over M with the following properties:

(1) ξ : C → M is a universal curve, i.e. for every p ∈ M, ξ−1(p) is a smooth
curve of genus g whose isomorphism class is h(p),

(2) Wr
d parametrizes the pairs (p, L) where L is a line bundle of degree d

and h0(L) ≥ r + 1 on ξ−1(p),
(3) Grd parametrizes the couples (p,D), where D is possibly an incomplete

linear series of degree d and dimension r on ξ−1(p) - which is usually
denoted by grd.
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Let G̃ (G̃L resp.) be the union of components of Grd whose general element

(p,D) of G̃ (G̃L resp.) corresponds to a very ample (very ample and complete
resp.) linear series D on the curve C = ξ−1(p). Note that an open subset
of Hd,g,r consisting of points corresponding to smooth irreducible and non-

degenerate curves is a PGL(r + 1)-bundle over an open subset of G̃. Hence

the irreducibility of G̃ guarantees the irreducibility of Hd,g,r. Likewise, the

irreducibility of G̃L ensures the irreducibility of HL
d,g,r.

We also make a note of the following well-known facts regarding the
schemes Grd and Wr

d ; cf. [1, Proposition 2.7, 2.8], [13, 2.a], [3, Ch. 21, §3, 5, 6,
11, 12] and [10, Theorem 1]. Following classical terminology, a base-point-fee
linear series grd which is not very ample (r ≥ 2) on a smooth curve C is called
birationally very ample when the morphism C → Pr induced by the grd is
generically one-to-one (or birational) onto its image; cf. [11, p. 570],

Proposition 1.2. For non-negative integers d, g and r, let ρ(d, g, r) := g −
(r + 1)(g − d+ r) be the Brill-Noether number.

(1) The dimension of any component of Grd is at least 3g − 3 + ρ(d, g, r)
which is denoted by λ(d, g, r). Moreover, if ρ(d, g, r) ≥ 0, there exists a

unique component G0 of G̃ which dominates M(or Mg).
(2) Suppose g > 0 and let X be a component of G2

d whose general element
(p,D) is such that D is a birationally very ample linear series on ξ−1(p).
Then

dimX = 3g − 3 + ρ(d, g, 2) = 3d+ g − 9.

Remark 1.3. (1) In the Brill-Noether range, the unique component G0 of G̃
(and the corresponding component H0 of Hd,g,r as well) which dominates M
or Mg is called the “principal component”.

(2) In the range d ≤ g + r inside the Brill-Noether range, the principal
component G0 which has the expected dimension is one of the components

of G̃L (cf. [13, 2.1 page 70]), and therefore G̃L or HL
d,g,r and hence Hd,g,r is

non-empty. If one can show that G0 is the only component of G̃L ( G̃ resp.),
the irreducibility of HL

d,g,r ( Hd,g,r resp.) would follow immediately.

(3) However outside the Brill-Noether range, such a distinguished component
does not exist and this is one of the reasons why the problem becomes rather
subtle.

We will utilize the following upper bound of the dimension of an irre-
ducible component of Wr

d , which was proved and used effectively in [15]. A
base-point-free linear series grd on C is called compounded of an involution
(compounded for short) if the morphism induced by the linear series gives
rise to a non-trivial covering map C → C′ of degree k ≥ 2.

Proposition 1.4 ([15, Proposition 2.1]). Let d, g and r ≥ 2 be positive integers
such that d ≤ g + r − 2 and let W be an irreducible component of Wr

d . For
a general element (p, L) ∈ W, let b be the degree of the base locus of the line
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bundle L = |D| on C = ξ−1(p). Assume further that for a general (p, L) ∈ W
the curve C = ξ−1(p) is not hyperelliptic. If the moving part of L = |D| is

(a) very ample and r ≥ 3, then dimW ≤ 3d+ g + 1− 5r − 2b;
(b) birationally very ample, then dimW ≤ 3d+ g − 1− 4r − 2b;
(c) compounded, then dimW ≤ 2g − 1 + d− 2r.

2. Irreducibility of Hg+1,g,4

We first recall several relevant results from [19, Theorem 2.1 and Theorem
2.2].

Remark 2.1. (1) Every non-empty HL
g+1,g,4 is irreducible unless g = 9.

(2) Hg+1,g,4 = HL
g+1,g,4 = ∅ for g ≤ 8.

(3) For g = 9, H10,9,4 = HL
10,9,4 is reducible with two components of dimen-

sions 42 and 43.
(4) For g = 10, H11,10,4 = HL

11,10,4 is irreducible of the expected dimension
46.

(5) For g = 12, H13,12,4 is reducible with two components of the same
expected dimension 54, whereas HL

13,12,4 is irreducible.

(5) The non-emptiness HL
g+1,g,4 (hence Hg+1,g,4 as well) and the existence

of the extra components in the reducible cases above is rather clear from
the proof in [19, Proposition 2.2].

We make a note of the following lemma which will avoid unnecessary
repetitions in the course of the proof of our result.

Lemma 2.2. The residual series E = |KC − D| of a possibly incomplete very

ample (and special) linear series D cannot induce a double covering C
η
→ E

onto a curve of genus h ≥ 0 so that the base-point-free part of E is a pull
back of a non-special linear series on the target curve E via η.

Proof. Note that the complete |D| = grd is very ample if D is. Let C
η
→ E ⊂ Ps

be the double covering induced by the base-point-free part of E = |KC −D|
and let h be the genus of the curve E. We may assume s := dim E ≥ 2 and
h ≥ 1 since for s = 1 or h = 0, C is hyperelliptic and a hyperelliptic curve
does not have a special very ample linear series.

Let ∆ be the base locus of E and |E −∆| = η∗(F) for some complete, non-
special and base-point-free F = gsf on E where s = g − d+ r − 1. Since F is

non-special, s = f − h. Choose any t ∈ E, set u+ v := η∗(t) and we have

s+ 1 ≤ dim η∗(|gsf + t|) ≤ dim |η∗(F + t)| = dim |η∗(F) + u+ v|

= dim |E −∆+ u+ v| = dim |KC −D −∆+ u+ v|

≤ dim |KC − (D − u− v)|.

By Riemann-Roch, it follows that

dim |D − u− v| = d− 2− g + h0(C,KC − (D − u− v))) ≥ r − 1

and hence |D| is not very ample, a contradiction. �
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Since the irreducibility (or the reducibility) ofHg+1,g,4 were treated fully
in [19] for g = 9, 10, 12 as in Remark 2.1, we focus on the three remaining
cases g = 11, g = 13 and g = 14 which are also outside the Brill-Noether
range.

We will use the following dimension estimate of a component W ⊂ Wr
g+1

corresponding to a possible extra component of Hg+1,g,4 other than the one
corresponding to the irreducible HL

g+1,g,4.

Lemma 2.3. Assuming that Hg+1,g,4 is not irreducible, we let H be an extra
component of Hg+1,g,4 other than HL

g+1,g,4. Let G ⊂ Grd be the component
corresponding to H, i.e. H is a PGL(5)-bundle over G and G 6= GL. Let
W ⊂ Wr

g+1 be the component containing the image of the natural rational

map G
ι

99K Wr
g+1 with ι(D) = |D|. We also let W∨ ⊂ Wr−2

g−3 be the locus
consisting of the residual series of elements in W, i.e.

W∨ = {(p, ωC ⊗ L−1) : (p, L) ∈ W}.

Let b be the degree of the base locus of a general element of W∨. Then r ≥ 5
and we have the following dimension estimate of the locus W.

(1) If the base-point-free part of a general element of W∨ is very ample,
then b = 0 and

dimW = dimW∨ = 4g − 5r + 2.

(2) If the base-point-free part of a general element of W∨ is birationally very
ample, then

4g − 5r + 2 ≤ dimW = dimW∨ ≤ 4g − 4r − 2− 2b.

In particular, if r = 5 we have b = 0.
(3) If the base-point-free part of a general element of W∨ is compounded,

4g − 5r + 2 ≤ dimW = dimW∨ ≤ 3g − 2r.

In particular we have g ≤ 3r − 2.

Proof. By Remark 2.1(1), a general element (p,D) ∈ G is such that D is an
incomplete g4g+1 on C = ξ−1(p) hence r := dim |D| ≥ 5.

(1) By Proposition 1.2(1) and Proposition 1.4(a), we have

λ(g + 1, g, 4) = 4g − 18 ≤ dimG ≤ dimG(4, r) +W

= dimG(4, r) + dimW∨

≤ 5(r − 4) + 3(g − 3) + g + 1− 5(r − 2)− 2b

= 4g − 18− 2b

and hence b = 0 and

dimW = dimW∨ = 4g − 18− 5(r − 4) = 4g − 5r + 2.
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(2) By Proposition 1.2(1) and Proposition 1.4(b), we have

4g − 18 ≤ dimG ≤ dimG(4, r) +W = dimG(4, r) + dimW∨

≤ 5(r − 4) + 3(g − 3) + g − 1− 4(r − 2)− 2b

= 4g − 22 + r − 2b.

hence

4g − 5r + 2 ≤ dimW = dimW∨ ≤ 4g − 4r − 2− 2b.

(3) By Proposition 1.4(c), we have

4g − 18 ≤ dimG ≤ dimG(4, r) +W = dimG(4, r) + dimW∨

≤ 5(r − 4) + 2g − 1 + (g − 3)− 2(r − 2)

= 3g + 3r − 20.

implying

4g − 5r + 2 ≤ dimW = dimW∨ ≤ 3g − 2r.

�

Remark 2.4. The following lemma is rather technical but is useful in transfer-
ring the original problem into lower degree cases. Indeed it is a slight variation
of a claim which appeared in the course of the proof of a key lemma in [20,
Lemma 2.3]. For the convenience of the readers, a similar proof is provided.

Lemma 2.5. Assuming that Hg+1,g,4 is not irreducible, we let H be an extra
component of Hg+1,g,4 other than HL

g+1,g,4. Let G ⊂ Grd be the component

corresponding to H. Let W ⊂ Wr
g+1 and W∨ ⊂ Wr−2

g−3 be as in Lemma 2.3.

Assume further that a general element of W∨ is base-point-free and bira-
tionally very ample. Then there is a locus Z ⊂ Wr−3

g−5 such that

dimZ = dimW = dimW∨.

Proof. We consider the following obvious diagram:

Wr−3

g−5 ×
M

W2

q
99K Wr−3

g−3

9
9
K π

Wr−3
g−5

where q(E ′,OC(R+S)) = E ′⊗OC(R+S) and π(E ′,OC(R+S)) = E ′. Since a
general element (p, E) ∈ W∨ ⊂ Wr−2

g−3 ⊂ Wr−3

g−3 is birationally very ample and

base-point-free, q−1(E) 6= ∅ for a general (p, E) ∈ W∨. Let Σ be a component
of q−1(W∨) such that q(Σ) = W∨. Since a general (p, E) ∈ W∨ is assumed
to be birationally very ample, we see that dim q−1(E) = 0 and hence

dimΣ = dimW∨.
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We set Z := π(Σ) ⊂ Wr−3
g−5 and consider the following induced diagram:

Wr−3

g−5 ×
M

W2 ⊃ Σ
q

99K W∨ ⊂ Wr−2

g−3 ⊂ Wr−3

g−3

9
9
K π

Wr−3

g−5 ⊃ Z

We now argue that dimπ−1(E ′) = 0 for a general (p, E ′) ∈ Z as follows. We
choose (p, E) ∈ W∨ and fix (p, E ′) ∈ Z such that (E ′,OC(R + S)) ∈ q−1(E)
for some R,S ∈ C = ξ−1(p), i.e. E ∼= E ′ ⊗ OC(R + S). Recall that by our
initial setting, ωC⊗E−1 = |D| ∈ W ⊂ Wr

g+1 is a very ample line bundle for a

general E ∈ W∨ ⊂ Wr−2

g−3 . We also note that the very ample, base-point-free

and complete linear system |D| = ωC ⊗ E−1 = ωC ⊗ E ′−1 ⊗ OC(−R − S)
is a subsystem of ωC ⊗ E ′−1. Hence ωC ⊗ E ′−1 is birationally very ample;
otherwise the isomorphism induced by the very ample D on C = ξ−1(p) onto
its image factors non-trivially through the morphism induced by ωC ⊗ E ′−1,
which is an absurdity. Therefore by noting that ωC ⊗ E ′−1 = gr+1

g+3, there are

only finitely many choices of OC(−R̃− S̃)’s such that

ωC ⊗ E ′−1 ⊗OC(−R̃− S̃) = grg+1 ∈ W ⊂ Wr
g+1,

i.e. (E ′,OC(R̃+ S̃)) ∈ Σ or equivalently E ′⊗OC(R̃+ S̃) ∈ W∨, which implies
dimπ−1(E ′) = 0. By semi-continuity, we have dimπ−1(E ′) = 0 for a general
(p, E ′) ∈ Z and hence

dimZ = dimΣ.

�

The following theorem will be used in the proof of Theorem 2.7 for
the case g = 14, which asserts that H11.14,3 is reducible with exactly two
components and each of them has the minimal possible dimension.

Theorem 2.6. The Hilbert scheme H11.14,3 is reducible with two components
and both of them have the same expected dimension 44.

Proof. Let C be a smooth curve of genus g = 14 and d = 11 in P3. By
Riemann-Roch on C, the dimension of H0(P3, IC(4)) is at least

h0(P3,O(4))− h0(C,O(4)) = 35− (44− 14 + 1) = 4,

and hence C lies on quartic surfaces, which may well be reducible.

(1) Let C lie on a (unique) quadric Q. By solving d = 11 = a + b and
g = 14 = (a− 1)(b − 1), we see that C is a curve of type (a, b) = (3, 8) on a
smooth quadric. Let I2 be the family of such curves arising in this way, which
is clearly irreducible. By counting the number of parameters of the family of
such pairs (C,Q) we readily have

dim I2 = h0(P3,O(2))− 1 + h0(P1 × P
1,O(a, b))− 1 = 44 = 4 · d.
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It is not clear at this point if I2 is open and dense in a component of the
Hilbert scheme H11.14,3, which will be answered in the affirmative at the end
of the proof.

(2) Next we assume that C lie on a (unique) smooth cubic surface S, which is
isomorphic to P2 blown up at 6 points and embedded by anti-canonical linear
system |−KS| in P3. We denote by OS(a; b1, · · · , b6) the invertible sheaf on S

associated to the Cartier divisor al−
∑6

i=1
biei on S, where l is the pull-back

of a line in P2 and ei (1 ≤ i ≤ 6) are the six exceptional divisors. Setting

C ∼ al −
∑6

i=1
biei, we have

degC = 3a−
∑

bi = 11, C2 = a2 −
∑

b2i = 2g − 2−KS · C = 37.

By Schwartz’s inequality, one has

(
∑

bi)
2 ≤ 6(

∑
b2i )

and substituting
∑
bi = 3a− 11,

∑
b2i = a2 − 37 we obtain

3a2 − 66a+ 343 ≤ 0,

implying 9 ≤ a ≤ 13. After elementary but rather tedious numerical calcula-
tion, we arrive at the following possibilities for the 7-tuple (a; b1, · · · , b7);

(i) (9; 3, 3, 3, 3, 2, 2) (ii) (10; 4, 4, 3, 3, 3, 2) (iii) (11; 5, 4, 4, 3, 3, 3)
(iv) (12; 5, 5, 4, 4, 4, 3) (v) (13; 5, 5, 5, 5, 4, 4),

and by a simple numerical check, in all five cases the curve C is linearly
equivalent on S to D+3H where D is a disjoint union of two of the 27 lines
on the cubic.

For L = OS(a; b1, · · · , b6), by Riemann-Roch on S we have

h0(S,L) = h1(S,L)− h2(S,L) + χ(S) +
1

2
(L2 − L · ωS)

= h1(S,L)− h2(S,L) + 1 +
1

2
(C2 + degC)

= h1(S,L)− h2(S,L) + 1 +
1

2
(37 + 11)

By Serre duality we have,

h1(S,L) = h1(S, ωS ⊗ L−1) = h1(S,OS(−(a+ 3)l+
∑

(bi + 1)ei).

Since E := (a+ 3)l −
∑

(bi + 1)ei is (very) ample we have

h1(S,L) = h1(S,OS(−(a+ 3)l +
∑

(bi + 1)ei)) = 0

by Kodaira’s vanishing theorem. We further note the divisor −E is not lin-
early equivalent to an effective divisor; if it were, one would have −E · l =
−(a+ 3) ≥ 0 whereas l2 = 1 ≥ 0, a contradiction. Hence it follows that

h2(S,L) = h0(S, ωS ⊗ L−1) = h0(S,OS(−E) = 0

and we obtain
h0(S,L) = 25.
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Therefore the sublocus I3 of H11,14,3 consisting of curves lying on a smooth
cubic has dimension strictly less than the minimal possible dimension of a
component of the Hilbert scheme H11,14,3;

dim I3 = dimH0(P3,O(3))− 1 + dim |OS(a; b1, · · · , b6)| = 43 < 4 · 11,

hence I3 is not dense in a component ofH11,14,3. Indeed I3 is in the boundary

of the component I4 (the closure of I4), which we are going to describe later.
On the other hand, we see easily that the locus I3 is not in the closure I2
by semicontinuity; note that a general member of the irreducible locus I2
is trigonal whereas a general member C in a component of the sublocus I3
has a base-point-free pencil of degree 6 cut out on C by the linear system

|2l −
∑4

i=1
biei|. However such C has gonality k strictly greater than 3 by

Casteluovo-Severi inequality; if k ≤ 3, then g = 14 ≤ (k − 1)(6− 1) ≤ 10, an
absurdity.

(3) It is possible that there might exist components of H11,14,3 whose general
element lies only on a singular cubic surface. However, one may argue that
no such component exists as follows. Note that every singular cubic surface
S ⊂ P3 is one of the following three types.

(i) S is a normal cubic surface with some double points only.
(ii) S is a normal cubic cone.
(iii) S is not normal, which may possibly be a cone.

For the case (i), let S be a normal cubic surface which is not a cone. By a work
due to John Brevik [6, Theorem 5.24], every curve on S is a specialization of
curves on a smooth cubic surface. Therefore we are done for the case (i).

For the case (ii), we let C be a smooth curve of degree d and genus g on a
normal cubic cone S. Recall that

(a) g = 1 + d(d− 3)/6− 2/3 if C passes through the vertex of S
(b) g = 1 + d(d − 3)/6, otherwise

which can be found in [12, Proposition 2.12] as an application of C. Segre
formula. However (d, g) = (11, 14) satisfies neither of the above.

(iii) Let C be a smooth curve of degree d and genus g on a non-normal
cubic surface S. Recall that if S is a cone, then S is a cone over a singular
plane cubic, in which case S is a projection of a cone S′ over a twisted cubic
in a hyperplane in P4 from a point not on S′. Furthermore, the minimal
desingularization S̃ of S′ is isomorphic to the ruled surface

F3 = P(OP1 ⊗OP1(3)),

which is the blow-up of the cone S′ at the vertex. If S is not a cone, then S
is a projection of a rational normal scroll

S′′ ∼= S̃ ∼= F1 = P(OP1(1)⊗OP1(2)) ⊂ P
4

from a point not on S′′. In both cases, we have Pic S̃ = Zh⊗Zf ∼= Z⊗2, where

f is the class of a fiber of S̃ → P
1 and h = π∗(OS(1)) with S̃

π
→ S. Note that

h2 = 3, f2 = 0, h · f = 1 and KS̃ ≡ −2h+ f . Denoting by C̃ ⊂ S̃ the strict
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transformation of the curve C ⊂ S, we let k := (C̃ · f)S̃ be the intersection

number of C̃ and f on S̃. We have C̃ ≡ kh + (d − 3k)f = kh + (11 − 3k)f .
By adjuntion formula, it follows that

g = 14 =
(2 · 11− 3k − 2)(k − 1)

2
,

which does have an integer solution and we are done with the case (iii).

(3) Finally we assume that C does not lie on a quadric or a cubic. Since every
smooth curve C of genus g = 14 of degree d = 11 in P3 lies on at least

h0(P3,O(4))− h0(C,O(4)) = 35− (44− 14 + 1) = 4

independent quartics, we see in this case that C is is residual to a curve
D ⊂ P3 of degree e = 5 and genus h = 2 in the complete intersection of two
(irreducible) quartics by the well-known formula relating degrees and genus
of directly linked curves in P3;

2(g − h) = (s+ t− 4)(d− e).

Consider the locus

Σ ⊂ G(1,P(H0(P3,O(4)))) = G(1, 34)

of pencils of quartic surfaces whose base locus consists of a curve C of degree
d = 11 and genus g = 14 and a quintic D of genus h = 2 where C and D are
directly linked via a complete intersection of quartics, together with the two
obvious maps

G(1, 34) ⊃ Σ
πC

99K I4 ⊂ H11,14,3

9
9
K πD

H5,2,3,

where I4 is the image of Σ under πC . A quintic D ⊂ P
3 of genus h = 2 lies

on at least

h0(P3,O(4))− h0(D,O(4)) = 35− 19 = 16

independent quartics. Note that C ∈ I4 ⊂ H11.14.3 is directly linked to
D ∈ H5,2,3 which in turn is directly linked to a line L via complete intersection
of a quadric and a cubic. From the basic relation

dimH1(P3, IC(m)) = dimH1(P3, ID(s+ t− 4−m))

where C and D are directly linked via complete intersection of surfaces of
degrees s and t, we have

h1(P3, IC(4)) = h1(P3, ID(0)) = h1(P3, IL(2 + 3− 4− 0)) = 0 (2.6.1)

and

h1(P3, ID(4)) = h1(P3, IL(2 + 3− 4− 4)) = 0.
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Therefore πD is generically surjective with fibers open subsets of G(1, 15).
Since dimH5.2.3 is known to be irreducible (cf.[8] or [13, page 51]), it follows
that Σ is irreducible and

dimΣ = dimG(1, 15) + dimH5.2.3 = 28 + 4 · 5 = 48.

On the other hand, since every C ∈ I4 lies on exactly 4 independent quartics
by (2.6.1), πC is generically surjective with fibers open in G(1, 3). Finally it
follows that the locus I4 is irreducible of dimension

dimΣ− dimG(1, 3) = 44 = 4 · 11.

Since the irreducible loci I2 and I4 have the same dimension, one may deduce
that general element in I2 is not a specialization of a curve in I4 (and vice
versa). Furthermore, together with the irreducibility of the loci I2 and I4, this
implies that both are dense in the two components I2 and I4 of H11,14,3. We
also remark that the locus I31 sits in the boundary of the second component
I4 as was explained earlier. �

Theorem 2.7. For g = 11, 13 and 14

(1) Hg+1,g,4 is irreducible and Hg+1,g,4 = HL
g+1,g,4,

(2) dimHg+1,g,4 = λ(g + 1, g, 4) + dimPGL(5),
(3) and is generically reduced.

Proof. We retain all the notations used in Lemma 2.3; H is an extra compo-
nent of Hg+1,g,4 other than HL

g+1,g,4, G ⊂ Grd is the component corresponding
to H, W ⊂ Wr

g+1 is the component corresponding to G where r = dim |D|
for a general (p,D) ∈ G and so on.

[g = 11] Note that r = 5 since there does not exist a special g6g+1 = g612 on
a non-hyperelliptic curve by Clifford’s theorem; a hyperelliptic curve cannot
be embedded in Pr, r ≥ 2 as a curve of degree g+1 with a special hyperplane
series. We also note that a general element of W∨ is neither very ample nor
birationally very ample; if so, the base-point-free part of a general E = g38 ∈
W∨ induces a birational morphism (or an embedding) into P3 and the genus
of C is at most π(8, 3) = 9 by the Castelnuovo genus bound. Therefore a
general element of W∨ is compounded. We further note that E is base-point-
free, otherwise E has at least degree two base locus in which case the Clifford’s

theorem applies. Therefore E induces degree two morphism C
η
→ E onto an

elliptic curve E ⊂ P
3 and E = η∗(F) for some non-special F = g34 on the

elliptic curve E, which is impossible by Lemma 2.2. Hence there is no extra
component of Hg+1,g,4 other than HL

g+1,g,4, which is already irreducible of
expected dimension.

One easily sees that H12,11,4 = HL
12,11,4 is non-empty. A non-singular model

of a plane curve of degree 8 with one ordinary 4-fold points and 4 nodes
embeds into a Del Pezzo surface in P4 by the linear system of cubics through

1From the referee, the authors were informed of an alternative way to see that a curve C

in I3 is a limit of curves not lying on a cubic surface using results by Martin-Deschamps
and Perrin [23, Proposition 2.3, Lemma 2.4 and Proposition 4.1].
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these 5 points as a smooth curve of degree d = 3 · 8 − 1 · 4 − 4 · 2 = 12 and
genus g = 21− 6− 4 · 1 = 11; cf. [24, Theorem 1.1].

[g = 13] For g = 13, we also have r = dim |D| = 5 for a general (p,D) ∈ G
since π(14, r) ≤ 11 for r ≥ 6.

(a) Assume that the morphism induced by E = |KC − D| = g310 is com-

pounded. If E is base-point-fee, then E induces a double covering C
η
→ E ⊂ P3

onto a curve E of genus at most two (by the Castelnuovo genus bound applied
to E) and E = g310 = η∗(F) for some F = g35 , which is complete, non-special
and base-point-free linear series on E. However this is impossible by Lemma
2.2.

Suppose that a general element E ∈ W∨ has a non-empty base locus ∆.

If deg∆ = 1, then the moving part of E = g310 is a g39 inducing a 3-sheeted

map C
ζ
→ D onto a rational normal curve D ⊂ P3, i.e. C is trigonal. Let g13

be the unique trigonal pencil (by Castelnuovo-Severi inequality) on C. Note
that

E = |KC −D| = |3g13 |+∆

and take Γ ∈ C2 such that ∆ + Γ ∈ g13 . We then have

|E + Γ| = |KC −D + Γ| = |4g13|

and it follows that |D − Γ| = |KC − 4g13| = g412 and therefore D is not very
ample, a contradiction.

In case deg∆ = 2, |E − ∆| = g38 induces a double covering onto an elliptic
curve, which is impossible by Lemma 2.2. The case deg∆ ≥ 3 never occurs by
obvious reasons; Clifford’s theorem etc.. Therefore we conclude that a general
element of W∨ cannot be compounded.

(b) Suppose that the moving part of a general element of W∨ ⊂ W3
g−3 is very

ample and take a general |KC − D| = g310 ∈ W∨. Note that the the genus
g = 13 is larger than the second Castelnuovo genus bound π1(10, 3);

π1(10, 3) =
(g − 4)(g − 5)

6
= 12 < g = 13 < π(10, 3) = 16

and hence by basic Castelnuvo theory the curve embedded by a very ample g310
must lie on a quadric surface in P

3; cf. [13, Corollary 3.14, page 97]. However
there is no integer pair (a, b) satisfying a+b = 10 and (a−1)(b−1) = 13 = g.

(c) Therefore the moving part of a general element of W∨ ⊂ W3
g−3 is bira-

tionally very ample and let b be the degree of the base locus B of a general
element of W∨. By Lemma 2.3(2), we have b = 0 and

4g − 23 ≤ dimW = dimW∨ ≤ 4g − 22. (2.7.1)

By Lemma 2.5, we have a irreducible closed locus Z ⊂ W2
g−5 such that

dimZ = dimW∨ = dimW . Note that the base-point-free part of general
element of Z is not very ample; g = 13 is not a genus of a smooth plane
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curve. If the base-point-free part of general element of Z is birationally very
ample, then by Proposition 1.4(b) (applied to the locus Z), we have

dimZ = dimW ≤ 3(g − 5) + g − 1− 8 = 4g − 24,

which is not compatible with the above (2.7.1). Therefore the only remaining
possibility is that a general element of Z ⊂ W2

g−5 is compounded and let ∆

be the base locus of a general element F = g28 ∈ Z with δ = deg∆. One of
the following may occur; note that δ ≤ 2 and δ 6= 1 by Clifford’s theorem etc.

(1) C is a double covering of a curve E of genus 2 with a two sheeted map

C
ζ
→ E and F = ζ∗(g24); δ = 0.

(2) C is a double covering of a smooth plane quartic F with a two sheeted

map C
η
→ F and F = η∗(|KF |) = η∗(g24); in the case F is a pull-back

of the special |KF | on the quartic F and δ = 0.

(3) C is bi-elliptic with a bi-elliptic covering C
φ
→ E and F = φ∗(g23) + ∆;

δ = 2.
(4) C is trigonal and F = 2g13 +∆; δ = 2.
(5) C a 4-gonal curve with F = 2g14; δ = 0.

We now choose a general (F , p) ∈ Z ⊂ W2
g−5 and set

|F + Γ| ∈ W∨ ⊂ W3
g−3

where Γ = t + s ∈ C2 is obtained from a singularity of the image curve of
the morphism ξ−1(p) = C → P3 induced by a birationally very ample and
base-point-free g310 = |F + Γ| = E = |KC −D| ∈ W∨.

(1) and (3): One may argue that the residual series |D| = |KC − F − Γ| is
not very ample, virtually in the same manner as in the proof of Lemma 2.2

as follows. If C
ζ
→ E is a double covering onto a curve E of genus 2, then

|F| = ζ∗(g24) = |E − t− s| = |KC −D − t− s|

and hence

|D| = |KC − ζ∗(g24)− t− s|.

We take r′ + s′ ∈ C2 which is the conjugate divisor of the divisor t+ s ∈ C2

with respect to the double covering ζ. Then we have

|D − t′ − s′| = |KC − ζ∗(g24)− t− s− t′ − s′| = |KC − ζ∗(g46)| = g412

hence |D| is not very ample. The case (3) is almost identical to (1) which we
omit.

For the case (2), a calculation similar to the above or applying Proposition
1.4(c) to the locus Z fails to work. Instead we argue as follows. Recall that
under our current circumstance, the double covering η onto a smooth plane
quartic is induced by a (general) element of Z ⊂ W2

g−5 = W2
8 , which is a

subseries of a birationally very ample base-point-free E ∈ W∨ ⊂ W3
10. To
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be precise, consider the following diagram which is adopted to the current
situation which appeared in the proof of Lemma 2.5;

W2
8 ×

M

W2 ⊃ Σ
q

99K W∨ ⊂ W3
10 ⊂ W2

10

9
9
K π

W2
8 ⊃ Z

ζ
99K X2,3 ⊂ Mg

where Xn,γ denotes the locus in Mg corresponding to curves which are n-fold
coverings of smooth curves of genus γ. By de Franchis theorem (cf. [14]), the
fiber in Z of the rational map ζ over a general class [C] ∈ ζ(Z) ⊂ X2,3 is
finite. As we saw in the proof of Lemmma 2.5, π is a generically finite map
and hence over (E ′, p) ∈ Z we have finitely many OC(R+ S)’s in the second
factor of the locus Σ so that E ′⊗OC(R+S) ∈ W∨. Therefore upon choosing a
general [C] ∈ ζ(Z) ⊂ X2,3, we arrive at an element E ∈ W∨. The ambiguities
in choosing an element among the finite fiber of ζ as well as the fiber of π do
not affect the following dimension count. In other words, we arrive at finitely
many E ∈ W∨ and all the E ’s obtained in this way lie on W 3

10(C). By the
well-known Riemann’s moduli count [22, Satz 1]

dimXn,γ ≤ 2g + (2n− 3)(1− γ)− 2,

one has

4g − 23 ≤ dimW∨ = dimW ≤ dimX2,3 ≤ 2g − 4,

a contradiction.

(4) Since a trigonal curve C of genus g ≥ 5 has a unique trigonal pencil g13 , we
have the following well defined rational map induced from the construction
of the sublocus Z ⊂ W2

8 .

Z
ψ
99K W1

g,3 ×
M

W2

π2

99K W1
3

κ
99K M1

g,3

F 7→ (g13 , |F − 2g13 | = ∆)

where π2 is the second projection and κ is a natural birational map. We now
claim that the composition τ : Z 99K M1

g,3 of the above maps is a generically
finite map.

Take the residual series of |D| ∈ W ;

|KC −D| = E = g310 = |F + Γ| = |2g13 +∆+ Γ| = |2g13 +∆+R + S|,

so that

|D| = |KC − 2g13 − (R+ S)−∆|.

Note that dim |2g13 + U + V | = dim |2g13 | = 2 for any U + V ∈ C2 and hence

dim |KC − 2g13 − (R + S)| = dim |KC − 2g13 | − 2 = 6.
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We also note that a very ample D is a subseries of |KC − 2g13 − (R+ S)| and
hence the series |KC − 2g13 − (R + S)| is birationally very ample, which is
also base-point-free. Therefore it follows that there exists only finitely many
choice of ∆’s subject to the condition

5 = dim |D| = dim |KC − 2g13 − (R+S)−∆| = dim |KC − 2g13 − (R+S)|− 1.

and hence τ is generically finite. By this claim follows that

4g − 23 ≤ dimZ ≤ dimM1
g,3 = 2g + 1,

which is a contradiction.

(5) In this case we have F = 2g14 for a general F ∈ Z, which is complete.
Note that on a 4-gonal curve C of genus g ≥ 10 which is not bi-elliptic, there
exists a unique g14 and hence we have a natural generically injective rational
map

Z
π

99K M1
g,4.

and it follows that

4g − 23 ≤ dimZ ≤ dimM1
g,4 = 2g + 3

and hence the rational map π is dominant. Recall that on a general 4-gonal
curve C, |KC − 2g14 | is very ample; cf. [4]. Hence it follows that

dim |D| = dim |KC − E| = dim |KC −F − Γ|

= dim |KC − 2g14 −R− S| = dim |KC − 2g14| − 2 = 6− 2 = 4

which is a contradiction.

[g = 14] As in the cases of lower g, we have r = 5, otherwise the Castelnuovo
bound for a very ample g615 = g6g+1 is π(15, 6) = 13 which is less than g = 14.

(a) If a general element of W∨ is compounded, then by Lemma 2.3 (3),
g ≤ 3r − 2 = 13, which is impossible.

(b) If a general element of W∨ ⊂ W3
11 is very ample, then dimW∨ = 4g− 23

by Lemma 2.3 (1). Indeed 4g − 23 is the maximal possible dimension of
any V ⊂ W3

11 consisting of very ample linear series by Proposition 1.4 (a).
Therefore it follows that over the locus W∨ ⊂ W3

11 generically consisting

of very ample complete linear series, there is a component H̃ of the Hilbert
scheme H11,14,3 = Hg−3,g,3 such that

dim H̃ = dimW∨ + dimPGL(4) = 4g − 23 + 15 = 48,

which is impossible by Theorem 2.6.

(c) Therefore a general element of W∨ is birationally very ample which base-
point-free by Lemma 2.3 (2). By Lemma 2.5, we take the locus Z ⊂ W2

g−5

such that

4g − 23 ≤ dimZ = dimW∨ = dimW ≤ 4g − 22.

(i) Base-point-free part of a general element of Z is not very ample since
g = 14 is not a genus of a smooth plane curve.
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(ii) Base-point-free part of a general element of Z birationally very ample by
Proposition 1.4 (2); if so 4g− 23 ≤ dimZ ≤ 3(g− 5)+ g− 1− 4 · 2 = 4g− 24,
a contradiction.

(iii) Therefore the base-point-free part of a general element of Z is com-
pounded. We list up all the possibilities according to the degree δ of the base
locus ∆ of a general F ∈ Z.

(1) δ = 0; A general (F , p) ∈ Z induces a triple covering C = ξ−1(p)
τ
→ E

onto an elliptic curve.

(2) δ = 1; A general F ∈ Z induces a double covering C
τ
→ E onto a curve

of genus 2.

(3) δ = 1; A general F ∈ Z induces a double covering C
τ
→ E onto a

non-hyperelliptic curve of genus 3.

(4) δ = 1; A general F ∈ Z induces a 4-sheeted covering C
τ
→ E onto a

rational curve.
(5) δ = 3; A general F ∈ Z induces a double covering C

τ
→ E onto an

elliptic curve.

(6) δ = 3; A general F ∈ Z induces a triple covering C
τ
→ E onto a rational

curve.

Instead of carrying out a precise dimension estimate in all the cases above as
we did in the case g = 13, we will make straight forward dimension estimate
this time. Our estimate is rather crude but this is sufficient for our purpose.
By assuming that a general element of Z is compounded, we have a sequence
of rational maps defined as follows.

W2
g−5 W2

g−5−δ ×
M

Wδ

⊂ ⊂

Z
ψ
99K Λ

ϕ
99K K = Xn,γ →֒ Mg

=

{(F ′,∆)|F ′ +∆ = F ∈ Z}

∈ ∈

F 7−→ (F ′,∆)

ψ is the map sending F to the pair (F ′,∆)) where F ′ is the moving part of
F and ∆ is the base locus. The second dotted arrow ϕ is the map assiging
the base-point-free part F ′ to its isomorphism class in an appropriate Xn,γ
determined by the compounded F ′. It is clear that the first arrow ψ is well
defined and generically injective. We stress that ϕ is also well defined by
the Castelnuovo-Severi inequality so that there is only one choice of multiple
covering upon choosing a general F ∈ Z. However the fiber of ϕ over a point
in the image may have dimension more than the degrees of freedom choosing
the base locus.
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For example, in the case (1), ∆ = ∅ and there is no second factor and K =

X3,1 ⊂ Mg. Given a triple cover of an elliptic curve C
τ
→ E represented by a

point p ∈ X3,1, the fiber of ϕ over p is inside τ∗(W 2
3 (E)) = τ∗(J(E)) which

is one dimensional. Hence it follows that

4g − 23 ≤ dimZ ≤ dim τ∗(J(E)) + dimX3,1 ≤ 1 + 2g − 2

leading to an absurdity. For the remaining possible cases, we may come up
with similar numerical absurdities as follows.

(2) δ = 1, a general F ∈ Z induces a double covering C
τ
→ E onto a curve

E of genus 2 and F = τ∗(g24) + ∆.

4g − 23 ≤ dimZ ≤ dim τ∗(J(E)) + dimX2,2 + δ ≤ 2 + 2g − 3 + 1 = 2g

(3) δ = 1; a general F ∈ Z induces a double covering C
τ
→ E onto a

non-hyperelliptic curve of genus 3 and and F = τ∗(|KE |).

4g − 23 ≤ dimZ ≤ dim τ∗(|KE |)) + dimX2,3 + δ ≤ 2g − 4 + δ = 2g − 3

(4) δ = 1; a general F ∈ Z induces a 4-sheeted covering C
τ
→ E onto a

rational curve.

4g − 23 ≤ dimZ ≤ dimM1
g,4 + δ ≤ 2g + 3 + 1 = 2g + 4

(5) δ = 3; a general F ∈ Z induces a double covering C
τ
→ E onto an

elliptic curve.

4g − 23 ≤ dimZ ≤ dim τ∗(J(E)) + dimX2,1 + δ ≤ 2g + 2

(6) δ = 3; A general F ∈ Z induces a triple covering C
τ
→ E onto a rational

curve.

4g − 23 ≤ dimZ ≤ dimM1
g,3 + δ ≤ 2g + 1 + 3 = 2g + 4

We could have used a variation of Lemma 2.2 in the cases (2) and (5) to
deduce that D from which F is induced is not very ample, as we did in the
case for g = 13. Also note that the above estimate is rather rough, i.e. the
possible choice of the base locus is usually finite under several other conditions
of ours.

For all the three Hilbert schemes we treated, we showed Hg+1,g,4 = HL
g+1,g,4

and hence Hg+1,g,4 is irreducible since HL
g+1,g,4 is. On the other hand, in [19,

Theorem 2.1], one proves the irreducibility of HL
g+1,g,4 by showing that the

locus GL corresponding to a component of HL
g+1,g,4 is birational to the locus

G′ ⊂ G2
g−3 corresponding to the Severi variety Σg−3,g, which is irreducible and

has the expected dimension. Therefore Hg+1,g,4 = HL
g+1,g,4 has the expected

dimension.The generically reducedness of Hg+1,g,4 = HL
g+1,g,4 follows from

the fact that the dimension of the singular locus of G′ ⊂ G2
g−3 does not exeed

g − 8 < λ(g + 1, g, 4) = λ(g − 3, g, 2) = 4g − 18; cf. [1, Proposition (2.9)].
Thus G′ is generically reduced and since GL is birational to G′ it follows that
Hg+1,g,4 = HL

g+1,g,4 is also generically reduced. �
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Remark 2.8. (1) It should be remarked that for g = 15, one can show the
irreducibility of Hg+1,g,4 by a similar method we used for the case g = 14. As
an intermediate step (such as Theorem 2.6), one may show that the Hilbert
scheme H12,15,3 = Hg−3,g,3 is of the minimal possible dimension 4(g − 3)
(and is irreducible in this case) by using the fact that H8,5,3 is irreducible
of dimension 4 · 8 whose general element is directly linked to the one in
H12,15,3 via complete intersection of a quartic and a quintic; recall that the
irreducibility of H8,5,3 is known by [8] or [17]. It is worthwhile to remark
that there is no component of H12,15,3 whose general element corresponds to
a curve C on a quadric or a cubic surface. For example, one can eliminate
the possibility for a general element of (a component of) H12,15,3 lying on a
smooth cubic as follows. Note that smooth space curves of degree d and genus
g on a smooth cubic surface form a finite union of locally closed irreducible
family in Hd,g,3 of dimension d + g + 18 if d ≥ 10 by [12, Proposition B.1].
Since d + g + 18 < 4d for (d, g) = (12, 15), it follows that this family does
not constitute a component. In fact, we could have used [12, Proposition B.1]
directly in the course of the proof of Theorem 2.6 instead of going through
thorough computation. We leave the other details for interested readers.

(2) Note that ρ(g+1, g, 4) = 0 for g = 15 and one may expect that the same
tactics using linkage theory as above or as the case g = 14 may work for
g ≥ 16 in general. However, when the genus g and the degree d of the family
of curves in question is large, the curve often needs to lie on surfaces of rather
high degree. Usually such curves are not necessarily linked to another curve
which is easier to describe or we know much of.
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