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THE HASSE NORM PRINCIPLE IN GLOBAL FUNCTION FIELDS

ADELINA MÂNZĂŢEANU, RACHEL NEWTON, EKIN OZMAN, NICOLE SUTHERLAND,
AND RABIA GÜLŞAH UYSAL

Abstract. Let L be a finite extension of Fq(t). We calculate the proportion of polynomials
of degree d in Fq[t] that are everywhere locally norms from L/Fq(t) which fail to be global
norms from L/Fq(t).

1. Introduction

The Hasse norm principle is said to hold for an extension of global fields L/k if the knot
group

K(L/k) =
k× ∩NL/kA

×
L

NL/kL×

is trivial, in other words if an element of k× is a global norm from L/k if and only if it
is a norm everywhere locally. Hasse’s original norm theorem [14] shows that the Hasse
norm principle holds for cyclic extensions of number fields. Since then, there have been
several research articles giving methods for computing knot groups and sufficient criteria
for the Hasse norm principle to hold, see [1, 2, 3, 8, 11, 12, 13, 16, 17, 18, 20, 22, 24, 28],
for example. Furthermore, new breakthroughs obtained when studying arithmetic objects in
families mean there has been a great deal of interest in the frequency of failure of local-global
principles – see [5] for a survey of recent progress. In particular, the frequency of failure of
the Hasse norm principle for number fields has been studied in [6, 9, 10, 21, 25].

In this paper, we study failures of the Hasse norm principle in the global function field
setting. Let q be a power of a prime p, let L/Fq(t) be a finite extension with full constant
field Fqf and let n ⊂ Fq[t] be an ideal. In order to compare the number of global norms from
L/Fq(t) with the number of everywhere local norms, we define counting functions

Nglob(L/Fq(t), n, d) = #{α ∈ Fq[t] ∩NL/Fq(t)L
× | (α, n) = 1, degα = d}, and

Nloc(L/Fq(t), n, d) = #{α ∈ Fq[t] ∩NL/Fq(t)A
×
L | (α, n) = 1, degα = d}.

The following constant will play an important role in our results:

h = gcd{deg p | p infinite place of L}. (1)

We may now state our main theorem:

Theorem 1.1. We have

lim
d→∞
fh|d

Nglob(L/Fq(t), n, d)

Nloc(L/Fq(t), n, d)
=

1

#K(L/Fq(t))
,

where the limit is taken over degrees d such that fh | d.
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In the special case n = Fq[t], Theorem 1.1 is an integral analogue of [6, Theorem 1.2] in the
function field setting. We note that examples where the knot group is non-trivial certainly
exist in this setting: for example, [27, §11.4] shows that the knot group is Z/2Z for the
biquadratic extension F5(

√
t,
√
t + 1)/F5(t) since all its decomposition groups are cyclic.

In order to obtain Theorem 1.1, we show that the method of Cohen and Odoni can be
used to prove the following local version of [7, Theorem IIB]:

Theorem 1.2. There exists a finite abelian extension Lloc/L with the following properties:

(a) if d is a large multiple of fh, then Nloc(L/Fq(t), n, d) is asymptotically

h κlocC
qddB−1

[Lloc : L]
λ−1
n {1 + O

(

d−Aω4(n)
)

}+O
(

qd/2e2
√

dω(n)
)

(2)

where A,B and C are positive constants depending only on L/Fq(t) and 0 < B < 1,
ω(n) is the number of distinct prime divisors of n and

λn =
∏

p|n

{1 + δ(p)q−deg p + δ(p2)q−2 deg p + . . . }

where δ is the indicator function for norms of fractional ideals of L, see Section 3;

(b) if d is not a multiple of fh, then Nloc(L/Fq(t), n, d) is only

O
(

qddB−1−Aω4(n)
)

+O
(

qd/2e2
√

dω(n)
)

where the constants involved in the O symbols may be taken uniform in d and n.

The constant κloc and its global analogue κglob are defined as follows:

κloc = #(F×
q ∩NL/Fq(t)A

×
L) and κglob = #(F×

q ∩NL/Fq(t)L
×). (3)

One key difference with the number field case handled in [6] is the special role played by
the constant fields in the function field setting. A key step in our proof of Theorem 1.1 is
to show that Lloc and its global analogue Lglob both have full constant field Fqfh. This is
achieved in Theorem 3.8 using the following result, which is proved in Section 3.2:

Theorem 1.3. Let F be a global function field with full constant field Fq, let m be an effective

divisor of F and let H be a finite index subgroup of the ray class group Clm(F ). Then the

ray class field corresponding to H has full constant field Fqr , where r is the smallest positive

degree of a divisor in H.

To obtain an analogue of Theorem 1.1 for rational functions rather than polynomials, one
would need to handle sums over fractional ideals written as quotients of coprime integral
ideals, in a similar fashion to what was done at the bottom of p.343 of [6]. The appearance
of ω(n) in the error terms of (2) means that these error terms would need to be handled
carefully, but we believe this should be possible with some work.
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Alp Bassa, Titus Hilberdink, Yiannis Petridis and Efthymios Sofos for useful discussions.
Magma [4] was used to investigate examples. Rachel Newton is supported by EPSRC grant
EP/S004696/1.
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2. Reducing to the separable case

One major difference between the function field setting and the number field setting is the
presence of inseparable extensions in the function field case. Fortunately, Cohen and Odoni
[7] give the following lemma allowing us to reduce to the case of a separable extension:

Lemma 2.1 ([7, Lemma 1.1]). Let F be a perfect field of characteristic p 6= 0. If t is an

indeterminate and L is a finite extension of F (t) of degree of inseparability pi, then L = KM ,

where K = F (tp
−i
) and M is the maximal subfield of K separable over F (t); in particular,

L/K is separable.

Lemma 2.2 below allows us to transport the property of being a (global or everywhere
local) norm from L/Fq(t) to the separable extension L/K given by Lemma 2.1 and back.
Before stating it, we explain what we mean by a fractional ideal of L and describe the
correspondence between fractional ideals and finite divisors.

Let L/Fq(t) be a finite extension. Write OL for the integral closure of Fq[t] in L. Note that,
unlike in the number field case, OL is not canonical – it depends on a choice of generator t
for Fq(t)/Fq. We consider the choice of generator t to be fixed throughout this paper. By
a fractional ideal of L, we mean a fractional ideal of OL. For α ∈ L×, we write (α) for the
principal fractional ideal of OL generated by α.

The infinite place of Fq(t) corresponds to the valuation ord∞ on Fq(t) given by ord∞

(f(t)
g(t)

)

=

deg g(t)−deg f(t) for f(t), g(t) ∈ Fq[t]. In other words, the infinite place of Fq(t) corresponds
to the prime ideal generated by 1

t
in Fq[

1
t
]. We write ∞ for the infinite place of Fq(t).

Let D(L) denote the group of divisors of L and let D∞(L) denote the subgroup of finite
divisors, meaning those whose support does not include any place above ∞. We identify the
finite places of L with the nonzero prime ideals of OL (see [19, §5.2], for example). Thus,
since OL is a Dedekind domain, the map

∑

i

aipi →
∏

i

paii

allows us to identify D∞(L) with the multiplicative group of nonzero fractional ideals of OL,
which we will denote by IL. Having made this identification, we will refer to the degree of a
fractional ideal, meaning the degree of the associated divisor.

Lemma 2.2. Let L/Fq(t) be a finite extension of degree of inseparability pi, let K = Fq(t
p−i

)
and let α ∈ Fq(t). Then

(1) the fractional ideal (α) of Fq[t] is the L/Fq(t) norm of some fractional ideal of OL

if and only if the fractional ideal (αp−i
) of OK is the L/K norm of some fractional

ideal of OL;

(2) α ∈ NL/Fq(t)L
× if and only if αp−i ∈ NL/KL

×;

(3) α ∈ NL/Fq(t)A
×
L if and only if αp−i ∈ NL/KA

×
L .

Proof. Parts (1) and (2) are the content of [7, Lemma 1.2]. We prove (3). First suppose that

αp−i ∈ NL/KA
×
L . This means that for every place q of K there exists (βr)r ∈

∏

r|q L
×
r such

that

αp−i

=
∏

r|q

NLr/Kq
(βr). (4)
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Let p be a place of Fq(t). By [26, Lemma 7.3], sinceK/Fq(t) is a purely inseparable extension,
there is a unique place q of K above p. Taking NK/Fq(t) of both sides of (4) gives

NK/Fq(t)(α
p−i

) =
∏

r|q

NKq/(Fq(t))p(NLr/Kq
(βr)) =

∏

r|p

NLr/(Fq(t))p(βr). (5)

Now observe that NK/Fq(t)(α
p−i

) = α, since K/Fq(t) is a purely inseparable extension of
degree pi. Hence (5) becomes

α =
∏

r|p

NLr/(Fq(t))p(βr). (6)

Since p was arbitrary, we have shown that α ∈ NL/Fq(t)A
×
L , as required.

Now suppose that α ∈ NL/Fq(t)A
×
L , so for every place p of Fq(t) there exists (βr)r ∈

∏

r|p L
×
r

such that

α =
∏

r|p

NLr/(Fq(t))p(βr). (7)

Again, for each place p of Fq(t) there exists a unique place q of K above p. Furthermore,

NKq/(Fq(t))p(x) = xpi for all x ∈ Kq. Thus, (7) becomes

α =
∏

r|q

(NLr/Kq
(βr))

pi. (8)

Hence αp−i ∈ NL/KA
×
L , as required. �

Lemma 2.2 shows that α 7→ αp−i
gives bijections

{α ∈ Fq[t]∩NL/Fq(t)L
× | (α, n) = 1, degα = d} → {β ∈ OK∩NL/KL

× | (β, n) = 1, deg β = d}
and

{α ∈ Fq[t]∩NL/Fq(t)A
×
L | (α, n) = 1, degα = d} → {β ∈ OK∩NL/KA

×
L | (β, n) = 1, deg β = d}

where OK = Fq[t
p−i

] and deg β is the degree with respect to the variable tp
−i
. Defining

Nglob(L/K, n, d) = #{β ∈ OK ∩NL/KL
× | (β, n) = 1, deg β = d}, and

Nloc(L/K, n, d) = #{β ∈ OK ∩NL/KA
×
L | (β, n) = 1, deg β = d}

gives

Nglob(L/Fq(t), n, d) = Nglob(L/K, n, d), and (9)

Nloc(L/Fq(t), n, d) = Nloc(L/K, n, d). (10)

This allows us to restrict to the finite separable extension L/K in order to prove Theorems 1.1
and 1.2. We now list two further consequences of Lemma 2.2 that will be used in the proofs
of our main results.

Corollary 2.3. In the setting of Lemma 2.2, we have

F×
q ∩NL/Fq(t)A

×
L = F×

q ∩NL/KA
×
L

and

F×
q ∩NL/Fq(t)L

× = F×
q ∩NL/KL

×.

Proof. This follows from Lemma 2.2, since α 7→ αp−i
is an automorphism of F×

q . �
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Corollary 2.4. In the setting of Lemma 2.2, the map α 7→ αp−i
induces an isomorphism

K(L/Fq(t))
∼−→ K(L/K).

Proof. This follows immediately from Lemma 2.2. �

3. Proof of our main results

In order to prove Theorem 1.2, we will adapt the strategy of Cohen and Odoni in [7] to
the case of everywhere local norms. Define indicator functions on IK as follows:

δ(a) =

{

1 if a ∈ NL/KIL,

0 otherwise,

δloc(a) =

{

1 if a = (β) for some β ∈ K× ∩NL/KA
×
L ,

0 otherwise,

δglob(a) =

{

1 if a = (NL/k(α)) for some α ∈ L×,

0 otherwise,
.

Lemma 3.1. We have

Nloc(L/Fq(t), n, d) = κloc

∑

a⊂OK
(a,n)=1
deg a=d

δloc(a)

and

Nglob(L/Fq(t), n, d) = κglob

∑

a⊂OK
(a,n)=1
deg a=d

δglob(a).

Proof. The terms κloc and κglob are there to account for the difference between elements of
OK and principal integral ideals of OK . Now the result follows from (9) and (10). �

The next step is to show that the ideal generated by an everywhere local norm from L/K
is the norm of a fractional ideal of OL. This is the content of Corollary 3.3 below.

Lemma 3.2. Let α ∈ K. Then (α) ∈ NL/K(IL) if and only if for every finite place p the

greatest common divisor of the residue degrees fq/p of the places q above p divides ordp(α).

Corollary 3.3. If α ∈ K× ∩NL/K(A
×
L) then (α) ∈ NL/K(IL).

Proof of Lemma 3.2 and Corollary 3.3. Lemma 3.2 and Corollary 3.3 are the global function
field analogues of [6, Lemma 2.1] and [6, Corollary 2.2]. The same proofs work. �

Using Lemma 2.2 to move between L/Fq(t) and L/K, Corollary 3.3 means that a first
approximation for Nloc(L/Fq(t), n, d) is given by

∑

a⊂OK
(a,n)=1
deg a=d

δ(a) (11)
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which counts integral ideals of Fq[t], coprime to n and of degree d, that are norms of fractional
ideals of OL. In [7, Theorem IIA], Cohen and Odoni give an asymptotic formula for (11) by
studying the Dirichlet series

f(n, t) =
∑

a⊂OK
(a,n)=1

δ(a)tdeg(a), |t| < q−1.

They then go on to analyse the behaviour of the Dirichlet series

fglob(n, t) =
∑

a⊂OK
(a,n)=1

δglob(a)t
deg(a), |t| < q−1,

by expressing δglob in terms of δ and a sum over the characters of a certain finite abelian group
coming from class field theory. With some work, this allows them to deduce an asymptotic
formula for Nglob(L/Fq(t), n, d) in [7, Theorem IIB]. We seek to employ the same strategy to
analyse the behaviour of the Dirichlet series

floc(n, t) =
∑

a⊂OK
(a,n)=1

δloc(a)t
deg(a), |t| < q−1,

and thereby prove Theorem 1.2. This requires us to express δloc in terms of δ and a sum
over the characters of a finite abelian group. This is achieved in Lemma 3.6 after some class
field theoretic preliminaries.

3.1. Class field theory. We begin by recalling some essential facts. Let m be an effective
divisor of a global function field F . Let Dm(F ) denote the group of divisors of F with
support disjoint from the support of m. Write Pm(F ) for the subgroup of Dm(F ) consisting
of principal divisors div(f) such that f ∈ F× satisfies ordp(f − 1) ≥ ordp m for all places p
in the support of m. The ray class group of F modulo m is defined to be

Clm(F ) = Dm(F )/Pm(F ).

The group Clm(F ) is never finite. However, its degree zero part

Cl0m(F ) = {[d] ∈ Clm(F ) | deg d = 0}

is finite, see [26, p.139], for example.
Class field theory gives a one-to-one correspondence between the subgroups of finite index

of the ray class group Clm(F ) and the finite abelian extensions of F that are unramified
away from m. The correspondence is via the Artin map which gives a canonical isomorphism
AE/F : Clm(F )/H

∼−→ Gal(E/F ), where E/F is the extension associated to the subgroup H .
In particular, the places that split completely in E/F are precisely the places in H .

We expect that the following proposition is well known, but we give the proof here for
completeness.

Proposition 3.4. Let F be a global function field, let m be an effective divisor of F and let

H be a subgroup of the ray class group Clm(F ). Then H has finite index in Clm(F ) if and

only if H contains a divisor class of nonzero degree.
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Proof. Let n be the smallest non-negative degree of a divisor class in H and consider the
following commutative diagram with exact rows:

0 // Cl0m(F ) ∩H //

��

H
deg

//

��

nZ //

��

0

0 // Cl0m(F ) // Clm(F )
deg

// Z // 0.

The degree map in the bottom row is surjective since Clm(F ) surjects onto Cln(F ) for any
n | m. In particular, Clm(F ) surjects onto the class group of F [23, Thm 1.7] and it is well
known that the degree map from the class group surjects onto Z. Now the snake lemma
gives an exact sequence

0 → Cl0m(F )

Cl0m(F ) ∩H
→ Clm(F )

H
→ Z/nZ → 0.

Since Cl0m(F ) is finite, we deduce that Clm(F )/H is finite if and only if n 6= 0. �

Now define two subgroups of IL:

Hglob = {a ∈ IL | NL/Ka = (NL/K(α)) for some α ∈ L×}
and

Hloc = {a ∈ IL | NL/Ka = (β) for some β ∈ K× ∩NL/KA
×
L}.

In [7, §3], Cohen and Odoni show that

P∞(L) = {(β) ∈ IL | β ≡ 1 (mod p) ∀p | ∞} ⊂ Hglob .

They also show that Hglob contains an ideal of nonzero degree (see Lemma 3.11 for a proof
that Hglob contains an ideal of degree h). Proposition 3.4 therefore shows that Hglob defines
a ray class field Lglob/L unramified outside the infinite places with Gal(Lglob/L) = IL/Hglob.
Since NL/KL

× ⊂ K× ∩ NL/KA
×
L we have Hglob ⊂ Hloc. Therefore, Hloc defines a ray class

field Lloc ⊂ Lglob unramified outside the infinite places with Gal(Lloc/L) = IL/Hloc.

Lemma 3.5. The norm map NL/K gives isomorphisms

IL/Hglob
∼−→ NL/KIL

{(NL/K(α)) | α ∈ L×}

and

IL/Hloc
∼−→ NL/KIL

{(β) | β ∈ K× ∩NL/KA
×
L}

.

We denote the quotient groups on the right-hand sides by Gglob and Gloc, respectively.

Proof. By Corollary 3.3, {(β) | β ∈ K× ∩ NL/KA
×
L} ⊂ NL/KIL so the second map is well

defined. The rest is clear. �

The next lemma is a direct consequence of orthogonality of characters, as in [7, §3].
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Lemma 3.6. For all a ∈ IK,

δglob(a) =
δ(a)

#Gglob

∑

χ∈(Gglob)∨

χ(a), and

δloc(a) =
δ(a)

#Gloc

∑

χ∈(Gloc)∨

χ(a)

where G∨ denotes the group of characters of an abelian group G.

Lemma 3.6 has the following immediate consequence:

Corollary 3.7. For |t| < q−1,

fglob(n, t) =
1

#Gglob

∑

χ∈(Gglob)∨

f(n, t, χ), and

floc(n, t) =
1

#Gloc

∑

χ∈(Gloc)∨

f(n, t, χ),

where f(n, t, χ) =
∑

a⊂OK
(a,n)=1

δ(a)χ(a)tdeg(a).

Let Fglob and Floc denote the degrees of the constant field extensions in Lglob/L and
Lloc/L, respectively. Now [7, Theorem IIB] shows that if d is a large multiple of f Fglob, then
Nglob(L/Fq(t), n, d) is asymptotically

Fglob κglob C
qddB−1

[Lglob : L]
λ−1
n {1 +O

(

d−A′

ω4(n)
)

}+O
(

qd/2e2
√

dω(n)
)

(12)

where B and C are as in Theorem 1.2 and A′ is a positive constant depending only on
L/Fq(t). This result is proved using the expression for fglob(n, t) given in Corollary 3.7.
(To be completely accurate, we note that Cohen and Odoni give a superficially different
expression for fglob(n, t) in [7, (3.1)], owing to their use of IL/Hglob in place of the isomorphic
group Gglob.) Employing the exact analogue of the proof of [7, Theorem IIB] with floc(n, t)
in place of fglob(n, t) shows that if d is a large multiple of f Floc, then Nloc(L/Fq(t), n, d) is
asymptotically

Floc κlocC
qddB−1

[Lloc : L]
λ−1
n {1 +O

(

d−Aω4(n)
)

}+O
(

qd/2e2
√

dω(n)
)

(13)

where A,B and C are as in Theorem 1.2. Therefore, to complete the proof of Theorem 1.2,
it remains to show that Floc = h, where h is as defined in (1). In fact, we go further and
prove in Theorem 3.8 that Floc = Fglob = h.

3.2. Constant fields. Recall from (1) that

h = gcd{deg p | p infinite place of L}.
Our main aim in this subsection is to complete the proof of Theorem 1.2 by proving the
following result:

Theorem 3.8. The full constant fields of Lglob and Lloc are both equal to Fqfh.
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The first step towards the proof of Theorem 3.8 is to prove Theorem 1.3. This requires
the following result of Hess and Massierer:

Lemma 3.9 ([15, Lemma 3.2]). Let F be a global function field with full constant field Fq

and let F ′/F be a constant field extension of finite degree. Then Gal(F ′/F ) is generated by

the Frobenius automorphism ϕ and the Artin map

AF ′/F : D(F ) → Gal(F ′/F )

is given by

AF ′/F (d) = ϕdeg d.

The zero divisor of F is a modulus of F ′/F .

Proof of Theorem 1.3. Let E denote the ray class field corresponding to H and suppose that
the full constant field of E is Fqs. Let d be a divisor in H . Then d is in the kernel of the Artin
map for E/F . Therefore, d is in the kernel of the Artin map for the constant subextension
FqsF/F of degree s. By Lemma 3.9, this implies that s | deg d. We deduce that s | r, by
the definition of r. We will complete the proof by showing that r | s. It suffices to show
that Fqr ⊂ E. Let p be a place in H , in other words a place that splits completely in E/F .
Then r | deg p, since r is the greatest common divisor of the degrees of the divisors in H .
Now Lemma 3.9 shows that p splits completely in the degree r constant extension FqrF/F .
Therefore, Fqr ⊂ E by the Chebotarev density theorem. �

To complete the proof of Theorem 3.8 we need the following auxiliary results:

Lemma 3.10. Let L/Fq(t) be a finite extension and let α ∈ L×. Then

deg(α) = −
∑

p|∞

ordp α · deg p.

Proof. Recall that by the degree of a fractional ideal of OL, we mean the degree of the
associated divisor of L, as explained in Section 2. The divisor corresponding to (α) =
∏

p∤∞ pordp α is
∑

p∤∞ ordp α · p. Moreover,

divα =
∑

p

ordp α · p =
∑

p∤∞

ordp α · p+
∑

p|∞

ordp α · p.

Taking degrees yields the result since deg(divα) = 0. �

Lemma 3.11. Hglob contains an ideal of degree h.

Proof. Let p1, . . . , pn be the infinite places of L and let a1, . . . , an ∈ Z be such that
n

∑

i=1

ai deg pi = h. (14)

Choose α ∈ L× such that ordpi α = −ai for i = 1, . . . , n. The principal fractional ideal (α)
of OL is in Hglob by definition of Hglob. It follows from Lemma 3.10 that deg(α) = h. �

Lemma 3.12. Let a ∈ Hloc. Then h | deg a.
Proof. Since a ∈ Hloc, there exists β ∈ K× ∩ NL/KA

×
L with NL/Ka = (β). Write a =

∏

qaii ,
where the qi are prime ideals in OL and the ai are integers. Now

(β) = NL/Ka =
∏

NL/K(qi)
ai =

∏

p
aifqi/pi
i (15)
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where pi = qi ∩OK . Recall that the full constant field of K is Fq and the full constant field
of L is Fqf so fqi/pi deg pi = f deg qi. Now taking degrees in (15) gives

deg(β) =
∑

aifqi/pi deg pi = f
∑

ai deg qi = f deg a. (16)

Since β ∈ K× ∩NL/KA
×
L , for every place p of K there exists (γq)q ∈

∏

q|p L
×
q such that

β =
∏

q|p

NLq/Kp
(γq). (17)

Therefore,

ordp β =
∑

q|p

ordp(NLq/Kp
(γq)) =

∑

q|p

fq/p ordq γq (18)

whereby Lemma 3.10 gives

deg(β) = −
∑

p|∞

ordp β · deg p = −
∑

p|∞

deg p
∑

q|p

fq/p ordq γq = −f
∑

q|∞

ordq γq · deg q. (19)

Combining (16) and (19) gives

deg a = −
∑

q|∞

ordq γq deg q.

By definition of h, we have h | deg q for all infinite places q of L. Therefore, h | deg a. �

Corollary 3.13. We have h = gcd{deg a | a ∈ Hglob} = gcd{deg a | a ∈ Hloc}.
Proof. Let dg = gcd{deg a | a ∈ Hglob} and dℓ = gcd{deg a | a ∈ Hloc}. By Lemma 3.11,
Hglob contains a ideal of degree h, whereby dg | h. Since Hglob ⊂ Hloc, we also have dℓ | dg
and hence dℓ | h. By Lemma 3.12, h | deg a for every a ∈ Hloc, whereby h | dℓ and hence
h = dℓ = dg. �

Now Theorem 3.8 follows from Theorem 1.3 and Corollary 3.13. In addition, Theorem 1.2
follows from (13) and Theorem 3.8.

3.3. Proof of Theorem 1.1. By Theorem 3.8, Lloc and Lglob both have full constant field
Fqfh. Now taking the quotient of (12) by (13) and letting d → ∞ via multiples of fh gives

lim
d→∞
fh|d

Nglob(L/Fq(t), n, d)

Nloc(L/Fq(t), n, d)
=

κglob

κloc
· 1

[Lglob : Lloc]
. (20)

The following lemma completes the proof of Theorem 1.1:

Lemma 3.14. The sequence

1 →
F×
q ∩NL/KA

×
L

F×
q ∩NL/KL×

→ K(L/K) → {(β) | β ∈ K× ∩NL/KA
×
L}

{(NL/K(α)) | α ∈ L×} → 1

is exact. Consequently,

#K(L/Fq(t)) =
κloc

κglob
· [Lglob : Lloc].

Proof. The right-hand map is given by β 7→ (β). The exactness of the sequence is easily
verified. The right-hand term is the kernel of the natural surjection Gglob ։ Gloc. The size
of this kernel is #Gglob /#Gloc = [Lglob : Lloc]. Now the result follows by the definitions of
κloc and κloc in (3), together with Corollaries 2.3 and 2.4. �
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Rabia Gülşah Uysal, Department of Mathematics, Middle East Technical University,

Ankara, 06800, Turkey

E-mail address : gulsah.uysal@metu.edu.tr


	1. Introduction
	Acknowledgements

	2. Reducing to the separable case
	3. Proof of our main results
	3.1. Class field theory
	3.2. Constant fields
	3.3. Proof of Theorem 1.1

	References

