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ABSTRACT
A self-consistent mean field direct simulation Monte Carlo (SCMFD) algorithm was recently proposed for simulating collision environments
for a range of one-dimensional model systems. This work extends the one-dimensional SCMFD approach to three dimensions and intro-
duces a variable time step (3D-vt-SCMFD), enabling the modeling of a considerably wider range of different collision environments. We
demonstrate the performance of the augmented method by modeling a varied set of test systems: ideal gas mixtures, Poiseuille flow of argon,
and expansion of gas into high vacuum. For the gas mixtures, the 3D-vt-SCMFD method reproduces the properties (mean free path, mean
free time, collision frequency, and temperature) in excellent agreement with theoretical predictions. From the Poiseuille flow simulations, we
extract flow profiles that agree with the solution to the Navier–Stokes equations in the high-density limit and resemble free molecular flow at
low densities, as expected. The measured viscosity from 3D-vt-SCMF is ∼15% lower than the theoretical prediction from Chapman–Enskog
theory. The expansion of gas into vacuum is examined in the effusive regime and at the hydrodynamic limit. In both cases, 3D-vt-SCMDF
simulations produce gas beam density, velocity, and temperature profiles in excellent agreement with analytical models. In summary, our
tests show that 3D-vt-SCMFD is robust and computationally efficient, while also illustrating the diversity of systems the SCMFD model can
be successfully applied to.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0083033

I. INTRODUCTION

Despite the variety of multi- and mesoscale simulation methods
developed over the past several decades,1–8 some typical gas-phase
environments are still challenging to model. This is the case, for
example, when the species of interest is a trace component present
in a mixture—a situation typical for buffer gas cell environments,9,10

expansions of gas mixtures through a valve,11 and atomic layer depo-
sition.12 Therein, the requirement that simulated particles represent
the relative numbers and types of physical particles can be onerous
for models using particle-based methods.

Of particular interest to us are buffer gas cell environments.
Recent years have seen considerable experimental advances in

the use of buffer gas cells to collisionally cool molecular species
of interest. Unlike methods that employ external fields—which
typically require the molecules of interest to exhibit a closed
laser cooling cycle, possess a permanent electric dipole, or be
paramagnetic—buffer gas cooling can be applied to a broad range
of molecular species.13,14 It is practically challenging to experi-
mentally probe the conditions within the cell itself, as buffer gas
cells are typically small (with dimensions on the order of a few
cm3) enclosed spaces. While the properties of the species that suc-
cessfully exit the cell can be established, such measurements do
not reveal how the collisions occurred in the cell. (For exam-
ple, if molecules undergo sufficient collisions to reach the desired
final temperature within the first few mm of a 2 cm-long cell,
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a much smaller cell could be used.) As such, simulations per-
form an important role in guiding the design and optimization of
buffer gas cells, in addition to revealing the details of the collision
properties.

One method that has been successfully used to simulate buffer
gas cells15,16 is the direct simulation Monte Carlo (DSMC) method
developed by Bird in the 1960s.1,2 The central concept of DSMC is
that, instead of simulating all particles, the behavior of the system
of interest can be accurately reproduced by modeling only a fraction
of the physical particles. Each of the small number of “simulated”
particles represents a large number of physical particles, given by
the factor fn. The simulated particles are propagated through the
system, which is overlaid with a grid of subcells whose size must be
smaller than the mean free path as well as the characteristic length
scales of the system (e.g., a valve opening). Each iteration is sepa-
rated into two steps: (1) ballistic propagation, where each particle
is propagated for a time step without taking other particles into
account, and (2) collision, where the particles can collide with other
particles in the same subcell in a stochastic manner based on their
pairwise collision probabilities. The DSMC method is particularly
powerful owing to the impressive range of length and time scales
available, ranging from meso to macro, and it has been successfully
applied to a wide variety of systems in field spanning from aeronau-
tics (modeling gas flows for a spacecraft)17 to materials processing
(describing thin film growth and plasma etching).18 DSMC is also
able to describe non-equilibrium systems, whereas many of the alter-
natives, such as the Lattice–Boltzmann method,5,6 may struggle to
do so.19

Despite the impressive range of applications, DSMC simula-
tions for systems with trace components are still inefficient and
costly (in some cases even impossible) to implement—owing to the
large number of particles needed to replicate the range of concentra-
tions present and accurately extract the collision properties. Several
variations of the DSMC method have been previously introduced in
an attempt to model the collisions of trace species, including Bird’s
non-conservative weighting scheme1 and the conservative weighting
scheme of Boyd.20 However, both these algorithms only conserve
energy and momentum on average (and not exactly). While the
stochastic weighted particle approach introduced by Rjasanow and
Wagner21 avoids energy and momentum conservation issues, it was
developed for the modeling of monatomic gases—a much simpler
system than the complex collision environments and gas mixtures
of interest in this work. A hybrid approach based on DSMC was
recently introduced for the simulation of cryogenic buffer gas cell
environments. The first step modeled the background gas using
a traditional DSMC approach. The second step involved a ran-
dom walk through the background gas, with the properties of
individual species of interest subsequently tracked (using a ran-
dom collision model) as they travel through the buffer gas cell
environment.22 By combining the benefits of DSMC with particle
tracing capabilities, the hybrid approach was found to successfully
reproduce several experimentally measured properties of cryogenic
buffer gas cell beams. The same concept was successfully used to
model the reaction H+2 + H2 → H+3 + H and measure the rate
coefficients. Therein, the background gas was determined experi-
mentally and the individual test particles were tracked through an
expanding beam and subsequently detected using an electric ejection
pulse.23,24

Similar to the hybrid method described above, the self-
consistent mean field direct simulation Monte Carlo25 (SCMFD)
approach takes advantage of the benefits of DSMC while enabling
particle tracking. In SCMFD, a mean field—used to describe the
background gas environment—is constructed by considering the
trajectories of a representative number of particles. A single particle
does not influence the properties of the mean field; it is only
one particle in an environment made up of trillions of particles.
Therefore, once the mean field is constructed, the collisions of
particles of interest can be explicitly traced as they travel through
the mean field. Where collisions between the same types of par-
ticles occur, the properties of the mean field are updated. The
key difference to the hybrid approach is that SCMFD makes the
simulation feasible by lifting the requirement to replicate the phys-
ical ratio of different species, rather than by requiring two sets
of simulations (i.e., both DSMC simulations and additional ran-
dom collision particle-tracing simulations, as implemented in the
hybrid method). Both the SCMFD and hybrid approaches appear
to be valid methods for simulating collisions in buffer gas cell
environments or other stationary flows, where the background gas
(the mean field) is a steady-state (i.e., time-independent) environ-
ment. The key benefit of the SCMFD approach is the compu-
tational efficiency: SCMFD calculations require significantly less
memory and time than DSMC calculations, without sacrificing
accuracy.

Here, we have augmented the SCMFD method to consider
three-dimensional (3D) gas-phase environments along with the use
of a variable time step to boost the efficiency. The 3D-variable time
step SCMFD (3D-vt-SCMFD) model is then applied to three differ-
ent gas-phase systems to demonstrate its performance: gas mixtures,
Poiseuille flows, and expansions from a high-pressure reservoir
into a low-pressure region. In all three cases, 3D-vt-SCMFD
successfully replicates the properties of the particles of interest, in
excellent agreement with analytical models. These findings show the
robustness and broad applicability of the 3D-vt-SCMFD method in
modeling diverse gas-phase environments.

II. METHOD
The method devised for one-dimensional SCMFD simulations

was described in detail in a previous publication.25 The key steps are
summarized here and can be seen in Fig. 1: First, an initial mean
field density ρ0, representing the background gas, is defined. A test
particle is then flown through ρ0, and the trajectory is used to
calculate a density and velocity distribution ρ̃. To ensure suffi-
cient sampling of ρ̃, the trajectory length is chosen such that the
test particle undergoes several thousand collisions with the walls.
Subsequently, the mean field density ρ0 is updated according to the
expression

ρ0(x, v) = (1 − r)ρ0(x, v) + rρ̃(x, v), (1)

where r is a parameter with 0 ≤ r ≤ 1, used for more stability in
convergence. The loop is repeated until the mean field density
converges, which is reached when the average density, average velo-
city, average temperature, number of collisions per trajectory, mean
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FIG. 1. Flowchart depicting the SCMFD algorithm.

free time, and mean free path are (approximately) constant from one
iteration to the next. After initial convergence, data collection on the
simulated system can be initiated. However, the background mean
field is still periodically updated based on the recorded trajectory [ρ̃,
according to Eq. (1)], in addition to local subcell mean field updates
to ρ0, which occur whenever the simulated particle interacts with the
background gas (see below).

For the calculation of individual particle trajectories, a particle
is generated with an initial position and velocity. The particle is then
propagated through the mean field background gas for a time step
of δt. If the particle has moved beyond the confines of the simu-
lated volume, it is either reflected (diffusely or mirrored) from the
boundary wall or eliminated from the simulation. The probability
of the simulated particle colliding with the background gas is then
calculated, as in the one-dimensional SCMFD model.25 If no colli-
sion occurs, the process is repeated, and the particle is propagated
for another time step. To reproduce the correct collision proper-
ties (such as collision frequency and mean free time), the time step
must be much shorter than the mean free time, as in DSMC.26 We
have found that δt smaller than 1% of mean free time is required for
most systems. Therefore, using a fixed time step can be inefficient,
as in many cases, particles will be propagated for multiple time steps
without undergoing a single collision. In the 3D-vt-SCMFD method,
the number of time steps where no collisions occur is taken into
account analytically, and the size of the time step is adjusted so that,

whenever a particle is propagated, a collision occurs (see Sec. II A for
derivation).

When the simulated particle undergoes a collision, the proto-
col for evaluating the outcome of a collision is adopted following
the approach detailed in previous work:25 The collisions are treated
as elastic, binary, hard-sphere collisions. Energy and momentum
conservation require that only the direction of the relative velocity
of the collision partners, but not its magnitude, can change. The
final direction is fully defined by the impact parameter—which in
SCMFD is uniformly distributed on a disk, leading to a distribu-
tion of the final direction of the relative velocity that is uniform
on a sphere. It is important to note that the formation of a mean
field and the treatment of collisions within SCMFD are different
from the approach proposed by Nanbu in an earlier variation of
the conventional DSMC method, introduced in 1980.27 A key lim-
itation of Nanbu’s method was the lack of momentum and energy
conservation,28 with only the velocity of one collision partner
updated following a collision. In contrast, the SCMFD method
adopts an identical approach to momentum and energy conserva-
tion as is implemented in the conventional DSMC method—with
this approach thoroughly tested and validated over the past several
decades.

The properties of the background gas—the mean field—within
a collision cell are updated only when the particle being propagated
collides with another particle of the same species. As previously
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noted,25 this improves the convergence properties and enables us
to exclusively track the species of interest. Adjusting the properties
of the mean field following every collision (including collisions
between different species) would necessitate replicating the physi-
cal ratio of all species in the mixture in the simulations; else, the
frequency of energy exchange between the species of interest and
the background gas would be overestimated.

The key benefits of the 3D-vt-SCMFD approach can be
summarized as follows:

1. There is no need to convert between simulated particles and
physical particles.

2. As individual particles can be tracked, there is no need to
explicitly reproduce the same relative numbers of each type
of species in the physical system of interest. This is partic-
ularly relevant for systems where the species of interest is a
minor component of the gas mixture as for these systems,
traditional DSMC models (where all particles typically need to
be propagated simultaneously) can become unfeasible. Once
the mean field has been generated, the SCMFD approach
allows resources to be focused exclusively on the species of
interest.

3. When a collision does not occur at a given time step, the
collision probability does not change. This enables the use
of a variable-size time step, which can be adjusted on-the-fly
by considering the free time between collisions in a selected
region. The introduction of a variable time step makes the
code far more efficient without sacrificing accuracy.

A. Variable time step based on expected
free time between collisions

For the one-dimensional SCMFD, we opted for a simple
implementation with a fixed simulation time step. The poten-
tial computational gain associated with using a variable time step
becomes more attractive with increasing system size and dimen-
sionality, which motivated us to incorporate this upgrade into the
3D-vt-SCMFD method. The optimal size of the time step depends
on the properties of the system: it must be several orders of magni-
tude smaller than the average mean free time between collisions to
retain accuracy. In systems containing a range of different densities,
the magnitude of the fixed time step is determined by the region
of highest density—the highest collision frequency. However, an
unnecessarily high number of time steps are then calculated
in low-density regions. Using a variable time step allows for
on-the-fly adaptation to the surrounding system properties, achiev-
ing a computationally efficient simulation without compromising
on the precision. Previous approaches have sought to improve the
efficiency of DSMC calculations by varying the length of the time
step (as initially implemented in Bird’s time counter scheme) or
by considering only a fraction of all possible collision partners at
a given time step (as in the no-time-counter method).29 Takahashi
et al. altered the time step “dynamically” in their hybrid DSMC
method, to maintain a constant collision probability.22 As we track
single particles traveling through the mean field, we cannot choose
to consider fewer collision partners. Instead, we establish when
the next collision with the trace particle will occur by calculating
the free time between collisions directly. By side-stepping the use

of random numbers in combination with collision probabilities to
determine collision events, the efficiency of the SCMFD algorithm is
significantly improved.

The probability that no collisions occur in a subcell in a selected
time interval can be defined as25

Pnc = e−δt⟨vrσ⟩ρ. (2)

A small time interval, δt, and appropriate subcell dimensions are
selected such that the term ⟨vrσ⟩, where vr is the relative velocity
and σ is the collision cross section, does not change during the time
interval. The density of the subcell is defined as ρ. The probability of
at least one collision occurring during time step δt is then given by
Pc = 1 − Pnc. Due to the Markovian property of the collision dyna-
mics, Eq. (2) is valid for all values of δt (as is the expression for Pc).
We can subsequently define the probability of at least one collision
occurring in the time interval [0, t2] as the sum of the probability of
at least one collision occurring between [0, t1] and the probability
of one or more collisions occurring in the interval [t1, t2] with no
collision between [0, t1],

P[0,t1] + P[t1 ,t2]∣no collisions in [0,t1] = P[0,t2]. (3)

For the interval [t1, t2], the conditional collision probability (where
no collision occurs before t1) follows by the rearrangement of
Eq. (3),

P[t1 ,t2]∣no collisions in [0,t1] = P[0,t2] − P[0,t1]

= 1 − e−⟨vrσ⟩ρt2 − 1 + e−⟨vrσ⟩ρt1

= −e−t⟨vrσ⟩ρ∣
t2

t=t1

= ∫
t2

t1

dte−t⟨vrσ⟩ρ⟨vrσ⟩ρ, (4)

yielding a normalized density distribution function for the (col-
lision) free time t. The corresponding cumulative distribution
function is given by

cdf (t) = − e−t′⟨vrσ⟩ρ∣
t

t′=0

= −e−t⟨vrσ⟩ρ + e−0⟨vrσ⟩ρ

= 1 − e−t⟨vrσ⟩ρ. (5)

Generating a uniformly distributed random number α ∈ [0, 1) and
inverting the expression, we obtain an expression

tα = −
log(1 − α)
⟨vrσ⟩ρ (6)

for calculating the free time between collisions, tr , representing the
time step over which a particle needs to be propagated until the next
collision occurs. For mixtures of different gaseous species, the free
time between collisions can be written as

t j
α = −

log(1 − α)
∑np

i=1⟨vr
jiσji⟩ρi

, (7)
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where j is the index of the species of interest, from a total of np
different species.

B. Special considerations for 3D-vt-SCMFD
When switching from one-dimensional to three-dimensional

systems, it is necessary to consider the presence of corners and edges,
which can lead to a particle crossing multiple boundaries within
a single time step, increasing the complexity of the problem. The
challenge of identifying the first boundary that a particle trajec-
tory crosses can be circumvented with the use of a variable time
step.

At every stage of the simulation, four different times are consid-
ered: tr , given by Eq. (6), and the time for the particle to move (for
each of the x, y, and z directions) into the next subcell. For example,
if the particle is in subcell nx at position x and has positive velocity
vx in the x direction, the time taken for it to move into the subcell
nx + 1 along the x axis is given by δtx = (nxLx/ncell,x − x)/vx, where
Lx is the length of the simulation box and ncell,x is the number of
subcells in the x direction [for negative velocity, the time is given
by δtx = ((nx − 1)Lx/ncell,x − x)/vx]. The method then chooses the
smallest of these four values (identifying the smallest time step
that leads to a collision or movement into a different subcell) and
propagates the particle for that time step. In the case of an accel-
erated flow, such as the pressure-driven Poiseuille flow, the method
includes a fifth value, Δtmax (a simulation input), which sets an upper
limit for the change in the velocity during a time step (Δv = aΔtmax,
where a is the acceleration).

Depending on which time is the smallest, the method performs
different routines: If tr [from Eq. (6)] is the smallest, then a collision
occurs; if the smallest time step is Δtmax, the particle is propagated
and nothing happens. In the three other cases, the particle has moved
from one subcell to another (it is located at the boundary of the next
subcell). However, if that next subcell does not exist—if the next sub-
cell is outside the simulation—then the particle is deemed to be at the
location of the simulation boundary. Based on the type of boundary,
a thermal, periodic, or mirrored reflection is performed and the
velocity is readjusted; otherwise, the particle is eliminated from the
simulation.

III. RESULTS AND DISCUSSION
To demonstrate the accuracy and applicability of the 3D-vt-

SCMFD approach, we model three well-characterized gas-phase
environments: (A) a gas mixture with one component present as
a (trace) seed gas, (B) a gaseous Poiseuille flow at a range of den-
sities, and (C) a gas expansion from a high pressure region into
vacuum. Each of these scenarios is discussed below, accompanied by
a detailed comparison of the simulation results with previous work
and theoretical predictions.

A. Gas mixtures
First, we use 3D-vt-SCMFD to simulate an ideal gas mixture

in three dimensions. A gas mixture is described as ideal when
individual gas particles can be modeled as hard spheres with no
internal degrees of freedom (not to be confused with an ideal gas
where the particles have no volume). The key benefit of simulating

TABLE I. Comparison of the temperature (in K) between the 3D-vt-SCMFD
predictions and wall temperature of 273 K for collisions in a box of 1 cm3 volume.

Parameter Ar He N2

Tx 272.990 ± 0.019 273.003 ± 0.008 273.021 ± 0.018
Ty 273.014 ± 0.018 272.991 ± 0.011 273.021 ± 0.019
Tz 273.002 ± 0.006 273.010 ± 0.010 273.006 ± 0.013

an ideal gas mixture is the ability to benchmark the findings of
the 3D-vt-SCMFD method against quantities that can be calculated
analytically.

We simulate a three-component gas mixture where each of the
particles are hard spheres, with parameters (mass and diameter) cho-
sen so that they represent Ar, He, and N2. The gases are present at
concentrations spanning six orders of magnitude with number den-
sities of 1020 m−3 (Ar), 1018 m−3 (He), and 1014 m−3 (N2). The gas
mixture is contained within a constant-volume, cube-shaped box
with sides of 1 cm length, enclosed by thermal walls (at a tem-
perature of 273 K) that act as a thermostat. All other particle and
simulation parameters are defined in Table S2 of the supplementary
material.

First, the temperature of each particle type is calculated from
the sampled velocities using Ti = m

kB
⟨(vi − ⟨vi⟩)2⟩, where m is the

mass of the respective particle type and vi is the velocity in one
dimension with i = x, y, z. The simulated temperatures, shown in
Table I, correspond well to the temperature of the wall (at 273 K).
Two temperatures (out of nine) are outside one standard error of
mean (SEOM); they are still within 1.12 SEOM and 1.17 SEOM,
respectively.

We then proceed to quantify the mean free path, mean free time
between collisions (Table II), and the collision frequency (Table III)
from the simulation. The values are in excellent agreement with
those obtained analytically [Eqs. (8)–(11) in Ref. 25 or see Ref. 1
for the derivation], for all collision types (Ar–Ar, Ar–He, Ar–N2,
He–He, He–N2, and N2–N2).

The concentration of N2 in the test system is chosen to be 6
orders of magnitude smaller than that of Ar to demonstrate key
advantage of the SCMFD approach—the ability to efficiently model
systems with a wide range of concentrations, such as those where
the species of interest is a trace component. Conversely, simulating
the system using DSMC is highly time consuming because it would
require a minimum amount (≥100) of N2 particles and consequently
≥108 Ar particles.

B. Poiseuille flow
In this subsection, we probe the ability of 3D-vt-SCMFD to

model a gaseous Poiseuille flow—a pressure-driven flow through
a channel with (partial) slip boundary conditions that forms a
parabolic flow profile. As in Subsection III A, the Poiseuille flow is
selected as a test system for 3D-vt-SCMFD as it allows the findings
to be compared with those calculated from well-established meth-
ods. In this case, however, these established methods are known
to have limitations; they can only describe the flow under certain
conditions. Hence, we also probe the ability of 3D-vt-SCMFD to
accurately model Poiseuille flows over a wide range of densities.
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TABLE II. Comparison of the mean free path (in m) and mean free time (in s) between the 3D-vt-SCMFD predictions and analytical values [Eqs. (8)–(11) in Ref. 25] for collisions
in a box of 1 cm3 volume.

Parameter Ar He N2

SCMFD mean free path (1.387 407 ± 0.000 086) ⋅ 10−2 (3.167 75 ± 0.000 17) ⋅ 10−2 (3.620 42 ± 0.000 43) ⋅ 10−2

Analytical mean free path 1.387 401 ⋅ 10−2 3.167 60 ⋅ 10−2 3.619 72 ⋅ 10−2

SCMFD mean free time (3.647 46 ± 0.000 19) ⋅ 10−5 (2.635 23 ± 0.000 16) ⋅ 10−5 (7.968 14 ± 0.000 96) ⋅ 10−5

Analytical mean free time 3.647 38 ⋅ 10−5 2.635 06 ⋅ 10−5 7.966 82 ⋅ 10−5

TABLE III. Comparison of the collision frequency (in s−1 m−3) between the 3D-vt-SCMFD predictions and analytical values for collisions in a box of 1 cm3 volume, calculated
by following the collisions of the trace particles indicated.

Collision type Analytical Following Ar Following He Following N2

Ar–Ar 1.351 998 0 ⋅ 1024 (1.351 998 ± 0.000 069) ⋅ 1024

Ar–He 3.769 823 0 ⋅ 1022 (3.767 1 ± 0.001 8) ⋅ 1022 (3.769 59 ± 0.000 20) ⋅ 1022

Ar–N2 1.243 945 8 ⋅ 1018 (1.10 ± 0.13) ⋅ 1018 (1.244 ± 0.015) ⋅ 1018

He–He 1.257 456 7 ⋅ 1020 (1.257 35 ± 0.000 76) ⋅ 1020

He–N2 1.125 945 8 ⋅ 1016 (1.080 ± 0.051) ⋅ 1016 (1.125 9 ± 0.001 3) ⋅ 1016

N2–N2 1.381 644 4 ⋅ 1011 (1.25 ± 0.24) ⋅ 1011

We simulate the Poiseuille flow between two parallel plates
0.1 m apart from each other. The y and z directions are periodic,
and the walls in the x direction are thermally reflective. The pressure
gradient is achieved by accelerating each particle according to
a = − 1

ρm

∂p
∂z , where ∂p

∂z is the effective pressure gradient and ρm
is the mass density. It should be noted that there is a distinc-
tion between acceleration-driven and pressure-driven flows. The
former (as adopted in this work) accelerates the particles, whereas
the latter uses boundary conditions to introduce a pressure gradient
explicitly. The two flow regimes are closely related; the acceleration
term and the pressure gradient are treated in the same way in
the Navier–Stokes equation and are, in the hydrodynamic descrip-
tion, equivalent.30 In particle-based simulations, the pressure-driven
flow is more complex to model. As such, we elected to simulate
the acceleration-driven flow. Hence, the pressure gradient ∂p

∂z is an
effective (not an actual) pressure gradient. We model the flow of
argon gas, with densities ranging from 1019 to 1021 m−3. All other
simulation parameters adopted for the 3D-vt-SCMFD Poiseuille
flow are outlined in the supplementary material. The density,
temperature, and velocity profiles in the x and y directions can be
found in the supplementary material, Sec. S1.B (including a compar-
ison between the SCMFD temperature profiles and literature results
for the Poiseuille flow obtained from DSMC). Here, the discussion
will focus on the velocity profile in the z direction, along with the
viscosity.

In the high-density regime, this type of flow can be described
by the Navier–Stokes equations (see the supplementary material,
or Ref. 31) from which the viscosity-dependent velocity profile
along the flow direction can be determined. The viscosity of the
simulated flow is established by fitting the velocity profile from
the Navier–Stokes equations (with parameters μ and λ′) to the
3D-vt-SCMFD result using the method of least squares. This is then

compared to the theoretical viscosity of a gas system, established
using Chapman–Enskog theory, which considers the system as a
perturbed ideal flow and derives the viscosity from the Boltzmann
equation.32 For a hard-sphere gas, the viscosity is given by33

μ = 5
16d2

ref

√
mkBT

π
, (8)

where dref is the diameter of the hard-sphere particle and m is the
mass.

Chapman–Enskog theory is known to accurately predict the
viscosity of a system under high-density conditions, where there
are frequent collisions between the gas particles. Under low-density
conditions, however, the Chapman–Enskog model breaks down as
the majority of collisions involve gas particles hitting the walls
of the rectangular channel, rather than collisions between gas
particles. In addition, the acceleration is inversely proportional to
the density—leading to higher perturbations on the flow, which is
yet another reason for the breakdown of the theoretical descrip-
tion. Hence, at low densities, the properties of the wall and the
acceleration become more important, and the principles of free
molecular flow become more applicable.

The velocity profiles (at both low and high densities) for
the flow between two plates are shown in Fig. 2, along with the
fit to the Navier–Stokes equation [Eq. (S4) in the supplementary
material]. The parabolic fit is able to describe the flow profile
in the high density system (right), in contrast to the low den-
sity regime (left) where the theoretical description is no longer
valid.

The viscosity of argon, obtained by fitting the Poiseuille flow
profile to the 3D-vt-SCMFD simulations, is plotted alongside the
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FIG. 2. The stream velocity profile of the one-dimensional Poiseuille flow for high
density (1022 m−3, right) and low density (1019 m−3, left). The SCMFD result (blue)
is fitted (dashed yellow) to the solution of the Navier–Stokes equation [Eq. (S4)
in the supplementary material] to obtain the viscosity and the parameter λ′. The
theoretical velocity profile resulting from the Chapman–Enskog viscosity depends
on the slip-condition parameter λ′; it is plotted once with λ′ equal to the theoretical
mean free path (purple) and once with λ′ determined using a non-linear least-
squares fit (green). In both cases, the resulting profile is consistently smaller than
the result produced by SCMFD (∼15% in the high-density case, right).

prediction from Chapman–Enskog theory in Fig. 3. As predicted by
Chapman–Enskog [Eq. (8)], the viscosity is constant at low Knudsen
numbers, i.e., in the hydrodynamic regime for different slit lengths
(L = 0.01–0.1 m). The viscosity is also constant at different pressure
gradients (∂p

∂z = −1,−0.5 N/m3). The slip length, λ′, is determined
in the same fitting procedure as the viscosity, as set out in the
supplementary material and discussed in Sec. S1.C. The Knudsen
number is given by the ratio of the mean free path to the slit size,
Kn = 1/(d2

refπ
√

2ρLx), and is a measure of how well fluid dynamics
can describe the behavior of a system. The simulated 3D-vt-SCMFD
viscosity is ∼15% lower than the Chapman–Enskog result. The same
phenomenon has been identified in the SCMFD simulation of the
Couette flow.25

To investigate how the 3D-vt-SCMFD viscosity results may
depend on the choice of subcell parameters, we quantify the mea-
sured viscosity as a function of subcell length to the mean free
path ratio in Fig. 4. When the length of a subcell is larger than
the mean free path (i.e., when the standard DSMC subcell length
guidelines are not followed), the viscosity is overestimated. Such
results are expected (and are also detected in DSMC simulations34)
as the method assumes the same density and velocity distribution
everywhere in the subcell: the subcell length determines the length

FIG. 3. The viscosity of a Poiseuille flow of Ar gas as established from SCMFD
simulations (blue, red, yellow, and purple) and from Chapman–Enskog calculations
[green, Eq. (8)] at 273 K, plotted as a function of Knudsen number. The error bars
indicate one standard error of the mean. The data are obtained from systems
with different slit sizes (Lx = 0.01–0.1 m), with effective pressure gradients ( ∂p

∂z

= −1,−0.5 N/m3) driving the flow. The value of the viscosity is determined by
fitting Eq. (S4) in the supplementary material to the velocity profile.

over which the properties in the system are constant. In real systems,
the mean free path is the length scale over which the properties of
the system change. Having subcells larger than the mean free path,
thus, enforces correlations over artificially large distances, leading

FIG. 4. The convergence of the viscosity as a function of subcell length [divided by
the theoretical mean free path, given by Eq. (8) in Ref. 25]. The data are obtained
from a simulation with an average density of 5 ⋅ 1021 m−3, but similar features are
seen in lower densities as well. The blue and red data are obtained from systems
with different pressure gradients [ ∂p

∂z
= −1(blue),−0.5(red) N/m3] for the one-

dimensional Poiseuille flow by fitting Eq. (S4) in the supplementary material to the
velocity profile. The data are fit using the function μ(x̃) = A + Bx̃2, both consider-
ing all data points (yellow) and when excluding the highest few values (purple; see
the main text for further details).
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to increased viscosity and, consequently, to a perturbed velocity
profile.

Alexander et al.35,36 investigated the dependence of viscos-
ity on the subcell length using Green–Kubo theory, obtaining the
relationship

μ = 5
16d2

ref

√
mkBT

π
(1 + 16

45π
L2

x

n2
cell, xλ2 ), (9)

where ncell,x is the number of subcells in the x direction (i.e.,
between the walls), Lx is the distance between the walls and λ =
1/(
√

2πd2
refρ) is the mean free path. A comparison with Eq. (8)

shows that the first factor is equal to the Chapman–Enskog viscos-
ity. The data in Fig. 4 can be fit using the functional form μ(x̃) =
A + Bx̃2, where x̃ = Lx

ncell,xλ . Using all data points in Fig. 4 yields a poor
fit. However, when discarding the highest few data points of each
simulation set (i.e., considering the first four data points for the sim-
ulation with ∣∂p/∂z∣ = 1 N/m3 and another four data points with

FIG. 5. (a) Schematic depiction of the expansion as modeled in the 3D-vt-SCMFD simulations. Particles are created on an aperture disk (shown in black) and expand into
high vacuum. The wall where the aperture is located is thermally reflecting; collisions with all other walls remove the particle from the simulation. The properties of the flow
are determined along the beam axis in the x direction and when particles fly through a skimmer (shown in red) located at a distance of 1 cm from the inlet aperture. (b)
Velocity distributions of the expanded beams, under different sets of conditions. The velocity distribution is plotted at a distance of 1 cm from the valve, with the particles
passing through a virtual skimmer of 0.5 mm radius. (Left) 3D-vt-SCMFD velocity distributions along the beam propagation axis are plotted for four different fluxes, alongside
the analytical prediction [black dots, supplementary material, Eq. (S18)]. (Right) Radial velocity distribution is plotted for the same systems. Again, the analytical model
[black dots, supplementary material, Eqs. (S19)–(S26)] is in quantitative agreement with the 3D-vt-SCMFD simulations for the two lowest densities considered.
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∣∂p/∂z∣ = 0.5 N/m3, giving eight data points in total), an excellent
fit to the simulation data can be achieved. In the fit to the first
eight data points, the parameters are A = 1.3443 ⋅ 10−5 N s m−1,
which is 85.06% of the theoretical Chapman–Enskog viscosity in
Eq. (8), and B = 1.5208 ⋅ 10−6. The dependence on Lx is deter-
mined by the factor B/A = 0.113 13, which is very close to the
theoretical estimate of 16

45π = 0.113 18. The squared dependence on
the subcell size is derived from the potential contribution to the
viscosity35 and the constant part from the kinetic contribution.
The excellent agreement between the theoretical estimate and the
value of B/A from the fit parameters demonstrates that the SCMFD
method treats the kinetic and potential contribution to the viscosity
consistently.

Considering we employ an appropriate choice of subcell size
with respect to the mean free path, we cannot give a definite
reason for the deviation of the SCMFD viscosity and the theoret-
ical Chapman–Enskog value. It may arise from the way that the
mean field is represented in SCMFD: by using a limited number
of samples to describe the underlying velocity distribution. Another
potential representation could be the use of a Gaussian distribution
whose standard deviation (i.e., temperature) depends on the loca-
tion in the simulation box. Such a representation is sensible in the

high-collision regime because it is the first-order correction to the
solution of the Boltzmann equation in the Chapman–Enskog the-
ory and has been successfully implemented by Takahashi et al.22

to simulate buffer gas cells. For low-collision regimes, however,
this might lead to conflicting results. This is the case, for example,
when considering two beams crossing at very low densities. Most
of the particles will not experience collisions, and therefore, the
system is unlikely to be well described by a single Gaussian distri-
bution; the local velocity distribution would be better represented
by two separate Gaussians, centered at the mean velocity of each
beam.

C. Expansion
A stringent test of the 3D-vt-SCMFD method is to examine

how well it can model the expansion of a gas from a high-pressure
reservoir, through a small orifice, and into a low-pressure region.
This is directly related to our goal of simulating collisions within
a buffer gas cell as such an expansion occurs when particles pass
through the exit aperture of the cell. The properties of the beam
are highly dependent on the system: low-density conditions give
rise to effusive beams, whereas high-density conditions yield a

FIG. 6. Plot of the radial and axial velocity distributions, for four different fluxes, recorded at a distance of 1 cm from the source and with a virtual skimmer of 0.5 mm radius
in place. Colors indicate relative intensity, from low (blue) to high (yellow).
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hydrodynamic expansion. Expansions are commonly used in
experiments to generate internally cold molecular beams—with the
technique frequently adopted in, for example, high-resolution
spectroscopy applications37,38 and cold chemical reaction
studies.23,24,39,40

Previous simulations of similar systems include modeling of
the micronozzle within a spacecraft thruster system using a DSMC
approach,41 with the Fokker–Planck-DSMC hybrid method also
adopted to model the gas flow through a micronozzle42 (and through
a slit43). However, neither of these simulations are directly com-
parable to the conditions described in this work. The strength of
the 3D-vt-SCMFD approach is the ability to include the physical
features of a system without sacrificing accuracy or making the
calculations intractable, and more complex geometries could be
implemented straightforwardly.

We perform 3D-vt-SCMFD simulations for a range of gas
fluxes, with the expanding gas generated on a disk of radius 1 mm

and flying through a skimmer of radius 0.5 mm (1 cm downstream
from the source) to replicate the setup commonly adopted in exper-
imental gas expansions. A sketch of the model system can be seen
in Fig. 5(a). The simulated system is initially empty (i.e., the mean
field has zero density everywhere) and is gradually filled by argon
atoms. The particles are generated uniformly on the disk with veloc-
ity distributions corresponding to a gas reservoir at 273 K, which
is identical to the distribution of a thermal reflective wall.26 The
same distribution was used in Ref. 15, where a similar expansion was
investigated using a DSMC method. Once the density, velocity, and
temperature of the mean field stabilize, the system is deemed to be
in a steady state. To reach steady state conditions typically involves
400 updates of the mean field. Between each update, 200 000 particle
trajectories are calculated. The mean field is then used as the start-
ing configuration for the simulated expansion. The resulting data
can be analyzed either locally (i.e., on a grid over the whole sys-
tem, with each grid point corresponding to a subcell) or one can

FIG. 7. (Top) Average translational temperature (left: axial temperature, right: radial temperature) of the particles traveling along the beam propagation axis is plotted as a
function of distance from the source for four different fluxes. The analytical model [supplementary material, Eqs. (S15)–(S17)] is in excellent agreement with the effusive
3D-vt-SCMFD distributions (lowest two fluxes). (Bottom) Average 3D-vt-SCMFD axial velocity is plotted as a function of distance from the valve for the same four fluxes. In
all cases, the particles are accelerated for ∼5 mm (corresponding to ∼5 valve radii). As expected, the highest flux yields the highest axial velocity; there is little difference in
the final velocity of the two lowest-flux beams, which operate in the effusive regime.
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focus on particles that successfully fly through the skimmer disk
opposite the inlet aperture at a distance of 1 cm. A more detailed
description of the simulation parameters is given in the supplemen-
tary material.

The velocity distributions of the expanded beams are presented
in Figs. 5(b) and 6. The distributions represent the properties of par-
ticles that successfully fly through a virtual skimmer. We consider
four different fluxes spanning 1013–1019 s−1 to illustrate the transi-
tion from an effusive to a hydrodynamic flow. The two lowest fluxes
(corresponding to 1013 s−1 and 1016 s−1) agree quantitatively with
the analytical model, which is based on a collision-free environ-
ment (see the supplementary material, Sec. S2). For higher fluxes,
the axial velocity (also referred to as the beam or forward velocity)
of the beam shifts to higher velocities. At the highest flux stud-
ied, the significant number of collisions in the beam give rise to
a higher axial velocity with a narrower distribution [see Fig. 5(b),

left], yielding the behavior expected for supersonic expansions. For
low fluxes, 3D-vt-SCMFD reproduces the analytical model [sup-
plementary material, Eq. (S18)] perfectly. The shape of the radial
velocity distribution [Fig. 5(b), right] also depends on the flux,
with the lowest two fluxes again in excellent quantitative agree-
ment with the analytical model predictions [supplementary material,
Eqs. (S19)–(S26)].

The complete two-dimensional velocity distribution of the
skimmed beam is shown in Fig. 6. The plots reveal a clear
correlation between the radial and axial velocity distributions, with
non-symmetrical distributions at lower fluxes. This can be explained
geometrically: if the radial velocity is too large compared to the axial
velocity, the particle will not be able to fly through the skimmer.
Located at a distance of 1 cm from the source and with a radius
of 0.5 mm, the skimmer only transmits particles that travel close
to the central beam axis. In the low density regime, the skimmer

FIG. 8. 3D-vt-SCMFD density (top row) and temperature profiles (second to fourth rows, sampled at three different distances along the x axis) of Ar gas expansions are
plotted for four different fluxes. The density is plotted along the beam propagation axis; temperature distributions are plotted as cuts through the beam, perpendicular to the
propagation axis (i.e., in the yz plane, at selected x positions). Color bars indicate relative intensity, from low (blue) to high (yellow).
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cuts off any velocity with an angle greater than ≈6○. In contrast, the
supersonic expansion (bottom right plot) exhibits a more symmetric
radial velocity distribution centered around a higher axial velocity.
As the particles have a higher axial velocity, they cover the distance
to the skimmer much faster, and there is insufficient time for the
radical velocity to deflect the trajectory of the particle away from the
central beam axis.

Figure 7 depicts the temperature (left: axial temperature, right:
radial temperature) and the axial velocity as a function of the dis-
tance to the inlet aperture. For low fluxes, where the flow is effusive,
the temperature can be estimated quantitatively with the analyti-
cal model [see the supplementary material, Eqs. (S15)–(S17)]. The
axial temperature initially decreases before increasing to a constant
value. The initial drop is a purely geometrical effect, also predicted
by the analytical model, and occurs within the first 1–2 inlet radii
(≈1–2 mm) of the source. In the hydrodynamic regime, where the
beam supersonically expands, the axial temperature decays rapidly
and monotonically. In both the effusive and supersonic regimes, the
transverse (or radial) temperature decreases as a function of dis-
tance. Figure 7 (bottom plot), depicting the average axial velocity
as a function of distance from the source, reveals that the majority of
the acceleration occurs in the first five valve radii. As expected, the
highest flux—corresponding to a supersonic expansion—yields the
highest axial velocity. Similar results were obtained simulating the
same system using DSMC.15

Finally, Fig. 8 shows the density and temperature profiles for
different cuts through the expansion. The features of the den-
sity distribution (top row) only start to change at higher fluxes,
where the narrower axial velocity distribution gives rise to a more
focused beam. The average SCMFD temperature plots show fur-
ther differences between the properties of effusive (two left most
columns) and supersonic (right column) expansions: in an effu-
sive flow, the center of the beam exhibits the highest temperature,
whereas the temperature distribution inverts after some distance
in the supersonic expansion. As the flux of the gas expanding
through the orifice is increased, the properties of the resulting beam
start to change. These differences can be clearly seen in Figs. 5(b)
and 6–8.

The 3D-vt-SCMFD model successfully describes the transition
from effusive to hydrodynamic expansions, accurately predicting the
behavior expected from beams operating under different regimes.
Future work could see 3D-vt-SCMFD applied to related systems
with more complexity. One such target is to describe the colli-
sions in a cryogenic buffer gas cell—potentially also accounting for
the inelastic collisions that cool the internal molecular degrees of
freedom (by including cross sections calculated as a function of
energy).15 Another target system includes describing the collisions
that occur in a capillary attached to the face plate of a pulsed valve,
where a dissociation laser focused on the capillary can generate
photofragments. The collisions that these photofragments undergo
and the properties of the gas mixture as it passes through the cap-
illary and expands into a vacuum chamber cannot be precisely
simulated with existing models.

IV. CONCLUSION
The 3D-vt-SCMFD model introduced in this work can be

applied to a range of different gas-phase environments. The basis

of the SCMFD approach is the construction of a mean field to
describe the properties of the background gas environment, through
which the collisions of particles of interest can be explicitly traced.
The properties ascertained from SCMFD simulations are in good
agreement with predictions from existing theoretical models, for
all systems considered in this work. The largest difference between
the values obtained from 3D-vt-SCMFD simulations and from the-
oretical predictions can be found in the viscosity measurement
for the Poiseuille flow. This discrepancy—an offset of ∼15% when
compared to established theoretical viscosity calculations—has been
observed previously25 and is (tentatively) attributed to the represen-
tation of the mean field. For future work, different kernel density
estimations could be included to represent the mean field more
accurately. Additionally, generating the background gas environ-
ment with experimental results (as done in Refs. 23 and 24) or
other simulation algorithms (as seen in Ref. 22) could be con-
sidered. However, such external mean fields are only suitable if
the background gas environment is not influenced by the new
species that travels through it. On the other hand, such representa-
tions might open up the possibility of investigating time-dependent
processes—something that 3D-vt-SCMFD is currently not able to
do, but that would be an extremely useful extension of the method.

In summary, this work demonstrates that the 3D-vt-SCMFD
algorithm is robust, versatile, accurate, and efficient. The method
successfully describes different gas expansions and trace compo-
nents in a gas mixture and is, therefore, ideally suited to modeling
collisions in environments such as a buffer gas cell. Beyond the
modeling of buffer gas cells, this work demonstrates that the 3D-vt-
SCMFD method can be readily applied to a wide range of different
collision environments.

SUPPLEMENTARY MATERIAL

See the supplementary material for Poiseuille flow (S1), analytic
description of expansion (S2): free molecular flow limit, and SCMFD
simulation input parameters (S3).
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