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S-UNIT EQUATIONS AND THE ASYMPTOTIC FERMAT

CONJECTURE OVER NUMBER FIELDS

EKIN OZMAN AND SAMIR SIKSEK

Abstract. Recent attempts at studying the Fermat equation over number
fields have uncovered an unexpected and powerful connection with S-unit equa-
tions. In this expository paper we explain this connection and its implications
for the asymptotic Fermat conjecture.

1. Introduction

Every mathematician is familiar with the statement of Fermat’s Last Theorem,
proved by Wiles and Taylor [Wil95], [TW95] in 1994.

Theorem 1.1 (Wiles). Let p ≥ 3 be a prime. Then the only solutions to the
equation

(1.1) xp + yp + zp = 0

with x, y, z ∈ Q satisfy xyz = 0.

This survey is concerned with generalizations of Fermat’s Last Theorem where
Q is replaced by a number field K, and also with similar Fermat-type equations
where A,B,C are in the ring of integers OK of K:

(1.2) Axp +Byp + Czp = 0, Axp +Byp = Cz2, Axp +Byp = Cz3,

again over number fields. Interest in the Fermat equation (1.1) over number fields
goes back to the 19th century and early 20th century. Dickson [Dic66, pages 758 and
768] in his monumental History of the Theory of Numbers, surveys the early history
and mentions the efforts of Maillet (1897) and Furtwängler (1910) who extended
Kummer’s cyclotomic approach to the Fermat equation over Q(ζp). Later, Hao
and Parry [HP84] used the Kummer approach to prove several results concerning

the exponent p Fermat equation (1.1) over a quadratic field Q(
√
d) subject to the

condition that the prime p does not divide the class number of Q(
√
d, ζp). The

following theorem is due to Kolyvagin [Kol01], and is a beautiful example of how
far the cyclotomic approach can be pushed.

Theorem 1.2 (Kolyvagin). Let p ≥ 5 be a prime and write ζp for a primitive p-th
root of unity. Let x, y, z ∈ Z[ζp] satisfy (1.1), with (1 − ζp) ∤ xyz (such a solution
is called a ‘first case solution’). Then p2 | (qp − q) for all primes q ≤ 89 with q 6= p.
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Another historically popular approach is to fix a prime exponent p and consider
points of low degree (i.e. points defined over number fields of low degree) on the
Fermat curve xp+ yp+ zp = 0. For example, Gross and Rohrlich [GR78] determine
all points on the Fermat curve Fp : xp + yp + zp = 0 for p = 3, 5, 7, 11 over all
number fields K of degree ≤ (p− 1)/2 through studying the Mordell–Weil group of
the Jacobian of Fp.

After Wiles’ proof of Fermat’s Last Theorem using Galois representations and
modularity, others tried to extend this approach to various number fields. The first
result along these lines is due to Jarvis and Meekin [JM04] stating that the only

solutions to (1.1) with x, y, z ∈ Q(
√
2) satisfy xyz = 0. This was later extended

to some real quadratic fields of small discriminant by Freitas and Siksek [FS15c],
and to some imaginary quadratic fields of small discriminant by Turçaş [Ţur18] (the
later being conditional on some standard conjectures in the Langlands programme).

Let K be a number field. We say that a solution (x, y, z) ∈ K3 to the Fermat
equation (1.1) is trivial if xyz = 0 and non-trivial if xyz 6= 0. In this survey we
are primarily concerned with the following conjecture, which appears to have first
been formulated in [FKS20a].

Conjecture 1.3 (The Asymptotic Fermat Conjecture). Let K be a number field,
and suppose the primitive third root of unity, ζ3 /∈ K. There exists a constant BK

depending only on K such that for all primes p > BK the only solutions to the
Fermat equation (1.1) with (x, y, z) ∈ K3 are the trivial solutions.

We remark that the asymptotic Fermat conjecture follows from a suitable version
of the ABC-conjecture over number fields [Bro06].
Remarks.

• Observe that for p 6= 3 we have 1p + ζp3 + ζ2p3 = 0. For this reason it is
necessary to exclude number fields containing ζ3 in the statement of the
conjecture.

• We cannot expect the statement of Fermat’s Last Theorem to be true over
every number field without modification. Indeed, fix the exponent p for
now. The Fermat curve Fp : xp + yp + zp = 0 contains the rational point
(1 : −1 : 0). Now take a line defined over Q through this point. This must
intersect Fp in a further p−1 points. We see that Fp has an infinite family of
points defined over number fields of degree ≤ p−1. It therefore makes sense
to consider the Fermat equation over a given number field asymptotically,
i.e. for large exponents p.

• Debarre and Klassen [DK94] suggest that the only points on the degree p
Fermat curve (1.1) over number fields of degree d ≤ p − 2 lie on the line
x+ y+ z = 0. Observe that the six obvious points (1 : −1 : 0), (1 : ζ3 : ζ23 ),
and their permutations, do lie on this line.

We are grateful to the referees for many useful comments.

2. The Modular Approach—An Example of Serre and Mazur

As we shall see later, it is often possible to relate non-trivial solutions to Fermat-
type equations to solutions to certain S-unit equations. In this section we sketch the
earliest instance of this phenomena, which is an example due to Serre and Mazur,
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given in Serre’s 1987 Duke article where he formulated his famous modularity con-
jecture [Ser87]. The sketch will be slightly technical, and the reader unfamiliar with
Galois representations and modularity should feel free to skim through it. Good
introductions to the subject include [BMS16] and [Sik12].

Let L be either 1 or an odd prime. Let (x, y, z) ∈ Z3 be a non-trivial solution to
the equation

(2.1) xp + yp + Lrzp = 0

where the exponent p 6= L is a prime ≥ 5 and r is a non-negative integer. Moreover
we may (after suitable scaling and possible rearrangement of the variables) suppose
that gcd(x, y, Lz) = 1. We suppose r < p since we can absorb p-th powers of L into
zp. Note that we allow L = 1 as we would like to include Fermat’s Last Theorem
in our sketch. We let A, B, C be the three terms xp, yp, Lrzp arranged so that
A ≡ −1 (mod 4) and 2 | B. Let E′ be the Frey elliptic curve

E′ : Y 2 = X(X −A)(X +B).

Serre studies the mod p representation ρE′,p of E′, which is irreducible by Mazur’s
isogeny theorem. It follows from theorems of Ribet and Wiles that the represen-
tation ρE′,p arises from a cuspidal newform f with trivial character of weight 2
and level N = 2L. If L = 1 (the FLT case) then N = 2. However, there are no
newforms of weight 2 and level 2, which gives a contradiction, and so there are
no non-trivial solutions for L = 1. The proof of Fermat’s Last Theorem is com-
plete at this point. In fact there are no newforms of weight 2 and levels 6, 10, 22.
Thus for L = 3, 5, 11 we can also conclude that there are no non-trivial solutions
to (2.1). However, it is easy to deduce from the dimension formula for newform
spaces [Coh07, Proposition 15.1.1] that there are newforms of weight 2 and level 2L
for all other odd prime values L = 7, 13, 17, 19, . . . . To progress we need to know a
little about the relationship between E′ and the newform f . The newform f has a
q-expansion

f = q +

∞
∑

n=1

cnq
n.

The coefficients cn generate a totally real field Kf and in fact belong to the ring
of integers O of Kf . There is some prime ideal ̟ of O dividing p so that for any
prime ℓ ∤ 2Lp the following relations hold

{

aℓ(E
′) ≡ cℓ (mod ̟) if ℓ ∤ xyz

±(ℓ+ 1) ≡ cℓ (mod ̟) if ℓ | xyz.
We do not know the elliptic curve E′ as this depends on a hypothetical solution
(x, y, z) to (2.1). However, given ℓ ∤ 2L, the trace aℓ(E

′) is an integer belonging

to the Hasse interval [−2
√
ℓ, 2

√
ℓ]. It follows from the above congruences that ̟

divides

βℓ := ℓ · (ℓ+ 1− cℓ) · (ℓ+ 1 + cℓ) ·
∏

−2
√
ℓ≤a≤2

√
ℓ

(a− cℓ).

As ̟ is a prime ideal dividing p it follows that p | Bℓ where Bℓ = NormKf/Q(βℓ).
This gives a bound for the exponent p provided Bℓ 6= 0 or equivalently βℓ 6= 0. Note
that if cℓ /∈ Q then βℓ 6= 0. If Kf 6= Q then there is a positive density of primes ℓ
such that cℓ /∈ Q and choosing any of these with ℓ ∤ 2L gives a bound for p, and we
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will be content with that. From now on our aim is to show that p is bounded. For
example, there are newforms of weight 2 and level 2× 37 but these are irrational (a
newform f is irrational if Kf 6= Q and rational if Kf = Q). Thus the exponent
p is bounded for non-trivial solutions to (2.1) when L = 37. However, this is not
the case for L = 7, 13, 17, 19, 23, 29, 31, 41, . . . where we do find rational newforms
at levels 2L. We now ignore the irrational newforms (as they give a bound for p)
and focus on the rational ones.

A theorem of Eichler and Shimura asserts that a rational weight 2 newform f
corresponds to an isogeny class of elliptic curves E defined over Q. This correspon-
dence was made more precise by Carayol [Car83] who showed that the level N of
f is equal to the conductor of each E in the isogeny class. The correspondence
asserts that aℓ(E) = cℓ for all primes ℓ ∤ N . We apply this to our rational newform
f of weight 2 and level N = 2L. The earlier congruences become

{

aℓ(E
′) ≡ aℓ(E) (mod p) if ℓ ∤ xyz

±(ℓ+ 1) ≡ aℓ(E) (mod p) if ℓ | xyz.
Note that E′ has full 2-torsion and thus 4 | #E′(Fℓ) for all primes ℓ of good
reduction. However, #E′(Fℓ) = ℓ+ 1− aℓ(E

′). Thus aℓ(E′) belongs to the set

Tℓ = {a ∈ Z : −2
√
ℓ ≤ a ≤ 2

√
ℓ, ℓ+ 1 ≡ a (mod 4)}.

This leads us to conclude that p divides

γℓ := ℓ · (ℓ+ 1− aℓ(E)) · (ℓ+ 1 + aℓ(E)) ·
∏

a∈Tℓ

(a− aℓ(E))

for any prime ℓ ∤ 2L. If γℓ is non-zero for some ℓ ∤ 2L then we have a bound for the
exponent p for non-trivial solutions to (2.1). If aℓ(E) /∈ Tℓ for some prime ℓ ∤ 2L
then γℓ is non-zero and we have a bound for p. Thus we are reduced to the case
where aℓ(E) ∈ Tℓ or equivalently 4 | #E(Fℓ), for all primes ℓ ∤ 2L. In that case,
it follows from [ŞS18, Lemma 7.5] that E is isogenous to an elliptic curve with full
2-torsion, and since E is really determined only up to isogeny we now suppose that
E has full 2-torsion. It remains to determine, for which odd primes L, there is an
elliptic curve E/Q with full 2-torsion and conductor 2L. The answer is given by
the following lemma.

Lemma 2.1. Let L be an odd prime. Then there is an elliptic curve E/Q with full
2-torsion and conductor 2L if and only if L is a Mersenne or a Fermat prime and
L ≥ 31.

Proof. Such an E necessarily has model

E : Y 2 = X(X − a)(X + b)

with a, b ∈ Z and ab(a+b) 6= 0; indeed the discriminant is 16a2b2(a+b)2. Moreover
we can choose a, b so that this model is minimal away from 2. Thus

a2b2(a+ b)2 = 2uLv

for some non-negative integers u, v. It follows that

a = ±2u1Lv1 , b = ±2u2Lv2 , a+ b = ±2u3Lv3 .

Thus

(2.2) ± 2u1Lv1 ± 2u2Lv2 = ±2u3Lv3 .
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This is an S-unit equation with S = {2, L} (S-unit equations are defined in Sec-
tion 4). It is an easy exercise to conclude from this equation that L is a Fermat
or a Mersenne prime, or that v1 = v2 = v3. However if v1 = v2 = v3 then the
exponent of L in the conductor of E is not 1. Also for the Mersenne and Fermat
primes L = 3, 5, 7 and 17, the exponent of 2 in the conductor of E is not 1. So we
conclude that L is a Mersenne or a Fermat prime and L ≥ 31. �

We have the following theorem.

Theorem 2.2 (Serre and Mazur). Let L be an odd prime. Suppose L < 31, or L
is neither a Mersenne nor a Fermat prime. Then there is a constant CL such that
for all primes p > CL the only solutions (x, y, z) ∈ Z3 to the equation (2.1) are the
trivial ones satisfying xyz = 0.

We note in passing that the equation xp+yp+2rzp = 0 is much more difficult due
to the presence of the non-trivial solution (x, y, z, r) = (1, 1,−1, 1) for all exponents
p. Thus no bound for the exponents p of non-trivial solutions is possible. Ribet
[Rib97] and Darmon and Merel [DM97] showed that there are no solutions apart
from the trivial ones and (x, y, z, r) = (1, 1,−1, 1) and (−1,−1, 1, 1).

3. Modular Approach—A General Sketch

Most modern attacks on Fermat-type equations (1.2) over a number field K
follow the strategy of Serre and Mazur outlined in the previous section, which we
now briefly describe in more generality. Again the reader should feel free to skim
this section. The steps are roughly as follows:

(I) Associate a Frey elliptic curve E′ to a non-trivial solution (x, y, z).
(II) Show that the mod p representation ρE′,p is irreducible. No generalization

of Mazur’s isogeny theorem is available over number fields. However the
desired irreducibility often follows for suitably large p from Merel’s uniform
boundedness theorem using the fact that the Frey curve is close to being
semistable. This approach is explained in [FS15b].

(III) Show that the ρE′,p is modular of parallel weight 2 and level N which is
independent of the solution (x, y, z) (the level N is an ideal of the ring of
integers OK). Over totally real fields it is often possible to use the work
of Kisin, Gee, and others to achieve this. For example, in [FLHS15] it is
shown that for a given totally real field K all but finitely many j-invariants
are modular. This is usually enough to show that ρE′,p is modular for p
sufficiently large. Over general number fields we know much less about
modularity of elliptic curves and it is often necessary to assume a version
of Serre’s modularity conjecture, as for example in [ŞS18], [Ţur18].

(IV) Determine newforms of parallel weight 2 and level N . This is often a
difficult step over number fields. If there are none then one can conclude
that there are no non-trivial solutions. If they are all irrational then one
should be able to at least bound the exponent p.

(V) Instead of determining all newforms of parallel weight 2 and levelN one can
focus on the rational newforms. Here there is a conjectural generalization
of the Eichler–Shimura theorem which is often called the Eichler–Shimura
conjecture. If K is totally real this simply says that a newform of parallel
weight 2 and level N corresponds to an isogeny class of elliptic curves E of
conductor N , and this conjecture is in fact known to be true (e.g. [Hid81])
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if N is not squarefull (i.e. there is a prime ideal q with ordq(N ) = 1). For a
version of the Eichler–Shimura conjecture over general number fields K see
[ŞS18]. At any rate, assuming this conjecture, or relying on special cases of
the conjecture that are theorems, we know the existence of an elliptic curve
E/K of conductor N with ρE′,p ∼ ρE,p. It is usually possible to show that
E has the same torsion structure as E′.

(VI) So we would like to determine all elliptic curves E/K of condutor N and
having a certain torsion structure. This can be treated as a Diophantine
problem. For example, to determine all elliptic curves E/K of conductor
N with full 2-torsion it is enough to solve a certain S-unit equation where
S is the set of prime ideals dividing 2N (we will say more on that in
Section 5). Not every solution to the S-unit equation will lead back to an
elliptic curve of the right conductor. For example, in the proof of Lemma 2.1
we excluded solutions to the S-unit equation (2.2) with v1 = v2 = v3 as
these do not lead back to an elliptic curve of conductor 2L. Thus we
are probably interested in all solutions to the S-unit equation that satisfy
further restrictive conditions.

4. S-Unit Equations

Let K be a number field, OK be its ring of integers and S be a finite set of
primes ideals of OK . In simplest terms, the notion of S-unit generalizes the idea of
a unit in OK .

Definition 4.1. An S-unit is an element α in K such that the principal fractional
ideal generated by α can be written as a product of the prime ideals in S. In other
words, the set of S-units O∗

S can be defined as:

O∗
S = {α ∈ K∗ : ordp(α) = 0 for all p /∈ S}.

Similarly the set of S-integers in K is

OS = {α ∈ K∗ : ordp(α) ≥ 0 for all p /∈ S}.
Note that S-units O∗

S are units of the ring of S-integers OS .

Example 4.2. Let K = Q. Every ideal of OK = Z is principal, and prime
ideals are generated by primes. Thus we may think of S as a finite set of primes
S = {p1, p2, . . . , pr}. Then an S-unit of K is a rational number a

b such that a and
b are only divisible by the primes in S; i.e.

O∗
S = {±pa1

1 · · · par
r : a1, . . . , ar ∈ Z}.

Example 4.3. Let K = Q(
√
5), whence OK = Z[ 1+

√
5

2
].

• If S = ∅ then O∗
S =

{

±
(

1+
√
5

2

)r

: r ∈ Z
}

.

• If S = {2OK} then O∗
S =

{

±2r
(

1+
√
5

2

)s

: r, s ∈ Z
}

.

If S and T are sets of prime ideals and T ⊆ S then O∗
T is a subgroup of O∗

S .
Observe that the unit group O∗

K is precisely O∗
∅. Thus O∗

K is a subgroup of O∗
S , and

every unit is indeed an S-unit. Many facts concerning units have generalizations
to S-units.

Theorem 4.4 (Dirichet’s S-Unit Theorem). The S-unit group O∗
S is finitely gen-

erated with rank equal to r1 + r2 +#S − 1, where (r1, r2) is the signature of K.
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Observe that letting S = ∅ allows us to see the Dirichlet’s unit theorem as a
special case of Dirichlet’s S-unit theorem.

Definition 4.5. Let K be a number field and S a finite set of prime ideals of OK .
The S-unit equation is the equation

(4.1) λ+ µ = 1, λ, µ ∈ O∗
S .

If S = ∅ so O∗
S = O∗

K then this is called the unit equation.

Theorem 4.6 (Siegel 1921, Parry 1950). Let K be a number field and S a finite set
of prime ideals of OK . The S-unit equation (4.1) has only finitely many solutions.

The original proofs due to Siegel and Parry are non-effective. Later on, Baker’s
theory of linear forms in logarithms gave effective though very large bounds for
the solutions. In his 1989 PhD thesis Benne de Weger [dW89] showed how these
bounds can be combined with the LLL algorithm to give a practical method for
solving such equations. Variants of de Weger’s algorithm can be found in Smart’s
book [Sma98] and also in [AKM+19] and [KM16].

Example 4.7. We illustrate the practicality of the algorithm of de Weger and its
variants through the following example. Let F = Q(ζ16) where ζ16 is a primitive
16-th root of unity. Then F is a totally complex number field of degree 8. Let
p = (1− ζ16) · OF ; this is the unique prime above 2. Let S′ = {p}. Smart [Sma99]
determines the solutions to the equation λ+ µ = 1 with λ, µ ∈ O∗

S′ and finds that
there are precisely 795 solutions (λ, µ)—too many to enumerate here!

Let K = F+ = Q(ζ16 + ζ−1
16 ) = Q

(

√

2 +
√
2
)

be the maximal totally real

subfield of F , which has degree 4. Let P =
√

2 +
√
2 · OK be the unique prime

above 2 in OK , and let S = {P}. The S-unit equation λ + µ = 1 with λ, µ ∈ O∗
S

has 585 solutions. Of course this is a subset of the 795 solutions to the S′-unit
equation in F .

Example 4.8. Let K be a number field in which there is a degree 1 prime P above
2 (i.e. the residue field OK/P = F2). Let S be a finite set of prime ideals of odd
norm. If λ, µ ∈ O∗

S then λ, µ ≡ 1 (mod P) and so λ+ µ ≡ 0 (mod P). Thus the
S-unit equation (4.1) has no solutions.

Before de Weger the most promising method for solving S-unit equations was
Skolem’s p-adic method (now often called Chabauty–Coleman–Skolem). This method
still has a lot of promise, as the following recent and beautiful theorem of Nicholas
Triantafillou [Tri20b] shows.

Theorem 4.9 (Triantafillou). Let K be a number field. Suppose that 3 ∤ [K : Q]
and 3 splits completely in K. Then there is no solution to the unit equation in K.
In other words, there is no pair λ, µ ∈ O∗

K such that λ+ µ = 1.

Proof. We can’t resist giving an exposition of Triantafillou’s elegant argument.
Let K be a number field in which 3 splits completely, and write 3OK = p1 · · · pn
where n = [K : Q] and the pj are distinct prime ideals with residue field F3. Let
θ ∈ O∗

K . Then θ ≡ ±1 (mod pj) and hence θ2 ≡ 1 (mod pj) for all j. Thus θ
2 ≡ 1

(mod 3OK).
Now let λ, µ ∈ O∗

K satisfy λ+ µ = 1. By the above

λ2 ≡ 1 (mod 3OK), (λ− 1)2 = (−µ)2 ≡ 1 (mod 3OK).
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Hence 2λ − 1 = λ2 − (λ − 1)2 ≡ 0 (mod 3OK), so λ ≡ −1 (mod 3OK). We
write λ = −1 + 3φ with φ ∈ OK . Let φ1, . . . , φn be the images of φ under the n
embeddings K →֒ Q. As λ is a unit

±1 = Norm(λ) = (−1+ 3φ1) · · · (−1+ 3φn) ≡ (−1)n +(−1)n−1 · 3Tr(φ) (mod 9).

By considering all the choices for ±1 and (−1)n, we obtain 3Tr(φ) ≡ −2, 2 or 0
(mod 9). The first two are plainly impossible and so Tr(φ) ≡ 0 (mod 3).

However µ = 1− λ = 2− 3φ = −1 + 3(1− φ) is also a unit. Thus by the above,
Tr(1 − φ) ≡ 0 (mod 3). But Tr(1 − φ) = n − Tr(φ). Therefore n ≡ 0 (mod 3)
completing the proof. �

Perhaps the most elegant theorem on S-unit equations is the following result due
to Evertse [Eve84].

Theorem 4.10 (Evertse). Let (r1, r2) be the signature of K and let S be a finite set
of prime ideals of OK . Then the S-unit equation (4.1) has at most 3×73r1+4r2+2#S

solutions.

For extensive surveys of results on S-unit equations, see [EG15] and the intro-
duction of [BB17]. Nowadays the S-unit equation is often viewed as S-integral
points on P1 \ {0, 1,∞}, allowing for a variety of high-powered approaches from
arithmetic geometry to be applied, e.g. [Kim05], [LV18], [Tri20a].

5. S-Unit Equations and Elliptic Curves

In this section we explore more fully the relationship between solutions to S-unit
equations and certain families of elliptic curves. A theorem of Shafarevich asserts
that given a finite set of prime ideals S in the ring of integers OK of a number field
K, there are only finitely many elliptic curves E/K with good reduction outside S.
For illustration we consider a special case of this problem where K = Q and E is
assumed to have a point of order 2. There is no loss of generality in supposing that
2 ∈ S. We write S = {2, p1, p2, . . . , pk} where p1, . . . , pk are distinct odd primes.
We may suppose that E has a model of the form

E : Y 2 = X(X2 + aX + b)

where a, b are rational integers, and the discriminant ∆ = 16b2(a2 − 4b) 6= 0.
Moreover, we can choose a, b so that this model is minimal away from 2. As E has
good reduction away from S we see that

b2(a2 − 4b) = ±2α0pα1

1 . . . pαk

k

where αi are nonnegative integers. Then

b = ±2β0pβ1

1 . . . pβk

k , a2 − 4b = ±2α0−2β0pα1−2β1

1 pα2−2β2

2 . . . pαk−2βk

k

for some integers 0 ≤ βi ≤ αi. Note that this gives a solution to the equation
x+ y = z2 with











x = ±2α0−2β0pα1−2β1

1 pα2−2β2

2 . . . pαk−2βk

k ∈ O∗
S ,

y = 4b = ±2β0+2pβ1

1 . . . pβk

k ∈ O∗
S ,

z = a ∈ Z.
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More generally the task of determining elliptic curves with a point of order 2 over a
number field K and a good reduction outside a finite set of prime ideals T reduces
to solving an equation of the form

(5.1) x+ y = z2, x, y ∈ O∗
S , z ∈ K

where S is a suitable enlargement of T that takes account of the class group of K.
An algorithm for solving equations of the form (5.1) is given in de Weger’s thesis
[dW89]. See also [BGR19].

We now look at a similar problem that arises in the context of understanding
Fermat-type equations over number fields. Let K be a number field. An elliptic
curve E/K is said to have potentially good reduction at a prime ideal q of
OK if there is a finite extension L/K so that E/L has good reduction at every
prime ideal q′ of OL above q. It is possible to show that E/K has potentially good
reduction at q if and only if ordq(j(E)) ≥ 0 where j(E) is the j-invariant of E.
Now let S be a finite set of prime ideals of OK . We are interested in the set ES of
elliptic curves E/K with full 2-torsion and potentially good reduction outside S.
Here we suppose that S includes all the prime ideals of OK above 2. We follow the
treatment in [Dec16]. By assumption the elliptic curves we are dealing with are of
the form

(5.2) E : Y 2 = (X − a1)(X − a2)(X − a3)

where the ai ∈ K are distinct. Let λ = (a3 − a1)/(a2 − a1) ∈ P1(K) − {0, 1,∞}.
This is called the λ-invariant of E.

Lemma 5.1. Let S3 be the symmetric group on three elements. The action of S3

on {a1, a2, a3} can be extended to P1(K)−{0, 1,∞}. Under this action the orbit of
λ = (a3 − a1)/(a2 − a1) ∈ P1(K)− {0, 1,∞} is

(5.3)

{

λ,
1

λ
, 1− λ,

1

(1− λ)
,

λ

(λ− 1)
,
(λ − 1)

λ

}

.

Proof. This is a straightforward computation. For example if σ ∈ S3 is the trans-
position (1, 2) then it swaps a1, a2 and keeps a3 fixed. Hence

σ(λ) = (a3 − a2)/(a1 − a2) = 1− λ.

�

From now on we think of S3 as acting on P1(K) − {0, 1,∞}, via the six trans-
formations λ 7→ λ, λ 7→ 1/λ, λ 7→ 1− λ, . . .

Lemma 5.2. The set of λ-invariants P1(K) − {0, 1,∞}, up to equivalence under
the action of S3, is in one to one correspondence with the set of elliptic curves over
K with full two torsion up to isomorphism over K.

Proof. This is essentially Proposition III.1.7 in Silverman’s book [Sil09]. The corre-
spondence is induced by the association E 7→ λ = (a3 − a1)/(a2 − a1) where E has
the form (5.2). The inverse is given by sending the class of λ ∈ P1(K) − {0, 1,∞}
to the K-isomorphism class of the Legendre elliptic curve

Eλ : Y 2 = X(X − 1)(X − λ).

�



10 EKIN OZMAN AND SAMIR SIKSEK

Let
WS = {(λ, µ) : λ+ µ = 1, λ, µ ∈ O∗

S}
be the set of solutions of the S-unit equation (4.1). Recall that ES is the set of
elliptic curves over K with full 2-torsion and having potentially good reduction
outside S. If E1, E2 are in ES and isomorphic over the algebraic closure of K then
we say that E1, E2 are equivalent.

Lemma 5.3. Suppose S is a finite set of prime ideals of OK that includes all the
primes above 2. Then S3 acts on WS via π(λ, µ) = (π(λ), 1 − π(λ)); here π(λ)
denotes the image of λ under π as in Lemma 5.1. Moreover the S3-orbits in WS

are in bijection with the equivalence classes in ES.
Proof. This is essentially routine computation; for full details see [Dec16, Section
5]. The bijection is induced by the maps in Lemma 5.2. �

6. S-Unit Equations and Fermat

In this section we state a theorem that relates the Fermat equation over totally
real fields to S-unit equations, following [FS15a]. Generalizations to fields with
complex embeddings are known and we discuss them in later sections, but the
statement is easier in the totally real setting. In some cases we will need the
Eichler–Shimura conjecture which we now state.

Conjecture 6.1 (“Eichler–Shimura”). Let K be a totally real field. Let f be a
Hilbert newform over K of level N and parallel weight 2, and rational Hecke eigen-
values. Then there is an elliptic curve Ef/K with conductor N having the same
L-function as f.

Let K be a totally real field, and let

(6.1)
S = {P : P is a prime ideal of OK above 2},

T = {P ∈ S : f(P/2) = 1}, U = {P ∈ S : 3 ∤ ordP(2)}.
Here f(P/2) denotes the residual degree of P. We need an assumption, which we
refer to as (ES):

(ES)







either [K : Q] is odd;
or T 6= ∅;
or Conjecture 6.1 holds for K.

Theorem 6.2 (Freitas and Siksek). Let K be a totally real field satisfying (ES).
Let S, T and U be as in (6.1). Write O∗

S for the group of S-units of K. Suppose
that for every solution (λ, µ) to the S-unit equation (4.1) there is

(A) either some P ∈ T that satisfies max{|ordP(λ)|, |ordP(µ)|} ≤ 4 ordP(2),
(B) or some P ∈ U that satisfies both max{|ordP(λ)|, |ordP(µ)|} ≤ 4 ordP(2),

and ordP(λµ) ≡ ordP(2) (mod 3).

Then the asymptotic Fermat conjecture holds over K.

Proof Sketch. The proof largely follows the strategy sketched in Sections 2 and 3.
Write E for the Frey curve associated to a non-trivial solution to the generalized
Fermat equation (1.1). The strategy relates ρE,p to ρF,p where F is an elliptic
curve defined over K with full 2-torsion and conductor N which does not depend
on the solution to the Fermat equation but only on the field K. Inspired by ideas
of Kraus [Kra98], and of Bennett and Skinner [BS04], Freitas and Siksek study
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the possibilities for the image of inertia ρE,p(IP). Since the representations ρE,p

and ρF,p are isomorphic this yields information about the elliptic curve F . In
particular they deduce that F has potentially good reduction at all primes outside
S. Lemma 5.3 relates F to a solution (λ, µ) of the S-unit equation (4.1). The
theorem follows from examining the possibilities for ρE,p(IP) and ρF,p(IP) at the
primes P ∈ T , U and relating these to the solution (λ, µ) of the S-unit equation
(4.1) corresponding to F . If either of hypotheses (A), (B) of the theorem is satisfied
then there will exist a prime P such that ρE,p(IP) 6∼= ρF,p(IP), and therefore the
representations ρE,p and ρF,p are non-isomorphic, giving a contradiction. �

We point out that a generalization of Theorem 6.2 to general number fields is
given by Şengün and Siksek [ŞS18], assuming standard conjectures stated in the
following section.

Example 6.3. Let K = Q(ζ16)
+ = Q

(

√

2 +
√
2
)

. This is a degree 4 totally real

field in which 2 is totally ramified: 2OK = P4 where P =
√

2 +
√
2 · OK . In

particular, S = T = {P} in the above notation. As stated in Example 4.7 the
S-unit equation (4.1) has 585 solutions. It turns out that they all satisfy condition
(A) of the theorem. Hence the asymptotic Fermat conjecture holds for K.

Through a detailed study of solutions to S-unit equations over real quadratic
fields, Freitas and Siksek [FS15a] prove the following, which in essence says that
the asymptotic Fermat conjecture holds for almost all real quadratic fields.

Theorem 6.4 (Freitas and Siksek). Let Nsf denote the set of squarefree natural
numbers > 1. Let F be the subset of d ∈ Nsf for which the asymptotic Fermat
conjecture holds over Q(

√
d). Then

lim inf
X→∞

#{d ∈ F : d ≤ X}
#{d ∈ Nsf : d ≤ X} ≥ 5/6.

If we assume the Eichler–Shimura conjecture then

lim
X→∞

#{d ∈ F : d ≤ X}
#{d ∈ Nsf : d ≤ X} = 1.

6.1. S-Unit Equations and Zℓ-Layers. In two recent works [FKS20a] and [FKS20b],
Freitas, Kraus and Siksek prove the asymptotic Fermat conjecture for the layers of
various cyclotomic Zℓ-extensions of Q. We first introduce these extensions. Let ℓ
be a rational prime. For now let ℓ be odd and n ≥ 1. The cyclotomic field Q(ζℓn+1)
has a unique subfield of degree ℓn which we denote by Qn,ℓ. This is a cyclic, totally
real extension of Q with Galois group Z/ℓnZ. Clearly Qn,ℓ is a subfield of Qn+1,ℓ.
The union of these fields is denoted

Q∞,ℓ =
∞
⋃

n=1

Qn,ℓ

and has Galois group isomorphic to Zℓ. This is called the cyclotomic Zℓ-extension
of Q, and the field Qn,ℓ is called the n-th layer of Q∞,ℓ.

For ℓ = 2 all the above is true with a small adjustment: we take Qn,2 =
Q(ζ2n+2)+. In [FKS20a] the following theorem is proven.

Theorem 6.5. The asymptotic Fermat conjecture is true for Qn,2.
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Proof Sketch. Write K = Qn,2. Then 2 is totally ramified in OK and we let P be
the unique prime above 2. In the notation of Theorem 6.2, S = T = {P}. The
key to the proof is to show that every solution (λ, µ) to the S-unit equation (4.1)
satisfies condition (A) of Theorem 6.2. Let (λ, µ) be a solution (4.1). Write

mλ,µ := max{|ordP(λ)|, |ordP(µ)|};
this is the quantity appearing in criterion (A) of Theorem 6.2. Suppose

(6.2) mλ,µ > 2 ordP(2).

The S3-action does not affect the value of mλ,µ, and by considering this action on
(λ, µ) we may suppose that ordP(µ) = 0 and ordP(λ) = mλ,µ. Then µ ∈ O∗

K and
µ = 1−λ ≡ 1 (mod 4) by assumption (6.2). It follows from this that the extension
K(

√
µ)/K is unramified at P. Since µ is a unit, this extension is unramified at all

odd primes. Thus K(
√
µ)/K is unramified at all the finite places. We now shall

need a theorem due to Iwasawa which asserts that K = Qn,2 has odd narrow class
number. Thus K(

√
µ) = K and so µ is a square. We write µ = δ2 where δ ∈ O∗

K .
Thus

(1 + δ)(1− δ) = 1− µ = λ.

Hence
λ = λ1λ2, λ1 = 1 + δ, λ2 = 1− δ.

Now

(6.3) λ1 + λ2 = 2, λ1 − λ2 = 2δ.

It follows easily that one of the ordP(λi) is m− ordP(2) and the other is ordP(2),
where m = mλ,µ = ordP(λ). By swapping δ and −δ if necessary, we may suppose
ordP(λ1) = m− ordP(2) and ordP(λ2) = ordP(2). Multiplying the two equations
in (6.3), dividing by λ2

2 and rearranging we obtain

λ′ + µ′ = 1, λ′ =
λ2
1

λ2
2

, µ′ =
−4δ

λ2
2

.

Observe that λ′, µ′ ∈ O∗
S so we obtain another solution to (4.1). Moreover,

mλ′,µ′ = 2mλ,µ − 2 ordP(2) > mλ,µ,

where the last inequality follows from (6.2). This shows that the solution (λ′, µ′)
is different from (λ, µ) and also satisfies (6.2). Repeating the argument allows us
to construct infinitely many solutions to the S-unit equation contradicting Siegel’s
theorem (Theorem 4.6). Thus assumption 6.2 is false. We deduce that every
solution to (4.1) satisfies mλ,µ ≤ 2 ordP(2) and in particular satisfies condition (A)
of Theorem 6.2. This completes the proof. �

The following more recent theorem is from [FKS20b].

Theorem 6.6 (Freitas, Kraus and Siksek). Let ℓ ≥ 5 be an odd prime. Suppose ℓ
is non-Wieferich (i.e. 2ℓ−1 6≡ 1 (mod ℓ2)). Then the asymptotic Fermat conjecture
holds over Qn,ℓ for all n ≥ 1.

A key step towards the proof of this theorem is the following theorem about unit
equations, which applies to K = Qn,ℓ with ℓ ≥ 5.

Theorem 6.7. Let ℓ ≥ 5 be an odd prime. Let K be an ℓ-extension of Q (i.e. a
finite Galois extension of Q with degree [K : Q] = ℓn for some n ≥ 1). Suppose ℓ
is totally ramified in OK . Then there is no solution to the unit equation in K.
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Proof. Let G = Gal(K/Q). Let L be the unique prime ideal of OK above ℓ. As ℓ is
totally ramified in OK , we know that Lσ = L for all σ ∈ G. Moreover, the residue
field OK/L is simply Fℓ. In particular, for any λ ∈ OK then there is some a ∈ Z
such that λ ≡ a (mod L). Applying σ ∈ G to this congruence we see that λσ ≡ a
(mod L). Let Norm denote the norm for the extension K/Q. Then

Norm(λ) =
∏

σ∈G

λσ ≡ a#G (mod L).

Since OK/L = Fℓ and since #G = ℓn, Fermat’s Little Theorem gives a#G ≡ a ≡ λ
(mod L). We deduce that Norm(λ) ≡ λ (mod L) for all λ ∈ OK .

Now let λ, µ ∈ O∗
K and suppose λ + µ = 1. By the above λ ≡ ±1 (mod L)

and µ ≡ ±1 (mod L). Hence ±1 ± 1 ≡ 1 in OK/L = Fℓ. This is impossible as
ℓ ≥ 5. �

7. Generalizations

Let K be a number field (we drop the assumption that K is totally real). Let A,
B, C be non-zero elements of OK . We consider the following generalized Fermat
equation

(7.1) Axp +Byp + Czp = 0,

and we are interested in solutions (x, y, z) ∈ K3. We say that such a solution is
trivial if xyz = 0 otherwise we say it is non-trivial. We propose the following
generalization of the asymptotic Fermat conjecture.

Conjecture 7.1 (A Generalized Asymptotic Fermat Conjecture). Let K be a num-
ber field, and A, B, C be non-zero elements of OK . Let Ω be the subgroup of roots
of unity inside O∗

K . Suppose

Aω1 +Bω2 + Cω3 6= 0,

for every ω1, ω2, ω3 ∈ Ω. Then there exists a constant B(K,A,B,C) such that for
all primes p > B(K,A,B,C) the only solutions to the Fermat equation (7.1) with
(x, y, z) ∈ K3 are the trivial solutions.

We point out that this conjecture is a straightforward consequence of a suitable
version of the ABC-conjecture of number fields, such as the one in [Bro06].

Equation (7.1) with K = Q was first systematically studied using the approach
via Galois representations and modular forms by Kraus [Kra97] and by Halberstadt
and Kraus [HK02]. In particular, Halberstadt and Kraus proved the following
remarkable theorem.

Theorem 7.2 (Halberstadt and Kraus). Let A, B, C be odd rational integers.
Then for a positive proportion of primes p, the equation (7.1) has no non-trivial
solutions (x, y, z) ∈ Z3.

More recently, Dieulefait and Soto [DS18] have proved a number of theorems
concerning the generalized asymptotic Fermat conjecture, again with K = Q.

Theorem 7.3 (Dieulefait and Soto). Let A, B, C be rational integers divisible
only by primes ≡ 1 (mod 12). Then there is a constant B(A,B,C) such that if
p > B(A,B,C) then every solution (x, y, z) ∈ Z3 to (7.1) is trivial.
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Dieulefait and Soto prove their theorems by reducing to S-unit equations using
the same strategy as explained in Section 2.

Recently a theorem relating the Fermat equation with coefficients Axp +Byp +
Czp = 0 over totally real fields to S-unit equations was proved by Deconinck
[Dec16]. The most general result is due to Kara and Ozman [KO20] which we now
describe. Let K be a number field. We assume two standard conjectures from the
Langlands programme, which we describe briefly without stating them precisely.
For a precise statement of these conjectures see [KO20] or [ŞS18].

(I) Serre’s modularity conjecture over K. This associates to a totally odd,
continuous, finite flat, absolutely irreducible 2 dimensional mod p represen-
tation of Gal(K/K) a cuspform of parallel weight 2 whose level is equal to
the prime-to-p part of the Artin conductor of the representation.

(II) An “Eichler–Shimura conjecture”over K. This associates to a weight 2
cuspform with rational Hecke eigenvalues either an elliptic curve or a “fake
elliptic curve”. Note that Conjecture 6.1 is a special case of this.

We return to considering (7.1) over a general number field K. Let

R =
∏

q|ABC

q

where the product is taken over the prime ideals q dividing ABC. This is called
the radical of ABC. Let

S = {P : P | 2R is a prime ideal of OK}.
Let

T = {P : P | 2 is a prime ideal of OK , f(P/2) = 1}.
The following is the main theorem of [KO20].

Theorem 7.4 (Kara and Ozman). Let K be a number field satisfying conjectures
(I) and (II). Let A, B, C be odd elements of OK (i.e. ABC is not divisible by any
prime ideal P | 2). Let S, T be as above. Suppose that for every solution (λ, µ) to
the S-unit equation (4.1) there is a prime P ∈ T such that

max{|ordP(λ)|, |ordP(µ)|} ≤ 4 ordP(2).

Then the Generalized Asymptotic Fermat’s Conjecture holds for (7.1); in other
words there is a constant B(K,A,B,C) such that if p > B(K,A,B,C) is prime
then the only solutions to (7.1) are the trivial ones.

We illustrate the theorem of Kara and Ozman by deriving a slightly stronger
version of Theorem 7.3.

Corollary 7.5. Let ℓ be an odd prime. Let A, B, C be rational integers divisible
only by primes ≡ ±1 (mod 4ℓ). Then there is a constant B(A,B,C) such that if
p > B(A,B,C) then every solution (x, y, z) ∈ Z3 to (7.1) is trivial.

Proof. Serre’s modularity conjecture over Q was proved by Khare and Winten-
berger. Over Q the Eichler–Shimura conjecture is in fact the Eichler–Shimura
theorem. Thus we can apply Theorem 7.4 unconditionally. Here, as we’re working
over Z we might as well identify prime ideals with primes. Then

S = {2} ∪ {q1, q2, . . . , qr}, T = {2},
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where the qi are the prime divisors of ABC. Thus qi ≡ ±1 (mod 4ℓ) for i = 1, . . . , r.
Let (λ, µ) be a solution to the S-unit equation λ+ µ = 1. To deduce the corollary
from Theorem 7.4 all we have to do is to show that

(7.2) |ord2(λ)| ≤ 4, |ord2(µ)| ≤ 4.

We can rewrite λ+ µ = 1 as

u+ v = w, λ =
u

w
, µ =

v

w
,

where

u = ±2a · qα1

1 · · · qαr
r , v = ±2b · qβ1

1 · · · qβr
r , w = 2c · qβ1

1 · · · qβr
r ,

where the exponents are non-negative integers, and we may suppose (after possibly
swapping λ, µ) that

(i) either a = b = 0 and c > 0,
(ii) or b = c = 0 and a > 0.

Let’s look at (i). Then u ≡ ±1 (mod 4ℓ) and v ≡ ±1 (mod 4ℓ). Hence

w = u+ v ≡ ±1± 1 (mod 4ℓ).

Therefore w ≡ 2 (mod 4ℓ) or 0 (mod 4ℓ) or −2 (mod 4ℓ). However, ℓ ∤ w since
ℓ 6= qi for i = 1, . . . , r. Hence w ≡ ±2 (mod 4ℓ). Therefore c = ord2(w) = 1.
Hence ord2(λ) = a− c = −1 and ord2(µ) = b − c = −1. This establishes (7.2) for
case (i). The proof of (7.2) in case (ii) is similar. �

From this Kara and Ozman deduce an analogue of Theorem 6.4 for complex
quadratic fields.

Theorem 7.6 (Kara and Ozman). Assume conjectures (I) and (II). Let Nsf denote
the set of squarefree natural numbers. Let F be the subset of d ∈ Nsf for which the
asymptotic Fermat conjecture holds over Q(

√
−d). Then

lim inf
X→∞

#{d ∈ F : d ≤ X}
#{d ∈ Nsf : d ≤ X} ≥ 5/6.

Remark. It is interesting to compare Theorems 6.4 and 7.6. In the former, the
asymptotic Fermat conjecture is established for almost all real quadratic fields, as-
suming the Eichler–Shimura conjecture. In the latter, even assuming the Eichler–
Shimura conjecture and Serre’s modularity conjecture, the asymptotic Fermat con-
jecture is established for 5/6 of imaginary quadratic fields. The reason for the
disparity is that the conclusion of the Eichler–Shimura conjecture over real qua-
dratic fields is stronger than that for the Eichler–Shimura conjecture over complex
quadratic fields. Over a real quadratic field K it is conjectured that a rational
weight 2 Hilbert eigenform f over K corresponds to an elliptic curve E/K. Over a
complex quadratic field K, it is conjectured that a rational weight 2 Bianchi eigen-
form overK corresponds to either an elliptic curve E/K, or an abelian surface A/K
whose endomorphism algebra is an indefinite division quaternion algebra (such an
abelian surface is called a fake elliptic curve). If 2 splits or ramifies in K then
the Frey curve has potentially multiplicative reduction at the primes above 2 and
it is known that fake elliptic curves have potentially good reduction at all primes.
An image of inertia argument then allows for the elimination of the fake elliptic
curve case. Unfortunately if 2 is inert in K, then the Frey elliptic curve might
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have potentially good reduction, and we are yet to find a way of eliminating the
possiblity of a fake elliptic curve. We note that 2 is inert in Q(

√
−d) if and only

if −d ≡ 5 (mod 8). This is 1/6 of all complex quadratic fields, and explains the
numerical disparity between Theorems 6.4 and 7.6.

7.1. Other Signatures. An equation of the form Axp + Byq = Czr is called
the generalized Fermat equation of signature (p, q, r). Thus (7.1) has signature
(p, p, p). Generalized Fermat equations of signatures (p, p, 2) and (p, p, 3) have good
Frey curves and have been studied, with K = Q, respectively by Bennett and
Skinner [BS04] and by Bennett, Vatsal and Yazdani [BVY04]. More recently the
techniques used by Freitas and Siksek and by Kara and Ozman have been applied
by Isik, Kara and Ozman [IKO20] to study Fermat equations of signature (p, p, 2)
over number fields.

References

[AKM+19] Alejandra Alvarado, Angelos Koutsianas, Beth Malmskog, Christopher Rasmussen,
Christelle Vincent, and Mckenzie West, A robust implementation for solving the S-
unit equation and several applications, arXiv e-prints (March 2019), arXiv:1903.00977,
available at 1903.00977. ↑4

[BB17] Michael A. Bennett and Nicolas Billerey, Sums of two S-units via Frey-Hellegouarch

curves, Math. Comp. 86 (2017), no. 305, 1375–1401. MR3614021 ↑4
[BGR19] Michael A. Bennett, Adela Gherga, and Andrew Rechnitzer, Computing elliptic curves

over Q, Math. Comp. 88 (2019), no. 317, 1341–1390. MR3904149 ↑5
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