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THE CHARACTERISTIC CYCLES AND SEMI-CANONICAL BASES ON TYPE A
QUIVER VARIETY

TAIWANG DENG AND BIN XU

ABSTRACT. In this article we study a conjecture of Geiss-Leclerc-Schréer, which is an analogue of a classical
conjecture of Lusztig in the Weyl group case. It concerns the relation between canonical basis and semi-canonical
basis through the characteristic cycles. We formulate an approach to this conjecture and prove it for type A2
quiver. In the general type A case, we reduce the conjecture to show that certain nearby cycles have vanishing
Euler characteristic.
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1. INTRODUCTION

In [5] Geiss-Leclerc-Schroer studied Lusztig’s semi-canonical basis [I0] for the enveloping algebra U(n). Here
n is the maximal nilpotent subalgebra of some symmetric Kac-Moody Lie algebra over C. They raised the
question of the relation between the semi-canonical basis, the canonical basis and the singular support (cf. [5],
1.5), referring to a conjecture made by Lusztig for the Weyl group algebra (cf. [9], 4.17).

In this paper, we consider the conjecture of Geiss-Leclerc-Schréer mentioned above for the quiver (I,Q) of
type A with orientation €2 : ¢ — ¢ + 1. The variety Ey.q of quiver representations in an I-graded vector space
V' admits a stratification by an action of a reductive group Gy . For each orbit S, we can associate a perverse
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sheaf IC(S,C). They give rise to a basis {gg} for U(n), called the canonical basis. We By considering the union
of the conormal bundles over the orbits on Ey.o

Ay = U T:Eyvq
S

Lusztig constructed the semi-canonical basis for U(n), denoted by ¢g, with respect to the irreducible component
T(Evq. Let mg g € C be the coefficients of the expansion of gg with respect to the basis {¢g/}, i.e.,

gs = Mg sbs
S/

On the other hand, Kashiwara and Shapira constructed a characteristic cycle CC(F) for a constructible sheaf
F on a manifold (cf. [6]), which can be written as

CC(IC(E, C)) = [T§EV7Q] + Z nS/7S[TS*/EV7Q], ng g € Z>g.
S'CS
Furthermore, they constructed a morphism
Eu : L(T*Evﬂ) — M(Evﬂ)
where L(T*Ey.q) denotes the group of Lagrangian cycles and M (Ey,q) the space of constructible functions on
Ey o, such that
E,(CC(C(S,0))) = (-1)"™gs.
The above mentioned conjecture of Geiss-Leclerc-Schréer can be made precise as follows.

Conjecture 1.1. Bu([T%Evq)]) = (—1)5™5¢g or equivalently mgr g = (—1)8m=dimSy g, o

In this paper we develop a strategy to approach this conjecture. First let us formulate the dual statement.
Let M(Eyv.q)®Y be the space of Gy-invariant constructible functions on Ey.q. Then Lusztig [8] showed that
there is an algebra isomorphism

U(n) = Mg := P M(Evq)",
Vey
where V is the set of isomorphism classes of I-graded vector spaces and the product on Mg is given by convolu-
tion. So we can view the canonical and semi-canonical bases as elements in Mgq. Let M(Ay)Y be the space of
Gy-invariant constructible functions on Ay. The pullback along Ey.q < Ay defines an algebra homomorphism

U Mp = EB M(AV)GV — Mg
Vey
where the product on My is also given by convolution. Lusztig [8] showed that this induces an isomorphism ¥g

on a subalgebra My of Myy. Let My (V) := My N M(Ay)®. We have a diagram
(1) Mu(V)—= M(Ay)V

o l‘l’
Yo

M (EV7Q)GV .
Lusztig [10] showed that there exists a basis {¢g} of My(V) parametrized by the Gy -orbits S in Ey g satisfying

0 if (x,y) € Og and S’ # S
1 if (z,y) € Og

55(3373/) = {

where Og is some open dense subset of TgEy . By definition, ¢g = \110(55). We define the dual semi-canonical
basis to be pg(¢) = ¥ L(¢). Let Kg, (Evq) be the Grothendieck group of Gy -equivariant perverse sheaves on
Ey . The local Euler characteristic gives an isomorphism

X : Kay, (BEva) ®2C S M(Eyo)®, F or
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where ¢r(x) = x(Fz). Define xT(¢5) := mg(CC(F)), the multiplicity of [T§Ey.q] in CC(F). Then Conjec-

ture [[.1lis equivalent to the following dual statement.
Conjecture 1.2, (—1)3mSymic — ;o
In order to approach this conjecture, we define a section of ¥y
(2) v : M(Ey,0)®Y — M(Ay)SY

by (nv(¢x))(x,y) := X(R®y, [-1](F)e), where f, : Ey,q — C is the linear functional defined by y € Tg*@EVﬂ-
This map has been introduced in [3] in a more general setting. The link with characteristic cycles is as follows.

Proposition 1.3. (cf. Proposition d.6) For F € D¢, (Eva) and (x,y) € (T§Ev.Q)reg, we have

v (oF)(@,y) = (1) (CC(F)).
Here S is the dual orbit of S.

As a consequence, Conjecture is equivalent to

‘I’El(¢)\os — (_1)dimAV_dimS_dimS77V(¢)’Os
for all ¢ € M(Ev.q)®Y. Indeed, it is possible to show that

(3) dimAy — dimS — dimS = 0 mod 2

from the fact that IC(S,C)Y = IC(S,C), where (-)" is the Fourier-Sato transform. We will not include the
argument here, since it is not our main focus. Now we can state our main result.

Theorem 1.4. For type As quiver, \I/al =ny.

Conjecture for type Ag quiver follows from this theorem and (B]). We shall point out that Conjecture
in this case also follows from the known results (—1)3™y B¢ = ¢* [12] and ps = g% [5], where g is the dual
canonical basis. Nevertheless, the purpose of this paper is to develop a strategy for studying Conjecture [[L2] in
all cases. We plan to apply our strategy to some special orbits in the future.

The paper is organized as follows. In §2] we review the notion of characteristic cycles. In §3] we review the
classical work of Lusztig on the canonical bases and the semi-canonical bases. Both sections contain no new
results and we mainly follow Lusztig’s notations. In 411 we introduce the map 1y and show its image consists
of constructible functions. The ideas are from [3]. In §4.2] we prove Proposition Our main tool is stratified
Morse theory (cf. [14]). Note that in order to apply the results of [14], some Whitney type regularity condition
is required. This is verified in the appendix. In §4.3] we show that the equality ny = ¥ ! is equivalent to the
compatibility of ny with convolution (cf. Proposition AI2]). In §4.4] and §4.5 we reduce it further to a problem
of vanishing cycle calculation.

Conjecture 1.5. (cf. Conjecturdd28) We have x(R®p, [—1](1)) 1) = 1-

Finally, in §5l we show that the last conjecture is true for type Ay quiver. We prove this result by showing
that the relevant nearby cycle has Euler characteristic 0. We should remark that even in this case, the singular
locus of hy, can be very complicated, and it could involve singular irreducible components of various dimensions.
We show that the relevant nearby cycle has Euler characteristic 0 by constructing a fibration of the Milnor fiber
over some compact space and showing the fibers all have Euler characteristic 0. Then the result follows from
the Leray spectral sequence.

Acknowledgement. The project was discussed when both authors were in Max Planck Institute for Mathe-
matics of Bonn and started when both were in Yau Mathematical Sciences Center of Tsinghua University. They
would like to thank both institute for their excellent working environment. The second author is supported by
Tsinghua University Initiative Scientific Research Program No. 2019Z071L.02016.
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2. CHARACTERISTIC CYCLES

In this section we review some generalities on characteristic cycles, our main reference is [6]. Nothing is new
in this section.

2.1. Micro-support and characteristic cycles. To introduce the micro-support of a C*-sheaf on a manifold,
we follow [6] section 8.6 to give a definition using vanishing cycles.
Consider a complex manifold X with a holomorphic function

f: X—=C.

Moreover, we assume that Y = f~1(0) is non-singular. Also, let p : C — C be the function p(z) = exp(2rv/—12),
considered as the universal covering map of C*. Finally, let p : X — X be the pullback of p along f.

Definition 2.1. Let F € Db(X). Leti:Y — X be the natural embedding. The nearby-cycle functor is defined
by
RV (F) =i"Rp,p" (F).
We also need to consider the vanishing cycles, which is

Definition 2.2. Let R®¢(F) € Db(}") be the unique element such that we have the following distinguished
triangles

i*(F) = RU§(F) = RO p(F) L.
Now we can define the micro-support SS(F) of a constructible sheaf F.

Definition 2.3. Let D%(X) be the subcategory of D°(X) consisting elements with bounded constructible coho-
mology sheaves. It is a full subcategory. Let p € T*X and F € D2(X), then we define a subset SS(F) C T*(X)
by the following

(1): p ¢ SS(F).
(2): There exists an open neighborhood U of p such that for any © € X and any holomorphic function
f: W — C defined in a neighborhood W C X of x with f(x) =0 and df (x) € U, one gets R®¢(F), = 0.

Remark: Note that such a definition works well for varieties over other fields. More precisely, Beilinson [2]
constructed micro-support for arbitrary base field, and Saito [I3] constructed characteristic cycle for sheaves on
varieties over a finite field.

Finally, following Kashiwara and Shapira, we can attach a Lagrangian cycle CC(F) to F € D%(X) in a
functorial way. Its support is SS(F). We call CC(F) the characteristic cycle of 7. We do not give the exact
definition but just list some of its properties.

Proposition 2.4. Let X and Y be complex manifolds, and F € D%(X),G € D%(Y). We have
(1): CC(FXRG) =CC(F)RCC(G).
(2): CC(Dx(F)) =CC(F), where Dx is the Verdier dual.
(3): Let F' — F — F" FLbe a distinguished triangle in D%(X). Then
CC(F)=CC(F')+CC(F").
(4): Assume that F is a local system. Then we have
CC(F) = (1)1 rank(F)[Tx X].

(5): We have supp(CC(F)) = SS(F).

(6): (Milnor type formula) Letx € U C X be an open subset. Suppose f : U — C is holomorphic. Assume
that the section Cy = (y,df (y)) of the natural projection T*X — X intersects SS(F) transversally. Then
we have

—X(R®¢(Flv)e) = (CC(F),Cp)r+va

(7): Let F be perverse. Then

CC(F)=>0.
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Proof. (1) is (9.4.1) in [6], (2) is proved in Proposition 9.4.4 in loc.cit. and (3) is proved in Proposition 9.4.5
in loc.cit. Note that in (2) our formula differs from that of [6] by an antipodal pullback since we are working
with complex varieties. For (4), we refer to lemma 4.11 of [I3], and for (5) and (6), see Theorem 4.9 and
Proposition 4.14 [13]. Again, we note that the characteristic cycle in [6] differs from ours by a sign since we
require CC(F) > 0 for a perverse sheaf F, following [13]. Finally, (7) follows from Proposition 5.14 of [13]. O

2.2. Constructible functions, Lagrangian cycles and characteristic cycles. We introduce the following
set of constructible functions on complex varieties.

Definition 2.5. A function ¢ : X — C is constructible if f(X) is finite and f~1(c) is a constructible subset of
X in the Zarisky topology for any ¢ € C. The set of constructible functions on X is denoted by M(X).

Remark: Our definition of constructible functions is more restrictive than that of [6].

Notation 2.6. Let K(X) be the Grothendieck group of DIC’(X), i.e, the full subcategory of Db(X) consisting of
elements with bounded constructible cohomology sheaves with C-coefficients.

Definition 2.7. Let L(X) be the free abelian group generated by the complex Lagrangian subvarieties of X. Here
by Lagrangian subvariety we mean middle dimensional algebraic subvariety of T*X.

Remark: Naturally we have CC(F) € L(T*X) for any F € K(X).
Definition 2.8. We have group homomorphisms
X:K(X) = MX), Feox(F), (F))(@)=x(F)

and

CC:K(X)— L(T"X), Fw CC(F).
Theorem 2.9. The homomorphisms x and CC' are isomorphisms.

Proof. Cf. [0, Theorem 9.7.1, 9.7.10]. Note that regardless of the modification we made on the relevant objects,
the proof is exactly the same. O

Following [6], we define an Euler morphism Eu from L(T*X) to M(X) as follows

Definition 2.10. Let x € X, U C X a neighborhood of x and ¢ : U — R satisfying ¢(x) = 0,dé(z) = 0 and
the Hessian of ¢ at x is positive definite. Let A € L(T*X), then we put

Eu(N)(z) = £([Cg]l N Nz
where Cy = {(y,do(y))|ly € U}.

Remark: In loc.cit, it is shown to be well defined(cf. (9.7.26)).
We are ready to state the following

Theorem 2.11. [0, Theorem 9.7.11] The diagram:

L(T*X)

1s commutative, and the arrows are isomorphic.

3. CANONICAL BASES AND SEMI-CANONICAL BASES

In this section we recall the classical construction of the canonical basis and the semi-canonical basis, due to
Lusztig. We only state the relevant facts in the case of quivers of simply laced type, we refer to [10], []] for a
detailed discussion.
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3.1. Representation of quiver algebras and preprojective algebras. Let Q = (I, H, s, e) be a finite quiver
without loops. Thus

(1): I is a finite set of vertices;

(2): H is a finite set of directed edges called arrows;

(3): s(resp. e): H— I sends an arrow to its starting point (resp. end points);
(4): there is an involution h — h satisfying e(h) = s(h), s(h) = e(h).

Let Q C H be an orientation, i.e., QUQ = H,QNQ = 0. Fori € I, set
TP = Z hh — Z hh
heQ:s(h)=i acQe(h)=i
Notation 3.1. We denote by (Q, ) the sub-quiver generated by Q.
Definition 3.2. Let H(Q,2) = CQ be the quiver algebra generated by Q2 and
Q) =CH/J

where J is the ideal generated by the elements r; above. We call II(Q) the preprojective algebra associated to Q.

Notation 3.3. Let V = EB Vi be an I-graded vector space. Let
i€l
V] = (dim(V;))ier

be its dimension vector.
Definition 3.4. View the variety

Eva = {(zn)nea : vn € Hom(Viy, Veny)}
as the representation variety of H(Q, ) with underlying space V.

Definition 3.5. A representation of the preprojective algebra II(Q) on V is an element (zp)hem € Eva X E,5

satisfying the relation
Z THTp — Z xpry = 0.
{aeQ:s(h)=i} {he:e(h)=1}
Let p=hihg---hy be a path in H. Set
Lp = LhyThy """ Lhy
We say that the representation is nilpotent if there is an N in N such that x, = 0 for for any path p of length
greater than N. Let Ay be the set of nilpotent representations on V.

Remark: Note that if V* is an I-graded vector space with |V*| = (; ;);er (here § is the Kronecker symbol), then
Ayi consists of one single point and we denote by Z; the corresponding representation. We also note that the
nilpotency condition is equivalent to requiring that the representation admits a composition series consists of
only simple modules isomorphic to Z; for i € I.

We recall some basic results concerning the algebra I1(Q).

Proposition 3.6. [5, Proposition 3.1] The following are equivalent

(a) The algebra 11(Q) is finite dimensional.
(b) Ewvery finite dimensional representation of II(Q) is nilpotent.
(¢) (Q,Q) is a Dynkin quiver.
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3.2. Convolution products and canonical bases. We recall the construction of canonical bases through
convolution products.

Definition 3.7. Let X be a complex variety and f : X — C a constructible function. We define

= c -1 c
/xeXf(w)—Z X(FHE),

ceC
where x is the Euler characteristic with compact support.

Notation 3.8. Let Gy = HGL(VZ-) be the automorphism group of V', which acts on Ey.q and Ay by conjuga-
i€l
tion.

Definition 3.9. Let M(EV@)GV be the set of Gy -invariant constructible functions on Ey . Similarly one can
define M(Ay)CV.
Definition 3.10. Let V, V', V" be I-graded vector spaces such that
VI=|V'[+|V"].
Then we have a bilinear map
x 1 M(Eyr 0)v" x M(BEyng)v" — M(Eyg)%"
by
@' *¢") @)= | W) "(x/y), wze€kby

yCx
where y runs through all the subrepresentations of x such that the underlying vector space is isomorphic to V.
Similarly, we have a bilinear map

s M(Ay)9Y x M(Ayn)SV — M(Ay)CV.
Definition 3.11. Let o o
Mo = P M(Evo)?, Mu=&D MM,
Vey Vey
where V is the set of isomorphism classes of I-graded vector spaces.

Proposition 3.12. The vector spaces Mq and M with the convolution product * are unital associative algebras.
Proof. We refer to [5] section 5.4 and [§] section 10.19. O
Definition 3.13. Let Mg (resp. M) be the subalgebra of Mg (resp. Miy) generated by the function 1g, (resp.

1z,), 1 € I, where S; (resp. Z;) is the dimension 1 irreducible representation which is concentrated in degree i.
Also, let

Mq(V) = Mq N M(Evo)®Y, Mn(V)=MpnM(Ay)“Y
Proposition 3.14. [7, Proposition 9.8] If Q is simply-laced, then Mg = Mq,.
Notation 3.15. Let g be a symmetric Kac-Moody algebra and n a mazximal nilpotent Lie subalgebra. Let Q) be
the associated quiver. Also, let U(n) be the enveloping algebra of n.

Theorem 3.16. We have isomorphisms of alebras
U:U(m) = Mg, @:UMm)— Mg
with
U(e;) =1g,, P(e) =1z,
where e;,1 € I is a set of Chevalley generators for U(n).
Proof. For ¥, we refer to [§] Proposition 10.20, and for ®, we refer to [10]. O

We give another description of the map W in terms of the quantum enveloping algebra, which is also due to
Lusztig. We briefly recall the construction.
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Notation 3.17. For each V', Lusztig defined a subset Po(V') of perverse sheaves on Ey.q. Let IC,(Q2, V') be the
Z[vF]-module generated by the elements of Po(V). Moreover, he defined a convolution product

%1 Ky (V) X Ky (2, V") = Ku(Q,V)
for I-graded vector spaces V', V" such that |V| = |V'| + |V"|. Finally, let
Ko(Q) = P Ku(9, V)

Vey
be the resulting unital associative algebra.

Theorem 3.18. We have an isomorphism of algebras

Wy 2 Up(n) = Ky (2) Q7w Qv), V(&) =1,

where E;,i € I is a set of Chevalley generators for the quantized algebras U,(n) and 1g, is the constant sheaf on
the variety corresponding to the one dimensional representation S;.

Proof. Cf. [8], §10.17.

Remark: By letting v = 1, we recover the previous map ¥ by identifying E; to e; (cf. [§], §10.20).
Definition 3.19. Let U, z(n) = ¥, (K, (R2)).

(%

Let Irr(Ay) be the set of irreducible components of Ay .

Definition 3.20. Following Lusztig, we define for each graded vector space V' a C-basis

{9212 € Irr(Av)}

of Mm. The function ¢z is uniquely characterized by the fact that it is equal to 1 on a dense open subset of Z
and equal to 0 on a dense open subset of any other irreducible component Z' of Ay |10, Lemma 2.5].

4. QUIVER OF TYPE A

Let Q@ = (I,H,s,e) be a quiver of type A. Let I = {1,2,---,r} and Q be the orientation i — ¢ + 1. Let
V= EB Vi be an I-graded vector space.
i€l
Bvo= @ Hom(V;,Vis1), Gv= [] GL(Vi).
1<i<r 1<i<r

Let Dg, (Ev.q) be the Gy-equivariant derived category of constructible complexes on Ey o and K¢, (Ev.q) the
corresponding Grothendieck group. Then the local Euler characteristic gives an isomorphism

X Kay, (Bva) ®2C 5 M(Evo)®Y, F— ér,

where ¢x(z) = x(Fz). Let Q be the opposite orientation, and
Eyg = €D Hom(Viy,Vi).
1<i<r

Let

Ey =FEyg® EV,Q — End(V), Gy — GL(V).
We define a GL(V)-invariant nondegenerate bilinear form on End(V') by the trace

(,):End(V) x End(V) — C, (x,y) = tr(zy).
It defines a Gy-invariant nondegenerate bilinear form on gy := Lie(Gy), and a Gy-invariant nondegenerate
pairing

(, > :EV7Q X EV,Q — C.
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Under this pairing, we can identify
BEyog = Eyqgand T"Eyg = By 2T Eyq.

On End(V), we have the Lie bracket [z,y] := 2y — yx and

AV = {(.Z',y) € Ey ‘ [.Z',y] = 0}
We decompose Ay into irreducible components,

Av =JTiBve =T Evg

S C

which are closures of conormal bundles over orbits on Ey,q and Ey g respectively. For any orbit S C Ey o, we

define the dual orbit S C Ey q by the condition that

Ték EV,Q = Tg«‘EV,Q .

We also define
(T§Eva)reg = TgEv,a\ Usizs Té Evg.
Then it is easy to see that
(TEEvQ)reg € S % 8.

4.1. Constructible functions. We will define a map
ny : M(EMQ)GV — M(Av)GV,
which has been introduced in [3] in a more general setting.

Definition 4.1. For any (z,y) € Av, nv(or)(z,y) = x(R®y, [~1](F)e), where fy : Ev,a — C is defined by
fy(2) = (z9).

Next we show the image of 7y lies in M(Ay )%V,
Proposition 4.2. For F € Dg, (Eva), nv(¢r) € M(Ay)CV.

To prove this, we will give another description of ny following [3]. Let S C Ey.q be any orbit and Sc Eyq
be its dual. We would like to define ny (¢5) on each T5Ey g as follows.

Eyqo xS —— Eyq X EV,Q

1

Eva C

Note
(4) TiByq < (,)71(0).
Denote the restriction of (, ) to Ey,n X S by fs.
Lemma 4.3. For F € D¢, (Ev,a) and (z,y) € TZEy g,
() (R [ 1](7"F)) (2y) = (RP g, [-1](F))a-
Proof. Let Zg, (y) be the stabilizer of y in Gyy. We have an isomorphism

Gy X Za, ) Bvia = Eva x S, (9,2) — (92,9Y).
The inclusion
(6) Eyva — Gy X Zey () Eva, z+—(1,2)

gives a section of w
i:Byq— Eyao xS, zw(z9).
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The pullback along the inclusion induces an equivalence of categories
Dy (Gv Xz4, (y) Evia) = Dz, ) (Evi).
Since (, ) is Gy-invariant, for any G € D¢, (Ev,n X §) = Da, (Gv X Zay () Ey.q), we get

Let G = 7*F, then ¢*G = F. So
ROy (F) =" ROy (7°F).
In particular,
RO (F)p 2" (RO (7°F))z = Ry (W*.F)(x’y).
d

Remark 4.4. In the lemma, we have used the following general fact. Suppose H is a closed subgroup of G and
X is an H-space. Then the inclusion

i: X—>GxgX, zw— (Lz)
induces an equivalence of categories
Dg(G xg X)= Dy(X), G—i'g
Let f: G xg X — C be a G-invariant continuous function. Then we have base change
R® 0 (i"G) = i"R®¢(G),
for any G € Dg(G xg X).
Corollary 4.5. ny(¢F) TiByo = X (R [—1](7*F))

In particular, 7y (¢x) is constructible on T§EV7Q. Since

Ay = |_| TéEV,Qa
S

T:Byq-

we see ny (¢r) € M(Ay)%V.

4.2. Characteristic cycles. For F € Dq,, (Evq), let mg(CC(F)) be the multiplicity of [TgEv,q] in CC(F).
Let f be the restriction of (, ) to S x S. The goal of this subsection is to prove the following proposition.

Proposition 4.6. For F € Dg, (Eva) and (x,y) € (TsEv,Q)res,
v (¢F)(x,y) = (1) = ASmg (OC(F)).
The proof will occupy the whole section. Recall ny (¢7)(7,y) = x(R®y, [-1](F):). By [14, Lemma 1.3.2],

(R, [-1](F))x = (B ye(s,)20(F))a

In terms of stratified Morse theory, the right hand side is called the local Morse data, denoted by LMD(L, re(f), z).
We have the following splitting formula for the local Morse data.

Theorem 4.7. For F € Dg, (Ev,a) and (z,y) € (TsEv,Q)reg;
LMD(F,re(fy),z) = TMD(F, re(f,), z) ® NMD(F,re(f,), z)
with
TMD(F,re(fy), x) := (RTre(s,)20(15))a
the tangential Morse data, and

NMD(‘Fv Te(fy)wr) = (Rrre(fy)>0(*’r’Ns))x

the normal Morse data with respect to a normal slice Ng C Ey.q to S at x.

Proof. Tt follows from [14], Theorem 5.3.3], which has some regularity condition on the stratification. We will
verify this condition for our case in the appendix. O
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As a direct consequence, we have
Corollary 4.8. x(LMD(F,re(fy),z)) = x(TMD(F,re(fy),x)) - x(NMD(F, re(fy),x)).
It is the normal Morse data that relates to the characteristic cycle, namely
(=1)P™X(NMD(F, re(fy), z)) = ms(CC(F)).

This differs from [I4} (5.21)] by a sign (—1)4%™% which makes mg(CC(F)) positive whenever F is perverse. By
[14) Lemmal.3.2],

TMD(F,re(fy), x) = R, [-1](Ls).
NMD(F, re(fy), z) = R®, [-1](F|ng)a-
f

So it remains to determine x (TMD(F,re(fy),x ) Instead of computing it directly, we shall apply the splitting
formula to the other vanishing cycle R® s [-1](7"F) ;) in (B). By [14, Lemma 1.3.2] again

(Réfs[_ ](ﬂ-*]:))(m,y) = (Rrre(fs)>0(7r*]:))(m,y) = LMD(ﬁ*I,Te(fS), (‘/Evy))

The stratification of Ey o by Gy-orbits induces a stratification of Fy g x S , which satisfies the same condition
on regularity. Note (z,y) € S x S.

Lemma 4.9. d(fg)\my) = (W*dfy)\(
Proof. For (v,w) € T,(Evq) ® T, (§) let us choose curves z(t),y(t) on Eyq and S respectively such that
2(0) = x,2'(0) = v and y(0) =y, y'(O)Zw
We compute the image of (v,0) and (0,w) separately under d(fs),
dz(t),
(0,0 LEOL gy )

d{z, y(t))
t
where the last equality follows from ([]). This finishes the proof.

(0,w) — li=o = (z,w) =0

O
Since (z,y) € (TsEv,0)reg, then d(fg)|(x7y) € T;Xs\(EV’Q X §)mg. So we can apply the splitting formula again.
Theorem 4.10. For F € D¢, (Evq) and (z,y) € (TSEv.Q)req;
(7) LMD (7" F, re(fs), (z,y)) = TMD(x"F, re(fs), (z,y)) ¢ NMD(x* F, re(fs), (z,y))-
where
TMD(7*F, re(fs), (,y)) == (Rlre(p)>0(15,8)) (2)
NMD(7*F, re(fs), (2,y)) := (Rlve(fs] g v ()20 (T FINgx{y})) @)
Proof. Tt follows from [14, Theorem 5.3.3]. O
By [14, Lemma 1.3.2] again,
TMD(7" F,re(fs), (z,y)) = RO [-1](15, 5)(z,y)
NMD(m* F,re(fs), (2,y)) = By o [T Flngx iyt @a)-
By the natural isomorphism Ng = Ng x {y}, we have
By iy (T Flngxiyd) @y = By, o (FINg)a-

Hence,
NMD(7*F, re(fs), (z,y)) = NMD(F, re(fy), ).
So it suffices to compute TMD(7*F,re(fs), (z,y)), equivalently R®[—1](Lg, 5)(zy)-
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Proposition 4.11. R®;[-1](1 C[dimAy — dimS — dimS$)].

5x§) (@) =

This proposition is a special case of [3| Theorem 6.7.5]. For the convenience of the reader, we will reproduce
its proof in the appendix.

4.3. Compatibility with convolutions. In the introduction, we have considered the following diagram

M (V)— M(Ay)E

~ l‘l’
Yo

M(EV,Q)GV

Starting from this subsection, we will investigate when ny = ¥ L

Proposition 4.12. The following statements are equivalent.

(1) mv =g
(2) Imny C Mp;
(3) For any decomposition of I-graded vector spaces V = Viev?,

(8) nvi(1) * ny2(d2) = nv(é1 * ¢2)
for any ¢1 € M(E‘/lﬂ)G‘f1 and ¢ € M(EV2’Q)GV2.

Proof. Since ¥y is an algebra isomorphism, then (1) implies (2) and (3). By the definition of ny, we have
U ony =id. So (2) implies (1). It follows from (3) that

nv(Lys-x1g) = nya(ly) x - xmya(ly) = 1o, 1y, € Mu(V).

(cf. ([@H)). By |8, Proposition 7.3], that M(Ey.q)Y is spanned by 1 % --- % 14 for all a € S|y and associated
decomposition of I-graded vector space V =V @ --- @ V<. So (3) implies (2). O

We begin by recalling the definitions of the two convolutions in (). Consider the following diagram

9) Yy g = BV ve g
P l lpg
Evi g x Eyzq Eva
where

(z,Fil)|z € Byq, Fil: 0 =W C W' C W2 = V w-stable with [W*/W* 1| = [V*| for k = 1,2},

" o
vivza - -—

B o =1 (2, Fil, 1, 02)| (2, Fil) € B 2 and ¢y, : VF 5 W /WL for & = 1,2},
and

p3 E(;'l V2.0 — EV7Q, (f]:,Fll) — T
is proper;

Do E{/17V27Q — E{%,Vg@, (x,Fil, 1, ¢2) — (x, Fil)
is a principal Gy 1 x Gy2-bundle;

p1: Epiyag — Byig X Byzg, (4, Fil, @1, 02) = (07 "er, 05 ')

is smooth, where we denote the induced morphisms on W* / WH1 still by 2. To see the properties of pi, pa, ps
more easily, we will give another description of the diagram.

We fix a filtration Fil : 0 = W% C W' € W2 =V, where W! = V! Let @1 : V! — W1 /WO be the identity
and @y : VZ — W2/W! be the composition of VZ =V — V/V!. Let

Ei? v2q = 17 € Byglz stabilizes Fil} — E{/l,vg’g, x> (z,Fil, @1, P2)
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It admits an action by
G‘%?yz := {g € Gy/|g stabilizes Fil}
a parabolic subgroup of Gy . It has a Levi component Gy1 x G2 and the unipotent radical is
G\tl,vz ={g € G%/?’Vﬂgb;lggbk =id for k =1,2}.

The following lemma is immediate.
Lemma 4.13. We have Gy -equivariant isomorphisms

Gv XG?/?,\H E?/(l)y?,ﬂ =By g (952) = (gz, gFil)

Gv Xgr, B o = Bpegs (9:7) = (92, 9FiL 951, 92)

By this lemma, we can rewrite diagram (@) as

/
0 b2 >0
10 Gy xg+  EZ —2> Gy x>0 E7
(10) VRGE L TVLVE v Gol y2 - VEVEO
p’ll lp’g
Evl7Q X Evz’Q EV,Q
where
péZGVX >0 E>(1) QQ—>EVQv (gv$)'_>g$
le’vg Vive, ’
/. G 20 20
: X ot E — Gy X > FE T) — x
V%) % GV1,V2 Viv2Q |4 le,v2 vive o (97 ) (ga )
. >0 20 / LN
P GV XG$1 2 EV1,V2,Q — EV17V2,Q — EV1,V2,Q Evl’Q X Evz7Q

For 71 € Dq,, (Ev1,q), F2 € Dg,,, (Ey2 q), we define
Fix Fo o= paF"
where
psF" = pi(F1 K Fy).
For ¢1 € M(Ey1.0)%vt, ¢o € M(Ey1 )9V, we define ¢1 * g2 € M (Ey,0)°" by
(o)) = [ o Fi)
ps (2)

where

¢"(x, Fil) = ¢1(z1)¢2(22)
with

z1 = @) o1, 1y = @y ' wpy
for any choice of isomorphisms ¢y, : vk wk / Wkt

Proposition 4.14. For Fi € Dg,, (Eyv1.q), F2 € Dg,,, (Ev2q),

OF * QF, = QFxFs-
Proof. We have

052 (a) = X(H (7). 7)) = [ IR

where for the second equality we refer to [I] Proposition 24.16. It is easy to see that x(F") = ¢

13
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Next consider the following diagram

(11) Ny vz ——= Ay
qll lqa
Ay X Ay Ay
where

Viye = {(a;,y,Fil)\(a;,y) €Ay, Fil: 0=W2C W C W2 =V (z,y)-stable with [W*/W*=1 = |V¥| for k = 1,2}

§/1’V2 =14 (x,y, Fil, 1, p2)|(x, y, Fil) € A%’Vg and @y, : VF S WE /W for k = 1,2},
and
g3 : A/xl/'l’VQ — AV7 (ﬂj‘,y,Fll) = (:Evy)
is proper;

qs A/V17V2 — A(/‘17V27 (.Z', Y, F117 ©1, QOQ) = (.Z', Y, Fll)
is a principal Gy1 X Gy2-bundle;

@ Nyt yo = Aya x Ayz, (2,9, Fil o1, 02) = (07 21,07 yer), (93 ' 22, 03 ' yea))

where we denote the induced morphisms on W* / WL still by x, y.
For ¢y € M(Ay1)9vY gy € M(Ay2)9v2, we define ¢y * o € M(Ay)CV by

(¢1 % ¢2)(,y) :/( )¢”(w,y,Fil)
q3 T,y

where
¢"(2,y,Fil) = ¢1((z1,91))d2((22, y2))
with
z1 = @7\ wor, Y1 = 0 Yer; ma =9y apa, Y2 = ) Yo
for any choice of isomorphisms ¢y, : V¥ — W* / whk=t,

One can easily extend this convolution to constructible functions on Ey 1, Ey2 by considering the diagram

a3

E(/l,V2 E{;’l’VQ
/ /
A o ¢ | © Al o g
q1 Evl X EV2 a3 EV
/ /
AV1 X sz Ay

where
Ey1 o = {(:1:,y,Fil)|(:1:,y) € By, Fil: 0=W°C W' C W2 =V (z,y)-stable with |[W*/ Wk = |V*| for k = 1,2},
(/17‘/2 = {(:E,y,Fil, 01, 92)|(z,y,Fil) € Egl,\ﬂ and @y, : vk I/Vk/I/Vk_1 for k = 1,2}.

Note both the top and right squares are Cartesian, but the left one is not. The following lemma is immediate
from the definition.
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Lemma 4.15. For ¢ € M(Ey1)6v1, ¢y € M(Ey2)%v?,
(01 % P2)[ay = d1la,1 * D2la,,-
For 71 € Dg,, (BEy1),F2 € Dg,,, (Ey2), we can also define convolution
.Fl * ./."2 = qé,f"
where
qz*]:// = QI*(]:I X ]:2)
One can also show easily that
OF, * OF, = QFixFa:
Now we attempt to establish (8]) directly. It suffices to show that for any 71 € D¢, (Ev10), F2 € D, (Ev2q),
1 (8F) * nvz(0F,) = v (dF«r)-

We first expand the right hand side. For (z,y) € Ay,

v (bF 7)€, y) = X(R®y, [-1)(F1 * Fa)z) = x(RPy, [~ 1](pa1F"))-

By proper base change,
R(I)fy (pgl]:ﬂ) = pgl(R(I)fyopg]:”).
Hence,

X(R®y, (p31F")a) = x(H* (p5 " (2), RO, 0p, F')) = / X(R®,0p, ")

-1
Py (@)
where for the second equality we refer to [I] Proposition 24.16. By smooth base change,

p;(R(I)fyOPS‘F”) = R(I)fyop?,opz (PE}—”)-
We can also express the left hand side as an integration.

(1 (d7) * nv2(07)) (T, y) = / i (dr ) (@1, y1) - nv2(oF,) (T2, y2)

a3 (z,y)
Comparing the two integrals, we see

g3 ' (,y) = py ' (x),  (,y,Fil) = (2, Fil).

Then both integrals are equal if

(1) X(R<I>fyop3]:”) = 0 over pgl(:n)\qgl(:n,y).

(2) X(R® fops [~ 1F") (2, Fil) = ny1(d7) (@1, 51) - 2 (0 7,) (22, ya) for (z,y,Fil) € g5 (2, y).
In (2), we can rewrite the right hand side as

vi(@r ) (@1, y1) v (dr)(22,y2) = X(R®y, [=1](F1)a)) X(RPy,, [—1](F2), )
Theorem 4.16 (Sebastiani-Thom).
Rey, [—1(F1)a OF ROy, [=1)(F2)ar = By, 0, [=11(F1 B F2) (0).00),
where
fyl D fy2 : EVl,Q X EVQ,Q — C, (l‘/l,ﬂfé) = fyl(x/l) + fy2($/2)
By smooth base change,
PiR®y, of, (F1 W F2) = ROf, . yop: (P1(F1 K F2)).
So (2) is equivalent to
X(RO(,. & 1, 0p: (PT(F1 B F2)) (., pit)) = X(BP g 0ps0p (05T ),y i0))-
Note pi(F1 X F) = psF”, but
(fy1 @ fyz) °op1 7é fy o p3opa.

So we can not conclude the equality directly. This is the main reason that we have to approach () in a
roundabout way.
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4.4. Inductions. We fix an I-graded isomorphism V =V!@® V2@ --- @ V" and a filtration
Fil:0=WCcW!Cc...cw"=V
where
Wh=vVte. . aVvk
Let @ : VF < WF s Wk /WH 1 The goal is to calculate
¢1 Kook ¢n
for ¢ € M(Eyx q)°vk. We will define
Indyi . yn : @p_y M (Eyx o) — M(By,)®Y

as follows. Consider the diagram

(12) By yng——= B yug
pll lpg
Eyigx - X Eyng Eva
where

Bl g = {(:c,Fﬂ)ya; € Eyq, Fil:0=W"C ... C W" = V a-stable with [W*/W*1| = |[V*| for k=1, n}
g = {(m,Fil, (o} )@, Fil) € By yn g and @y, : VE S5 WE/WE for k=1, n}
and
p3: Bl yng — Fva, (x,Fil)—z
is proper;
D2 E(ﬂ’m’vn’g — E{}l’,”ynﬂ, (x, Fil, {pr }izy) — (x, Fil)
is a principal Gy1 X - -+ X Gyn-bundle;
p1: {/17,,,7V7L,Q — EVl,Q X X EV”,Qv (‘/EvFﬂv {(pk};clzl) = {90];13590/6}2:1

is smooth, where we denote the induced morphisms on W* / WH 1 still by 2. To see the properties of pi, pa, p3
more easily, we will give another description of the diagram. Let

>0
EXY

vnq = {z € Byl stabilizes Fil} — Evi  yngs T (z, Fil, {@pr }7_1)

It admits an action by
G\%—?,,,,,Vn := {g € Gy|g stabilizes Fil}
a parabolic subgroup of Gy . It has a Levi component Gy1 X --- X Gy« and the unipotent radical is
G$1,~~~,Vn = {g € G‘2/(1];~,Vn’@1;19@k =idfork=1,--- 7n}_

Lemma 4.17.

>0 ~ /! .
Gy X G20 EZ  yno =By yngs (9:7) = (g, gFil)
vi.. yn [ ’ ’o ’
>0 ~ 1/ e —
Gy XQ§1 vn EV1,~~~,Vn,Q = EVI,...7Vn,Q7 (g,x) = (g$7gF117 {g(pk}zzl)
>0 PY >0
13 Gy x EZ —— Gy X > EZ
( ) \% G\tl,...,vn V1. vnQ \4 G;‘i““’vn V1. VnQ

pil lpé

Evl7Q X oo X EVn’Q EV7Q
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where

5 Gy X 0 EZY — FE (g,2) — gz

P3GV G‘//l un V1. VnQ V., g, gz,
/. >0 >0

by : GV XG+1 EVI,---,V"7Q — GV XG20 EV17...7V7L7Q7 (gax) — (gyx)a

vi..yn Vl,---,Vn

/o, >0 >0 / P1

pl . GV XG;&l o EV1,-~~,V”7Q — Evl,---,V"7Q — EV1,~~~,V”7Q — EV17Q X+ X Evn7Q,

For ¢ € M(EVJC,Q)GV’c (k=1,---,n), we define
Iy (01 & 0)(x) = L, ¢ ED
p3 (@

where
¢ (2, Fil) = ¢1(1) -+~ dn ()
with
T = ) TP
for any choice of isomorphisms ¢y : V¥ — W*/W*=1, For F, € D¢, (Eveg)(k=1,---,n), we define
Indy1 .. yn(F1 R KF,) = pgy F"
where
PF i (FI R B ),

Proposition 4.18. For 7, € D¢, (Eyr o)(k =1, ,n),

Indvly“' 7V”(¢]:1 ®-®dF,) = ¢Indvl,... yn (F1R-RFR)-

Proof. We have

Oigs . yo(Fi ) @) = X5 @), 7)) = [ ()

p3 ' (x)
where for the second equality we refer to [I] Proposition 24.16. It is easy to see that x(F") = ¢". O

Proposition 4.19. For ¢ € M(Evkﬂ)GV’“ (k=1,---,n),

D1k kP = Indv17...7vn(¢1 ®- @ dn)

Proof. We will prove it by induction on n. When n = 2, there is nothing to show. Suppose n > 2. By induction
assumption,

G1 %k b = (P1 % P2) * -+ % P = Indy1 y2(d1 ® P2) * - % P
= IHdW27...7Vn (Indv1"/2 (01 ® P2) @+ ® @)
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Consider the following diagram

17"'7V7L79

/
/ By
I nll
-V Q By
/ /"
//VQVRQ Eypa,.. yng

E
/ n " n
Eyiveq X i=s Bveg B ye g % s Evx

n n
Evl7Q X Evz7Q X Hk:3 Evk7Q EVT/Q,Q X Hk:3 Evk’Q EV,Q

V17...7Vn7Q

where

W2y = {(sc,Fﬂ, {on s v) (@, Fil) € Bl yu g o VE S WH/WEL (k> 3), v : W2 55 W2}

and
B yng = { @ Fil {oe i, o)l (@, Fil o biny) € B yngo v : W2 5 W2}
B n
(/17...7Vn,Q — E{/LV?,Q X H E\/k,(b (LZ', Fﬂa {‘pk}Z:la 1/}2) = <(.’L’l, Fﬂ,a 90,17 90/2)7 {Qplzlxcpk};;:ii)
k=3
where
o =y ay,  Fil 0=y ' (W) C gyt (WP = WP

and

oL =03t o1,  wh =95 oo

In particular,

n
~ " n -
W27"'7V7L7Q - (EV17V27Q X H EVk7Q) X(EWQ,QXHIC:3 Evk,Q) EW27"'7V”7Q
k=3

~ 17/ 1"
=By, vn 0 KBy g Ve V0
and
n
~, Q(E/ XHE )X . " EN‘/f
Vi vra = WYiv2o VEQ) 2B o o X is Byk o) W2, V.0
k=3

Let ¢ = ¢r,. It suffices to show
Indvl7,,,7vn (]:1 X...X ]:n) = IndW27,,,7Vn (Indvl’vz (]:1 X ]:2) X...X ]:n)

This can be seen easily by tracing the diagram.

We will also define
Indyt .y @y M (Ays)Svh — M(Ay)%Y
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as follows. Consider the diagram

q
(14) A§/17...7Vn —2> A§;17...7vn
qll lqg
Ale"'XAvn AV
where

2

{

(z,y, Fil)|(z,y) € Ay, Fil: 0=W°C ... C W" =V (z,y)-stable [W*/W*1 = V¥ (1 <k < n)}

v = { @0 FiL Lo} i),y FiD) € A Ly and s VE S WHWRT (1 <k <))
and
qs - A/‘l/17,,,7vn — AV; (‘TayaFll) = (x,y)
is proper;

q2 A/V17...7Vn — %l/l’...7vn7 (‘TayaFila {(pk}ZZI) = (.Z',y,Fll)
is a principal Gy1 X - -+ X Gyn-bundle;

G Nyt yn = Ay oo x Ayn, (2, Fil {or}ioy) = {(0f "0k 5 vor) e

where we denote the induced morphisms on W* / WL still by z, y.
For ¢y € M(Ayr)9vF, we define

Indys . yn (61 ®- - ® d) (@, y) = / ¢ (x, y, Fil)

a3 ' (=)
where
¢ (z,y, Fil) = ¢1((z1, 1)) - - dn((@ns yn))
with
Tk = @ TPk, Yk = P Yok
for any choice of isomorphisms ¢y : VF — W* / Wk,
One can easily extend this induction constructible functions on Ey+ by considering the diagram

q1 Evl X o+ X EVn q3 EV

Ale”’XAVn AV
where
oy = {(:E,y,Fil)|(:1:,y) € Eyg, Fil: 0=W° C W' C W2 =V (z,y)stable W5 /W*1| = [VF| (1 < k < n)}
(/1,“.,\/” = {(‘TayaFﬂ? {on}ZZI)‘(‘T7y7F11) € E(;l,...,vn and Pk - Vk ; Wk/Wk_l (1 < k < TL)},

Note both the top and right squares are Cartesian, but the left one is not. The following lemma follows
immediately from the definition.

Lemma 4.20. For ¢ € M(Eyx o)“v: (1 <k <n),
Indy . ya($1 @ @ ¢n)lay = Indyr . yu(ila,, ® - @ dnlaya).
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For Fi, € D¢, (Eyx) (1 < k < n), we can also define induction
Indyi .. yo(FL B RF,) o= gy F”

where
GF g (RE - RE).

One can also show easily that
Indy1 . vn(¢r @ @ GF,) = idyr o (FE-RF)
Proposition 4.21. For ¢, € M(Ayx)Svk(k=1,--- ,n),
Grx-cx Op =Indyr L yn(dr @ @ Pn).
Proof. Tt suffices to show for ¢, € M(Ey)vk (1 <k < n),

$1# - xdp =Indyr . yn(P1 @ @ ).
The proof is similar to that of Proposition .19l

4.5. Further reduction of (§). Let |V| = (d;)ic; and d = Zdi' Let
el
Sy i={a e I ||a1(§)| = di}
For any a € Sy, we fix an I-graded isomorphism V' = V& .. @ V?such that
V| = (Saqry)ier
Note Eyr o = Ayk = Eyr = {0}. The following statement is a special case of (8.
Conjecture 4.22.
(15) mvi(11) % -k mya(la) = vl 1g).
Remark 4.23. nyx(1y) =14, -
Indeed, we have
Lemma 4.24. Conjecture [[.27 is equivalent to (g]).
Proof. We only need to show that (&) follows from Conjecture By [8, Proposition 7.3], it suffices to show

@) for
¢r=1p1% %114, € M(BEyrg)°v
b1 =1rr1 %% 1ray, € M(BEyig)“vi
associated with ay € S)y1| and ary € S)y11) respectively. By Conjecture 422,
nvi(@r) * nyi(érr) = (yra (1) * - % nyrap (1,1)) * (yrea (Lrra) * -+ % nyinag (1,1))
=nv(lpa*---xlpg *lpa*--*x1rrq,,)
=nv(¢1 * 1)
]

Now we will describe our approach to Conjecture [£221 By Proposition [£.19 and Proposition E.2T] it suffices
to show

Indvl7,,,7vd(7]vl(11) R R T]Vd(ld)) = nV(IndV17~~~7Vd(1l k o+ee ok ld)).
Note 1 = ¢1,, where 1 € D¢, (Eyk o). So it is the same as

Indys . ya(nyi(¢1,) @ - @ Myval@n,)) = v (findyr a(tim-m1,)-
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We first expand the right hand side. For (z,y) € Ay,
W (findys | a(2im-m1,)(€:y) = X(Bp, [-1(11 K- - K 1g),) = x (RO, [—1](pa1F")z)

By proper base change,
RO, (p31F") = pa1(RP f,0ps F")

Hence,

X(Rq)fy(p?’!]:”)m) - X(H*(pg1($)’R(I)fyop3f/,)) - / X(Rq)fyOPBJ:”).

p3 (v)
By smooth base change,

pZ(R(I)fyOPBJ://) = R(I)fyOPBOPZ (pz]://) = R(I)fyOPBOPZ(]l)‘
We can also express the left hand side as an integration,

Indy . ya(yr(¢1,) @ -+ @ nyalpr,))(,y) :/1( )77V1(¢11)(3317y1) e ya(d1,) (@, Ya)
a3 " (zy

_ / 1,
Q‘;l(w’y)

due to the fact that (zg,yr) =0 for 1 < k < d. Comparing the two integrals, we see
g3 ' (,y) = p3'(x), (,y,Fil) = (z,Fil).

If we want to prove that the two integrals are equal, it suffices to show

(16) R osopn(Dpit oi_y =0 for (,FiD) € p3 (2)\g5 (. ).
(17) X(RP 1, 0pops [~ 1(1)) (0, il oy 1) = 1 for (z,Fil) € g3 (x,y).
To show these, we adopt the diagram
Gy x E\%?,---,Vd,ﬁ

P2 >0
G X A+ E20 HG X >0 E/
v GV1,---,V‘1 Vlv" 7Vd,Q 4 GVl,---,Vd V17...7Vd’Q
P'll/ lpé
Eyig XX Eyag Eva
Let
>0 : d
Gy X BV | yag 2 (90,20) = (2, Fil, {r}i1)
and
>0 / )
hy : Gy % Evl,...,vd,ﬂ —=C, (9,2") = (92",y)

be the pullback of f, o ps o ps along pj. Then by smooth base change,

R(I)fyomopz (]l)(m,Fﬂ,{gok}z:l) = Rq)hy (]l)(go,wo)‘

If R®p,(1)(gy,20) # 0, then h is singular at (go, o). So we compute

90,70
dh‘(gvaO) : T(QOJ?O) (GV X E\>/(1)7...7vd7Q) =gy X E\%(l]7...7vd7Q — C? ('LL,'U) = ([u,x],y} + <gO'U,y>-

Since (z,y) € Av, ([u,z],y) = 0. So dh|4 2, = 0 if and only if (gov,y) = 0 for all v € Ei? )

VA Since

(g0v,y) = (v, 95 '),

21

this is also equivalent to require that g, Ly stabilizes Fil, which is the same to say y stabilizes goFil = Fil, i.e.,

(z,Fil) € g3 ' (2,y). So we have shown (IB).
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>0

We are now left with (IT). Assume (z, Fil) € g3 *(,y), i.e., yo := gy 'y € EZ)  vag- By applying go, we get

>0
(97 33‘,) GV X Evl’,,, R7CXe)
hyq
C
o
>0
(9097 IIJ‘,) GV X Ev17,,, ,Vd,Q

where R®p, (1) (gy,20) = BPh,, (1)(1,25)- S0 we have reduced it to the following statement.
Conjecture 4.25. X(R(Phyo [—1](]1))(1@0) — 1.

In the next section, we will prove this for type Ay quiver.

5. QUIVER OF TYPE Aj
Let V =V & V5 be a graded vector space and §2 be the orientation 1 — 2. Let d; = dimV; and d; + dy = d.
Bygq=Hom(V1,Va), Eyq=Hom(V2, V1), Gy =GL(V1)x GL(V2).
For (z,y) € Eva x Eyq and g = (g1,92) € Gy, we have the group action
g T =g, 9 y=01yg;"

We also have the Lie bracket
[z,y] = (—yx,zy) € End(V1) x End(V2)
and Gy -invariant nondegenerate pairing
(z,y) = tr(zy).
We fix an I-graded isomorphism V = V! @ V2@ - @ V? such that dimV* = 1. Then
Vi=Vi@-oVa,  1h=Vig.. oV,
where ¢t < --- <tg, and 51 < --- < 54,. Select all indexes
L= <pg<--- <pe=dr+1,
1:V1<V2<"'<Vf:d2—|—1.

such that
ty—1+ 1<ty =t,41—1, fori<e;
Sy—1+1<s, =s,41—1, fori<f.
Then the list {1,2,--- ,d} would correspond to either of these cases below:
(1)
Sury s Sup—1itpy st tup—15Suy $Sup1y sy Sup—1itpe g -1, e=f,
(2)
Sppy 7SV2—1;tu17"'tu2—1;8V2 """ ;tuef1"'tue—l;8uf,17"' 75Vf—17 e:f_17
(3)
tuu'”tuz—l;sl/u'” 731/2—1;tuz """ ;tuefl...tue—l;sl/f,17..' 73Vf—17 ezfa
(4)

t;ul?“'tll&_l;syl"” 78V2—1;ty,2 ...... ;Syffl"” 78Vf_1;tﬂefln‘tﬂe_1’ e:f+1
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We fix a filtration
Fil:0=WcwW!c...cwi=V
where
wk=vlg...oVk
Let

>0
EV17"' 7V

g = {z € Ev |z stabilizes Fil}.
It admits an action by
Gig..."/d := {g € Gy|g stabilizes Fil}
a Borel subgroup of Gy. It has a Levi component Gy1 X - - - X G4, which is a maximal torus, and the unipotent
radical is

G¢17~~~,Vd ={g € G\%’(1]7...7Vd|¢k_:lg¢k =idfor k=1, --- ,d},

where @y, : VF — WF — Wk/Wk_l. Similarly we can define E‘%? g

We also fix basis vectors vy, for V¥, then they give a basis for each V;. Under these basis, we have
EV,Q = HOHl(Vl, VY2) = Matd2><d1 ((C)v
EV,Q = Hom(Va, V1) = Matg, w4, (C),
Gy = GL(V1) x GL(V3) 2 GL(dy,C) x GL(d2,C).
Let B; be the Borel subgroup of GL(d;,C), consisting of upper triangular matrices with unipotent radical U,
then

20 ~ ~
GVl,---,Vd = Bl X BQ, G$1,---,Vd = Ul X UQ.

To describe the elements of E‘%? . ydq in terms of matrices, we should turn a dy x di matrix into a block
matrix by requring the first row in k-th row block is row v, and the the first column in k-th column block is
column puy. There are f — 1 row blocks and e — 1 column blocks. Depending on the previous four cases, we will

get the following shape of elements v = {X;;} € EZY We will use * and 0 to indicate the blocks. In

Vi vdQr
case (1),
* ok *
0 = *
; *
0 0 - *
0 0 0 =
In case (2),
*
0
0 0 *
0 0 0

In these two cases, if X; ; # 0, then
v <i<ugy fork< f =75= pg.

In case (3),

S O
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In case (4),
0 = * ok
Do *
00 * ok
00 0 =

In these two cases, if X; ; # 0, then
v i< v for k< f =72 pgpqa
Similarly, for y = {Y; ;} € E\%'?,---,Vd,ﬁ' In case (1) and (2), if ¥; ; # 0, then
pr i < pggr for k <e =7 > vpq.
In case (3) and (4), if ¥; ; # 0, then

pp < i< gy for k <e = j > .

5.1. Vanishing cycle. For yq € E‘%? .. ya g We want to compute the vanishing cycle of
>0
hy, : Gy % E\il’...,vd7Q — C,(g,z) — (92, 90)

at (1,z0), where (xg,y0) € Ay. First we would like to show that it suffices to consider those yg in nice shape.

Suppose yy = ¢’ - yo for g’ € G7 4, then
>0
(97:17) Gy X E‘il’,,,’vd7g
hyg
C
—_ >0
(999" g ) Gv x EZY | vag

Let z(, = ¢’ - zo, then it is the same to consider the vanishing cycle of hy(r) at (1,2(). So we can change o by the

action of G%/(l] .. ya = B1 x Ba. Note the action of By on yq is by row operations and the action of By on yq is

by column opérations. For each nonzero column s of yg, let a5 be the first nonzero entry from the bottom. By
the action of B, we can make all entries above a; be zero. Then by the action of Bs, we can make all entries
on the right of ay be zero. If we do this process from the first column to the last column, then we can make
each row and column of y; contain at most one nonzero entry, which can be further normalized
to be one. From now on, we will assume g satisfies this property. Let us index the nonzero entries in yg by a
set A and o € A corresponds to the entry (iq,jo). Let I = {iz|a € A}, J = {ja|la € A}. Our choice of yy has
the following consequence on x.

Lemma 5.1. X;; =0 forjecl oric J atx
Proof. Since [zg,y0] = 0, then gy = yoxg = 0. The result follows immediately from our assumption on yo. O
Let U; the unipotent radical of the opposite Borel subgroup B;. Then the map
(Uy x Us) x (By x By) = GL(dy,C) x GL(d2,C), (u,b) > ub
is smooth. By smooth base change, it suffices to consider the vanishing cycle of the pullback
hyo = (U1 x Uz) x (Bu x Ba) X EZY g = C
One can also consider the composition of the projection

pr: (Ul X Ug) X (Bl X Bg) X E\%?,---,Vd,ﬂ — (Ul X [72) X E\%?,---,V‘i,ﬂ
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with the restriction of hy, to (U x Us) x E‘%? and we denote it by hy,. Then we have a commutative

7...7‘/11797
diagram
(u, b, ) (U1 % Us) x (B1 x Ba) X BY | vag
N
C
hy,
(u, b,b . l‘) (Ul X Ug) X (Bl X Bg) X E\%?7~~~7Vd,ﬂ

So it is the same to consider l_zyo. Finally, since l_zyo factors through pr, by smooth base change it suffices to

consider the restriction of hy, to (U x Us) x E‘%(l] and we denote it still by hy,. So we have shown

)t ’Vd7Q7
Lemma 5.2. R@hyo(]l)(l,xo) = R(I)ﬁyo(]l)(l,xo)-
Let us denote the entries of g;° Ly M;; and that of go by N;;. We want to calculate Byo explicitly,

Byo((91,92),33) = tr($9f1y092)

= Z Z Xi;Y;sNgi + Z Z XijMjrYrs + Z Z XijM;jrYrs N

1, S§>1 1,5 r<j 1,5 r<j
s>1
= E Xiio Njoi + E Xj.iMji,, + E XijMji . Nj oi-
a€Ai a’€Aj a’€A g

There are three terms in the summation. We first consider X;; appearing in both of the first two terms. They
are necessarily of the form Xj ,; . Let us define

T ={(d,a) € A2]X-a,,~a # 0}.
We have an inclusion
7:T—JxI, (,;0)= (Jarsia)

Lemma 5.3. For any (o/,a) € T, X; appears in both of the first two terms.

e
Proof. By the shape of x and yo, we know if X ,; # 0, then j, > jo and i > iy The rest is clear. O

Combining the terms with Xj , ;, for (o/,a) € T, we get

(18) E Xja/Ja <Njaja/ + M’iaia/ + Z Miaia// Nja//ja/) .
(a’,a)eT i <la
OZNEA'jO[//>jO[/

The remaining terms are

(19) > XiinNji

acAigJ
(20) > XM,
a'€A,j¢l
(21) Z XijMji , Nj i

€A ¢ j¢l

(22) Z Xi'Mjia//Nja//’i
a’eAjied,j¢l
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(23) > XM, Nj .
o’ €A igJ jel
The goal is to separate the variables so that the function can be viewed as a quadratic form in some variables

(called quadratic variables) with coefficients in different variables (called coefficient variables). First we
set Mj; (j¢1,iel), Ny (jedi¢gJ)and X;; (i € J,j ¢ I)or (i ¢ J,j € I) quadratic variables; set Nj;
(jedield), Xy (i ¢ J,j¢I) coefficient variables. Note the variables Mj; (i ¢ I), Nj; (j ¢ J) will never
appear, so we can set them arbitrary. (We will set them as coefficient variables if not specified.) It remains to
deal with

M (jeljiel)
which only appear in ({I8) and (23)), and

X (iEJ,jGI)
which only appear in ([I8)). Note in the latter case, X;; # 0 only when (7,j) € 7(T"). To achieve our goal, we
need to make some change of variables. For any (o/,«a) € T,

\11/ _— . . \11. . \11. . . .

Taly! N,Yaja/ + laly/ + E taly!l N]a”]a’
" i <ia

o EA'jOL//>jO/

- Miaia/ + (Njaja/ + Z Miaia”Nja”ja/>.

/ i <ia
« EA'ja//>jo/

To see this is well-defined, we impose a partial order on 7" such that

(o a) >7 (&, a) if jor < jar

Then
(24) Migigy = Miy, 4 3 Uy M, +U,
(o ,0)ET
(O!”,Oc)<T(O!,,O!)
where L{;O‘/ ;, are polynomials in N;; (i,j € J), and L{;O‘/ are polynomials in Nj; (4,5 € J) and M;,;_, for any
(@”,a) ¢ T). Set L{;O‘/ ;, = 1. After this change of variables, (I8) becomes
(25) Z Xja/ia Mi,a’ia/ *

(o ;@)eT
We can also split (23) into two parts:
m)a : Z Xiia/ Mia/ia// Nja//i
(a,a")¢T,igJ

and

@30 Z Xii oy M i Nj i

(o )eT it J
Substitute (24)) into [23)b, we get
Z Kiio Miyi , Nj_ i
(o ,@)€T i J
- Z Xiia <Mi/aia’ + Z Z/[;z’ 7ja” Mi/aia” + u;z’ > Nja/i
(o, )ET it (o, a)eT
(o, a)<r (o)
= > (X Xl N MY XNy
(o @)eT (/)T (o ,@)eT it J

(o ya)zr(a,0),igJ
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Combined with (25]), we get

Z (Xja/ia + Z Xiiaujl‘z,,Ja,Njaui) M{aia, + Z Xiiau;z,Nja/i-
(a/,@)eT (o, a)eT (o ,)€eTyig¢J
(" a)zr (o ,a)i¢J

For (o/,a) € T, let
(26) X! = Xja/ia + Z Xiiau;z/“ja/Nja,,i.

ja/ia -
(o a)eT
(" @)z (d,a),i¢ T

Substitute X ]' ;. into the previous expression, we get

(2
(27) SoXp M+ D> Xiiolhj®, Nj -
(o ,@)eT (o« ,@)eTyig J
In sum, after the substitutions by M{aia, and Xy/'a/ia for all (o/, ) € T, we see

@8) + @3) = @D,
Combined with (23)a, we rewrite them as
(m)/ : Z X_;'a/iaMi/aia/
(o, )T
and
(m)/ : Z Xiia/Mia/ia// Nja//i + Z Xiia/u;z,l, Nja//i
i¢J (o ' )¢T i¢J(a ' )eT
S0

tr(zgy tyoge) = (@) + @) + @0) + @) + @2) + @3)'.

We will set M/ ,  and X/ for (o/,a) € T as quadratic variables. We will also set the variables M;,;, for

tatyr Jalta

(o/,a) ¢ T as coefficient variables.

5.2. Euler characteristic of Milnor fiber. We want to compute
X(RB®;, [=1(1)(1,20)) = 1 = x(B¥5, (1)(1,20))-

The idea is to relate X(R\I/Byo(]l)(l,mo)) with the Euler characteristic of the Milnor fiber for hy, at (1,2¢). We
will recall the definition of the Milnor fiber below.
Let f be an analytic function germ at the origin of C"™! with f(0) = 0. Let

Be:={zcC"™ |02+ |z < ¢}
and ST = 9B..
Theorem 5.4 (Milnor [I1]).
et SETINFTHO) — ST,z f(2)/1£(2)]
is a smooth locally trivial fibration for € sufficiently small.

Definition 5.5. For any 6 € S' and € sufficiently small as in the above theorem, (,05_1(9) 1s called the Milnor
fiber of f at the origin.

To compare with the nearby cycle, we consider another description of the Milnor fiber. For 0 < § < ¢, let
Dy ={teC|0< || <d}.

Theorem 5.6 (Lé [15]).
v Ben f7H(D5) — Dj
is a smooth locally trivial fibration for 0 < § < € both sufficiently small.



28 TAIWANG DENG AND BIN XU

Proposition 5.7. For sufficiently small §,€ as in the above theorem and any a € Dj, w_l(a) is diffeomorphic
to the Milnor fiber of f at the origin.

Proof. Cf. [4, Proposition 1.4]. O

As a consequence, we can also define the Milnor fiber to be ¢ ~!(a). By [14, Lemma 1.1.1],
(28) X(R¥(1)o) = x(¥™(a)).

Now let us assume f(z) is a homogeneous polynomial of degree N. Following [4], we call f~!(1) the global
Milnor fiber of f at the origin.

Proposition 5.8. f71(1) is diffeomorphic to the Milnor fiber of f at the origin.

Proof. We can construct a homeomorphism ¢ such that the following diagram commutes

S20H\ f71(0) — T fH(SY)

T

Sl
Here
1
gz |f(z)|7N -z
Note for any z € f~1(S'), there exists unique ¢t € Ry such that tN .z € 5271 One can check that this gives

the inverse. O

Remark 5.9. Since the above diagram holds for all €, then in the case of homogeneous polynomials the Milnor
fiber at the origin is homeomorphic to (,05_1(9) for any €.

5.3. Application. Let f = hy,((g1,92),2), whose variables are denoted by (X;;, M;j, Nij). After change of

variables in Section B.I] we denote the set of new variables by z = (XZ'], MZ’J, N/ ;). Then we want to compute

the Euler characteristic of the Milnor fiber of f(z) at the point 2° = (2;,0,0). We choose a small ball around
this point

B = {(X};, Mjj, N} rZrX' —wMZ\ \MZ\ <e}

such that
we = f/1f: SNfTH0) — S

is a smooth fibration as in Theorem [5.4] Let V be the subset of coefficient variables and W be the subset of
quadratic variables. Let

BY = { (Xl M N | D1 = P+ TG + D2 NG < o}

which is the projection of B, onto the coefficient variables. It is a ball around the projection ZV of 2V, For any
zy € B , we have

|2y — 2012 < e
Let
fav (zw) = f(2v, 2w) for 2w = (Xi;, My;, Nj;)w
It is a quadratic form. Let zgv be the projection of z° to the quadratic variables. Note ng € W if and only if
i€ Jorjc I ByLemmalEIand the formula 26 we have 2{, = 0. Let

2|W|—1 _
‘sz,e—\zv—z?/P = fzv/‘fzv’ S W] _ ?/|2\sz1(0) — St

e—|zy—2
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So we have a diagram

gAWI-t o2 \f5} (0) —>§!

e—|zy—z H
1

SAfH0) ——S

-
BV
which gives a fiberation of the Milnor fiber ¢ 1(8) for some 6 € S* over a closed subset CY of BY. In view of
Remark [5.9] the fiber ¢! 0 ‘2(9) is homeomorphic to the Milnor fiber of f,, at the origin. By (28],

z2v,e—|zy—2

(29) N 02(0) = X(R¥ ., (1)o).

2y ,e—|zy—2

Next we would like to compute the Euler characteristic of gpz_‘} |20 ‘2(9) through the nearby cycle. To do so,
) v

we need the following lemma.
Lemma 5.10. rank Hessian(f,, )o is even.

Proof. We can divide the set W of variables into two classes:

Gai gy
and
Wo = {XJ/ | () GT}U{NJ{Z-U €Jid¢ J}U{ng\i €J,je¢l}
such that the Hessians of the restrictions of f,, to variables in W (resp. W3) are both zero at 0. Then the
Hessian must be in the form

o ta

Hessian(f,, ) = (BPT g) .
So its rank is even. O
Corollary 5.11. x(R¥y, (1)) = 0.

Proof. Since f,,, is a quadratic form, we can change the coordinates such that

o () =
i=1

where r = rank Hessian(f,, ) is even by the previous lemma. By Sebastiani-Thom theorem,

Rey. [-1](1)o = C[-r].
Hence x(R®y, [-1](1)o) = (—1)" = 1. It follows x(R¥y, (1)) = 0. O
Proposition 5.12. x(RV(1),0) = 0.
Proof. We have x(R¥ ;(1),0) = x(¢-"(#)), where § € S'. The latter admits a fiberation over C)" C BY with
fibers cpz_vl e Joy—20 |2(9). By the Leray spectral sequence

) v
HP(C!, (Rimy).1) = H™(¢7'(9)),
we have
-1 — _1\P+aq; p(V (PR - _1)¢ oV (R4
X(p1(0)) = > (~1)PFdim HP(CY, (R ). 1) = > _(=1)Ix(H*(C!, (R'mv).1))
q

=S [ @)D = [ xR,

cy cy

€
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By Corollary E.1Tl and (29)),
X(Bav).L)zy, = x(my' (2v)) = x(¢,) 0 2(0) = 0.

zve—|zy—z

Hence, x(¢; ' (0)) = 0.

This completes the proof of Conjecture [4.25] for type Ao quiver.

6. APPENDIX

6.1. Regularity of stratification. Let X be a closed subset of a smooth real manifold M of dimension m. A
smooth stratification of X is a filtration

XoC---CX,CX
by closed subsets such that X° = X;\X;_; is a smooth i-dim submanifold of M. For j > i, we say X7 is

w-regular over X' at € X' N X if there exists a neighborhood U of z in M and constant C' such that in
suitable local coordinates

ATy X', T X7) < C||2” — ||
for all #’ € UN X", 2” € UN X7. Here we have chosen a norm || - | on R™ and identify T, X", T,n X7 with
subspaces of R". We define the distance between any two subspaces V, W of R™ to be

d(V, W) 1= sup,cy,|jp||=1d(v; W)

In our setting, we will take M to be a complex variety and X; to be semialgebraic subsets of M. By [14, Remark
4.1.9], we have

w-regular = Whitney a-regular, b-regular and d-regular

So in order to apply [14, Theorem 5.3.3], it suffices to show w-regularity.
Proposition 6.1. The stratification of Ev.qo by Gy -orbits is w-regular.

Proof. Let S;,S; be Gy-orbits such that Sj 2 5;. For z € S;, we choose a small neighborhood U of z in Ey g
such that U N S; C S; is compact. For any 2’ € UNS;, T, S; = [gy, 2']. We fix a norm on Ey.q. Let N(z') be
the subspace of gy orthogonal to the kernel of

gv — EV7Q, h— [h,xl].
Let
C(a') := sup{||a]| | h € N(2') and ||[h,2"]|| = 1}
It is bounded by some positive constant C on U N S;. For 2” € UN S;,2" € UNS;, we can find h € gy with
||| < C such that

d(Tx/Si, Tx// S]) = d([h, $l], Tx” S]) < d([h, $l], [h, 33//])
=[[[h,2" = 2"]| < C"- [|A]] - [l2" — 2"|| < C'C - [|2" — 2"
for some positive constant C’ independent of h,x’, z”.

O

6.2. A vanishing cycle calculation. We will prove Proposition ELTT] following that of [3, Theorem 6.7.5]. Let
us recall the statement.

Proposition 6.2. R®/[—1](1 = C[dimAy — dimS — dimS)], where f is the restriction of (, ) to S x S.

§x3)(29)

First we need to make some preparations.

Lemma 6.3. The function f is singular over Tg(Ey.Q)reg, i-€., df T2 (Bv.a)res = 0-

Proof. For any (z,y) € Tg(Ev,q)reg and u € T,.S, we have df (. (u) = (u,y) = 0. Similarly, we have df(, ,y(v) =
(x,v) =0 for any v € Ty§. This finishes the proof. O
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Fix (z,y) € T§(Ev,q)reg and let N C S x S be a normal slice to Ts(Eva)reg at (z,y). In particular, we
require N N Tg(Ev,a)reg = (2,y). The key step is to show

Proposition 6.4. The Hessian of f at (x,y) has rank dim S + dim S — n = dim N. Moreover, the Hessian of
fln at (z,y) is non-degenerate.

We can pull back f to the Lie algebras gy x gy of Gy x Gy near a neighborhood of (x,y) as follows

F(h1,h2) = (exp(h1)z, exp(ha)y) : gv x gy — C
It is easy to see that the rank of Hessian of f at (x,y) is the same as that of F' at (0,0).

Lemma 6.5. In a small neighborhood of 0 in gy, one can express

emp(h)xzx%—[h,x]%—%[h, h, 2]] +---+%[h, oo o] ] 4o

eap(h)y =y + oy + b [yl] o4 il [ ] ]

Proof. For any h € gy we can find real number § > 0, which only depends on the norm of h, such that the
vector-valued function
G(t) := exp(th)z : [-0,0] =V,

can be expressed as

G(t) = G(O) + C'O)t + ZC"O)F -+ - GO 4+

Since
G (t) = exp(th)[h, [h, ..., [h,2]--]]
then

eap(th)e =+ (bt + 5[0 (ol 4 by ] [

— 2+ [th,2] +%[th, ith, o] +---+%[th, th, . thoa]e ] 4+

This proves the first equality. The second equality can be proved in the same way.

Let us write Z;(h) = exp(h)x — (x + [h,z]) and Zs(h) = exp(h)y — (y + [h,y]). Then
F(h1,he) = (& + [hi, 2,y + [ha, y]) + (& + [hn, 2], Z2(h2)) + (Z1(h1), y + [ha, y]) + (Z1(h1), Za(ha))

The degree 2 terms in the above expression can only come from ([h1, ], [h2,y]), (x, Z2(he)) and (Zi(h1),y).
Therefore,

) _ (Hessian((Z1(h1),9))(0,0) B
Hessian(F)o,0) = ( BT Hessian((z, Z2(h2)))(0,0)

where

2
B = (g (41, 2. )

It is not hard to see that B corresponds to the bilinear form
<[h17x]7 [h27y]> gy X gy — C
after we identify T )(gy x gv) with gy x gy. Since
<[h17 33], [h27 y]> = <[y7 [h17$“7 h2>7

then the rank of the above bilinear form is dim [y, [gy, z]]. So we have shown

(0,0)

Lemma 6.6. rank Hessian(F) o) > dim [y, [gv, *]].
Next, we would like to show

Lemma 6.7. dim [y, [gy, z]] = dim S + dim S — dim Ay .
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Proof. Tt is easy to see that [gy, x] = T,.S and Kerly, || g, o = TéyEV,Q- Since (z,y) is regular, Tg’yEvﬂﬂS x{y}
contains an open neighborhood of (z,y) in TgyEV,Q' Hence Tg,yEV,Q C T,S. So dim [y, [gy,z]] = dimT,S —
dim Tg,yEV,Q =dim7,S — (dim Ay — dim7}S) = dim S 4+ dim S — dim Ay.. O
Corollary 6.8. T(, ,)(T$(Ev,a)) = {(u,v) € TS x Ty§| [u,y] + [z,v] = 0}.

Proof. For any (u,v) € T(,4)(Av), one can choose smooth a: [0,1] — V, 3 : [0,1] — Ey, g such that

a(0) = z,8(0) = y,da(1) = u,df(1) = v
and («(t), 5(t)) € Ay. Then [a(t), B(t)] = 0. Differentiate it at ¢ = 0:

0 =1im < ({a(t), 5] 9] = lim 7 ({a(#) — 2, B(0)] + [z, 5() ~ 4])
= i O g )] 1 [ tim MY = ) 4 g

It follows
Tz (Av) € {(u,v) € T*Eva|[u,y] + [z,v] = 0}.

Since (z,y) is regular, T(, ,)(Av) = T4 (T5(Ev,a)) C ToS x Ty§. So
Tiwyy(Av) € {(u,0) € TuS x TS | [u,y] + [z, 0] = 0}
and it is enough to show the dimension of the right hand side is equal to dim Ay. Now let us consider
o(u,v) = [u,y] + [x,v] : TS x Ty§ — gv
Note Ker ¢ = {(u,v) € TS x Ty§] [u,y] + [z,v] = 0}. The image of ¢ is [[gv,z],y] + [z, [gv,y]] = [[ov, x], y].

By the previous lemma, dimIm¢ = dim .S + dim S — dim Ay. Hence dim Ker ¢ = dim Ay. This finishes the

proof.
O

Next we would like to compute the Hessian of f at (x,y) in a different way. Let us choose local coordinates
for a neighborhood U of (z,y) in S x S such that

un Tg(EV,Q)T’eg = {5 = (&);11 eU ’ fnp1 =" =&m= 0}
and
UNN={{= (&)1 €U[& ==& =0}
By taking U sufficiently small, we can assume f|y has analytic expansion

mil

m;
f= Z Cilv'”,ilgil ' Ezl
BRI

Since f is singular over Tg(Ev,n)req, the above expression can not have terms &¢; with ¢ < n,j > n. Note
Flrg(By.g)reg = 0- S0

. 0 0
Hessian(f|y)o = <0 Hessian(f|N)0> .

It follows rank Hessian(f|y)o = rank Hessian(f|n)o < dim N. Combining Lemma [6.6] and Lemma [6.7, we have
proved Proposition Now we can prove Proposition

Proof. Let us choose local coordinates for a neighborhood U of (z,y) in S X S such that

UQTE(EVQ)TEQ ={{=(&)iZ1 €U |&1 =" =&n =0}
Let
N={{=(&)iZ1€Ul& ==& =0},
which is a normal slice to UNT§(Ev,n) at (z,y). Since f vanishes and is singular on 7§ (Ey.q)reg, We can assume

FO = (98¢

i,j>n
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By Proposition [6.4] the Hessian of f|y is non-degenerate. So we can make a change of coordinates

&= bul(6)&
k,l

following the Grahm-Schmidt process such that

<bk,l(£)>k7l = (Ig B(()§)>

where B(€) is upper-triangular with constant function 1 on the diagonal, and

F(€) = Bi(€er.

i>n

for 3;(¢') nonzero on a small neighborhood W C U. By choosing a branch of square roots, we can make a further
change of coordinates by

. [ ifi<n

CTWVEEE tisn

Then

fEen =3 ¢&"

>n

It follows from Sebastiani-Thom theorem that

(R(I)f[_l](]]-U))(:c,y) = C[_dim N]

This finishes the proof.
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