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Abstract
We construct and study projective and Reedy model category structures for bimodules and
infinitesimal bimodules over topological operads. Both model structures produce the same
homotopy categories. For the model categories in question, we build explicit cofibrant and
fibrant replacements. We show that these categories are right proper and under some condi-
tions left proper. We also study the extension/restriction adjunctions.
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Introduction

In this paper, we set up a homotopy theory for the categories of bimodules and of infinitesimal
bimodules over topological operads. More precisely, we study two model structures, the
projectivemodel structure and the Reedymodel structure, which we define for both bimodule
categories. The Reedy and the projective model structures have the same class of weak
equivalences and, therefore, produce equivalent homotopy categories. Both model categories
find important applications in the manifold functor calculus, specifically in the problems of
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delooping the functor calculus towers [14–16]. It is well known that the arity zero elements
essentially complicate the homotopy theory of such objects. However, in practical examples
the arity zero component of the studied objects is often reduced to a point. Such objects are
called reduced. Motivated by the homotopy theory of the little 2-discs operad, the second
author developed theReedymodel structure for reduced operads [18, 19].We adapt this theory
to the setting of bimodules and of infinitesimal bimodules. One of the advantages of theReedy
model structure in comparison to the projective one is that the cofibrant resolutions are smaller
as they do not take into account the arity zero component. This makes the constructions of
delooping in [14–16] simpler. By contrast, while all the objects are fibrant for the projective
model categories, there is no obvious Reedy fibrant coresolution. Consequently, both model
structures have their advantages and it can be convenient to be able to switch from one
structure to another.

The starting idea of the Reedy model structure for reduced operads is to encode the
operadic composition operations with the unique point in arity zero in an extension of the
diagram structure which underlies our objects. In the usual category of symmetric operads,
the diagram structure of the objects is governed by the category � = ∐

n �n which is
defined by taking the disjoint union of the symmetric groups �n . In what follows, we use
the expression ‘�-sequence’ for the objects of the category of diagrams over �. We use the
notation �Seq for this category of diagrams and the notation �Operad for the category of
symmetric operads. To formalize the construction of the Reedy model structure, we consider
the category �, which has the finite sets [n] = {1, . . . , n} as objects and all injective maps of
finite sets u : {1, . . . ,m} ↪→ {1, . . . , n} as morphisms. We use the expression ‘�-sequence’
for the objects of the category of contravariant diagrams over �, and we use the notation
�Seq for the category of �-sequences. The composition operations with the arity zero term
P(0) = ∗ in a reduced operad P are equivalent to restriction operators u∗ : P(n) → P(m),
which can be associated to the injective maps of finite sets u : {1, . . . ,m} ↪→ {1, . . . , n}
and hence to the morphisms in the category �. This observation implies that the category of
reduced operads is identified with a category �∗Operad, whose objects are operads shaped
on this category of finite sets and injections � instead of the category of permutations �.

The category of�-sequences inherits a Reedy model structure, in which the fibrations are
defined by using a natural notion of matching object. The Reedy model structure of reduced
operads is precisely defined by transferring this Reedy model structure on the category of�-
sequences �Seq to our category of operads �∗Operad, while the projective model structure
of symmetric operads is defined by transferring the projectivemodel structure on the category
of �-sequences �Seq to �Operad.

Throughout this paper, we work in the category of topological spaces, and we therefore
deal with operads in topological spaces. In that context, the projective model category of
symmetric operads is known to be left proper relative to �-cofibrant operads (i.e. operads
that are cofibrant as �-sequences) and right proper [27] making the homotopy colimits and
limits easier to identify in this category. Furthermore, all operads are fibrant in the projective
model category of symmetric operads in topological spaces. In the Reedy model category
of reduced operads, the objects are not necessarily fibrant. We use a notion of matching
object to define the class of fibrations (and unfortunately, we have no explicit definition of
a fibrant coresolution functor at the time), but the class of cofibrations is larger. In fact, a
morphism of reduced operads is a cofibration with respect to the Reedy model structure if
and only if this morphism defines a projective cofibration of operads after forgetting the
arity zero components [19, Theorem 8.4.12] (thus if and only if this morphism defines a
cofibration in the projective model category of operads with a void component in arity zero).
This result implies that the Reedy model category of reduced operads is also left proper
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828 J. Ducoulombier et al.

relative to �-cofibrant reduced operads. Together with Willwacher, the second and third
authors [21] showed that, for any reduced operads P and Q, there is a weak equivalence of
derived mapping spaces

�Operadh(P ; Q) � �∗Operadh(P ; Q).

Hencewe can use the Reedymodel category to computemapping spaces in the usual category
of topological operads.

The main purpose of this work is to extend the results of these operadic homotopy the-
ories to the setting of bimodules and of infinitesimal bimodules. First of all, we define our
counterparts of the projective and Reedy model structures for bimodules and infinitesimal
bimodules in topological spaces. We also address the definition of these model structures for
truncated bimodules.

For the definition of the projective model structure, we work out difficulties that occur
in the context of topological spaces, notably regarding the application of the small object
argument (see the discussion of [29]). This question is independent from other works on the
projective model categories of modules over operads carried out in the litterature. In fact,
the projective model structure of bimodules was defined in [35] for bimodules in simplicial
sets and for bimodules in a category of simplicial bimodules over a ring. The paper [24]
gives the definition of an analogous model structure for left modules over non-symmetric
operads and for left modules over symmetric operads when every�-sequence is projectively
cofibrant in the base category (for instance, when the base category is a category of chain
complexes over a characteristic zero field). The book [20], by the second author, provides
a general study of the homotopy theory of modules and bimodules over operads, but deals
with semi-model structures (with a restriction of the application of the axioms to maps with
a cofibrant source) to get results that are valid in any base monoidal model category. In the
paper, we prove that, when we work in the category of topological spaces, we have a full
validity of the definition of the projective model category of bimodules over a pair of operads,
and this result holds without any assumption on our operads. We get the same result for the
definition of the projective model category of infinitesimal bimodules.

For the definition of the Reedy model categories of bimodules and of infinitesimal bimod-
ules, we rely on a preliminary definition of a fibrant coresolution functor and we apply a
transfer argument, using an adjunction between (infinitesimal) bimodules and �-sequences.
We just need a mild assumption on our operads to ensure the validity of the definition of the
Reedy model structures (technically, we just need to consider well-pointed operads, in which
the inclusion of the operadic unit in arity one defines a cofibration of spaces).

We use the notation �BimodP ; Q for the category of bimodules associated to a pair of
operads (P, Q), while we adopt the notation �IbimodO for the category of infinitesimal
bimodules over an operad O . To distinguish the Reedy model structure from the projec-
tive model structure, we adopt the convention to keep these notations �BimodP ; Q and
�IbimodO when we equip these bimodule categories with the projective model structure,
andwe pass to the notations�BimodP ; Q and�IbimodO whenwe consider the Reedymodel
structure. We prove that our model categories have the following features.

� Sections 3.1.1 and 5.1.1: All the objects in �BimodP ; Q and �IbimodO are fibrant.
Furthermore, we give explicit fibrant coresolutions in the Reedy model categories
�BimodP ; Q and �IbimodO .

� Sections 2.2.1, 3.1.3, 4.2.1 and 5.1.2: The categories �BimodP ; Q , �BimodP ; Q ,
�IbimodO and�IbimodO are right proper.Moreover, if P is either projectively or Reedy
cofibrant, and Q, O are componentwise cofibrant, then the categories �BimodP ; Q
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and �BimodP ; Q are left proper relative to componentwise cofibrant objects while
�IbimodO and �IbimodO are left proper.

� Sections 3.1.2 and 5.1.2: Let Q>0 and O>0 be the sub-operads obtained from Q and
O , respectively, by removing the arity zero components. Any map in �BimodP ; Q and
�IbimodO is a cofibration if and only if the corresponding map in �BimodP ; Q>0 and
�IbimodO>0 , respectively, is a cofibration.

� Sections 3.2.1 and 5.2.1: If M and N are (P-Q)-bimodules, while M ′ and N ′ are
O infinitesimal bimodules, then one has weak equivalences between derived mapping
spaces

�BimodhP ; Q(M ; N ) � �BimodhP ; Q(M ; N ) and

�IbimodhO (M ′ ; N ′) � �IbimodhO(M ′ ; N ′).

� Sections 2.2.2, 3.1.3, 4.2.2 and 5.1.2: Let φ1 : P → P ′, φ2 : Q → Q′ and φ :
O → O ′ be weak equivalences between �-cofibrant operads P , P ′ and componentwise
cofibrant operads Q, Q′, O , O ′, then the extension and restriction functors form Quillen
equivalences

φ! : �BimodP ; Q � �BimodP ′ ; Q′ : φ∗, φ! : �IbimodO � �IbimodO ′ : φ∗,
φ! : �BimodP ; Q � �BimodP ′ ; Q′ : φ∗, φ! : �IbimodO � �IbimodO ′ : φ∗.

(Also, see Sects. 2.2.2 and 3.4.1 for a refinement of this result when we forget about the
arity zero components of bimodules or, respectively, if such components are reduced to
a point.)

Organization of thepaper:We review the background of our constructions in the first section
of the paper. We review the definition of the projective model category of �-sequences and
the definition of the Reedy model category of �-sequences. We also build an explicit fibrant
coresolution in the category of �-sequences. Then we recall the definition of the projective
model category of operads and the Reedy model category of reduced operads together with
their properties. Most of the new results in this section appear at the very end in Sect. 1.5,
where we study some natural properties of cofibrant operads.

In the second section, we define the projective model category of (P-Q)-bimodules. First,
we show that this category is equivalent to the category of algebras over a colored operad.
Then we give combinatorial descriptions of the free bimodule functor and of pushouts. After
that, we define the projective model category structure for bimodules and we prove that this
model structure is relatively left proper and that the extension/restriction adjunctions along
weak equivalences of operads form Quillen equivalences.

In the third section, we study the Reedy model category of bimodules. We check that
(almost all) the constructions introduced in the second section can be extended to the Reedy
model category. Furthermore, we give an explicit Reedy fibrant coresolution as well as a
characterization of cofibrations. As a consequence of this characterization, we show that this
model category is relatively left proper and that the extension/restriction adjunctions along
weak equivalences of reduced operads form Quillen equivalences. Both model structures
having the same set of weak equivalences, they produce the same homotopy category. Then
we construct a functorial cofibrant resolution for bimodules in both (projective and Reedy)
model structures. As an application, we explain how our Reedy fibrant coresolution can be
expressed in terms of internal hom in the category of �-sequences. In the last subsection,
assuming that both operads P and Q are reduced, we study the subcategory �∗BimodP ; Q
of reduced bimodules equipped with the Reedy model category structure. This subcategory
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enjoys slightly better properties as we compare the Reedy model structures of bimodules and
of reduced bimodules.

In the fourth sectionwe adapt the results from the second section to the context of infinites-
imal bimodules. In that case, the proofs are easier since pushouts of infinitesimal bimodules
coincide with pushouts taken componentwise. Similarly, we show that this category is equiv-
alent to the category of algebras over a colored operad. After that, we introduce the projective
model category structure and we prove that the extension/restriction adjunctions along weak
equivalences of operads form Quillen equivalences.

In the fifth section we adapt the results from the third section to the context of infinitesimal
bimodules. In the same way, we build an explicit fibrant coresolution. We give a character-
ization of cofibrations and, as a consequence of it, we show that the extension/restriction
adjunctions along weak equivalences of reduced operads form Quillen equivalences. We
then compare the projective and Reedy model structures on infinitesimal bimodules. At the
end we exhibit explicit cofibrant resolutions.

The last sixth section is an “Appendix” where several technical lemmas that we use from
the equivariant homotopy theory are formulated and proved.

Notation: In [18, 19], the notation �∗Operad actually refers to a category of �-operads,
which is defined by dropping the arity zero component of reduced operads. But we do not
use this convention in this paper.We therefore forget about the refined structure of a�-operad
and we use the notation �∗Operad for the category of reduced operads. We keep the letter �

in order to emphasize the underlying�-diagram structure of our objects, but we forget about
further reductions in the definition of our structures. We write�∗ instead of� to remind that
the operads in this category are reduced.

In the paper we use many different sets of rooted trees. As a general rule, we use letter P

for sets of planar trees and letter T for non-planar trees. Usually the set �(T ) of leaves of a
planar tree T is labelled by a permutation in �|T |, where |T | is the number of leaves in the
tree. Internal vertices in these trees are usually allowed to have any arity unless we use the
superscript ≥ 1 or ≥ 2, like in P

≥1 or T
≥2 meaning that the arities of vertices are ≥ 1 or

≥ 2, respectively. We use different terms to deal with trees in the context of operads, such
as set of leaves �(T ), set of vertices V (T ), set of edges E(T ), the arity |v| of a vertex v, etc
from [6, Section 5.8]. Even though we formally do not define these terms, we show them on
figures, so that the reader can easily guess the meaning of those words without referring to
loc. cit.

For a subspace of a space X , we sometimes use notation ∂X . By ∂
∏

i∈I Xi we understand
a subspace in

∏
i∈I Xi consisting of points with at least one coordinate in ∂Xi . A point in

the product space
∏

i∈I Xi is usually denoted by {xi }i∈I or just {xi } if there is no ambiguity
about the set I .

1 Model Category Structures for Operads

In this section, we introduce the categories �Seq and �Seq as well as their model category
structures called projective and Reedymodel category structures. These are categories whose
objects are sequences of topological spaces with some extra structures. We also define the
categories of operads �Operad and reduced operads �∗Operad. Both categories inherit
model category structures from the following adjunctions in which the functors F� and F�
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are the left adjoints to the forgetful functors:

F� : �Seq � �Operad : U� and F� : �>0Seq � �∗Operad : U�.

Here�>0Seq can be interpreted as the full model subcategory of�Seq composed of objects
whose arity zero component is the one point topological space (see Sect. 1.2). Both model
categories �Operad and �∗Operad have intensively been studied by Berger-Moerdijk [6]
and the second author [18, 19]. We list their properties in Sect. 1.4. Usually, in order to define
a model category structure from an adjunction, we use the following statement also called
the transfer principle:

Theorem 1.1 [6, Section 2.5] Let D be a cofibrantly generated model category with a set of
generating cofibrations Dc and a set of generating acyclic cofibrations Dac. Let L : D �
C : R be an adjunction with left adjoint L and right adjoint R. Assume that C is bicomplete.
Define a map f in C to be a weak equivalence (respectively, a fibration) if R( f ) is a weak
equivalence (respectively, a fibration) in D. If the following conditions are satisfied:

(i) both sets L(Dc) and L(Dac) permit the small object argument;
(ii) C has a fibrant replacement functor for objects;
(iii) C has a functorial path object for fibrant objects, i.e. for any fibrant object X there is

a functorial factorization of the diagonal map into a weak equivalence followed by a
fibration

X
�

Path(X) X × X;
then we have a cofibrantly generated model category structure on C in which the set of
generating cofibrations (respectively acyclic cofibrations) is given by L(Dc) (respectively,
L(Dac)). Furthermore, this model category structure makes the adjunction (L; R) into a
Quillen adjunction.

As explained in the following subsections, all objects in the category �Seq are fibrant
and the identity functor produces a functorial fibrant replacement in the category �Operad.
So, the transfer principle can easily be applied to the adjunction (F�;U�). Unfortunately,
the objects in �>0Seq are not necessarily fibrant and the second author proves in [19] the
existence of the model category structure for reduced operads without the transfer principle.
In the present work, we build an explicit functorial fibrant replacement in both categories
�Seq and �>0Seq . This resolution will be enhanced in the next sections in order to define
Reedy model category structures for (infinitesimal) bimodules using the transfer principle.

Both categories �Seq and �Seq are obtained as categories of functors from � and � to
topological spaces. So the following model category structures are particular cases of model
categories of diagrams. We refer to [5, 22, 25] for a comprehensive study of projective model
categories of diagrams over a discrete category (and of dual injective model categories of
diagrams), to [11, 33] for a study of projective model categories of diagrams in the enriched
setting. For Reedy model structures and applications to simplicial homotopy theory, we refer
the reader to [23, 34] and to [1, 4, 9, 36, 37] for generalizations to enriched categories or
extended Reedy categories.

1.1 The Projective Model Categories of G-Spaces and of 6-Sequences

• The model category of spaces. In what follows, by spaces we mean compactly generated,
but not necessarily Hausdorff, topological spaces. Such spaces are often called k-spaces
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[28]. One has a natural kelleyfication functor from the category of all topological spaces to
k-spaces. The topology of mapping spaces, products, subspaces and more generally limits
in this category are defined by taking kellyfication of their usual compact-open, product and
subspace topologies. The coproducts, quotients and more generally any colimits of k-spaces
are automatically k-spaces and kelleyfication is not necessary. The category of k-spaces has
the advantage of being cartesian closed [31, Theorem 5.5]. This statement implies that the
cartesian products distribute over colimits, which is a prerequisite for the theory of operads
and operadic objects.Moreover, it implies that the product of two quotientmaps (in particular,
of a quotient map and an identity one) is again a quotient map in the category of k-spaces [10,
Corollary 5.9.10]. We use this observation in our constructions of free objects and pushouts
in the category of operads and in the categories of bimodules over operads.

The category of spaces, fixed in the previous paragraph (thus, the category of k-spaces), is
denoted by Top and is equippedwith theQuillenmodel category structure (see [28, Theorem
2.4.23]) in which a continuous map is a weak equivalence (respectively, a fibration) if it is a
weak homotopy equivalence (respectively, a Serre fibration). According to this definition, all
spaces are fibrant and the model category Top is cofibrantly generated. The set of generating
cofibrations Sc and the set of generating acyclic cofibrations Sac are the following ones,
where S−1 denotes the empty set:

Sc = {
Sn−1 ↪→ Dn, n ≥ 0

}
and Sac = {

Dn × {0} ↪→ Dn × [0, 1], n ≥ 0
}
.

• Projective model category of G-spaces. Let G be a topological monoid. The category
G-Top of G-spaces consists of spaces equipped with a right action of G. There is an adjunc-
tion G[−] : Top � G-Top : U , where U is the forgetful functor and G[−] is the functor
sending a space X to the G-space G[X ] = X × G. As a consequence of Theorem 1.1,
the category G-Top inherits a cofibrantly generated model category structure whose sets of
generating cofibrations and acyclic cofibrations are G[Sc] and G[Sac], respectively. Indeed,
the identity functor provides a fibrant replacement functor while, for any G-space X , the
functorial path object is given by the mapping space

Path(X) = Map( [0 , 1] , X ).

Cofibrations and fibrations in this category will be called G-cofibrations and G-fibrations,
respectively. We will be mostly using spaces with a right action of a monoid (or a group). At
few occasions we will need to deal with spaces endowed with a left action. Such spaces will
be called left G-spaces and the category of such will be denoted by Gop-Top.

• Projective model category of �-sequences. Let � be the category whose objects are finite
sets [n] = {1, . . . , n}, with n ≥ 0, and morphisms are bijections between them. By a �-
sequence, we mean a contravariant functor from � to the category of spaces. In practice, a
�-sequence is given by a family of spaces X(0), X(1), . . . together with an action of the
symmetric group: for each permutation σ ∈ �n , there is a map

σ ∗ : X(n) −→ X(n);
x �−→ x · σ,

(1)

satisfying the relations (x · σ) · τ = x · (στ), with τ ∈ �n , and x · e = x . A morphism
between �-sequences is a family of continuous maps that should preserve the right action
of the symmetric groups. We denote by �Seq the category of �-sequences and by �>0Seq
its subcategory composed of �-sequences whose arity 0 component is empty.

Given an integer r ≥ 0,we also consider the category of r -truncated�-sequences Tr�Seq
whichwedefine as follows.LetTr� be the categorywith objects [n] = {1, . . . , n}, 0 ≤ n ≤ r ,
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and bijections between them. An r -truncated�-sequence is a contravariant functor from Tr�
to the category of spaces. In practice, an r -truncated�-sequence is given by a family of spaces
X(0), . . . , X(r) together with an action of the corresponding symmetric group �n for each
n ≤ r .

A (possibly truncated)�-sequence is said to be pointed if there is a distinguished element
∗1 ∈ X(1) called unit. It is said well-pointed if the inclusion ∗1 → X(1) is a cofibration.
Recall that we deal with the Quillenmodel structure on topological spaces. Thus, we consider
the cofibrations of theQuillenmodel structure in this definition, not theHurewicz cofibrations
of the usual notion of well-pointed space. Note that a space T is well-pointed in this sense
as soon as it is cofibrant (with respect to the Quillen model structure). Indeed, in this case, T
occurs as a retract of a (generalized) CW-complex and we may just observe that the inclusion
of any choice of base point in a (generalized) CW-complex is a cofibration to conclude that
this is the same for T . From this observation, we deduce that a (truncated) �-sequence X is
well-pointed in the sense of our definition if and only if it is pointed and its component X(1)
is cofibrant.

There is an obvious functor called truncation functor

Tr (−) : �Seq −→ Tr�Seq.

One has

�Seq =
∏

n≥0

�n-Top, �>0Seq =
∏

n≥1

�n-Top and Tr�Seq =
∏

0≤n≤r

�n-Top.

Since �n-Top is a cofibrantly generated model category for any n ≥ 0, the categories
�Seq , �>0Seq and Tr�Seq are endowed with a cofibrantly generated model category
structure, called the projective model category structure, in which all objects are fibrant.
More precisely, a map between (possibly truncated) �-sequences is a weak equivalence
(respectively, a fibration) if themap is degreewise aweakhomotopy equivalence (respectively,
a Serre fibration). The sets of generating cofibrations Sc and acyclic cofibrations Sac of�Seq
(respectively, �>0Seq and Tr�Seq) are given by

Sc =
⋃

n≥0
(resp. n>0 and

0≤n≤r)

⎛

⎝Snc ×
∏

m 
=n

1m

⎞

⎠ and Sac =
⋃

n≥0
(resp. n>0 and

0≤n≤r)

⎛

⎝Snac ×
∏

m 
=n

1m

⎞

⎠

where Snc and S
n
ac are the sets of generating cofibrations and acyclic cofibrations, respectively,

of �n-Top while 1m : ∅ → ∅ is the identity map of the initial object of �m-Top (see [26,
Proposition 11.1.10]).

• Notation for cofibrations. Let C be a category together with a functor U from C to the
category �Seq (respectively the categories �>0Seq and Tr�Seq). In the rest of the paper,
an object C in the category C is said to be �-cofibrant if the underlying �-sequence U(C)

is cofibrant in the projective model category �Seq (respectively, �>0Seq and Tr�Seq). It
is called componentwise cofibrant if every component U (C)(n) is cofibrant in Top. In case
the forgetful functor U factors through the category of pointed (truncated) �-sequences,
the object C is called well-pointed if U (C)(1) is cofibrant. In the following the category
C will be the category of operads �Operad, of reduced operads �∗Operad, of bimodules
�BimodP ; Q = �BimodP ; Q , of reduced bimodules �∗BimodP ; Q , or of infinitesimal
bimodules �IbimodO = �IbimodO .

123



834 J. Ducoulombier et al.

1.2 The ReedyModel Categories of3- and3>0-Sequences

• The category of �-sequences.We refer the reader to [18, 19] for a detailed account on the
categories introduced in this subsection. Let � be the category whose objects are finite sets
[n] = {1, . . . , n}, with n ≥ 0, and morphisms are injective maps between them. (Hence, �
is the subcategory of isomorphisms of �.) By a �-sequence, we understand a contravariant
functor from � to spaces and we denote the corresponding category by �Seq . In practice,
such an object is given by a �-sequence X(0), X(1), . . . together with maps generated by
applications of the form

s∗
i : X(n) −→ X(n − 1), with 1 ≤ i ≤ n, (2)

associated to the injective maps

si : [n − 1] −→ [n] ; � �−→
{

� if � < i,

� + 1 if � ≥ i .

Given an integer r ≥ 0, we also consider the full subcategory Tr � whose objects are
families of finite sets [n] = {1, . . . , n}, with 0 ≤ n ≤ r . An r -truncated �-sequence is a
contravariant functor from Tr � to spaces and we denote by Tr �Seq the associated category.
We will also be using the categories �>0 and Tr�>0 which are full subcategories of non-
empty objects of � and Tr�. The categories �>0Seq and Tr�>0Seq are similarly defined.
There exist obvious truncation functors

Tr (−) : �Seq −→ Tr �Seq and Tr (−) : �>0Seq −→ Tr �>0Seq.

• Useful adjunctions. The inclusions of categories � ⊂ � and Tr� ⊂ Tr� induce adjunc-
tions between the categories of (possibly truncated) �-sequences and �-sequences

�[−] : �Seq � �Seq : U and �r [−] : Tr�Seq � Tr�Seq : U
where U is the obvious forgetful functor, which forgets about the operations generated by
(2). The functor �[−] sends a �-sequence X to the �-sequence �[X ] given by

�[X ](n) :=
∐

�+([n];[m])
m≥n

X(m), for all n ≥ 0,

where �+ is the subcategory of order preserving injective maps. A point in �[X ](n) is
denoted by (h; x) with h : [n] → [m] an order preserving injective map and x ∈ X(m). For
any permutation σ ∈ �n and any order preserving injective map h : [n] → [m], we denote
by σh ∈ �m the permutation

σh(i) :=
{
h(σ ( j)), if h( j) = i,

i, otherwise.

According to this notation, the �-structure on �[X ] is given by the following formulas:

σ ∗ : �[X ](n) −→ �[X ](n) ; (h; x) �−→ (h; x · σh),

s∗
i : �[X ](n) −→ �[X ](n − 1) ; (h; x) �−→ (h ◦ si ; x).

• The matching object. For a (possibly truncated) �-sequence X , the matching object of X ,
denoted by M(X), is the (possibly truncated) �-sequence defined as follows:

M(X)( n ) = lim
h∈�+([�] ; [n])

�<n

X(�). (3)
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Let σ ∈ �n be a permutation and h : [�] → [n] be an order preserving inclusion. We
denote by h · σ : [�] → [n] the unique order preserving inclusion whose image is Im(σ ◦ h)

and σ [h] ∈ �� is the unique permutation satisfying σ [h](i) < σ [h]( j) if and only if
σ(h(i)) < σ(h( j)). According to this notation, the action of the symmetric group on the
matching object is the following one:

σ ∗ : M(X)(n) −→ M(X)(n);
x = {xh}h �−→ σ ∗(x) = {xh·σ · σ [h]}h .

• The Reedy model category of �-sequences. According to [19, Theorem 8.3.19], the cat-
egories �Seq , �>0Seq , Tr �Seq and Tr �>0Seq are endowed with cofibrantly generated
model category structures in which weak equivalences are objectwise weak homotopy equiv-
alences. A morphism f : X → Y is a fibration if the corresponding maps

X(n) −→ M(X)(n) ×M(Y )(n) Y (n),

whenever defined, are Serre fibrations. The set of generating cofibrations (respectively the
set of generating acyclic cofibrations) consists of maps of the form

(�[ f ], ι) : �[X ]
∐

∂�[X ]
∂�[Y ] −→ �[Y ],

where f : X → Y is a generating cofibration (respectively a generating acyclic cofibration)
in the projectivemodel category of�-sequences. Themap ι : ∂�[Y ] → �[Y ] is the inclusion
where ∂�[−] is the functor from �-sequences to �-sequences left adjoint to the matching
object functor M and expressed by the formula

∂�[Y ](n) = colim
h∈�+([n] ; [�])

�>n

�[Y ](�) =
∐

�+([n];[�])
�>n

Y (�).

Remark 1.2 The truncation functors

Tr : �Seq →Tr �Seq; Tr : �>0Seq →Tr �>0Seq; Tr : Tr ′ �Seq → Tr �Seq, r ′ >r ,

preserve fibrations, cofibrations and weak equivalences.

For fibrations and weak equivalences, the statement follows from definition. For cofi-
brations we recall [19, Theorem 8.3.20] that a morphism in the Reedy model structure is
a cofibration if and only if it is a projective cofibration in the corresponding category of
(truncated) �-sequences.

1.3 A Fibrant Replacement Functor for3- and3>0-Sequences

As explained previously, in order to apply the transfer principle, described in Theorem 1.1,
we need a functorial fibrant replacement. Unfortunately, the objects in �Seq and �>0Seq
are not necessarily fibrant and therefore the identity functors can not be regarded as a fibrant
replacement one. To solve this problem, we build explicit and functorial fibrant coresolutions

(−) f : �Seq −→ �Seq and (−) f : �>0Seq −→ �>0Seq.

For this purpose, we need some notation. For any map h ∈ �+([�]; [n]), we denote by
hc ∈ �+([n−�]; [n]) its complementary map which is the unique order preserving inclusion
so that Im(h) ∩ Im(hc) = ∅. Then, for any pair of order preserving inclusions of the form
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si : [�] → [� + 1] and h : [� + 1] → [n], we denote by εh;i ∈ [n − �] the unique index such
that the following diagram commute:

[n − � − 1]
sεh;i

hc

[n − �]

(h◦si )c
[n]

Let X be a �-sequence. The space X f (n) is the subspace

X f (n) ⊂
∏

�+([�] , [n])
�≤n

Map
( [0 , 1]n−� ; X(�)

)
,

consisting of families of maps { fh}h∈�+([�] , [n]) such that

[0 , 1]n−�−1

fh

τ1[εh;i ] [0 , 1]n−�

fh◦si

X(� + 1)
s∗i

X(�)

(4)

where τt [k] : [0 , 1]n−�−1 → [0 , 1]n−�, with t ∈ [0 , 1] and k ∈ [n − � − 1], inserts t at the
k-th position:

τt [k](t1, . . . , tn−�−1) = (t ′1, . . . , t ′n−�) with t ′j =

⎧
⎪⎨

⎪⎩

t j if j < k,

t if j = k,

t j−1 if j > k.

• The �-structure on X f . In order to describe the �-structure we consider the following
notation. For any order preserving inclusions si : [n − 1] → [n] and h : [�] → [n − 1], we
denote by ϑh;i the unique index such that the following diagram commute:

[n − � − 1] hc

sϑh;i

[n − 1]

si

[n − �]
(si◦h)c

[n]

According to this notation, the �-structure operations are given by

s∗
i : X f (n) −→ X f (n − 1) ; { fh}h∈�+([�] , [n]) �−→ {(s∗

i ◦ f )h}h∈�+([�] , [n−1]),

σ ∗ : X f (n) −→ X f (n) ; { fh}h∈�+([�] , [n]) �−→ {( f · σ)h}h∈�+([�] , [n]),

where the continuous maps (s∗
i ◦ f )h and ( f · σ)h are the following ones:

(s∗
i ◦ f )h : [0 , 1]n−�−1 −→ X(�) ; (t1, . . . , tn−�−1) �−→ fsi ◦h(τ0[ϑh;i ](t1, . . . , tn−�−1)),

( f · σ)h : [0 , 1]n−� −→ X(�) ; (t1, . . . , tn−�) �−→ fh·σ (tσ [hc]−1(1), . . . , tσ [hc]−1(n−�)) · σ [h].
(5)
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• The fibrant replacement functor. The �-sequence X f is obviously functorial along the
�-sequence X . Furthermore, there is a map ϕ : X → X f sending a point x ∈ X(n) to the
family of constant maps {ϕ(x)h}h∈�+([�] , [n]) obtained using the �-structure of X :

ϕ(x)h : [0 , 1]n−� X(�);
(t1, . . . , tn−�) h∗(x).

The map is well defined and preserves the�-structures. Indeed, one has the following equal-
ities:

s∗
i (ϕ(x)) = s∗

i

⎛

⎜
⎝

⎧
⎨

⎩

ϕ(x)h : [0 , 1]n−� X(�);
(t1, . . . , tn−�) h∗(x).

⎫
⎬

⎭
h∈�+([�] , [n])

⎞

⎟
⎠

=
⎧
⎨

⎩

s∗
i ◦ ϕ(x)h : [0 , 1]n−�−1 X(�);

(t1, . . . , tn−�−1) ϕ(x)si ◦h(t1, . . . , tϑh;i−1, 0, tϑh;i , . . . , tn−�−1).

⎫
⎬

⎭
h∈�+([�] , [n−1])

ϕ(s∗
i (x)) =

⎧
⎨

⎩

ϕ(x)h : [0 , 1]n−�−1 X(�);
(t1, . . . , tn−�−1) h∗(s∗

i (x)).

⎫
⎬

⎭
h∈�+([�] , [n−1])

Proposition 1.3 The map φ : X → X f is a weak equivalence of �-sequences.

Proof More precisely, we show that the map of �-sequences ϕn : X(n) → X f (n) is a
homotopy equivalence of�-sequences. For this purpose, we introduce amap of�-sequences
(which is not a map of �-sequences) ψ : X f → X given by

ψn : X f (n) X(n);
{ fh}h∈�+([�] , [n]) f[n]→[n](∗),

which makes ϕ into a deformation retract. The homotopy consists in bringing the parameters
to 1:

Hn : [0 , 1] × X f (n) X f (n);
t ; { fh} {Hn(t ; fh)},

with Hn(t ; fh)(t1, . . . , tn−�) = fh
(
(1 − t)t1 + t, . . . , (1 − t)tn−� + t

)
. ��

Proposition 1.4 The �-sequence X f is Reedy fibrant.

Lemma 1.5 (Fiber product version of Reedy’s patching lemma, see Lemma 1.3 in [35]) For
any commutative diagram of spaces of the form

A
f

vA

B

vB

C
g

vC

A′
f ′ B ′ C ′

g′

the induced map between the limits of the horizontal diagrams

v : lim(A → B ← C
) −→ lim

(
A′ → B ′ ← C ′)
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is a fibration if the map vC as well as the map

(vA; f ) : A −→ B ×B′ A′ (6)

are fibrations. Furthermore, the map v is an acyclic fibration if the map vC and (6) are acyclic
fibrations.

Proof of Proposition 1.4 Weshow that themap from X f (n) to thematching objectM(X f )(n)

is a Serre fibration. Let us remark that the spaces X f (n) and M(X f )(n) can be expressed in
terms of pullback diagrams. More precisely, one has

X f (n) = lim

⎛

⎝A −→
∏

si :[n−1]→[n]
X(n − 1) ←− X(n)

⎞

⎠ , where

A ⊂
∏

�+([�] , [n])
�<n

Map
([0 , 1]n−� ; X(�)

)

is the subspace satisfying the condition (4). The map from A to the product
∏

si X(n − 1)
sends a family of maps { fh} to the family of points { fsi (1)} by taking the evaluation at the
point 1. Furthermore, one has the commutative diagram

A
∏

si :[n−1]→[n]
X(n − 1) X(n)

M(X f )(n) ∗ ∗
According to Lemma 1.5 and since X(n) is fibrant, we only need to check that the map

A −→ A′ = M(X f )(n) ×
∏

si :[n−1]→[n]
X(n − 1). (7)

is a Serre fibration. In other words, if we denote by ∂ ′[0 , 1]n−� the subspace of [0 , 1]n−�

composed of the point (1, . . . , 1) and the points having at least one coordinate equal to 0,
then A′ is the following subspace satisfying the relation (4):

A′ ⊂
∏

�+([�] , [n])
l<n

Map
(
∂ ′[0 , 1]n−� ; X(�)

)
.

Let us notice that the inclusion from ∂ ′[0 , 1]n−� into [0 , 1]n−� is a cofibration as an
inclusion of CW-complexes. Unfortunately, we can not deduce directly the result due to
condition (4). To solve this problem, we introduce a cofiltration of the map (7) according to
the dimension of the cubes. Let us consider the following subspaces:

Ak ⊂
∏

�+([�] , [n])
n−k≤�<n

Map
([0 , 1]n−� ; X(�)

)
and

A′
k ⊂

∏

�+([�] , [n])
n−k≤�<n

Map
(
∂ ′[0 , 1]n−� ; X(�)

)
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satisfying condition (4). In particular, one has An = A and A′
n = A′. Furthermore, the spaces

Ak and A′
k can be obtained from Ak−1 and A′

k−1, respectively, using the following pullback
diagrams:

Ak

∏

[n−k]→[n]
Map

([0 , 1]k ; X(n − k)
)

Ak−1

∏

[n−k]→[n−k+1]→[n]
Map

([0 , 1]k−1 ; X(n − k)
)

A′
k

∏

[n−k]→[n]
Map

(
∂ ′[0 , 1]k ; X(n − k)

)

A′
k−1

∏

[n−k]→[n−k+1]→[n]
Map

(
∂ ′[0 , 1]k−1 ; X(n − k)

)

We prove by induction that the maps Ak → A′
k are Serre fibrations. First, the map

A1 =
∏

[n−1]→[n]
Map

([0 , 1] ; X(n)
) −→

∏

[n−1]→[n]
Map

(
∂[0 , 1] ; X(n)

) = A′
1

is obviously a Serre fibration since the inclusion from ∂[0 , 1] = {0 , 1} into the interval
[0 , 1] is a cofibration. From now on, we assume that the map Ak−1 → A′

k−1 is a Serre
fibration. Then we consider the commutative diagram

∏

[n−k]→[n]
Map

([0 , 1]k ; X(n − k)
) ∏

[n−k]→[n−k+1]→[n]
Map

([0 , 1]k−1 ; X(n − k)
)

Ak−1

∏

[n−k]→[n]
Map

(
∂ ′[0 , 1]k ; X(n − k)

) ∏

[n−k]→[n−k+1]→[n]
Map

(
∂ ′[0 , 1]k−1 ; X(n − k)

)
A′
k−1

According to Lemma 1.5, one has to check that the map from the space
∏

[n−k]→[n]
Map

([0 , 1]k ; X(n − k)
)

to the limit of the diagram

∏

[n−k]→[n−k+1]→[n]
Map

([0 , 1]k−1 ; X(n − k)
)

∏

[n−k]→[n]
Map

(
∂ ′[0 , 1]k ; X(n − k)

) ∏

[n−k]→[n−k+1]→[n]
Map

(
∂ ′[0 , 1]k−1 ; X(n − k)

)

is a Serre fibration. The limit corresponds to the space
∏

[n−k]→[n]
Map

(
∂[0 , 1]k ; X(n − k)

)

and the map
∏

[n−k]→[n]
Map

([0 , 1]k ; X(n − k)
) −→

∏

[n−k]→[n]
Map

(
∂[0 , 1]k ; X(n − k)

)

is obviously a Serre fibration since the inclusion from ∂[0 , 1]k to [0 , 1]k is a cofibration. ��
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Remark 1.6 The same strategy can be used in order to get a fibrant replacement functor for
r -truncated �-sequences. In that case, we only need to restrict our construction to order
preserving inclusions h : [�] → [n] with n ≤ r . Similarly, we get fibrant replacement
functors for the categories �>0Seq and Tr�>0Seq .

1.4 The Projective/ReedyModel Category of Operads

An operad is a pointed�-sequence O together with operations called operadic compositions

◦i : O(n) × O(m) −→ O(n + m − 1), with 1 ≤ i ≤ n. (8)

These operations satisfy associativity and unit axioms as well as compatibility relations
with the symmetric group action. More precisely, for any integers i ∈ {1, . . . , n}, j ∈
{i + 1, . . . , n}, k ∈ {1, . . . ,m} and any permutations σ ∈ �n and τ ∈ �m , one has the
following commutative diagrams:

O(n)×O(m)×O(�)
◦i×id

id×◦k

O(n + m − 1)×O(�)

◦i+k−1

O(n)×O(m+�−1) ◦i
O(n+m+�−2)

Linear associativity axiom

O(n) × O(m) × O(�)
◦i×id

◦ j×id

O(n + m − 1) × O(�)

◦i+m−1

O(n + � − 1) × O(m) ◦i
O(n + m + � − 2)

Ramified associativity axiom

O(n) × O(1)

◦i

O(n)
∗1×idid×∗1

O(1) × O(n)

◦1

O(n)

Unit axiom

O(n) × O(m)
◦i

σ ∗×τ∗

O(n + m − 1)

(σ◦σ(i)τ )∗

O(n) × O(m) ◦σ(i)
O(n + m − 1)

Compatibility with the symmetric group action

where the permutation σ ◦σ(i) τ is obtained from the well known operadic compositions on
the symmetric groups (see [18, Proposition 1.1.9]).

A map between operads should preserve the operadic compositions. We denote by
�Operad the category of topological operads. The category of operads is obviously endowed
with a forgetful functor to the category of�-sequences by forgetting the operadic composition
(8):

U� : �Operad −→ �Seq. (9)

• The category of reduced operads and their underlying �-structures. An operad O is said
to be reduced if O(0) is the one point topological space. This point is denoted by ∗0. We
denote by �∗Operad the category of reduced operads. This category is equipped with a
forgetful functor to the category of �>0-sequences, which consists in forgetting the arity
zero component and the operadic compositions (8) for m ≥ 1:

U� : �∗Operad −→ �>0Seq. (10)

(Note also that the category of �>0-sequences is equivalent to the category of reduced �-
sequences, i.e �-sequences X so that X(0) = ∗.) Indeed, if O is a reduced operad, then the
�>0-structure on U�(O) is generated by the operations of the form

s∗
i : U�(O)(n) = O(n) −→ U�(O)(n − 1) = O(n − 1);

θ �−→ θ ◦i ∗0.
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• The model category of algebras over an operad. An algebra over a (possibly reduced)
operad O , or O-algebra, is a topological space X together with operations of the form

αn : O(n) × X×n −→ X , with n ≥ 0,

compatiblewith the operadic structure (see [18, Section 1.1.13 andFigure 1.9]). The category
of O-algebras is denoted by AlgO . It has been proved in [8, Theorem 2.1] that the category of
algebras over any operad O in Top inherits a cofibrantly generated model category structure
by using the transfer principle applied to the adjunction FO : Top � AlgO : U where the
free algebra functor FO is the left adjoint to the forgetful functor U .
• The projective and Reedy model categories of operads and reduced operads.Both forgetful
functors (9) and (10) have left adjoints, which we respectively denote by F� and F�, and
which, given a �- or a �>0-sequence X , produce the free operad generated by X . Explicitly,
elements of F�(X) and F�(X) are described as rooted trees (without univalent vertices for
reduced operads) with internal vertices labelled by elements of the sequence. We refer the
reader to [18] for a detailed account on these adjunctions:

F� : �Seq � �Operad : U� and F� : �>0Seq � �∗Operad : U�.

As a consequence of the transfer principle 1.1, the category�Operad inherits a cofibrantly
generatedmodel category structure which we call the projectivemodel structure (we refer the
reader to [6] for more details). Similarly to the usual category of �-sequences, the category
�>0Seq is also endowed with a (cofibrantly generated) Reedy model category structure.
The second author in [19] proves that �∗Operad has a cofibrantly generated model category
structure called theReedymodel structure. In both cases, a map of (possibly reduced) operads
f : P → Q is a weak equivalence (respectively, a fibration) if the map U�( f ) or U�( f ) is
a weak equivalence (respectively, a fibration) in the appropriate category.

Theorem 1.7 The projective and the Reedy model structures have the following properties:

� [6, Section 2.5]: All operads are fibrant in �Operad.
� [27, Theorem 3.1.10]: The category of operads (respectively of reduced operads) is

left proper (see Sect. 2.2.1) relative to the class of �-cofibrant operads (respectively of
reduced �-cofibrant operads).

� [19, Theorem 8.4.12]: A map of reduced operads φ : P → Q is a cofibration in
�∗Operad if and only if the corresponding map φ>0 : P>0 → Q>0 is a cofibration in
�Operad where P>0 and Q>0 are the sub-operads obtained from P and Q, respectively,
by redefining the arity zero components to be empty.

� [21, Theorem 1]: If P and Q are reduced operads, then one has a weak equivalence
between the derived mapping spaces

�Operadh(P ; Q) � �∗Operadh(P ; Q).

� [6, Theorem 4.4], [20, Theorem 15.A]: If φ : P → Q is a weak equivalence between
�-cofibrant operads, then the extension φ! and restriction φ∗ functors (see Sect. 2.2.2)
form a Quillen equivalence

φ! : AlgP � AlgQ : φ∗.

1.5 Properties of Cofibrant Operads

The results of this section are used in Sect. 2.2.1 in order to prove that the category of
bimodules is relatively left proper.
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Proposition 1.8 If P is a cofibrant operad, then its suboperad P>0, obtained by forgetting
its arity zero component, is also cofibrant.

Proof Since an operad is cofibrant if and only if it is a retract of a cellular one, we can assume
that P is cellular: P = colimα<λPα , where Pα is obtained from P<α := colimβ<αPβ using
the pushout

F(∂Xα) F(Xα)

P<α Pα,

(11)

whereF(−) is the free operadic functor (see [6] for a combinatorial description ofF in terms
of trees) and each ∂Xα → Xα is a generating �-cofibration. We need to show that P>0 is
also cellular. Note that as an operad in sets, P is a free operad generated by the �-sequence
X = ∐

α∈λ Xα\∂Xα . We claim that P>0 is also free as an operad in sets being generated by
its �-subsequence represented by trees, whose vertices are labelled by X , with the property
that only their root vertex can have leaves and in fact must have at least one leaf attached,
see Fig. 1.

This set of generating trees splits into cells of P>0, namely by the way from which Xα’s,
α ∈ λ, the labels come from. So the set of cells can be described as the set of trees as above
with vertices labelled by elements α’s from λ. One can define a total ordering of this set that
prescribes in which order the new cells are attached. Given two such trees, we compare first
the maximal elements from λ they have as labels (including their arity zero vertices). If their
maximal elements are the same, we compare which one has more such maximal labels. If
the numbers of such labels are the same, we compare their next to maximal labels. And so
on. If they have exactly the same sets of labels, we put any random order between them, or
we put them together in one bigger cell. ��

Let O be an operad. By �k � O(1), we understand the monoid that acts on O(k) and is
given by the following extension

1 O(1)×k �k � O(1) �k 1.

Fig. 1 An element in a free operad and its decomposition in the new positive arity generators
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Proposition 1.9 If O is a cofibrant operad, then each space O(n) is �n � O(1)-cofibrant.

For each 1 < k < n, we denote by O(n ; k) the subspace of O(n) which consists of
points of the form

(θ1 ◦1 θ2) · σ,

with θ2 ∈ O(i), 2 ≤ i ≤ k, θ1 ∈ O(n− i +1) while σ preserves the position of k+1, . . . , n
and shuffles {1, . . . , i} with {i + 1, . . . , k}. Both spaces O(n) and O(n ; k) inherit an action
of the monoid (�k × �n−k) � O(1) := (�k � O(1)) × (�n−k � O(1)) and the inclusion from
O(n ; k) into O(n) is a (�k × �n−k) � O(1)-equivariant map.

Proposition 1.10 If O is a cofibrant operad, then O(n ; k) is (�k × �n−k) � O(1)-cofibrant
and the map

O(n ; k) → O(n) (12)

is a (�k × �n−k) � O(1)-cofibration. As a consequence, O(n ; k) is (�k � O(1)) × �n−k-
cofibrant and the map (12) is a (�k � O(1)) × �n−k-cofibration.

These propositions are proved by similar arguments which are both adaptation of Berger-
Moerdijk’s proof of [6, Proposition 4.3] stating that cofibrant operads are always�-cofibrant.
The latter result is obtained by iteratively using [6, Lemma 5.10]. Its slightly stronger version
[7, Lemma 2.5.3] is Lemma A.1, both being equivariant pushout-product type statements
with respect to a discrete group action. In the “Appendix” we formulate and prove their
analogue – LemmaA.5 for topological monoids that applies to our case of action by monoids
�n � O(1), (�k × �n−k) � O(1), (�k � O(1)) × �n−k or alike.

Proof of Proposition 1.9 Let O be a cofibrant operad. By Proposition 1.8, without loss of
generality, we can assume that O(0) = ∅. Since O is cofibrant, this operad is a retract of a
cellular operad P . In what follows, we denote by P1 the sub-operad of P obtained by taking
the restriction to the arity 1:

P1(n) =
{
P(1) if n = 1,
∅ otherwise.

In the absence of arity zero operations, the cellular attachments can be reordered so that first
we attach arity one cells, then arity two cells and so on. In particular, the map of operads
P1 → P can also be seen as a cellular extension:

P1 P2 · · · Pα Pα+1 · · · P, (13)

where Pα , α > 1, is obtained from P<α := colimβ<α Pβ using a pushout of the form (11),
where each ∂Xα → Xα is a generating �-cofibration concentrated in arity arα ≥ 2.

For n ≥ 2, one has P1(n) = ∅, which is �n � P(1)-cofibrant. In what follows, we will
show that each map P<α(n) → Pα(n) is a �n � P(1)-cofibration. For this purpose, we need a
combinatorial description of the pushout (11) using the language of trees. Let P

≥1
n be the set

of planar rooted trees having exactly n leaves indexed by an element of the symmetric group
�n with internal vertices of arity ≥ 1. According to this notation, Pα(n) is obtained from the
set of trees P

≥1
n by indexing the vertices by points in P<α(n) and Xα . More precisely, one

has

Pα(n) =
∐

T∈P
≥1
n

∏

v∈V (T )

⎡

⎣P<α(|v|)
∐

∂Xα(|v|)
Xα(|v|)

⎤

⎦

/

∼, (14)
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where the equivalence relation is generated by the relation contracting two consecutive ver-
tices indexed by points in P<α(n) using its operadic structure, the compatibility with the
symmetric group action and the removal of vertices indexed by the unit ∗1 ∈ P<α(1) = P(1).
Let us remark that the arity one vertices are necessarily indexed by points in P(1).

We equip Pα(n)with the filtration (17) given by the number of vertices indexed by Xα . Let
T

≥2
n [m], n ≥ 2 andm ≥ 1, be the set of non-planar rooted trees with internal vertices of arity

≥ 2, having n leaves and two kinds of vertices called auxiliary and primary, respectively. The
corresponding sets of vertices of a tree T are denoted by Vaux (T ) and Vpri (T ). Furthermore,
we assume that there are no consecutive primary vertices and each tree T ∈ T

≥2
n [m] has

exactly m auxiliary vertices. For any T ∈ T
≥2
n [m], we denote by E1(T ) the subset of the set

E(T ) of edges which consists of: the root edge of T if it is adjacent to an auxiliary vertex; the
leaf edges of T connected to auxiliary vertices; the inner edges of T connecting two auxiliary
vertices. According to this notation, we set

Xα(T ) =
∏

v∈Vpri (T )

P<α(n)(|v|) ×
∏

v∈Vaux (T )

Xα(|v|) ×
∏

e∈E1(T )

P(1). (15)

The subspace ∂Xα(T ) ⊂ Xα(T ) is defined as the one composed of elements having at least
one auxiliary vertex indexed by ∂Xα . The automorphism group Aut(T ) of the tree T acts
on these spaces ∂Xα(T ) and Xα(T ) by permuting the incoming edges of the vertices. We
choose a bijection of the set �(T ) of leaves of T with the set [n]. This allows us to consider
the group Aut(T ) as a subgroup of the symmetric group �n observing how it permutes the
n leaves of T . Denote by Aut(T ) � P(1) the submonoid of �n � P(1) defined as the pullback

Aut(T ) � P(1) Aut(T )

�n � P(1) �n .

(16)

One has the filtration by the number m of vertices labelled by X :

P<α(n) = Pα(n)0 · · · Pα(n)m−1 Pα(n)m · · · Pα(n).

(17)

The inclusion Pα(n)m−1 → Pα(n)m fits in the following pushout diagram of �n � P(1)-
spaces:

∐

T∈T
≥2
n [m]

(

∂Xα(T ) ×
Aut(T )�P(1)

�n � P(1)

) ∐

T∈T
≥2
n [m]

(

Xα(T ) ×
Aut(T )�P(1)

�n � P(1)

)

Pα(n)m−1 Pα(n)m .

(18)

The map Pα(n)m−1 → Pα(n)m is a�n � P(1)-cofibration if the upper horizontal arrow in the
above diagram is one. According to Lemma A.3, the extension functor preserves cofibrations
and we are only left to showing that every inclusion ∂Xα(T ) → Xα(T ) is an Aut(T ) � P(1)-
cofibration.
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The map ∂Xα(T ) → Xα(T) is an Aut(T) � P(1)-cofibration.We induct over the number
of vertices in T . The base of induction is when T has 0 vertices for which the statement is
vacuously true. Now assume that T has ≥ 1 vertices and the statement holds for any other
rooted tree with less vertices. We also assume that for any i , P<α(i) is �i � P(1)-cofibrant
as our argument follows a double induction. Let r denote the root vertex. Let us assume that
its first � incoming edges are grafted to trees T1, . . . , T�, for some 1 ≤ � ≤ |r |, and the
remaining � − |r | edges connect to leaves. Consider the following short exact sequence of
monoids:

1 →
�∏

i=1

(
Aut(Ti ) � P(1)

) → Aut(T ) � P(1) → Aut(r) × (
�|r |−� � P(1)

) → 1,

where Aut(r) ⊂ �� is the subgroupof permutation of thefirst � incoming edges of r as a result
of Aut(T )-action. It is easy to see that this sequence is split-surjective (seeDefinitionA.4) and
thus Lemma A.5 can be applied. There are two cases to consider: the vertex r is auxiliary or
it is primary. In both cases, G2 = Aut(r)×�|r |−� and we explain how to apply Lemma A.5.

In the first casewe take A → B to be P(1)×∂Xα(|r |)×P(1)×(|r |−�) → P(1)×Xα(|r |)×
P(1)×(|r |−�), where the first factor P(1) corresponds to the root edge, while the other factors
P(1) correspond to the leaf edges connected to r . It is an Aut(r)×(�|r |−� �P(1))-cofibration
by restriction (Lemma A.3) and also Lemma A.5. For X → Y we take ∂

∏�
i=1 Xα(Ti ) →

∏�
i=1 Xα(Ti ). It is a

∏�
i=1(Aut(Ti ) � P(1))-cofibration according to Example A.6. Denote in

this case by P(1)\Xα(T ) the product (15) with one factor P(1) missing, which corresponds
to the root edge. We also denote by P(1)\∂Xα(T ) the image of ∂Xα(T ) under the projection
Xα(T ) → P(1)\Xα(T ). Note that the induction step also allows us to conclude that the
inclusion P(1)\∂Xα(T ) → P(1)\Xα(T ) is an Aut(T ) � P(1)-cofibration.

In the second case, if r is primary, then we take for A → B the inclusion ∅ → P<α(|r |).
It is an Aut(r) × (

�|r |−� � P(1)
)
-cofibration by restricting from �|r | � P(1) and applying

Lemma A.3. For X → Y we take the map ∂
∏�

i=1(P(1)\Xα(Ti )) → ∏�
i=1(P(1)\Xα(Ti )).

The space O(n) is �n � O(1)-cofibrant. Since the operad O is a retract of the operad P ,
the monoid �n � O(1) is a retract of the monoid �n � P(1). Let f : �n � O(1) → �n � P(1)
and g : �n � P(1) → �n � O(1) be these maps of monoids such that g ◦ f = id . These maps
give rise to Quillen adjunctions:

�n � O(1)-Top
i1

�n � P(1)-Top
i2

j1
�n � O(1)-Top

j2

For any A ∈ �n �O(1)-Top and B ∈ �n � P(1)-Top, the objects j2(A) and i2(B) are defined
by j2(A) = A and i2(B) = B as spaces, with the structure operations such that:

j2(A) × �n � P(1) −→
id×g

A × �n � O(1) −→ A,

i2(B) × �n � O(1) −→
id× f

B × �n � P(1) −→ B.

In order to show that O(n) is �n � O(1)-cofibrant, we consider the lifting problem

∅ X

�

O(n) Y ,

(19)
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where X → Y is an acyclic fibration in �n � O(1)-Top. Then we apply the functor j2
to Diagram (19). The map j2(X) → j2(Y ) is still an acyclic fibration in �n � P(1)-Top
because the restriction functor j2 creates fibrations and weak equivalences (in the sense that
a map β in �n � O(1)-Top is a fibration or a weak equivalence precisely if j2(β) is so in
�n � P(1)-Top). Furthermore, O being a retract of P , the space j2(O(n)) is a retract of
P(n) in �n � P(1)-Top. Since the latter is a �n � P(1)-cofibration, the space j2(O(n)) is a
�n � P(1)-cofibrant object and there is a map h : j2(O(n)) → j2(X) solution of the lifting
problem (19) in �n � P(1)-Top. Finally, the map i2(h) provides a solution to the lifting
problem (1.10) due to the relation g ◦ f = id . ��

Proof of Proposition 1.10 In what follows, we overuse the notation introduced in the proof of
Proposition 1.9. By Proposition 1.8, without loss of generality we can assume that O(0) = ∅.
Arguing in the same way as at the end of the proof of Proposition 1.9, we can assume
that O is a cellular operad. Indeed, O being a retract of a cellular operad P , the inclusion
O(n ; k) → O(n) is also a retract of P(n ; k) → P(n). For simplicity and to agree with the
notation Proposition 1.9, we assume that O = P .

Recall filtration (13) in P(n). We consider a similar filtration in P(n ; k) by taking
Pα(n ; k) := P(n ; k) ∩ Pα(n). Similarly, we filter the inclusion P(n ; k) → P(n)

taking P ′
α(n) := P(n ; k) ∪ Pα(n). Denote by P<α(n ; k) := colimβ<αPβ(n ; k) and

P ′
<α(n) := colimβ<αP ′

β(n). In order to prove the proposition, one has to show that the inclu-
sions P<α(n ; k) → Pα(n ; k) and P ′

<α(n) → P ′
α(n) are (�k × �n−k) � P(1)-cofibrations.

This is done by filtering these inclusions similarly to (17). Namely, we define
Pα(n ; k)m := P(n ; k) ∩ Pα(n)m and P ′

α(n)m := P(n ; k) ∪ Pα(n)m . We are left to
showing that the inclusions Pα(n ; k)m−1 → Pα(n ; k)m and P ′

α(n)m−1 → P ′
α(n)m are

(�k × �n−k) � P(1)-cofibrations.
Let T≥2

n,k[m], 1 < k < n, denote the set of exactly the same trees as in T
≥2
n [m] in which in

addition k (out of n) leaves are marked as special. For T ∈ T
≥2
n,k[m], we denote by U (T ) ∈

T
≥2
n [m] the tree obtained by forgetting which leaves are special. Let Aut(T ) denote the group

of automorphisms of T . For each tree T ∈ T
≥2
n,k[m]we choose an ordering of its leaves so that

we count special leaves first. This ordering gives us an inclusion Aut(T ) → �n (as well as
an inclusion Aut(U (T )) → �n). One obviously has Aut(T ) = Aut(U (T ))∩ (�k ×�n−k).
We similarly define

Aut(T ) � P(1) := (
Aut(U (T )) � P(1)

) ∩ ((�k × �n−k) � P(1)
)
.

Consider the subset T
≥2
n,k[m]I ⊂ T

≥2
n,k[m] composed of trees that contain a vertex whose

all incoming edges are special leaf edges. Its complement is denoted by T
≥2
n,k[m]I I :=

T
≥2
n,k[m]\T

≥2
n,k[m]I .

One has similar to (18) pushout diagrams of
(
�k � P(1) × �n−k � P(1)

)
-spaces.

∐

T∈T≥2
n,k [m]I

∂Xα(T ) ×
Aut(T )�P(1)

(
(�k × �n−k ) � P(1)

) ∐

T∈T≥2
n,k [m]I

Xα(T ) ×
Aut(T )�P(1)

(
(�k × �n−k ) � P(1)

)

Pα(n ; k)m−1 Pα(n ; k)m .

(20)

123



Projective and Reedy Model Category Structures… 847

∐

T∈T≥2
n,k [m]I I

∂Xα(T ) ×
Aut(T )�P(1)

(
(�k × �n−k ) � P(1)

) ∐

T∈T≥2
n,k [m]I I

Xα(T ) ×
Aut(T )�P(1)

(
(�k × �n−k ) � P(1)

)

P ′
α(n)m−1 P ′

α(n)m .

(21)

In the above Xα(T ) is defined by (15).
The upper horizontal arrows in diagrams (20) and (21) are

(
�k � P(1) × �n−k � P(1)

)
-

cofibrations. Indeed, from the proof of Proposition 1.9 we know that each inclusion
∂Xα(T ) → Xα(T ) is an Aut(U (T )) � P(1)-cofibration. Applying Lemma A.3 to the
restriction along Aut(T ) � P(1) → Aut(U (T )) � P(1), we get that such inclusion is an
Aut(T )�P(1)-cofibration.Applying again this lemma to the induction along Aut(T )�P(1) →
(�k × �n−k) � P(1) and using the fact that the diagrams (20) and (21) are pushout
squares, we conclude that Pα(n ; k)m−1 → Pα(n ; k)m and P ′

α(n)m−1 → P ′
α(n)m are

(�k × �n−k) � P(1)-cofibrations. Applying again Lemma A.3 to the restriction along
(�k � P(1)) × �n−k → (�k × �n−k) � P(1), these maps are also (�k � P(1)) × �n−k-
cofibrations. ��

2 The Projective Model Category of (P-Q)-Bimodules

Let P and Q be two operads. A (P-Q)-bimodule is a �-sequence M ∈ �Seq together with
operations

γr : M(n) × ∏

1≤i≤n
Q(mi ) −→ M

( ∑
i mi

)
, right operations,

γ� : P(n) × ∏

1≤i≤n
M(mi ) −→ M

( ∑
i mi

)
, left operations,

(22)

satisfying the following relations, with σ ∈ �n and τi ∈ �mi :

M(n)×∏
1≤i≤n

Q(mi )× ∏

1≤i≤n
1≤ j≤mi

Q(ki, j ) M(n)×∏
1≤i≤n

Q(
∑

j ki, j )

M(
∑

i mi ) ×∏
1≤i≤n
1≤ j≤mi

Q(ki, j ) M(
∑

i, j ki, j )

Associativity for the right operations

P(n)×∏
1≤i≤n

P(mi )× ∏

1≤i≤n
1≤ j≤mi

M(ki, j ) P(n)×∏
1≤i≤n

M(
∑

j ki, j )

P(
∑

i mi ) ×∏
1≤i≤n
1≤ j≤mi

M(ki, j ) M(
∑

i, j ki, j )

Associativity for the left operations

P(n)×∏
1≤i≤n

M(mi )× ∏

1≤i≤n
1≤ j≤mi

Q(ki, j ) P(n)×∏
1≤i≤n

M(
∑

j ki, j )

M(
∑

i mi ) ×∏
1≤i≤n
1≤ j≤mi

Q(ki, j ) M(
∑

i, j ki, j )

Compatibility between the left and right operations

M(n) × Q(1)×n

γr

M(n) P(1) × M(n)

γ�

M(n)

Compatibility with the unit of the operad
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M(n)×∏
1≤i≤n

Q(mi )

σ ∗×∏i (τi )
∗

M(m1 + · · · + mn )

(σ (τ1 ,...,τn ))∗

M(n)×∏
1≤i≤n

Q(mσ(i)) M(m1 + · · · + mn )

Right compatibility with the symmetric group action

P(n)×∏
1≤i≤n

M(mi )

σ ∗×∏i (τi )
∗

M(m1 + · · · + mn )

(σ (τ1 ,...,τn ))∗

P(n)×∏
1≤i≤n

M(mσ(i)) M(m1 + · · · + mn )

Left compatibility with the symmetric group action

where the permutation σ(τ1, . . . , τn) is obtained from the well known operadic compositions
on the symmetric groups (see [18, Proposition 1.1.9]).

As part of the left operations, there is a map γ0 : P(0) → M(0) in arity 0. A map between
(P-Q)-bimodules should preserve these operations.We denote by�BimodP ; Q the category
of (P-Q)-bimodules. Thanks to the unit in Q(1), the right operations γr can equivalently be
defined as a family of continuous maps

◦i : M(n) × Q(m) −→ M(n + m − 1), with 1 ≤ i ≤ n.

Given an integer r ≥ 0, we also consider the category of r -truncated bimodules
Tr�BimodP ; Q . An object is an r -truncated �-sequence endowed with left and right opera-
tions (22) under the conditions n ≤ r and

∑
mi ≤ r for γr and the condition

∑
mi ≤ r for

γ�. One has an obvious truncation functor

Tr (−) : �BimodP ; Q −→ Tr�BimodP ; Q .

In the rest of the paper, we use the notation

x ◦i q = ◦i (x; q), for x ∈ M(n) and q ∈ Q(m),

p(x1, . . . , xn) = γ�(p, x1, . . . , xn), for p ∈ P(n) and xi ∈ M(mi ).

Example 2.1 If η : P → Q is a map of operads, then η is also a map of P-bimodules. Indeed,
any operad is a bimodule over itself while the P-bimodule structure on Q is given by the
following formulas:

◦i : Q(n) × P(m) −→ Q(m + n − 1);
(q; p) �−→ q ◦i η(p),

γ� : P(n) × Q(m1) × · · · × Q(mn) −→ Q(m1 + · · · + mn);
(p, q1, . . . , qn) �−→ (· · · ((η(p) ◦n qn) ◦n−1 qn−1) · · · ) ◦1 q1.

2.1 Properties of the Category of Bimodules

In this subsection we introduce some basic properties related to the category of (P-Q)-
bimodules where P and Q are two fixed operads. First, we show that the category of (P-Q)-
bimodules is equivalent to the category of algebras over an explicit colored operad denoted
by P+Q. Thereafter, we build the free bimodule functor using the language of trees. Using
this explicit construction of the free functor, we are able to give a combinatorial description
of the pushout for bimodules.

2.1.1 Bimodules as Algebras over a Colored Operad

Given two operads P and Q, we build a colored operad P+Q such that the category of
(P-Q)-bimodules is equivalent to the category of (P+Q)-algebras. By a colored operad
C , with set of colors S, we understand a family of spaces C = {C(s1, . . . , sn; sn+1), n ≥
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0, si ∈ S}, equipped with an action of permutations such that σ ∗ : C(s1, . . . , sn; sn+1) →
C(sσ(1), . . . , sσ(n); sn+1), for σ ∈ �n , with units ∗s ∈ C(s; s) for s ∈ S, and with operadic
compositions

◦i : C(s1, . . . , sn; sn+1) × C(s′
1, . . . , s

′
m; si )

−→ C(s1, . . . , si−1, s
′
1, . . . , s

′
m, si+1, . . . , sn; sn+1),

that satisfy associativity, unit and equivariance relations which are similar to the ones intro-
duced in Sect. 1.4. An algebra over C is a family of spaces {Xs, s ∈ S} together with
operations of the form

α[s1, . . . , sn; sn+1] : C(s1, . . . , sn; sn+1) × Xs1 × · · · × Xsn −→ Xsn+1 ,

compatible with the operadic structure.
The operad P + Q has the set of non-negative integers S = N as colors so that an element

θ ∈ (P + Q)(n1, ..., nk;m) governs an operation of the form θ : M(n1) × · · · × M(nk) →
M(m) on a (P-Q)-bimoduleM . We define this operad P+Q by a presentation by generators
and relations. We take two kinds of generating operations, which respectively encode the left
P-action and the right Q-action of a (P-Q)-bimodule structure. We actually integrate the
first kind of generators in a colored operad P1 (encoding the left operations) and the second
kind of generators in another colored operad Q1 (encoding the right operations), which is
concentrated in arity one. We explain the definition of these operads P1 and Q1 and their
action on a (P-Q)-bimodule M in the next paragraph. We shape the composite elements of
the operad P + Q on trees equipped with two sets of vertices, left vertices, represented by
diamonds �, which correspond to the P1-factors, and right vertices, represented by circles •,
which correspond to the Q1-factors. We describe the structure of these trees in a second step
and we explain afterwards the definition of the operad P + Q with elements shaped on such
trees, moded out by relations which reflect the structure relations of left and right actions on
bimodules. (We can actually identify P + Q with a coproduct of the colored operads P1 and
Q1 moded out by extra relations which reflect the commutation of left and right actions on
a bimodule.)

Definition 2.2 The colored operads P1 and Q1

� To any collection of non-negative integers n1, . . . , nk , we associate the space P1(n1, . . . ,
nk; n1 + · · · + nk) such that:

P1(n1, . . . , nk; n1 + · · · + nk) := P(k).

We have an action of permutations σ ∗ : P1(n1, . . . , nk; n1 + · · · + nk) →
P1(nσ(1), . . . , nσ(k); n1+· · ·+nk), induced by the symmetric structure of the operad, unit
elements ∗n ∈ P1(n, n), given by the unit of P , and “colored” composition operations

◦i : P1(n1, . . . , nk;m) × P1(n′
1, . . . , n

′
k′ ; ni ) −→ P1(n1, . . . , ni−1, n′

1, . . . , n
′
k′ , ni+1, . . . , nk;m),

p ; p′ �−→ p ◦i p′,
(23)

induced by the composition operations of P , for ni = n′
1+· · ·+n′

k′ andm = n1+· · ·+nk .
We immediately see that these structure operations fulfill the unit, associativity and
equivariance axioms of colored operads (as a consequence of the operad axioms in P).
We also see that the left P-action on a (P-Q)-bimodule M gives an operation

P1(n1, . . . , nk; n1 + · · · + nk) × M(n1) × · · · × M(nk) → M(n1 + · · · + nk),
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which makes M and algebra over the colored operad P1.
� To any integers n and m, we associate the space Q1(n ; m) such that:

Q1(n ; m) :=
∐

α:[m]→[n]

∏

i∈[n]
Q(|α−1(i)|).

A point in the above space is denoted by (α ; {qi }i∈[n]). We have a unit element ∗n ∈
Q1(n ; n) given by collection of operadic units 1 ∈ Q(1) in the factor of Q1(n ; n)

indexed by the identity map id : [n] → [n]. We have compositions of the form

μ : Q1(n ; m) × Q1(m ; �) −→ Q1(n ; �);
(α ; {qi }) ; (α′ ; {q ′

j }) �−→ (α ◦ α′ ; {zi }i∈[n]),
(24)

where zi , with i ∈ [n], is obtained using the operadic structure of Q:

zi := σi (α, α)∗
[( · · · ( ( qi ◦li q ′

b�i

) ◦�i−1 q
′
bli−1

) · · · ) ◦1 q ′
b1

]
, with

α−1(i) = {b1 < · · · < b�i }.
Here σi (α, α)∗ is the inverse of the shuffle permutation of the set (α◦α′)−1(i), reordering
this set as (α′)−1(b1), . . . , (α′)−1(b�i ). The operadic axioms imply that these operations
are associative and unital, so that Q1 forms a colored operad (concentrated in arity one).
We also see that the right Q-action on a (P − Q)-bimodule M gives an operation

ζ : Q1(n ; m) × M(n) → M(m)

by

ζ
(
(α ; {qi }), x

) = σ ∗
α

(( · · · ( x ◦n qn
) · · · ) ◦1 q1

)
,

for any (α ; {qi }) ∈ Q1(n ; m), x ∈ M(n), where σα ∈ �m is the inverse of the corre-
sponding shuffle of the blocks of size |α−1(1)|, . . . , |α−1(n)| in [m]. We readily deduce
from the bimodule axioms that this operation is unital and associative with respect to the
composition operation (24), so that M forms an algebra over the colored operad Q1.

Definition 2.3 The set of trees P[n1, . . . ,nk;m]
Let n1, . . . , nk and m be non-negative integers. An element in P[n1, . . . , nk;m] is a tuple
T = (T , V�(T ), Vr (T ), f ), where T is a planar rooted tree having k leaves indexed by a
permutation from �k and having two kinds of vertices called left and right vertices, respec-
tively. The sets V�(T ) and Vr (T ) consist of left vertices and right vertices, respectively. In
particular, right vertices are necessarily of arity one and are represented by circles • in the tree
while the left vertices are represented by diamonds � (see Fig. 2). Left vertices are allowed
to be of any arity ≥ 0.

The assignment f : E(T ) → N labels the edges of the planar tree by integers. In particular,
the outgoing edge of the tree is labelled by m while the k leaves are labelled by n1, . . . , nk ,
according to the permutation. We denote by nv

1, . . . , n
v|v| the integers labelling the incoming

edges of a vertex v and by nv
0 its output edge according to the orientation toward the root.

Furthermore, if v is a left vertex, then one has the relation nv
0 = nv

1 + · · · + nv|v|.

Construction 2.4 The colored operad P+Q, with set of colors N (non-negative integers), is
obtained from the sets of trees T[n1, . . . , nk;m] by indexing the left vertices by points in P1
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Fig. 2 Illustration of an element in P[n1, n2, n3, n4, n5;m]

and the right vertices by points in Q1. More precisely, one has

(P+Q)(n1, . . . , nk;m)

:=
∐

T∈T[n1,...,nk ;m]

⎡

⎣
∏

v∈Vr (T )

Q1(n
v
1 ; nv

0) ×
∏

v∈V�(T )

P1(n
v
1, . . . , n

v|v| ; nv
0)

⎤

⎦

/

∼

where the equivalence relation is generated by the following axioms:

� If a vertex is indexed by the unit of the operad P1 or Q1, then we remove it:

� If a left vertex is indexed by a point of the form p · σ , with p ∈ P(k) and σ ∈ �k , then
one has the following identity in which τ = σ(id�n1

, . . . , id�nk
) ∈ �n1+···+nk is the

element permuting the blocks {1, . . . , n1}, . . . , {n1 +· · ·+nk−1 +1, . . . , n1 +· · ·+nk}
in [n1 + · · · + nk]:
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Fig. 3 Illustration of the operadic composition ◦2

� If there are two consecutive left vertices or two consecutive right vertices, thenwe contract
the edge connecting them using the operation (24) or (23):

� If the incoming edges of a left vertex are connected to right vertices, then we can permute
them:

Let x and y be two points in (P+Q)(n1, . . . , nk;m) and (P+Q)(n′
1, . . . , n

′
k; ni ), respec-

tively. The operadic composition x ◦i y consists in grafting the tree indexing y into the i-th
leaf of the tree indexing x and keeping the labels of each tree in order to decorate the new
one.

Remark 2.5 According to the relations introduced in the previous construction, for any
integers n1, . . . , nk and m, each point in the component (P+Q)(n1, . . . , nk;m) has a rep-
resentative element having exactly one left vertex and one right vertex such that the right
vertex is the root of the tree, see Fig. 4. Thanks to the second relation of Construction 2.4,
one can order the leaves from 1 to k. Therefore, as a space,

(P+Q)(n1, . . . , nk;m) = P(k) ×
⎡

⎣
∐

α:[m]→[n1+···+nk ]

∏

1≤i≤n1+···+nk

Q(|α−1(i)|)
⎤

⎦ . (25)

Proposition 2.6 The category of (P-Q)-bimodules is equivalent to the category of (P+Q)-
algebras.

Proof In one direction, we already explained that a (P-Q)-bimodule M inherits an action of
the operads P1 and Q1 that generate P + Q. We just check that these actions are compatible
with the relations of Construction 2.4 when we compose them to get an action of P + Q
on M (the compatibility with the first three relations follows from the unit, associativity and
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Fig. 4 Illustration of a representative element

equivariance of the action of the operads P1 and Q1 on M , the compatibility with the fourth
relation follows from the commutation of the left and right actions).

In the converse direction, we show that a (P+Q)-algebraM ′ inherits a bimodule structure.
First, M ′ is a�-sequence thanks to the action of the left vertices indexed by (σ ; {∗1}), where
σ is a permutation from some �k and {∗1} is a collection of k identity elements from Q(1).
Then we just inverse the constructions of Definition 2.2 in order to retrieve left and right
operations on M ′. To be explicit, in order to define the left operations γ�, we consider the
inclusion ι� : P(k) → (P+Q)(n1, . . . , nk; n1 + · · · + nk), for any integers n1, . . . , nk ,
sending a point p ∈ P(k) to the k-corolla whose root is a left vertex indexed by p. The map
γ� is defined as the following composite:

P(k) × M ′(n1) × · · · × M ′(nk)
γ�

ι�×id×···×id

M ′(n1 + · · · + nk)

(P+Q)(n1, . . . , nk; n1 + · · · + nk) × M ′(n1) × · · · × M ′(nk)

Similarly, for any pair of integers (n ; m) and 1 ≤ i ≤ n, there is a map ιr : Q(m) →
(P+Q)(n ; n+m−1) sending a point q ∈ Q(m) to the element (α ; {q j }) where α is given
by

α : [n + m − 1] −→ [n] ; j �−→
⎧
⎨

⎩

j if j ≤ i,
i if i < j < i + m,

j − m + 1 if j ≥ i + m.

One has qi = q and q j = ∗1 for any j 
= i . The right operation ◦i , with 1 ≤ i ≤ n, is defined
as the following composite map:

M ′(n) × Q(m)
◦i

id×ιr

M ′(n + m − 1)

M ′(n) × (P+Q)(n ; n + m − 1) ∼= (P+Q)(n ; n + m − 1) × M ′(n)

The relations introduced in Construction 2.4 readily imply that these operations satisfy the
bimodule axioms. ��
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Fig. 5 Examples of a tree with section T1 ∈ sP5 and a reduced tree with section T2 ∈ rsP6

2.1.2 The Free Bimodule Functor

We denote by �SeqP and Tr�SeqP the categories of �-sequences and r -truncated �-
sequencesM equippedwith amapγ0 : P(0) → M(0). In otherwords, if P0 is the�-sequence
given by P0(0) = P(0) and the empty set otherwise, then one has the following identities:

�SeqP := P0 ↓ �Seq and Tr�SeqP := P0 ↓ Tr�Seq. (26)

Furthermore, there is a forgetful functor from the category of (possibly truncated) bimodules
to the category of �-sequences endowed with a map from P0:

U� : �BimodP ; Q −→ �SeqP : and UTr� : Tr�BimodP ; Q −→ Tr�SeqP .

(27)

Their left adjoints denoted F�
P ; Q and FTr�

P ; Q , respectively, are some versions of free
functors. As usual in the operadic theory, the free functor can be described as a coproduct
indexed by a particular set of trees. In that case, we use the set of trees with section which
are pairs T = (T ; V p(T )), where T is a planar rooted tree (whose leaves are labelled by
some permutation) and V p(T ) is a subset of vertices, called pearls, satisfying the following
condition: each path from a leaf or a univalent vertex to the root passes through a unique
pearl.

The set of pearls forms a section cutting the tree into two parts. Note that the arity zero
vertices can be either above or on the section, but never below. We denote by V u(T ) (respec-
tively, V d(T )) the vertices above the section (respectively below the section). A tree with
section is said to be reduced if each non-pearl vertex is connected to a pearl by an inner edge.
We denote by sPn and rsPn the sets of trees with section and reduced trees with section,
respectively, having exactly n leaves labelled by a permutation of {1 . . . n}.
Construction 2.7 Let M = {M(n)} be a �-sequence equipped with a map γ0 : P(0) →
M(0). The space F�

P ; Q(M)(n) is obtained from the set of reduced trees with section by
indexing the pearls by points in M whereas the vertices above the section (respectively
below the section) are indexed by points in the operad Q (respectively the operad P). More
precisely, one has

F�
P ; Q(M)(n) =

⎛

⎝
∐

T∈rsPn

∏

p∈V p(T )

M(|p|) ×
∏

v∈V d (T )

P(|v|) ×
∏

v∈V u (T )

Q(|v|)
⎞

⎠

/

∼ .

(28)

A point in F�
P ; Q(M) is denoted by [T ; {mp} ; {pv} ; {qv}] where T is a reduced tree with

section while {mp}p∈V p(T ), {pv}v∈V d (T ) and {qv}v∈V u (T ) are points in M , P and Q, respec-
tively. The equivalence relation is generated by the following relations:
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Fig. 6 Illustration of the compatibility with the symmetric group

Fig. 7 Illustration of the γ0-relation

(i) The unit relation: if a vertex is indexed by the unit of the operad P or Q, then we can
remove it:

(ii) The compatibility with the symmetric group action: if a vertex is labelled by x · σ , with
x a point in P(n), Q(n) or M(n) and σ ∈ �n , then we can remove σ by permuting the
incoming edges (see Fig. 6).

(iii) The γ0-relation: if a pearl is indexed by a point of the form γ0(x), with γ0 : P(0) →
M(0) and x ∈ P(0), then we contract its output edge using the operadic structures of
P (see Fig. 7). In particular, if the vertex below the section indexed by p ∈ P(n) is
connected only to univalent pearls indexed by γ0(p1), . . . , γ0(pn), respectively, then
we can contract all the incoming edges. The new vertex so obtained is a pearl indexed
by γ0((· · · ((p ◦n pn) ◦n−1 pn−1) · · · ) ◦1 p1).

The right operation ◦i with an element q ∈ Q(m) consists in grafting the m-corolla
indexed by q into the i-th leaf of the reduced tree with section T . If the so obtained element
contains an inner edge joining two consecutive vertices other than a pearl, then we contract
it using the operadic structure of Q (see Fig. 8).

The left operation between an element p ∈ P(n) and a family of points [Ti ; {mi
p} ; {piv} ;

{qiv}] ∈ F�
P ; Q(M), with 1 ≤ i ≤ n, is defined as follows: each tree Ti , with 1 ≤ i ≤ n,

is grafted from left to right to a leaf of the n-corolla whose vertex is indexed by p. If the
so obtained element contains inner edges joining two consecutive vertices other than pearls,
then we contract them using operadic structure of P .

Finally, one has the following map sending p ∈ P(0) to the element [T ; {γ0(p)} ; ∅ ; ∅]
where T is the pearled 0-corolla whose root is indexed by γ0(p):

γ ′
0 : P(0) −→ F�

P ; Q(M)(0).

Similarly, the free r -truncated bimodule functor FTr�
P;Q,

is obtained from the formula (28)
by taking the restriction of the coproduct to the reduced trees with section having at most r
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Fig. 8 Illustration of the right operation ◦1 : F�
P ; Q(M)(5) × Q(3) → F�

P ; Q(M)(7)

leaves and such that each pearl has at most r incoming edges. The equivalence relation, the
left and right operations and the map γ ′

0 are defined in the same way. Finally, one has two
functors:

F�
P ; Q : �SeqP −→ �BimodP ; Q and FTr�

P ; Q : Tr�SeqP −→ Tr�BimodP ; Q .

Theorem 2.8 One has the following adjunctions:

F�
P ; Q : �SeqP � �BimodP ; Q : U� and

FTr�
P ; Q : Tr�SeqP � Tr�BimodP ; Q : UTr�. (29)

Proof LetM ′ be a (P-Q)-bimodule and f : M → M ′ be amorphism in the category�SeqP .
One has to prove that there exists a unique map of (P-Q)-bimodules f̃ : F�

P ; Q(M) → M ′
such that the following diagram commutes:

M
f

i

M ′

F�
P ; Q(M)

∃ ! f̃

(30)

We build the map f̃ by induction on the number of vertices in the set np(T ) =
V (T )\V p(T ). Let [(T ; σ) ; {mp} ; {pv} ; {qv}] be a point inF�

P ; Q(M) such that |nb(T )| =
0 and σ is the permutation indexing the leaves of T . By construction, T is necessarily a pearl
corolla with only one vertex labelled bymr ∈ M . Due to the commutativity of Diagram (30),
the following equality has to be satisfied:

f̃ ([(T ; σ) ; {mp} ; {pv} ; {qv}]) = f (mr ) · σ.

Let [(T ; σ) ; {mp} ; {pv} ; {qv}] be a point in F�
P ; Q(M) where T has only one vertex v

which is not a pearl. There are two cases to consider. If v is the root of the tree T , then the
root is labelled by a point pv ∈ P and [(T ; σ) ; {mp} ; {pv} ; {qv}] has a decomposition of
the form

pv( [(T1 ; id) ; {m1} ; ∅ ; ∅], . . . , [(T|v| ; id) ; {m|v|} ; ∅ ; ∅] ) · σ,

where Ti is a pearl corolla labelled by mi ∈ M . Since f̃ has to be a (P-Q)-bimodule map,
one has the equality

f̃ ([(T ; σ) ; {mp} ; {pv} ; {qv}]) = pv

(
f (m1), . . . , f (m|v|)

) · σ.

If the root is a pearl, then there exists a unique inner edge e such that s(e) = v and
t(e) = r . So, the point [(T ; σ) ; {mp} ; {pv} ; {qv}] has a decomposition on the form
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([(T1 ; id) ; {mp} ; ∅ ; ∅] ◦i qs(e)) · σ with qs(e) ∈ Q and mt(e) ∈ M . Since f̃ has to be
an (P-Q)-bimodule map, there is the equality

f̃ ([(T ; σ) ; {mp} ; {pv} ; {qv}]) = (
f (mt(e)) ◦i qs(e)

) · σ.

Assume f̃ has been defined for |np(T )| ≤ n. Let [(T ; σ) ; {mp} ; {pv} ; {qv}] be a point
in F�

P ; Q(M) such that |np(T )| = n + 1. By definition, there is an inner edge e whose target
vertex is a pearl. So, the point [(T ; σ) ; {mp} ; {pv} ; {qv}] has a decomposition of the form
([(T1 ; id) ; {mp} ; {pv} ; {qv}\{qs(e)}] ◦i qs(e)) · σ where T1 is a planar tree with section
such that |np(T1)| = n. Since f̃ has to be a (P-Q)-bimodule map, there is the equality

f̃ ([(T ; σ) ; {mp} ; {pv} ; {qv}]) = (
f̃ ([(T1 ; id) ; {mp} ; {pv} ; {qv}\{qs(e)}]) ◦i qs(e)

) · σ.

Due to the (P-Q)-bimodule axioms, f̃ does not depend on the choice of the decomposition
and f̃ is a (P-Q)-bimodule map. The uniqueness follows from the construction. Similarly,
we can prove that the functor FTr�

P ; Q is the left adjoint to the forgetful functor. ��

2.1.3 Combinatorial Description of the Pushout

Let P and Q be two topological operads. In the following, we use the notation introduced
for the free bimodule functor in order to give an explicit description of the pushout in the
category of (P-Q)-bimodules. This description will be used in the next subsections. We fix
the following diagram in the category of (P-Q)-bimodules

A
f1

f2

C

B

(31)

Then we consider the �-sequence D obtained from A, B, C and the sets sPn of trees with
section (see Sect. 2.1.2) by indexing the pearls of such trees by points in B or C whereas the
other vertices below the section (respectively above the section) are indexed by points in the
operad P (respectively the operad Q). More precisely, one has

D(n) =
⎛

⎝
∐

T∈sPn

∏

p∈V p(T )

⎛

⎝B(|p|)
⊔

A(|p|)
C(|p|)

⎞

⎠×
∏

v∈V d (T )

P(|v|) ×
∏

v∈V u (T )

Q(|v|)
⎞

⎠

/

∼ .

(32)

By abuse of notation, we denote by [T ; {mp} ; {pv} ; {qv}] a point in D(n). The equivalence
relation is generated by relations (i), (ii), (iii) in Construction 2.7 (unit relation, compatibility
with the symmetric group action and γ0-relation). Furthermore, one has also the following
relations:

(iv) Pushout relation 1: each inner edge, which is not connected to a pearl, is contracted using
the operadic structures of P and Q (see Fig. 9).

(v) Pushout relation 2: every inner edge above the section connected to a pearl is contracted
using the right Q-module structures of B and C .

(vi) Pushout relation 3: if a vertex v below the section is connected to pearls indexed by points
in B (respectively, C), then we contract the incoming edges of v using the P-module
structure of B (respectively, the left P-module structure of C) (see Fig. 9).
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Fig. 9 Illustration of the pushout relations (iv) and (vi)

The �-sequence D inherits a (P-Q)-bimodule structure from B and C . The right opera-
tions are defined using the right module structures of B and C . Similarly, the left operation
between an element p ∈ P(n) and a family of points [Ti ; {mi

p} ; {piv} ; {qiv}] ∈ D, with
1 ≤ i ≤ n, is defined as follows: each tree Ti , with 1 ≤ i ≤ n, is grafted from left to right to
a leaf of the n-corolla whose vertex is indexed by p. Moreover, there is a map

γ ′
0 : P(0) −→ D(0)

sending a point p ∈ P(0) to the 0-corolla labelled by γ0(p) ∈ A(0).
The reader can check that the so obtained bimodule is well defined and that this construc-

tion works in the context of truncated bimodules. If Ar , Br , Cr are r -truncated bimodules
and f1, f2 are r -truncated bimodule maps, then the pushout in the category of r -truncated
bimodules Dr is obtained from the formula (32) by taking the restriction of the coproduct to
the trees with section having at most r leaves and such that each pearl has at most r incoming
edges. The equivalence relation, the left and right operations and the map γ ′

0 are defined in
the same way.

Proposition 2.9 One has the following identities:

D = colim
�BimodP ; Q

(
B ←− A −→ C

)
and

Dr = colim
Tr�BimodP ; Q

(
Br ←− Ar −→ Cr

)
.

Proof We need to check the universal property of the pushout in the category of (P-Q)-
bimodules. Let D′ be a (P-Q)-bimodule together with (P-Q)-bimodule maps g1 : B → D′
and g2 : C → D′ such that g1 ◦ f1 = g2 ◦ f2. One has to show that there is a unique
(P-Q)-bimodule map δ : D → D′ such that the following diagram commutes:

A
f2

f1

C

g2B

g1

D
δ

D′

(33)

Let [(T ; σ) ; {mp} ; {pv} ; {qv}] be a point D where σ is the permutation labelling the
leaves. Due to the pushout relations, we can assume that T is a reduced tree with section
without vertices above the section. If the tree with section T has only one vertex (which is
necessarily a pearl) indexed by mr in B or C , then, due to the commutative diagram (33), δ
must be defined as follows:

δ([(T ; σ) ; {mp} ; {pv} ; {qv}]) =
{
g1(mr ) · σ if mr ∈ B,

g2(mr ) · σ if mr ∈ C .
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If the tree with section T has more than 2 vertices, then the root of T is indexed by a point
pr in the operad P and the point [(T ; σ) ; {mp} ; {pv} ; {qv}] has a decomposition of the
form

(pr ([(T1 ; id) ; {m1} ; ∅ ; ∅], . . . , [(T|v| ; id) ; {m|v|} ; ∅ ; ∅])) · σ

where T1, . . . , T|v| are corollas. Since δ is a bimodule map, one has

δ([(T ; σ) ; {mp} ; {pv} ; {qv}])
= (

pr (δ([(T1 ; id) ; {m1} ; ∅] ; ∅]), . . . , δ([(T|v| ; id) ; {m|v|} ; ∅ ; ∅]])) · σ.

Thanks to the (P-Q)-bimodule axioms, δ does not depend on the choice of the representative
element and δ is a (P-Q)-bimodule map. The uniqueness follows from the construction. The
same arguments work for the truncated case. ��
Lemma 2.10 Let ∂X → X be a morphism of �SeqP which defines a closed inclusion of
topological spaces objectwise. For every pushout diagram of the form

F�
P;Q(∂X) F�

P;Q(X)

B D,

(34)

the (P-Q)-bimodule map B → D is also a closed inclusion of topological spaces objectwise.

Proof Let sP′
n denote the set of planar trees with section and with n leaves labelled by a

permutation from�n , whose set V p of pearls is partitioned into two subsets V p = V p
pri�V p

aux

of primary and auxiliary pearls, respectively. One has

D(n) =
⎛

⎝
∐

T∈sP′
n

X(T )

⎞

⎠

/

∼, where

X(T ) =
∏

p∈V p
pri (T )

B(|p|) ×
∏

p∈V p
aux (T )

X(|p|) ×
∏

v∈V d (T )

P(|v|) ×
∏

v∈V u(T )

Q(|v|).

The relations are (i)-(vi), see above. We denote by πT the map πT : X(T ) → D(n).
A closed injective map is always a topological inclusion. We prove first that each map

i : B(n) → D(n), n ≥ 0, is injective and then that it is closed.
As a set, D(n) does not depend on the topology of X . So, we can choose a topology

such that each X(i)\∂X(i) is discrete and open in X(i). In the latter case, one has D =
B
∐F�

P;Q
(
P0 � (X\∂X)

)
and the inclusion of B in this coproduct is obviously injective.

Indeed, a treewith a vertex labelled by x ∈ X\∂X in the coproduct can never loose such vertex
by means of relations (i)-(vi) of the coproduct, and therefore can not produce a relation in B.

Now we check that for any closed C ⊂ B(n), the set i(C) is closed in D(n). Consider

X∂ (T ) :=
∏

p∈V p
pri (T )

B(|p|) ×
∏

p∈V p
aux (T )

∂X(|p|) ×
∏

v∈V d (T )

P(|v|) ×
∏

v∈V u(T )

Q(|v|).

Since each composition map π∂
T : X∂ (T ) → B(n) is continuous, the set (π∂

T )−1(C) is closed
in X∂ (T ). On the other hand, since each map ∂X(|p|) → X(|p|) is a closed inclusion, the
map X∂ (T ) → X(T ) is also one. (Here, we use the fact that kelleyfication preserves closed
inclusions.) Thus (π∂

T )−1(C) = (πT )−1(i(C)) is closed in X(T ) for every T andwe conclude
that so is i(C) in D(n). ��
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2.2 TheModel Category Structure

By using the identifications (26), the categories�SeqP and Tr�SeqP inherit model category
structures from the categories of�-sequences and truncated�-sequences, respectively.More
precisely, a map is a weak equivalence, a fibration or a cofibration if the corresponding map
is a weak equivalence, a fibration or a cofibration in the category of (truncated)�-sequences.
In particular,�SeqP and Tr�SeqP are cofibrantly generated and all their objects are fibrant.
Their (acyclic) generating cofibrations are {P0 � ∂X → P0 � X}, where {∂X → X} is the
set of (acyclic) generating cofibrations of �Seq or Tr�Seq , respectively. By applying the
transfer principle 1.1 to the adjunctions

F�
P ; Q : �SeqP � �BimodP ; Q : U� and

FTr�
P ; Q : Tr�SeqP � Tr�BimodP ; Q : UTr�, (35)

we get the following statement:

Theorem 2.11 For any pair (P, Q) of topological operads, the category of (truncated)
(P-Q)-bimodules �BimodP ; Q (respectively, Tr�BimodP ; Q, r ≥ 0) inherits a cofibrantly
generated model category structure, called the projective model category structure, in which
all objects are fibrant. Themodel structure in questionmakes the adjunctions (35) intoQuillen
adjunctions. More precisely, a bimodule map f is a weak equivalence (respectively, a fibra-
tion) if and only if the induced map U�( f ) or UTr�( f ) is a weak equivalence (respectively,
a fibration) in the category of (possibly truncated) �-sequences.

Proof According to the transfer principle 1.1, we have to check the small object argument
as well as the existence of a functorial fibrant replacement and a functorial factorization of
the diagonal map in the category �BimodP ; Q .

We check first the small object argument. Let F�
P;Q(X) be a domain of an element in the

set of generating (acyclic) cofibrations in �BimodP ; Q . Let λ = ℵ1 be the first uncountable
ordinal. Assume that {Mα}α<λ is a λ-sequence of (P-Q)-bimodules, such that each map
M<α := colimβ<αMβ → Mα fits into a pushout square

F�
P;Q(∂Y ) F�

P;Q(Y )

M<α Mα,

(36)

where ∂Y → Y is a possibly infinite coproduct in�SeqP of generating (acyclic) cofibrations.
Due to the adjunction (35), one has the identity

�BimodP ; Q
(F�

P;Q(X) ; colimα<λMα

) ∼= �SeqP
(
X ; U(colimα<λMα)

)
.

Since the forgetful functor is monadic, it preserves filtered colimits. So, one has

�SeqP
(
X ; U(colimα<λMα)

) ∼= �SeqP
(
X ; colimα<λU(Mα)

)
.

It follows fromLemma2.10 thatM<α → Mα is an objectwise closed inclusion. The sequence
X\P0 is concentrated in only one arity where it is a finite union of spheres (or discs), thus a
separable space. Therefore, X is ℵ1-small relative to componentwise closed inclusions1 and

1 In fact X is ℵ0-small relative to componentwise closed inclusions of T1-spaces, as X being compact can
not contain a discrete countable closed subspace. Note, however, that in our category Top non-T1 spaces are
allowed.
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one has the identities

�SeqP
(
X ; colimα<λU(Mα)

)

∼= colimα<λ �SeqP
(
X ; U(Mα)

) ∼= colimα<λ �BimodP ; Q
(F�

P;Q(X) ; Mα

)
.

This proves the small object argument.
Since all objects are fibrant in the category of�-sequences, the identity functor provides a

functorial fibrant replacement. For any M ∈ �BimodP ; Q , one needs to prove the existence
of an element Path(M) ∈ �BimodP ; Q inducing a factorization of the diagonal map

� : M �
f1

Path(M)
f2

M × M,

where f1 is a weak equivalence and f2 is a Serre fibration. Let us consider

Path(M)(n) = Map
([0 , 1] ; M(n)

)
.

This �-sequence inherits a bimodule structure from M . The map from M to Path(M),
sending a point to the constant path, is clearly a homotopy equivalence. Furthermore, the
map

f2 : Map
([0 , 1] ; M(n)

) −→ Map
(
∂[0 , 1] ; M(n)

) = (M × M)(n)

induced by the inclusion i : ∂[0 , 1] → [0 , 1] is a Serre fibration since the map i is a
cofibration. ��
Alternative proof As explained in Sect. 2.1.1, the category of (P-Q)-bimodules is equivalent
to the category of algebras over a colored operad P+Q. According to the general result of [8,
Theorem 2.1], the category of algebras over any topological operad has a projective model
structure. To be precise, let Seq = TopN be the projective model category of sequences of
topological spaces. The adjunction between the forgetful functor and the free (P+Q)-algebra
functor

FP+Q : Seq � AlgP+Q : U,

induces a cofibrantly generatedmodel category structure on the category of (P+Q)-algebras.
In this model structure, a map of (P+Q)-algebras f is a weak equivalence (respectively, a
fibration) if the corresponding map U( f ) is a weak equivalence (respectively, a fibration) in
the category of sequences. This model structure coincides with the model structure described
in the theorem because the projective model structure on�Seq is itself transferred from Seq .

��

2.2.1 Relative Left Properness of the Projective Model Category

• Definitions of relative left and right properness. First, we recall the definition in a general
setting. Let C be a model category and let S be a class of objects of C. The model category C
is said to be left proper (respectively right proper) relative to S if for each pushout diagram
(respectively pullback diagram) of the form

A
f

�
g

B

j

C
i

D

A
i

j

B

g(respectively, )

C
f

�
D
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with g a cofibration (respectively, a fibration) and f a weak equivalence between objects
in S, the morphism i is also a weak equivalence. In particular, the category C is said to be
left proper (respectively right proper) if C is left proper (respectively right proper) relative
to all the objects. Furthermore, a model category C is said to be proper (relative to S) if the
category is both left and right proper (relative to S). The advantage of such a category is that
we have a criterion allowing to identify homotopy invariant colimits or/and limits.

Proposition 2.12 [32, Proposition A.2.4.4] Let C be a model category which is left proper
relative to a class of objects S. For any commutative diagram in the category C of the form

A

vA

B
g

vB

f
C

vC

A′ B ′
g′f ′ C ′

the induced map between the colimits of the horizontal diagrams

colim
(
A ← B → C

) −→ colim
(
A′ ← B ′ → C ′)

is a weak equivalence if the vertical morphisms are weak equivalences; one of the pairs
( f ,C) or (g, A) consists of a cofibration and an object in S; one of the pairs ( f ′,C ′) or
(g′, A′) consists of a cofibration and an object in S.

Dually, let C be a model category which is right proper relative to a class S. For any
commutative diagram in the category C of the form

A

vA

f
B

vB

C
g

vC

A′
f ′ B ′ C ′

g′

the induced map between the limits of the horizontal diagrams

lim
(
A → B ← C

) −→ lim
(
A′ → B ′ ← C ′)

is a weak equivalence if the vertical morphisms are weak equivalences; one of the pairs
( f ,C) or (g, A) consists of a fibration and an object in S; one of the pairs ( f ′,C ′) or
(g′, A′) consists of a fibration and an object in S.

Remark 2.13 Even when the category C is not left or right proper, the statement of Proposi-
tion 2.12 still holds provided one of the pairs ( f ; C) or (g ; A) consists of a (co)fibration and
a (co)fibrant object whereas one of the pairs ( f ′ ; C ′) or (g′ ; A′) consists of a (co)fibration
and a (co)fibrant object.

• Application to the projective model category of bimodules. Let P and Q be two topological
operads. From now on, we focus our attention on the projective model category of (P-Q)-
bimodules.More precisely, we show that this category is right proper relative to all the objects
and is relatively left proper.

Theorem 2.14 The projective model category �BimodP ; Q is right proper.
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Proof We consider the following pullback diagram in which f is a weak equivalence and g
is a fibration:

A = lim
(
C

f

� D B
)
.

g

The map i : A → B is equivalent to the following map between pullback diagrams:

A

i

lim
(

C

�

�
D B

)

B lim
(

D D B
)

According to Remark 2.13 and since all the objects in the projective model category of
bimodules are fibrant, the map i : A → B is also a weak equivalence. Consequently, the
category �BimodP ; Q is right proper relative to all the objects. ��
Lemma 2.15 Let C ← A → B be a diagram in a cocomplete category C. If A → C is
a retract of A′ → C ′, then the morphism C → colim(C ← A → B) is a retract of
C ′ → colim(C ′ ← A′ → A → B).

Proof Since A → C is a retract of A′ → C ′, one has a commutative diagram

C
g1

C ′ g2
C

A
h1

A′ h2
A

B B B

(37)

such that g2 ◦ g1 = id and h2 ◦ h1 = id . By taking the pushout of the vertical diagrams in
(37), we get the commutative diagram

C
g1

C ′ g2
C

C
⊔

A
B

k1=g1
⊔

h1

id
C ′⊔

A′
B

k2=g2
⊔

h2

id
C
⊔

A
B

in which g2 ◦ g1 = id and k2 ◦ k1 = id . ��
Theorem 2.16 If P and Q are operads, such that P(0) ∈ Top is cofibrant, P>0 ∈ �Operad
is a cofibrant operad, and Q is a componentwise cofibrant operad, then the projective model
category �BimodP ; Q is left proper relative to the class S of componentwise cofibrant
bimodules M for which the arity zero left action map γ0 : P(0) → M(0) is a cofibration.

Corollary 2.17 If Q is a componentwise cofibrant operad and P is either a Reedy cofibrant or
projectively cofibrant operad, then the projective model category �BimodP ; Q is relatively
left proper.
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Proof An operad is Reedy cofibrant if and only if it is reduced and its positive arity part is
cofibrant. This proves the first case. The second case follows from Proposition 1.8. ��
Proof of Theorem 2.16 We first prove this theorem assuming P(0) = ∅ and at the end we
explain how the argument has to be adjusted to the general case P(0) 
= ∅.

In order to prove that the category is left proper relative to S, we consider the follow-
ing pushout diagram in the category of (P-Q)-bimodules in which the map f is a weak
equivalence between componentwise cofibrant objects and the map g is a cofibration:

D = colim
(
C A

g

�
f

B
)
.

Since any cofibration is a retract of a cellular extension, we can assume that g is a cellu-
lar extension due to Lemma 2.15. On the other hand, any cellular extension is a possibly
transfinite sequence of cell attachments. By Theorem 2.18a, cofibrations with domain in S
are componentwise cofibrations. Thus, without loss of generality, we can assume that g is a
cellular attachment and we restrict our study to diagrams of the form

F�
P ; Q(∂X) A B

F�
P ; Q(X) C D,

where ∂X → X is a generating cofibration in the category of �-sequences and both squares
are pushout diagrams. The strategy is to use the explicit description of the pushout from
Sect. 2.1.3 and to introduce a filtration in �-sequences C and D according to the number of
vertices in the trees indexed by X :

A = C0 C1 · · · Ci−1 Ci · · · C

B = D0 D1 · · · Di−1 Di · · · D.

(38)

We will prove that in (38), each horizontal map is a componentwise cofibration and each
vertical map is a weak equivalence.

Let rsPn[i] denote the set of reduced planar trees with section with n leaves labelled by
a permutation in �n . In addition we assume that it has two types of pearls: i auxiliary ones
and some number of primary ones, primary ones coming first. Moreover, it is required that
all incoming edges of any primary pearl are leaf edges, while all incoming edges of any
auxiliary pearl connects it to an internal vertex.

It follows from Construction 2.7 of a free bimodule and the combinatorial description of a
pushout (Sect. 2.1.3) that any element in C(n) or D(n) can be obtained as a tree T ∈ rsPn[i]
(for some i ≥ 0), whose root, primary pearls, auxiliary pearls, and vertices above the section
are labelled by P , A (or B), X , and Q, respectively. The filtration (38) is by the number i
of auxiliary pearls in such elements. To show that maps Ci−1(n) → Ci (n) and Di−1(n) →
Di (n) are cofibrations, we additionally filter this inclusion by the total number � of pearls:

Ci−1(n) =: Ci (n)i−1 Ci (n)i · · · Ci (n)�−1 Ci (n)� · · · Ci (n)

Di−1(n) =: Di (n)i−1 Di (n)i · · · Di (n)�−1 Di (n)� · · · Di (n)

(39)
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We will show that each horizontal inclusion is a cofibration and each vertical map is an
equivalence, which would prove the theorem.

The maps Ci (n)�−1 → Ci (n)� and Di (n)�−1 → Di (n)� are cofibrations. For � ≥ i , let
rsPn[i ; �] ⊂ rsPn[i] be the subset of planar trees with section with exactly � pearls (see
Fig. 10). Let rsTn[i ; �] := rsPn[i ; �]/∼ be the set of equivalence classes, where two trees
are equivalent if they are isomorphic as non-planar trees by an isomorphism that forgets the
labels of leaves and that sends primary pearls to primary ones and same with auxiliary ones.

For T ∈ rsTn[i ; �], denote by Aut(T ) the group of automorphisms of T that does notmix
the auxiliary pearls with the primary ones (only arity zero ones can potentially be permuted,
but we do not allow it). A choice of representative of T in rsPn[i ; �] gives a labeling of
leaves by the set [n] and therefore induces a homomorphism Aut(T ) → �n . Denote by
Aut0(T ) the kernel of this homomorphism which is the subgroup of Aut(T ) permuting the
univalent vertices and the auxiliary pearls that have only univalent vertices above them. Let
p1, . . . , p� be the pearls of the chosen planar representative of T labelled in the planar order
they appear.

Then we consider the spaces

M1(T ) =
∏

�−i+1≤ j≤�

X(|p j |) ×
∏

v∈V u(T )

Q(|v|),

where V u(T ) is the set of vertices of T above the section, and

M2(T ; A) = P(�) ×P(1)�−i

∏

1≤ j≤�−i

A(|p j |)

= coeq

⎛

⎝P(�) × P(1)�−i ×
∏

1≤ j≤�−i

A(|p j |) ⇒ P(�) ×
∏

1≤ j≤�−i

A(|p j |)
⎞

⎠ .

The two arrows in the coequalizer correspond respectively to the action of P(1)�−i on the
first (� − i) inputs of P(�) (by operadic composition) and on

∏

1≤ j≤�−i
A(|p j |) (by the left

P-action on A).
In other words, M1(T ) is the space of indexations of the i last pearls by points in X

and the vertices above the section by points in the operad Q. Similarly, M2(T ; A) is the
space of indexations of the other pearls by points in A and the root by a point in P(�). This
presentation is not unique, that is why we take the coequalizer.

Moreover, we denote by M−
1 (T ) the subspace of M1(T ) formed by points having at least

one pearl indexed by a point in ∂X . The space M−
2 (T ; A) consists of points in M2(T ; A)

for which the root is indexed by a point p ∈ P(� ; � − i) ⊂ P(�) (see notation before

Fig. 10 Illustration of a tree in
rsP9[4 ; 7] ⊂ rsP9[4] labelled
by P , A, X and Q
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Proposition 1.10). We define

M(T ; A) := M1(T ) × M2(T ; A) and

M−(T ; A) := M1(T ) × M−
2 (T ; A)

∐

M−
1 (T )×M−

2 (T ; A)

M−
1 (T ) × M2(T ; A).

The spaces M2(T ; B), M−
2 (T ; B), M(T ; B), M−(T ; B) are defined similarly.

One has the following pushout squares
∐

T∈rsTn [i;�]
M−(T ; A) ×

Aut(T )
�n Ci (n)�−1

∐

T∈rsTn [i;�]
M(T ; A) ×

Aut(T )
�n Ci (n)�

∐

T∈rsTn [i;�]
M−(T ; B) ×

Aut(T )
�n Di (n)�−1

∐

T∈rsTn [i;�]
M(T ; B) ×

Aut(T )
�n Di (n)�

(40)

To prove that the right vertical maps are cofibrations one needs to show that the left ones
are such. Recall that Aut0(T ) denotes the kernel of Aut(T ) → �n . Equivalently, for every
T ∈ rsTn[i; �] we need to show that the maps

M−(T ; A)/Aut0(T ) → M(T ; A)/Aut0(T ) and

M−(T ; B)/Aut0(T ) → M(T ; B)/Aut0(T ) (41)

are cofibrations. We also need later that the sources of the maps are cofibrant.
Let G1 be the subgroup of Aut0(T ) that fixes all the pearls. It permutes the arity zero ver-

tices above the section. The subgroupG1 is normal and the quotient groupG2 = Aut0(T )/G1

is responsible for the permutations of the arity zero primary pearls and the auxiliary pearls
that have only arity zero vertices above them (in particular they can be of arity zero them-
selves). Note thatG2 ⊂ ��−i ×�i . By construction, the spacesM

−
1 (T ), M1(T ), M−

2 (T ; A)

and M2(T ; A) are equipped with an action of Aut(T ) and of Aut0(T ) by taking restriction.
Moreover, for the last two, the Aut0(T )-action factors through G2.

The inclusionM−
1 (T ) → M1(T ) is an Aut0(T )-equivariantG1-cofibration. Indeed,G1 =

∏�
j=�−i+1 �d j , where d j is the number of univalent vertices above the j-th pearl. Applying

iteratively Lemma A.1, we get that the map

∂
∏

�−i+1≤ j≤�

X(|p j |) →
∏

�−i+1≤ j≤�

X(|p j |) (42)

is a G1-cofibration. On the other hand, since Q is componentwise cofibrant, the space
∏

v∈V u(T )

Q(|v|)

is a cofibrant (in Top)G1-space. Applying again LemmaA.1, we get that M−
1 (T ) → M1(T )

is a G1-cofibration.
The source of the map (42) is also G1-cofibrant as it can be obtained as a sequence of

G1-cofibrations

Y1 → Y2 → . . . → Yi ,
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where

Ym = ∂

⎛

⎝
∏

�−i+1≤ j≤�−i+m

X(|p j |)
⎞

⎠×
∏

�−i+m+1≤ j≤�

∂X(|p j |).

Note that Y1 = ∏

�−i+1≤ j≤�

∂X(|p j |) is G1-cofibrant being a product of �d j -cofibrant spaces

(see Example A.6). We finally conclude that M−
1 (T ) is Aut0(T )-cofibrant.

Besides, we claim that the inclusion from M−
2 (T ; A) into M2(T ; A) is a G2-cofibrant

map between G2-cofibrant spaces. The assignment

R �→ R ×P(1)�−i

∏

1≤ j≤�−i

A(|p j |)

can be viewed as a functor from (��−i � P(1))×�i -Top to G2-Top. This functor preserves
cofibrations. Indeed, it preserves colimits and sends any generating cofibration Sk−1×(��−i �
P(1)) × �i → Dk × (��−i � P(1)) × �i to a G2-cofibration:
⎛

⎝Sk−1 × ��−i ×
∏

1≤ j≤�−i

A(|p j |)
⎞

⎠× �i →
⎛

⎝Dk × ��−i ×
∏

1≤ j≤�−i

A(|p j |)
⎞

⎠× �i .

Themap above is aG2-cofibration by LemmasA.1 andA.3 (recall thatG2 ⊂ ��−i ×�i ). On
the other hand, since P is a cofibrant operad, by Proposition 1.10, the inclusion P(� ; �−i) →
P(�) is a (��−i � P(1)) × �i -cofibration with a (��−i � P(1)) × �i -cofibrant source. We
conclude thatM−

2 (T ; A) → M2(T ; A) is aG2-cofibrantmap betweenG2-cofibrant spaces.
Now combining that M−

1 (T ) → M1(T ) is an Aut0(T )-equivariant G1-cofibration and
that M−

2 (T ; A) → M2(T ; A) is a G2-cofibration and applying Lemma A.1, we get that
M−(T ; A) → M(T ; A) is an Aut0(T )-cofibration. (We get a similar statement for B as
well by replacing A with B in all formulas.)

We can similarly conclude that M−
1 (T )×M−

2 (T ; A) is Aut0(T )-cofibrant and the inclu-
sions

M−
1 (T ) × M−

2 (T ; A) → M−
1 (T ) × M2(T ; A) → M−(T ; A)

are Aut0(T )-cofibrations. As a result, M−(T ; A) and (arguing similarly) M−(T ; B) are
Aut0(T )-cofibrant.

The map Ci (n)� → Di (n)� is a weak equivalence. By induction we assume that the map
Ci (n)�−1 → Di (n)�−1 is a weak equivalence of cofibrant spaces. The spaces Ci (n)� and
Di (n)� are the colimits of the first and second lines, respectively, in the following diagram.

∐

T∈rsTn [i;�]
M(T ; A) ×

Aut(T )
�n

∐

T∈rsTn [i;�]
M−(T ; A) ×

Aut(T )
�n Ci (n)�−1

∐

T∈rsTn [i;�]
M(T ; B) ×

Aut(T )
�n

∐

T∈rsTn [i;�]
M−(T ; B) ×

Aut(T )
�n Di (n)�−1

As it follows from Proposition 2.12, the induced map of colimits is an equivalence provided
all vertical maps are equivalences. We are left to showing that the left two arrows are such.
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In other words, it only remains to prove that for every tree T ∈ rsTn[i; �], the maps

M−(T ; A) → M−(T ; B) and M(T ; A) → M(T ; B)

are weak equivalences (as we already proved that all the four spaces above are Aut0(T )-
cofibrant). The latter fact is deduced from the fact that the induced maps

M−
2 (T ; A) → M−

2 (T ; B) and M2(T ; A) → M2(T ; B)

are equivalences of cofibrant spaces. The latter is proved by Lemma A.7 for which we take
� = P(1)�−i , Z = P(�) or P(� ; �− i), and the corresponding �op-equivariant equivalence
between cofibrant (in Top) objects is the map

∏�−i
j=1 A(|p j |) → ∏�−i

j=1 B(|p j |).
Proving the case P(0) �= ∅. The only difference with the case P(0) = ∅ is that we need to
take into account the γ0-relation contracting the univalent pearls indexed by points coming
from the image of P(0). For this purpose, we change slightly the definition of the spaces
M−

2 (T ; A) and M−
2 (T ; B). Thus one also needs to check the three statements below.

• M−
2 (T ; A) and M−

2 (T ; B) are G2-cofibrant.
• M−

2 (T ; A) → M2(T ; A) and M−
2 (T ; B) → M2(T ; B) are G2-cofibrations.

• M−
2 (T ; A) → M−

2 (T ; B) is a weak equivalence.

Denote by �A := ∏�−i
j=1 A(|p j |) and by ∂ �A ⊂ �A the subset consisting of points with at least

one coordinate in γ0(P(0)) ⊂ A(0). One has

M−
2 (T ; A) =

(
P(�) ×P(1)�−i ∂ �A

) ∐

P(� ; �−i)×P(1)�−i ∂ �A

(
P(� ; � − i) ×P(1)�−i �A

)
.

By the same argument as above, the functor

(−) ×P(1)�−i ∂ �A : (��−i � P(1)) × �i -Top → G2-Top

preserves cofibrations. As a consequence P(� ; � − i) ×P(1)�−i ∂ �A is G2-cofibrant and the

inclusion P(� ; � − i) ×P(1)�−i ∂ �A → P(�) ×P(1)�−i ∂ �A is a G2-cofibration. Moreover, we

know that P(� ; � − i) ×P(1)�−i �A is G2-cofibrant. We conclude that M−
2 (T ; A) is so.

The fact that M−
2 (T ; A) → M2(T ; A) is a G2-cofibration follows from Lemma A.8

applied to � = P(1)�−i , K1 = 1, K = K2 = G2, A → B being P(� ; � − i) → P(�), and
X → Y being ∂ �A → �A.

Finally, to prove that M−
2 (T ; A) → M−

2 (T ; B) is a weak equivalence, we apply
Lemma A.7 again to show that

P(� ; � − i) ×P(1)�−i ∂ �A → P(� ; � − i) ×P(1)�−i ∂ �B,

P(�) ×P(1)�−i ∂ �A → P(�) ×P(1)�−i ∂ �B,

P(� ; � − i) ×P(1)�−i �A → P(� ; � − i) ×P(1)�−i �B,

are all the three weak equivalences. The statement follows. ��
Theorem 2.18 (a) Let P, Q and S be as in Theorem 2.16. In the category �BimodP ; Q,
cofibrations with domain in S are componentwise cofibrations. In particular, the class S of
objects is closed under cofibrations and cofibrant (P-Q)-bimodules are always component-
wise cofibrant.

(b) Assume additionally that Q is �-cofibrant. In the category �BimodP ; Q, cofibrations
with domain in the subclass S� ⊂ S of �-cofibrant objects, are �-cofibrations. The class
S� is closed under cofibrations and cofibrant (P-Q)-bimodules are always �-cofibrant.
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Proof Let A be a conponentwise cofibrant (P-Q)-bimodule. It is enough to check that any
cellular extension A → C is a componentwise cofibration (respectively, �-cofibration). In
the proof of Theorem 2.16 we define a filtration (38) in C in which, as we proved, every
inclusion Ci−1 → Ci is a componentwise cofibration.

Additionally assuming that Q and A are�-cofibrant, one can show that any such inclusion
is a �-cofibration. The strategy is the same to filter this inclusion as in (39) and then to show
that the left vertical map in the first square (40) is a �n-cofibration. The latter is proved
by showing that each inclusion M−(T ; A) → M(T ; A) is an Aut(T )-cofibration. Let
H1 ⊂ Aut(T ) be the subgroup of elements that fix all the pearls and the leaves above the
primary pearls. This group permutes vertices above the section and their leaves. It is normal
and the quotient group H2 = Aut(T )/H1 is responsible for permuting the pearls and leaves
above the primary pearls. By essentially the same argument, the inclusion M−

1 (T ) → M1(T )

is an Aut(T )-equivariant H1-cofibration and the inclusion M−
2 (T ; A) → M2(T ; A) is

an H2-cofibration (by Lemma A.8 applied for � = P(1)�−i , K = H2, K1 ⊂ H2 – the
subgroupof permutations of leaves above primary pearls). The proof is completed by invoking
Lemma A.1. ��

2.2.2 Extension/Restriction Adjunction for the Projective Model Category of Bimodules

Let φ1 : P → P ′ and φ2 : Q → Q′ bemaps of operads. Similarly to the category of algebras
(see Theorem 1.7), we show that the projective model categories of (P-Q)-bimodules and
of (P ′-Q′)-bimodules are Quillen equivalent under some conditions on the maps φ1 and φ2.
For this purpose, we recall the constructions of the restriction functor φ∗ and the extension
functor φ! in the context of bimodules:

φ! : �BimodP ; Q � �BimodP ′ ; Q′ : φ∗.

• The restriction functor. The restriction functor φ∗ sends a (P ′-Q′)-bimodule M to the
(P-Q)-bimodule φ∗(M) = {φ∗(M)(n) = M(n), n ≥ 0} in which the (P-Q)-bimodule
structure is defined as follows using the (P ′-Q′)-bimodule structure of M :

◦i : φ∗(M)(n) × Q(m) −→ φ∗(M)(n + m − 1);
x ; q �−→ x ◦i φ2(q),

γ� : P(n) × φ∗(M)(m1) × · · · × φ∗(M)(mn) −→ φ∗(M)(m1 + · · · + mn);
p ; x1, . . . , xn �−→ φ1(p)(x1, . . . , xn).

• The extension functor.The extension functor φ! is obtained as a quotient of the free (P ′-Q′)-
bimodule functor introduced in Sect. 2.1.2. More precisely, if M is a (P-Q)-bimodule, then
the extension functor is given by the formula

φ!(M)(n) = F�
P ′ ; Q′(U�(M))(n)/ ∼

where the equivalence relation is generated by the axiom which consists in contracting inner
edges having a vertex v below the section (respectively above the section) indexed by a point
of the form φ1(p) (respectively a point of the form φ2(q)) using the left P-module structure
(respectively the right Q-module structure) of M as illustrated in the following picture:
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The (P ′-Q′)-bimodule structure on the free object is compatible with the equivalence
relation and provides a (P ′-Q′)-bimodule structure on φ!(M). Let us remark that the (P-Q)-
bimodule map M → φ∗(φ!(M)), sending a point x ∈ M(n) to the n-corolla indexed by x ,
is not necessarily injective. For instance, if there are q1 
= q2 in Q(m) and x ∈ M(n) such
that φ2(q1) = φ2(q2) and x ◦i q1 
= x ◦i q2, then x ◦i q1 and x ◦i q2 have the same image in
φ∗(φ!(M)) as illustrated in the following picture:

Theorem 2.19 Let φ1 : P → P ′ be a weak equivalence between �-cofibrant operads
and φ2 : Q → Q′ be a weak equivalence between componentwise cofibrant operads. The
extension and restriction functors, as well as their truncated versions, give rise to Quillen
equivalences:

φ! : �BimodP ; Q � �BimodP ′ ; Q′ : φ∗, (43)

φ! : Tr�BimodP ; Q � Tr�BimodP ′ ; Q′ : φ∗. (44)

Lemma 2.20 Any pair of operadic maps (φ1 , φ2), with φ1 : P → P ′ a weak equivalence
between�-cofibrant operads and φ2 : Q → Q′ a weak equivalence between componentwise
cofibrant operads, induces a weak equivalence φ+ : P+Q → P ′+Q′ between �-cofibrant
colored operads where P+Q and P ′+Q′ are colored operads obtained from Construc-
tion 2.4.

Proof According to Remark 2.5, for any family of integers n1, . . . , nk and m, the spaces
(P+Q)(n1, . . . , nk;m) and (P ′+Q′)(n1, . . . , nk;m) have the following description:

(P+Q)(n1, . . . , nk;m) ∼= P(k) × Q1(n1 + . . . + nk;m) ∼= P(k)

×
∐

α:[m]→[n1+···+nk ]

∏

i∈[n1+···+nk ]
Q(|α−1(i)|),

(P ′+Q′)(n1, . . . , nk;m) ∼= P ′(k) × Q′
1(n1 + . . . + nk;m) ∼= P ′(k)

×
∐

α:[m]→[n1+···+nk ]

∏

i∈[n1+···+nk ]
Q′(|α−1(i)|).

Consequently, the weak equivalences φ1 : P → P ′ and φ2 : Q → Q′ induce a weak
equivalence of colored operads φ+ : P+Q → P ′+Q′. Let �′ be the subgroup �k which
can send i to j if and only if ni = n j . This group acts as a subgroup of �k on the factor P(k)
(respectively the factor P ′(k)) and it acts on the factor Q1(n1 + . . . + nk;m) (respectively,
the factor Q′

1(n1 + . . . + nk;m)) by reordering the summands in the disjoint union labelled
by maps α : [m] → [n1 + . . . + nk]. The reordering is induced by permutation of the blocks
{1, . . . , n1}, . . . , {n1 + · · ·+ nk−1 + 1, . . . , n1 + · · ·+ nk} in [n1 + . . .+ nk]. Consequently,
the colored operads P+Q and P ′+Q′ are �-cofibrant as soon as the operads P and P ′ are
�-cofibrant and the components of Q and Q′ are cofibrant. ��
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Proof of Theorem 2.19 As explained in Sect. 2.1.1, the projective model category of bimod-
ules over an operad is equivalent to the projective model category of algebras over a specific
colored operad. If we denote by P+Q and P ′+Q′ the colored operads obtained from Con-
struction 2.4, then one has

φ! : �BimodP ; Q = AlgP+Q � AlgP ′+Q′ = �BimodP ′ ; Q′ : φ∗,

induced by the extension/restriction adjunction between the categories of algebras. Due to
Lemma 2.20, the induced map φ+ : P+Q → P ′+Q′ is a weak equivalence between
�-cofibrant colored operads. Consequently, according to [6, Theorem 4.4] the exten-
sion/restriction adjunction between the categories of algebras is a Quillen equivalence. ��
• Bimodules with the empty set in arity zero. Consider the case where the acting operads
P and Q are trivial in arity zero P(0) = Q(0) = ∅ and consider the full subcategory
�>0BimodP ; Q of (P-Q)-bimodules M also satisfying M(0) = ∅. One can similarly to
Construction 2.4 define a colored operad (P+Q)>0 that governs this algebraic structure. Its
set of colors is the set N>0 of positive integers. Its components can be similarly described:

(P+Q)>0(n1, . . . , nk;m) = P(k) ×
∐

α:[m]�[n1+···+nk ]

∏

i∈[n1+···+nk ]
Q(|α−1(i)|). (45)

The crucial difference is that the coproduct is taken over surjective maps α : [m] � [n1 +
· · · + nk].
Proposition 2.21 Let P and Q be componentwise cofibrant operads satisfying P(0) =
Q(0) = ∅, then the colored operad (P+Q)>0 is �-cofibrant.

Proof Consider the component (45) of (P+Q)>0. Let �′ be the subgroup of �k which can
send i to j if and only if ni = n j . One has that P(k) is a cofibrant�′-space, while the second
factor

∐

α:[m]�[n1+···+nk ]

∏

i∈[n1+···+nk ]
Q(|α−1(i)|)

is �′-cofibrant. Indeed, since all α’s are surjective in the coproduct, the group �′ acts freely
on this disjoint union. Applying Lemma A.1 for G1 = 1, G = G2 = �′, we get that the
component (45) is �′-cofibrant. ��
Theorem 2.22 Let φ1 : P → P ′ and φ2 : Q → Q′ be weak equivalences between compo-
nentwise cofibrant operads satisfying P(0) = P ′(0) = Q(0) = Q′(0) = ∅. The extension
and restriction functors, aswell as their truncated versions, give rise toQuillen equivalences:

φ! : �>0BimodP ; Q � �>0BimodP ′ ; Q′ : φ∗, (46)

φ! : Tr�>0BimodP ; Q � Tr�>0BimodP ′ ; Q′ : φ∗. (47)

Proof The proof is similar to that of Theorem 2.19. We use Proposition 2.21 that the operads
(P+Q)>0 and (P ′+Q′)>0 governing these structures are �-cofibrant. ��

3 The ReedyModel Category of (P-Q)-Bimodules

Let P be any topological operad and Q be a reduced operad. From now on, we denote
by �BimodP ; Q and Tr �BimodP ; Q the categories of (P-Q)-bimodules and r -truncated
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Fig. 11 Illustration of the right action by ∗0

(P-Q)-bimodules, respectively, equipped with the Reedy model category structures. This
structure is transferred from the categories �SeqP := P0 ↓ �Seq and Tr �SeqP := P0 ↓
Tr �Seq , respectively, along the adjunctions

F�
P ; Q : �SeqP � �BimodP ; Q : U�,

FTr�
P ; Q : Tr�SeqP � Tr�BimodP ; Q : U�,

(48)

where both free functors are obtained from the functors F�
P ; Q and FTr�

P ; Q by taking the
restriction of the coproduct (28) to the reduced trees with section without univalent vertices
other than the pearls. The (acyclic) generating cofibrations in �SeqP and Tr �SeqP are
{P0 � ∂X → P0 � X}, where {∂X → X} is the set of (acyclic) generating cofibrations of
�Seq and Tr� Seq , respectively.

If we denote by Q>0 the operad obtained from Q by changing the arity 0 component to
the empty set (i.e. Q>0(0) = ∅ and Q>0(n) = Q(n) for n ≥ 1), then for any (possibly
truncated) �-sequence M and n ≥ 0, one has

F�
P ; Q(M)(n) := F�

P ; Q>0
(M)(n) and FTr�

P ; Q(M)(n) := FTr�
P ; Q>0

(M)(n). (49)

Byconstruction, the above�-sequences are equippedwith a (possibly truncated) rightmodule
structures over Q>0. We can extend this structure in order to get a (possibly truncated) right
Q-module structures using the operadic structure of Q and the� structure ofM (see Fig. 11).

Theorem 3.1 Let P be an operad and Q be a reduced well-pointed operad. The categories
�BimodP ; Q and Tr�BimodP ; Q, with r ≥ 0, admit cofibrantly generated model category
structures, called Reedy model category structures, transferred from �SeqP and Tr�SeqP ,
respectively, along the adjunctions (48). In particular, these model category structures make
the pairs of functors (48) into Quillen adjunctions.

Proof According to the transfer principle of Theorem 1.1, we have to check the small object
argument as well as the existence of a functorial fibrant replacement and a functorial factor-
ization of the diagonal map in the category �BimodP ; Q .

For the small object argument, let us remark that the pushout in the category of (P-Q)-
bimodules is defined exactly as in the category of (P-Q>0)-bimodules. More precisely, for
any n ≥ 0, one has:2

colim
�BimodP;Q

(
B ← A → C

)
(n) = colim

�BimodP;Q>0

(
B ← A → C

)
(n). (50)

Let F�
P;Q(X) be a domain of an element in the set of generating (acyclic) cofibrations in

�BimodP ; Q . Let λ = ℵ1 and assume that {Mα}α<λ is a λ-sequence of (P-Q)-bimodules,

2 The forgetful functor from the category of (P-Q)-bimodules to the category of (P-Q>0)-bimodules pre-
serves colimits as it admits a right adjoint by Proposition 3.14b for Q1 = Q, Q2 = Q>0, Y = Q.
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such that each map M<α := colimβ<αMβ → Mα fits into a pushout square

F�
P;Q(∂Y ) F�

P;Q(Y )

M<α Mα,

(51)

where ∂Y → Y is a possibly infinite coproduct in�SeqP of generating (acyclic) cofibrations.
It follows from Lemma 2.10 and equations (49) and (50), that each map M<α → Mα is an
objectwise closed inclusion. Moreover,

(∐
n≥0 X(n)

) \P(0) is a finite union of spheres (or
discs), thus separable, and therefore, X is ℵ1-small relative to componentwise closed inclu-
sions. So, the same argument used for the proof of the small objects argument in Theorem2.11
works.

Contrary to the category of �BimodP;Q , the objects in the category �BimodP;Q are
not necessarily fibrant and the identity functor is not a fibrant replacement functor. The aim
of Sect. 3.1.1 is to introduce such a fibrant replacement functor if Q is well-pointed. This
fibrant replacement is different from the fibrant coresolution functor for�-sequences defined
in Sect. 1.3.

Fromnowon,we introduce a functorial path object in theReedymodel category of (P-Q)-
bimodules. In other words, for any M ∈ �BimodP ; Q which is fibrant in the category of
�-sequences, we build an element Path(M) ∈ �BimodP ; Q such that there is a factorization
of the diagonal map

� : M �
f1

Path(M)
f2

M × M,

where f1 is a weak equivalence and f2 is a fibration. Let us consider

Path(M)(n) = Map
([0 , 1] ; M(n)

)
. (52)

The object so obtained inherits a bimodule structure from M . The map from M to Path(M),
sending a point to the constant path, is clearly a homotopy equivalence. Furthermore, let us
remark that one has the following identities:

M(Path(M))(n) = Map
([0 , 1] ; M(M)(n)

)
and

M(M × M)(n) = M(M)(n) × M(M)(n).

So, the map f2 is a fibration if the map between the limits induced by the natural transfor-
mation

Path(M)(n) Path(M)(n) Path(M)(n)

Map
([0 , 1] ; M(M)(n)

) M(M)(n) × M(M)(n) M(n) × M(n)

is a Serre fibration. The right vertical map is obviously a Serre fibration because the inclusion
from ∂[0 , 1] into [0 , 1] is a cofibration (see the proof of Theorem 2.11). Moreover, since the
inclusion ∂[0 , 1] → [0 , 1] is a cofibration and the map M(n) → M(M)(n) is a fibration,
an alternative version of the pushout product lemma (see [26, Section 9.1.5]) implies that
the map

Map
([0 , 1] ; M(n)

) −→ Map
([0 , 1] ; M(M)(n)

) ×
Map

(
∂[0 , 1] ;M(M)(n)

) Map
(
∂[0 , 1] ; M(n)

)
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is also a Serre fibration. As a consequence of Lemma 1.5, the map f2 is a Serre fibration. ��

3.1 Properties of the ReedyModel Category of Bimodules

This subsection is divided into three parts. The first one is devoted to the construction of an
explicit fibrant coresolution functor for reducedbimodules. In the secondpart,we characterize
(acyclic) cofibrations in the Reedy model category of bimodules as (acyclic) cofibrations in
the usual projective model category of bimodules. The last part consists in extending the
properties introduced in Sect. 2.2 to the Reedy model category.

3.1.1 A Reedy Fibrant Replacement Functor for Bimodules

Let P be an operad and Q be a reduced operad. The goal of this section is to give an explicit
Reedy fibrant replacement in the category of bimodules if the operad Q is well-pointed.
A conceptual description of this fibrant coresolution in terms of internal hom is given in
Sect. 3.3.

• The set of trees P[n]. Let P[n] be the set of planar trees T whose roots have exactly n
incoming edges. We label their leaves with the identity permutation in �|T |, where |T | is the
number of leaves in T . We also label the n incoming edges bijectively by the set [n] in the
planar order from left to right. Such a tree T is equipped with an orientation towards the root
and we say that v < v′ if the path joining the vertex v′ with the root passes through the vertex
v. It makes the set of vertices V (T ) into a partially ordered set. Moreover, we consider the
operations

δi,m : P[n + m − 1] −→ P[n], with n,m ∈ N and 1 ≤ i ≤ n,

�m
k : P[n] −→ P[m], with n,m, k ∈ N and m + k ≤ n,

The operation δi,m(T ) is defined as follows. If m = 0, then δi,m consists in adding an
incoming edge to the root of T at the i-th position. The new incoming edge is connected to a
univalent vertex. If m > 0, then δi,m(T ) is obtained from T by gluing together the incoming
edges i, i +1, . . . , i +m−1, of the root counted according to the planar order. In both cases,
δi,m(T ) has one additional vertex to those of T . The new vertex has exactly m incoming
edges (see Fig. 12).

For any n,m and k such thatm+k ≤ n, the map �m
k : P[n] → P[m] consists in removing

n−m incoming edges together with the trees attached to them. The removed edges are those
labelled by [n]\{k + 1, . . . , k + m} (see Fig. 13).
• Construction of the fibrant replacement functor. From now on, we fix a (P-Q)-bimodule
M . Let T be an element in P[n]. We consider the spaces H(T ) of indexing the vertices of T

Fig. 12 Illustration of the applications δ2,0 and δ2,3
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Fig. 13 Illustration of the applications �2
1 and �2

0

other than the root r by real numbers and points in the operad Q, respectively.More precisely,
one has

D(T ) =
∏

v∈V (T )\{r}
Q(|v|),

H(T ) = { {tv} ∈ [0 , 1]|V (T )\{r}| ∣∣∀v < v′, tv ≤ tv′
}
.

In other words, H(T ) is the space of order preserving maps

V (T )\{r} → [0, 1].
Finally, we denote by M f (n) the subspace

M f (n) ⊂
∏

T∈P[n]
Map

(
H(T ) × D(T ) ; M(|T |) ) (53)

composed of families of continuous maps { fT }T∈P[n] satisfying the following conditions:

1. Let T be an element in P[n] having a bivalent vertex v other than the root. Then one has

H(T ) × D(T \{v}) H(T ) × D(T )

fT

H(T \{v}) × D(T \{v})
fT \{v}

M(|T \{v}|) = M(|T |)

(54)

where T \{v} is the tree obtained from T by removing the bivalent vertex v (i.e. by
replacing the incoming and outgoing edges of v by a single edge). The upper horizontal
map indexes the vertex v by the unit of the operad Q while the left verticalmap is obtained
by forgetting the the real number indexing the bivalent vertex v.

2. For any non-root vertex v of T and any permutation σ of the incoming edges of v, one
has

H(T ) × D(T )

fT

H(T · σ) × D(T · σ)

fT ·σ

M(|T |)
σL [T ]∗ M(|T · σ |) = M(|T |)

(55)

where T · σ is the tree obtained from T by permuting the incoming edges of v according
to the permutation σ and σL [T ] ∈ �|T | is the induced permutation of the leaves of T . The
upper horizontal map sends the decorations of the tree T to the corresponding decorations
of T · σ and acts on the Q-decoration of the vertex v using the �-structure of the operad
Q.
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3. For any inner edge e, which is not connected to the root, one has

H(T /e) × D(T ) H(T ) × D(T )

fT

H(T /e) × D(T /e)
fT /e

M(|T /e|) = M(|T |)

(56)

where T /e is the tree obtained from T by contracting the edge e. The upper horizontalmap
indexes the source and the target vertices of e by the real number in H(T /e) corresponding
to the vertex resulting from the contraction of e. The left vertical map is defined using
the operadic structure of Q.

4. Any tree T has a unique decomposition of the form T = Te ◦i(e) T ′
e along any edge e.

Then one has

H(Te) × D(Te) × ∏

v∈V (T ′
e )

Q(|v|)
fTe×η

H(T ) × D(T )

fT

M(|Te|) × Q(|T ′
e |) ◦i(e)

M(|T |)

(57)

The upper horizontal map consists in indexing the vertices associated to the tree T ′
e by

1. The map η : ∏v∈V (T ′
e )
Q(|v|) → Q(|T ′

e |) is defined using the operadic structure of Q
while the lower horizontal map is obtained using the right Q-module structure of M .

Remark 3.2 Let us notice that, as a special case of the fourth condition, for any univalent
vertex v, one has

H(T \{v}) × D(T \{v})
fT \{v}

H(T ) × D(T )

fT

M(|T \{v}|) = M(|T | + 1) ◦v∗0
M(|T |)

where T \{v} is the tree obtained from T by removing the univalent vertex v (and thus
producing one more leaf). The upper horizontal map consists in indexing the vertex v by
the real number 1 and the unique point ∗0 ∈ Q(0). The lower horizontal map composes the
input of M(|T \{v}|), corresponding to the vertex v, with the point ∗0 ∈ Q(0) using the right
Q-module structure of M .

• The �-structure on the fibrant coresolution. The space M f (n) inherits an action of the
permutation group �n . More precisely, for any σ ∈ �n , we denote by Tσ the tree obtained
from T ∈ P[n] by permuting the incoming edges associated to the root of T according to the
permutation σ . Such a permutation induces the following two bijections:

σV [T ] : V (T \{r}) −→ V (Tσ \{r}) ∈ �|V (T )\{r}|,

σL [T ] : �(T ) −→ �(Tσ ) ∈ �|T |.
(58)

Here, �(T ) denotes the set [|T |] of leaves. So, the action of the permutation group
σ ∗ : M f (n) → M f (n) sends a family of continuous maps { fT }T∈P[n] to the family
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{( f · σ)T }T∈P[n] given by the formula

( f · σ)T : H(T ) × D(T ) −→ M(|T |);
{tv} , {qv} �−→ fTσ

( {tσV [T ](v)} , {qσV [T ](v)}
) · σL [T ].

• The bimodule structure on the fibrant coresolution. Since one has the identity M f (0) =
M(0), one has a map γ0 : P(0) → M f (0) and the �-sequence M f inherits a (P-Q)-
bimodule structure whose right operations are given by

◦i : M f (n) × Q(m) −→ M f (n + m − 1);
{ fT }T∈P[n] , q �−→ {( f ◦i q)T }T∈P[n+m−1],

(59)

where ( f ◦i q)T is the composite map:

( f ◦i q)T : H(T ) × D(T ) H(δi,m(T )) × D(δi,m(T ))
fδi,m (T )

M(|δi,m(T )|) = M(|T |).

The left hand side map consists in indexing the new vertex by the real number 0 and the point
q ∈ Q(m). Similarly, the left P-module structure on M f is given by the operations

γ� : P(k) × M f (n1) × · · · × M f (nk) −→ M f (n1 + · · · + nk);
p , { f 1T }T∈P[n1], . . . , { f kT }T∈P[nk ] �−→ {p( f 1, . . . , f k)T }T∈P[n1+···+nk ],

where p( f 1, . . . , f k)T is the composite map

H(T ) × D(T )

∼=

p( f 1,..., f k )T
M(|T |)

∏

1≤i≤k
H(�

ni
n1+···+ni−1

(T )) × D(�
ni
n1+···+ni−1

(T ))

×i f
�
ni
n1+···+ni−1

(T ) ∏

1≤i≤k
M(|�ni

n1+···+ni−1
(T )|).

γ�(p;−,··· ,−)

Finally, there is a map of (P-Q)-bimodules η : M → M f sending a point m ∈ M(n) to
the family of continuous maps {η(m)T }T∈P[n] given by the formula

η(m)T : H(T ) × D(T ) −→ M(|T |);
{tv} , {qv} �−→ m ◦ {qv},

using the right Q-bimodule structure ofM . It means thatm is taken for a root andwe compose
with {qv} using the operadic structure of Q and the right module structure of M .

Proposition 3.3 The map η : M → M f is a weak equivalence.

Proof The proof is similar to the proof of Proposition 1.3. We show that the map of �-
sequencesηn : M(n) → M f (n) is a homotopy equivalence of�-sequences. For this purpose,
we introduce a map of �-sequences ψ : M f → M given by

ψn : M f (n) M(n);
{ fT }T∈P[n] fCn (∗),

where Cn is the n-corolla whose corresponding space H(Cn) × D(Cn) is necessarily the
one point topological space. The map ψ so obtained makes η into a deformation retract
and the homotopy consists in bringing the real numbers indexing the vertices other than the
root to 1. ��
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Fig. 14 Illustration of the construction of T [h]

Proposition 3.4 If the operad Q is well-pointed, then the (P-Q)-bimodule M f is Reedy
fibrant.

Proof The proof is divided into two parts. First, we identify the matching objectM(M f )(n)

with a spaceM0(n) defined in the same way as M f (n) by changing slightly the construction
of the space H(T ). Thereafter, we build a tower of fibrations related to M f (n) and M0(n)

according to the number of vertices of the trees in P[n]. In the proof we use equivariant
homotopy theory techniques from “Appendix A.2”.

Simplification of the matching object: We say that two trees T1 and T2 from P[n] are
equivalent if they are isomorphic as non-planar trees and moreover the isomorphism between
T1 and T2 preserves the order of the incoming edges of the root r . We denote by T[n] the
so obtained set of equivalence classes. For T ∈ T[n] we denote by Aut(T ) the set of
automorphisms of T which preserve the order of the incoming edges to the root. Let |T |
denote the number of leaves of T . For each T ∈ T[n] we choose a planar representative
and we label the leaves of T in the corresponding planar order they appear. This gives us a
homomorphism Aut(T ) → �|T |, which is not always injective due to the presence of arity
zero vertices.

Because of the relation (55), the space M f (n) can be equivalently described as the sub-
space

M f (n) ⊂
∏

T∈T[n]
MapAut(T )

(
H(T ) × D(T ) ; M(|T |) )

composed of families of continuous maps { fT }T∈T[n] satisfying the conditions (54), (56),
(57) properly understood.

For any tree T ∈ T[n], we denote by H0(T ) the subspace of H(T ) which consists of
points having at least one univalent vertex labelled by 0 and connected to the root of T . Let
M0(n) be the subspace

M0(n) ⊂
∏

T∈T[n]
MapAut(T )

(
H0(T ) × D(T ) ; M(|T |) ),

satisfying the relations (54), (56) and (57). In order to show that the spaceM0(n) is homeo-
morphic to thematching objectM(M f )(n), we recall that a point inM(M f )(n) is a family of
maps {φT ,h}, indexed by h ∈ �+([�], [n]), T ∈ T[�] and � < n, satisfying some conditions
related to the limit (3) as well as the relations (54), (56) and (57).

For each pair (T , h), with h ∈ �+([�], [n]) and T ∈ T[�], we denote by T [h] the tree
in T[n] obtained from T by adding univalent vertices connected to the root according to the
order preserving map h (see Fig. 14). So the map

α : M0(n) −→ M(M f )(n);
φ = {φT } �−→ {(α ◦ φ)T ,h},
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is given by the composite maps

(α ◦ φ)T ,h : H(T ) × D(T ) H0(T [h]) × D(T [h]) φT [h]
M(|T [h]|) = M(|T |),

where the left hand side map consists in indexing the new univalent vertices by the unique
point in Q(0) and the real number 0.

Conversely, for any tree T ∈ T[n] and {tv} ∈ H0(T ), we denote by �{tv} the number of
incoming edges of the root of T which are not connected to univalent vertices indexed by 0.
Furthermore, we denote by h[{tv}] : [�{tv}] → [n] the order preserving map which keeps in
mind the position of the incoming edges of the root which are not connected to a univalent
vertex indexed by 0. Finally, T [{tv}] ∈ T[�{tv}] is the tree obtained from T by removing the
incoming edges of the root which are connected to a univalent vertex indexed by 0. So, one
has the map

β : M(M f )(n) −→ M0(n);
φ = {φT ,h} �−→ {(β ◦ φ)T },

given by

(β ◦ φ)T : H0(T ) × D(T ) −→ M(|T |);
{tv} , {qv} �−→ φT [{tv}],h[{tv}]({t̃v} , {q̃v}),

where the families {t̃v} and {q̃v} are obtained from {tv} and {qv}, respectively, by removing
the parameters corresponding to the univalent vertices indexed by 0 and connected to the
root. The map β is well defined due to the relations induced by the limit and, together with
the map α, induces a homeomorphism betweenM0(n) and the matching objectM(M f )(n).
Furthermore, the map from M f (n) → M(M f )(n) is equivalent to the restriction map

r : M f (n) −→ M0(n),

induced by the inclusion H0(T ) → H(T ) for any tree T ∈ T[n].
Construction of the tower of fibrations: We construct a tower of fibrations according to the
number of vertices of the trees in T[n]:
M0(n) = A0 A1 · · · Ak−1 Ak · · · M f (n).

For this purpose, we introduce the set T[n, k] of trees in T[n] having exactly k vertices. In
particular, T[n, 1] has only one element which is the n-corolla Cn . The space Ak is defined
as the subspace

Ak ⊂

⎛

⎜
⎜
⎝

∏

T∈T[n,i]
i≤k

MapAut(T )

(
H(T ) × D(T ) ; M(|T |) )

⎞

⎟
⎟
⎠

×

⎛

⎜
⎜
⎝

∏

T∈T[n,i]
i>k

MapAut(T )

(
H0(T ) × D(T ) ; M(|T |) )

⎞

⎟
⎟
⎠

composed of families of continuous maps { fT }T∈T[n] satisfying the conditions (54), (56),
(57).
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The space Ak is defined by induction from Ak−1 using the pullback diagram:

Ak

∏

[T ]∈T[n,k]
MapAut(T )

(
H(T ) × D(T ) ; M(|T |) )

Ak−1

∏

[T ]∈T[n,k]
MapAut(T )

(
(H × D)−(T ) ; M(|T |) ),

(60)

In the diagram above, for any tree T ∈ T[n, k], D−(T ) is the subspace of D(T ) formed by
points having at least one bivalent vertex labelled by the unit of the operad Q. On the other
hand, the space H−(T ) ⊂ H(T ) consists of points in H0(T ) or having two consecutive
vertices indexed by the same real number or having a vertex indexed by 1. Then we set

(H × D)−(T ) := (
H−(T ) × D(T )

) ∐

H−(T )×D−(T )

(
H(T ) × D−(T )

)
.

To show that the map Ak → Ak−1 is a Serre fibration, one has to prove that the right
vertical map in (60) is one. Let t be the number of arity one (non-root) vertices of T . Denote
by

D1(T ) := Q(1)×t , D 
=1(T ) :=
∏

v∈V (T )\{r}
|v|
=1

Q(|v|).

One has, D(T ) = D1(T ) × D 
=1(T ). We similarly denote by D−
1 (T ) the subset consisting

of points having at least one coordinate equal to the unit ∗1 ∈ Q(1) and define

(H × D1)
−(T ) := (

H−(T ) × D1(T )
) ∐

H−(T )×D−
1 (T )

(
H(T ) × D−

1 (T )
)
.

We have

(H × D)−(T ) = (H × D1)
−(T ) × D 
=1(T ) and

(H × D)(T ) = (H × D1)(T ) × D 
=1(T ). (61)

Recall Definition A.9 of a cellularly equivariant cofibration. Let n denote the ordered set
{0, 1, . . . , n + 1}. The dual to the simplicial indexing category � can be defined as the
category having {n , n ∈ N} as the set of objects with morphisms order preserving maps
that also preserve both extrema. The space H(T ) can be described as the realization of the
simplicial set HT (•) with HT (n) being the set of order preserving maps

V (T )\{r} → n. (62)

Note that H−(T ) is the realization of a simplicial subset H−
T (•) ⊂ HT (•). It consists

of order-preserving maps (62) which are either sending an arity zero vertex of T to 0 or
non-injective or sending some vertex of T to the maximal element. By Lemma A.11, the
inclusion H−(T ) → H(T ) is a cellularly Aut(T )-equivariant cofibration. Using the fact
that the operad Q is well-pointed and also applying Lemmas A.12, A.13, A.14, we get
that the inclusion (H × D1)

−(T ) → H(T ) × D1(T ) is a cellularly Aut(T )-equivariant
cofibration.
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Using the fact that the category Top is cartesian closed, for any X ∈ Aut(T )-Top, one
has a homeomorphism

MapAut(T )

(
X × D 
=1(T ) ; M(|T |)) = MapAut(T )

(
X ; Map

(
D 
=1(T ) , M(|T |))), (63)

where the Aut(T )-action onMap
(
D 
=1(T ) , M(|T |)) is defined by ( f ·g)(x) = f (x ·g−1)·g,

g ∈ Aut(T ). Applying this homeomorphism to (61) and thenLemmaA.10 to the right vertical
map in (60), we get that the latter is a Serre fibration. ��
Remark 3.5 The same strategy can be used in order to get a fibrant replacement functor for
the Reedy model category of r -truncated (P-Q)-bimodules. The fibrant replacement should
be defined as a subspace of the product (53) with an additional restriction |T | ≤ r . The
constraints are the same.

3.1.2 Characterization of Reedy Cofibrations for Bimodules

It has been shown by the second author [19, Theorem 8.3.20] that a map of �-sequences is
a Reedy cofibration if and only if it is a projective �-cofibration. In the context of operads,
he also proves [19, Theorem 8.4.12] that a map φ : P → Q between reduced operads
is cofibrant in the Reedy model category �∗Operad if and only if the corresponding map
φ>0 : P>0 → Q>0 is a cofibration in the projective model structure of (not necessarily
reduced) operads. In what follows, we prove an analogous version in the context of operadic
bimodules.

Theorem 3.6 Let P and Q be as in Theorem 3.1. A morphism φ : M → N in the category of
(possibly truncated) (P-Q)-bimodules is a Reedy cofibration if and only if the corresponding
map φ is a cofibration in the projective model category of (possibly truncated) (P-Q>0)-
bimodules.

Proof First, we show that if the induced map is a cofibration in the projective model category
of (P-Q>0)-bimodules then the map φ : M → N is a Reedy cofibration in the category of
(P-Q)-bimodules. For this purpose, we consider the following lifting problem in the category
of (P-Q)-bimodules:

M
i

φ

A

p�

N
j

∃ϕ?

B

(64)

where p : A → B is an acyclic Reedy fibration. The strategy is to build the map ϕ by
induction using an adjunction between (P-Q)-bimodules

ars : �BimodP ; Q � �BimodP ; Q : cosks .
The functor ars , called the arity filtration functor, sends a (P-Q)-bimoduleM to the bimodule
ars(M) defined as a quotient of the free (P-Q>0)-bimodule generated by the first s compo-
nents of M where the equivalence relation is determined by the restriction of the bimodule
structure on the first s components of M . In other words, if Ls denotes the left adjoint to
the truncation functor Ts , then the arity filtration functor is given by ars = Ls ◦ Ts . By
construction, ars(M) is a (P-Q)-bimodule and one has the identities

ars−1 ◦ ars = ars−1, colimsars(M) = M and ars(M)(k) = M(k), for k ≤ s.
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Let us notice that, even though this functor is called filtration, the natural map ars(M) → M
might not be an inclusion. First, we give an explicit description of the right adjoint of the
arity filtration functor.

The �-coskeletons associated to a bimodule. According to the notation introduced by the
second author [19], the �-sequence cosks(M) = {cosks(M)(n), n ≥ 0}, called the s-th
coskeleton associated to the bimodule M , is given by the formula

cosks(M)(n) = lim
h∈�+([i] ; [n])

0≤i≤s

M(i), with n ≥ 0. (65)

As a matter of fact, the right adjoint Rs , to the s-truncation functor Ts , is defined by the same
formula. Similarly to the arity filtration functor, the functor cosks is also given by

cosks = Rs ◦ Ts .

By construction, a point x ∈ cosks(M)(n) is a family of elements x = {xh ∈ M(i), h ∈
�+([i] ; [n]) and i ≤ s} satisfying the relation of the limit: for any f ∈ �+([i] ; [ j])
and g ∈ �+([ j] ; [n]), one has f ∗(xg) = xg◦ f . In particular, cosks(M)(0) = M(0) is
obviously endowed with a map from P(0). Furthermore, the �-sequence cosks(M) inherits
a �-structure. For any f ∈ �+([n1] ; [n2]), one has

f ∗ : cosks(M)(n2) −→ cosks(M)(n1);
{xu}0≤i≤s

h∈�+([i] ; [n2]) �−→ {x f ◦u}0≤i≤s
u∈�+([i] ; [n1]).

(66)

The �-sequence cosks(M) is also a (P-Q)-bimodule. In order to define the right opera-
tions,we introduce somenotation. Letn,m > 0, l ∈ {1, . . . , n} andh ∈ �+([i] ; [n+m−1]).
If we denote by �1 ∈ �+([m] ; [n + m − 1]) and �2 ∈ �+([n] ; [n + m − 1]) the order
preserving maps

�1 : [m] −→ [n + m − 1]; and �2 : [n] −→ [n + m − 1];
α �−→ α + �, α �−→

{
α if α ≤ �,

α + m if α > �,

then there exist unique morphisms h1 and h2 making the following diagrams commute:

[i] h [n + m − 1]

[|Im(�1) ∩ Im(h)|]
h1

[m]
�1

[i] h [n + m − 1]

[|Im(�2\{�}) ∩ Im(h)|]
h2

[n]
�2

Finally, if we denote by � = � − |{α ∈ [i] | h(α) < �}|, then the right operations are defined
as follows:

◦i : cosks(M)(n) × Q(m) −→ cosks(M)(n + m − 1);
{xu}0≤i≤s

u∈�+([i] ; [n]) ; q �−→ {xh2 ◦� h∗
1(q)}0≤i≤s

h∈�+([i] ; [n+m−1]).
(67)

Let k1, . . . , k� > 0 and h ∈ �+([i] ; [k1 +· · ·+ k�]). In order to define the left operation,
we introduce the morphism �i ∈ �+([ki ] ; [k1 +· · ·+ k�]) sending α to α + k1 +· · ·+ ki−1.
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Then there exists a unique morphism hi such that the following diagram commutes:

[i] h [k1 + · · · + k�]

[|Im(h) ∩ Im(�i )|]
hi

[ki ]
�i

Finally, the left operation is given by the formula

γ : P(�) × cosks(M)(k1) × · · · × cosks(M)(k�) −→ cosks(M)(k1 + · · · + k�);
p ; {x1u1} , . . . , {x�

u�
} �−→ {p(x1h1 , . . . , x�

h�
)}0≤i≤s
h∈�+([i] ; [k1+···+k�]).

The arity filtration and the coskeleton functors form an adjunction. For any pair of
reduced (P-Q)-bimodules M and N , we define below a homeomorphism between the map-
ping spaces of (P-Q)-bimodules:

F : �BimodP ; Q(ars(M) ; N ) � �BimodP ; Q(M ; cosks(N )) : G. (68)

Let f : M → cosks(N ) be a bimodulemap. The bimodulemapG( f ) is defined by induction.
If n ≤ s and x ∈ ars(M)(n) = M(n), then G( f )(x) = f (x)[n]→[n], the point indexed by
the identity order preserving map. From now on, we assume that G( f ) is defined for any
element ars(M) until the arity n ≥ s. Let x ∈ ars(M)(n + 1). Then one has

G( f )(x) =
{
G( f )(x ′) ◦i y if x = x ′ ◦i y,
y(G( f )(x1), . . . ,G( f )(x�)) if x = y(x1, . . . , x�).

Conversely, let g : ars(M) → N be a bimodule map. Then one has

F(g)n : M(n) −→ cosks(N )(n);
x �−→ {xh = g ◦ h∗(x)}0≤i≤s

h∈�+([i] ; [n]).

The arity functor ars preserves �BimodP,Q>0 -cofibrations. The functor ars can be
defined on the category �BimodP,Q>0 and it fits into a Quillen adjunction

ars : �BimodP,Q>0 � �BimodP,Q>0 : trs, (69)

where trs is the truncation functor trs(L)(n) =
{
L(n), n ≤ s;
∗, n > s.

One has a square of functors

�BimodP ; Q
ars

U

�BimodP ; Q

U

�BimodP,Q>0

ars
�BimodP,Q>0 .

The vertical arrows denote the forgetful functor. This square commutes by the same argument
as in the case of operads, see [19, Theorem 8.4.12]. One checks it first for free bimodules:
arsF�

P ; Q(L) = F�
P ; Q(L≤s) and arsF�

P ; Q>0
(L) = F�

P ; Q>0
(L≤s). Here, L≤s denotes the

sequence
{
L(n), n ≤ s;
∅, n > s.
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It follows from (49) that the square commutes for free bimodules. The forgetful functor U
preserves colimits as it has a right adjoint by Proposition 3.14b for Q1 = Q, Q2 = Q>0,
Y = Q. So do the functors ars . On the other hand, any bimodule can naturally be seen as a
coequalizer of free ones. The adjunction (69) is a Quillen adjunction as trs preserves fibra-
tions and equivalences. As a consequence, ars : �BimodP,Q>0 → �BimodP,Q>0 preserves
cofibrations.

Construction of the lift by induction.Wework out our lifting problem (64) by an inductive
construction on arity. By definition, one has ar0(N ) = N0 (that is N (0) in arity 0 and the
empty set otherwise) and ar0(M) = M0. Consequently, the bimodule map ϕ0 : ar0(N ) → A
is obtained as a lift of the following diagram of P-algebras:

M(0)
i0

φ0

A(0)

p0

N (0)
j0

B(0)

Such a lift exists. Indeed, the left vertical map is a cofibration of P-algebras since the arity
functor preserves cofibrations. Moreover, since p is an acyclic Reedy fibration, the map
A(0) → B(0) ×M(B)(0) M(A)(0) = B(0) is an acyclic Serre fibration.

Then we assume that the bimodule map ϕs−1 : ars−1(N ) → A is well defined. We
consider the following diagram in the category of reduced (P-Q)-bimodules:

ars(M)
∐

ars−1(M)

ars−1(N )
(i◦ι ;ϕs−1)

(ars (φ) ; ι)

A

p�

ars(N )
j◦ι

∃ϕs?

B

(70)

where the upper horizontal map is defined using the map i ◦ ι : ars(M) → M → A on the
first summand and the map ϕs−1 : ars−1(N ) → A on the second summand. By applying the
identifications ars−1 ◦ ars = ars−1 and ars ◦ ars = ars together with the adjunction (68),
we get that the lifting problem (70) becomes equivalent to a lifting problem of the following
form in the category of reduced (P-Q)-bimodules:

ars(M)
F(i◦ι)

ars (φ)

cosks(A)

π×cosks (p)�

ars(N )
F(ϕs−1)×F(ars ( j))

∃ϕ̃s

cosks−1(A) ×
cosks−1(B)

cosks(B).

(71)

The left vertical map is a cofibration in �BimodP,Q>0 since the arity functor preserves
cofibrations. On the other hand, the right vertical map is an acyclic Serre fibration in both the
projective model category of �-sequences and the Reedy model categories of �-sequences,
see the proof of [19, Theorem 8.3.20]. In that proof the second author has a similar diagram
(loc. cit. equation (6)), but in the category of�-sequence. The coskeleton functors are defined
on the category �Seq by the same formula (65). Thus, the second author shows that for any
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Reedy fibration A → B of �-sequences, the induced map

cosks(A) → cosks−1(A) ×
cosks−1(B)

cosks(B)

is an acyclic both Reedy and (therefore) Serre fibration. As a consequence the lift ϕ̃s of
Diagram (71) exists in the category of (P-Q>0)-bimodules.

The morphism ϕ is compatible with the �-structure. By definition, let us remark that
one has the identifications cosks−1(N )(s) = M(N )(s) and cosks−1(A)(s) = M(A)(s). By
construction of the map F from (68) applied to ϕs−1 : ars−1 ◦ ars(N )(s) → A(s), on has
the factorization

F(ϕs−1) : ars(N )(s) = N (s) M(N )(s)
M(p) M(A)(s).

Consequently, the commutativity of diagram (71) implies the commutativity of the square:

ars(N )(s) = N (s) cosks(A)(s) = A(s)

π

M(N )(s) cosks−1(A)(s) = M(A)(s).

It follows that our morphism ϕ̃s intertwines the action of the restriction operators h : [n1] →
[n2]. This proves that ϕ̃s and, therefore, ϕs are morphisms of reduced bimodules preserving
the �-structure. Thus so is ϕ = limsϕs .

Conversely. The forgetful functor U : �BimodP ; Q → �BimodP,Q>0 preserves colimits.
Therefore, it is enough to check the statement for generating cofibrations in �BimodP ; Q .
The latter are given by applying the free functor F�

P ; Q to the generating cofibrations of
�SeqP . On the other hand, �-cofibrations are always �-cofibrations and the free functor
F�

P ; Q agrees with F�
P ; Q>0

, see (49). ��

3.1.3 Left Properness and Extension/Restriction Functors for the Reedy Model
Structure

As seen in Sect. 2.2, under some conditions on the operads, the projective model category
of bimodules is relatively left proper and the extension/restriction adjunctions are Quillen
equivalences. In what follows, we show that the Reedy model category inherits the same
properties as a consequence of the characterization of Reedy cofibrations in the previous
section.

Theorem 3.7 Let P be an operad and Q be a reduced and well-pointed operad. The Reedy
model category �BimodP ; Q is right proper. If P(0) ∈ Top is a cofibrant space, P>0 ∈
�Operad is a cofibrant operad and Q is componentwise cofibrant, then �BimodP ; Q is
left proper relative to the class S of componentwise cofibrant bimodules for which the arity
zero left action map γ0 is a cofibration. In the latter case, cofibrations with domain in S are
componentwise cofibrations, implying that the class of objects S is closed under cofibrations.
If in addition Q is �-cofibrant, then cofibrations with domain in the subclass S� ⊂ S of
�-cofibrant objects are �-cofibrations, and S� is also closed under cofibrations.

Proof The first statement is proved in exactly the same way as Theorem 2.14 using the facts
that a Reedy fibration is always a projective (componentwise) fibration and that pullbacks
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(and more generally limits) in the category of bimodules are defined componentwise and the
fact that the category of spaces is right proper. For the other statements, we first recall that
the forgetful functor U : �BimodP ; Q → �BimodP ; Q>0 preserves colimits.3 In particular,
pushouts are sent to pushouts. By Theorem 3.6, it also creates cofibrations. The statements
then follow from the analogous statements Theorems 2.16 and 2.18 for �BimodP ; Q>0 . ��

Let φ1 : P → P ′ be a weak equivalence of operads and φ2 : Q → Q′ be a weak equiva-
lence of reduced operads. Similarly to Sect. 2.2.2, we show that, under some conditions, the
Reedymodel categories of (P-Q)-bimodules and (P ′-Q′)-bimodules are Quillen equivalent.
By abuse of notation, we denote by φ∗ and φ! the restriction functor and the extension functor,
respectively, between the Reedy model categories:

φ! : �BimodP ; Q � �BimodP ′ ; Q′ : φ∗. (72)

In the same way as in Sect. 2.2.2, for any M ∈ �BimodP ; Q and M ′ ∈ �BimodP ′ ; Q′ , one
has

φ!(M) = {φ!(M)(n) = F�
P ′;Q′(U�(M))(n)/ ∼, n ≥ 0},

φ∗(M ′) = {φ∗(M ′)(n) = M ′(n), n ≥ 0}.
Theorem 3.8 Letφ1 : P → P ′ be aweak equivalences of�-cofibrant operads andφ2 : Q →
Q′ be a weak equivalence between reduced and componentwise cofibrant operads. Then one
has Quillen equivalences

φ! : �BimodP ; Q � �BimodP ′ ; Q′ : φ∗, (73)

φ! : Tr�BimodP ; Q � Tr�BimodP ′ ; Q′ : φ∗. (74)

Proof Since the restriction functor creates weak equivalences, one has a Quillen equivalence
if, for any Reedy cofibrant object M in �BimodP ; Q , the adjunction unit

M −→ φ∗(φ!(M)) (75)

is a weak equivalence. To prove it, we consider the adjunction φ̃! : �BimodP ; Q>0 �
�BimodP ′ ; Q′

>0
: φ̃∗ induced by the weak equivalences of operads φ1 : P → P ′ and

φ>0
2 : Q>0 → Q′

>0. By construction, one has the identity

φ∗(φ!(M)) = φ̃∗(φ̃!(M)).

By Theorem 2.19, the extension/restriction adjunction (φ̃!, φ̃∗) is a Quillen equivalence.
Moreover, thanks to the characterization of Reedy cofibrations, M is also cofibrant in the
projective model category �BimodP,Q>0 and the map M −→ φ̃∗(φ̃!(M)) = φ∗(φ!(M)) is
a weak equivalence. ��

3.2 The Connection Between theModel Category Structures on Bimodules

Similarly to the operadic case in [21], we build a Quillen adjunction between the projective
model category of (P-Q)-bimodules and the Reedy model category of (P-Q)-bimodules,

3 In fact the forgetful functor from the category of (P-Q)-bimodules to left P-modules creates colimits. It
preserves colimits as it has a right adjoint by Proposition 3.14b for Q1 = Q, Q2 = 1, Y = Q. The fact that
a cocone in bimodules is a colimit if it is a colimit in the category of left modules is easily verified.
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where P is an operad and Q is a reduced operad. Furthermore, ifM and N are two bimodules,
then we show that there is a weak equivalence between the derived mapping spaces:

�BimodhP ; Q(M ; N ) � �BimodhP ; Q(M ; N ).

For completeness of exposition, the last subsection is devoted to adapt the Boardman–Vogt
resolution (well known for operads, see [7]) to the context of bimodules. We refer the reader
to [13] for a detailed account of this construction.

3.2.1 Quillen Adjunction Between the Model Category Structures

Let P be an operad and Q be a well-pointed reduced operad. The projective and the Reedy
model categories of bimodules have the same class of weak equivalences and induce the same
homotopy category. Consequently, one has the following statement about the adjunctions

id : �BimodP ; Q � �BimodP ; Q : id,

id : Tr�BimodP ; Q � Tr�BimodP ; Q : id.
(76)

Theorem 3.9 For any operad P and anywell-pointed reduced operad Q, the pairs of functors
(76) form Quillen equivalences. Furthermore, for any pair M, N ∈ �BimodP ; Q, one has

�BimodhP ; Q(M, N ) � �BimodhP ; Q(M, N ). (77)

Moreover, if M, N ∈ Tr�BimodP ; Q, with r ≥ 0, then one has

Tr�BimodhP ; Q(M, N ) � Tr�BimodhP ; Q(M, N ). (78)

Proof In order to prove that the pairs of functors (76) form Quillen adjunctions we check
that the right adjoint functors preserve fibrations and acyclic fibrations. Let f : M → N be
an (acyclic) fibration in the Reedy model category of bimodules. By definition, the map f is
a fibration if the corresponding map U�( f ) in the category of �-sequences is a fibration. In
other words, it means that the maps

M(n) −→ M(M)(n) ×M(N )(n) N (n), with n ∈ N, (79)

are (acyclic) Serre fibrations. On the other hand, the map id( f ) is a fibration in the projective
model category of bimodules if the maps M(n) → N (n), with n ∈ N, are Serre fibrations.
According to the notation introduced in Sect. 1.2, the pair of functors

�[−] : �Seq � �Seq : U(−)

forms a Quillen adjunction (see [19, Theorem 8.3.20]). In particular, the forgetful functor
U preserves (acyclic) fibrations. As a consequence, if the maps (79) are (acyclic) Serre
fibrations, then the induced maps M(n) → N (n), with n ∈ N, are (acyclic) Serre fibrations.
Furthermore, the Quillen adjunction so obtained is obviously a Quillen equivalence since
we consider identity functors. Finally, the identities (77) and (78) are induced by taking a
projective cofibrant replacement of M and a Reedy fibrant replacement of N and using the
fact that any projectively cofibrant object is Reedy cofibrant and any Reedy fibrant object is
projectively fibrant. ��
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3.2.2 Boardman–Vogt Type Resolution in the Projective/Reedy Model Category

From a (P-Q)-bimodule M , we build a (P-Q)-bimodule BP ; Q(M). The points of
BP ; Q(M)(n), n ≥ 0, are equivalence classes [T ; {tv} ; {pv} ; {mv} ; {qv}], where T ∈ sPn

(see Sect. 2.1.2) is a tree with section while {pv}v∈V d (T ), {mv}v∈V p(T ) and {qv}v∈V u (T ) are
families of points labelling the vertices below the section, on the section and above the sec-
tion, respectively, by points in P , M and Q, respectively. Furthermore, {tv}v∈V (T )\V p(T ) is
a family of real numbers in the interval [0 , 1] indexing the vertices which are not pearls. If
e is an inner edge above the section, then ts(e) ≥ tt(e). Similarly, if e is an inner edge below
the section, then ts(e) ≤ tt(e). In other words, closer to a pearl is a vertex, smaller is the
corresponding number. The space BP ; Q(M)(n) is a quotient of the subspace of

∐

T∈sPn

∏

v∈V p(T )

M(|v|) ×
∏

v∈V d (T )

[
P(|v|) × [0 , 1]] ×

∏

v∈V u(T )

[
Q(|v|) × [0 , 1]] (80)

determined by the restrictions on the families {tv}. The equivalence relation is generated by
the conditions:

(i) If a vertex is labelled by a unit in P(1) or Q(1), then locally one has the identity

(ii) If a vertex is indexed by a · σ , with σ ∈ �, then

(iii) If two consecutive vertices, connected by an edge e, are indexed by the same real number
t ∈ [0 , 1], then e is contracted using the operadic structures of P and Q. The vertex so
obtained is indexed by the real number t .

(iv) If a vertex above the section is indexed by 0, then its output edge is contracted by using
the right module structure. Similarly, if a vertex below the section is indexed by 0, then
all its incoming edges are contracted by using the left module structure. In both cases
the new vertex becomes a pearl.
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Fig. 15 Illustration of the left module structure γ� : P(2)×BP ; Q(M)(3)×BP ; Q(M)(0) → BP ; Q(M)(3)

(v) If a univalent pearl is indexed by a point of the form γ0(x), with x ∈ P(0), then we
contract its output edge by using the operadic structure of P . In particular, if all the
pearls connected to a vertex v are univalent and of the form γ0(xv), then the vertex is
identified to the pearled corolla with no input.

Let us describe the (P-Q)-bimodule structure. Let q ∈ Q(n) and [T ; {tv} ; {pv} ; {mv} ;
{qv}] be a point in BP ; Q(M)(m). The right operation [T ; {tv} ; {pv} ; {mv} ; {qv}] ◦i q
consists in grafting the n-corolla labelled by q to the i-th incoming edge of T and indexing
the new vertex by 1. Similarly, let [Ti ; {t iv} ; {piv} ; {mi

v} ; {qiv}] be a family of points in the
spaces BP ; Q(M)(mi ). The left module structure over P is defined as follows: each tree of
the family is grafted to a leaf of the n-corolla labelled by p ∈ P(n) from left to right. The
new vertex, coming from the n-corolla, is indexed by 1 (see Fig. 15).

One has an obvious inclusion of �-sequences ι : M → BP ; Q(M), where each element
m ∈ M(n) is sent to an n-corolla labelled by m, whose only vertex is a pearl. Furthermore,
the map

μ : BP ; Q(M) → M ; [T ; {tv} ; {pv} ; {mv} ; {qv}] �→ [T ; {0} ; {pv} ; {mv} ; {qv}],
(81)

is defined by sending the real numbers indexing the vertices to 0. The obtained element
is identified to the pearled corolla labelled by a point in M . It is easy to see that μ is a
(P-Q)-bimodule map.

In order to get resolutions for truncated bimodules, one considers a filtration in BP ; Q(M)

according to the number of geometrical inputswhich is the number of leaves plus the number
of univalent vertices above the section. A point in BP ; Q(M) is said to be prime if the
real numbers indexing the vertices are strictly smaller than 1. Otherwise, a point is said to
be composite and can be decomposed into prime components as shown in Fig. 16. More
precisely, the prime components are obtained by removing the vertices indexed by 1.

A prime point is in the r -th filtration layer BP ; Q(M)r if the number of its geometrical
inputs is at most r . Similarly, a composite point is in the r -th filtration layer if its all prime
components are in BP ; Q(M)r . For instance, the composite point in Fig. 16 is in the filtration
layer BP ; Q(M)6. For each r , BP ; Q(M)r is a (P-Q)-bimodule and one has the following
filtration of BP ; Q(M):
BP ; Q (M)0 BP ; Q (M)1 · · · BP ; Q (M)r−1 BP ; Q (M)r · · · BP ; Q (M).

(82)
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Fig. 16 A composite point and its prime components

Fig. 17 Illustration of the right action by ∗0

Theorem 3.10 (Theorem 2.12 in [13])Assume that P and Q are�-cofibrant operads, and M
is a�-cofibrant (P-Q)-bimodule for which the arity zero left action map γ0 : P(0) → M(0)
is a cofibration. Then the objects BP ; Q(M) and TrBP ; Q(M)r are cofibrant replacements of
M and Tr M in the categories �BimodP ; Q and Tr�BimodP ; Q, respectively. In particular,
the maps μ and Trμ|TrBP ; Q(M)r are weak equivalences.

Now we change slightly the above construction in order to produce Reedy cofibrant
replacements for (P-Q)-bimoduleswhenQ is a reducedoperad.LetM be a (P-Q)-bimodule.
We consider the �-sequence

B�
P ; Q(M) := BP ; Q>0(M).

The superscript � is to emphasize that we get a cofibrant replacement in the Reedy model
category structure. The left action and the positive arity right action are defined in the same
way as for BP ; Q>0(M). The right action by ∗0 ∈ Q(0) is defined in the obvious way as the
right action by ∗0 on a in the vertex (a, t) connected to the leaf labelled by i as illustrated in
the Fig. 17.

Note that since the arity zero component of Q>0 is empty, in the union (80) we can
consider only trees whose all non-pearl vertices have arities≥ 1. We denote this set by sP≥1

n .
In other words, the space B�

P ; Q(M) can be obtained as the restriction of the coproduct (80)
to this set.

Proposition 3.11 Assume that P and Q are�-cofibrant topological operads with Q(0) = ∗,
and M is a�-cofibrant (P-Q)-bimodule for which the arity zero left action map γ0 : P(0) →
M(0) is a cofibration. Then the objects B�

P ; Q(M) and TrB�
P ; Q(M) are cofibrant replace-

ments of M and Tr M in the categories �BimodP ; Q and Tr�BimodP ; Q, respectively. In
particular, the maps μ and Trμ are weak equivalences.

Proof Themapμ : B�
P ; Q(M) = BP ; Q>0(M) → M , which sends the real numbers indexing

the vertices to 0, is a homotopy equivalence as shown by Theorem 3.10. Furthermore, by
the same theorem, B�

P ; Q(M) = BP ; Q>0(M) is cofibrant in the projective model category

of (P-Q>0)-bimodules. Due to Theorem 3.6, B�
P ; Q(M) is also Reedy cofibrant and it gives

rise to a cofibrant resolution of M in the Reedy model category �BimodP ; Q . The same
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arguments work for the truncated case. Note that TrB�
P ; Q(M)r = TrB�

P ; Q(M) since arity
zero vertices above the section are not permitted. ��

3.2.3 A Functorial Cofibrant Replacement in the Projective/Reedy Model Category

In the previous subsection we described a construction of projective and Reedy cofibrant
replacements provided the bimodule and the acting operads are�-cofibrant. In this subsection
we explain how that construction can be used to functorially define a cofibrant replacement
without any assumption on the bimodule, while assuming that the right-acting operad Q has
cofibrant components and the left-acting operad P is �-cofibrant.

Given a (P-Q)-bimodule M , we first replace it by the �-sequence M ′ := |S•M |, whose
n-th space is the realization of the simplicial set of singular simplices in M(n). The obtained
object is a (P ′-Q′)-bimodule, where the operads P ′ and Q′ are similarly defined as P ′ :=
|S•P|, Q′ := |S•Q|. Let E∞ as usual denote a reduced�-cofibrantmodel of the commutative
operad. Define �-sequences M ′∞, P ′∞, Q′∞ as objectwise products

M ′∞(n) := M ′(n) × E∞(n), P ′∞(n) := P ′(n) × E∞(n), Q′∞(n) := Q′(n) × E∞(n).

We get that M ′∞ is a �-cofibrant bimodule over a pair (P ′∞, Q′∞) of �-cofibrant operads.
We can therefore apply the construction from the previous subsection.

For the following theorem denote by

φ1 : P ′∞
�−→ P ′ �−→ P, φ2 : Q′∞

�−→ Q′ �−→ Q

the natural induced equivalences of operads. Note that

φ0 : M ′∞
�−→ M ′ �−→ M

is an equivalence of (P ′∞-Q′∞)-bimodules.

Proposition 3.12 (a) Assume that P is a �-cofibrant operad and Q is a componen-
twise cofibrant operad. Let M be any (P-Q)-bimodule for which the arity zero left
action map γ0 : P(0) → M(0) is injective. Then the objects φ!

(BP ′∞ ; Q′∞(M ′∞)
)
and

φ!
(
TrBP ′∞ ; Q′∞(M ′∞)r

)
are cofibrant replacements of M and Tr M in the categories

�BimodP ; Q and Tr�BimodP ; Q, respectively.
(b) Assume in addition that Q is reduced. Then the objects φ!

(
B�
P ′∞ ; Q′∞

(M ′∞)
)

and φ!
(
TrB�

P ′∞ ; Q′∞
(M ′∞)

)
are cofibrant replacements of M and Tr M in the categories

�BimodP ; Q and Tr�BimodP ; Q, respectively.

Proof The result is an immediate consequence of Theorems 2.19, 3.8, 3.10 and Proposi-
tion 3.11. ��

3.3 The Reedy Fibrant Replacement as an Internal Hom

In this subsection, we provide a more conceptual understanding of the Reedy fibrant replace-
ment described in Sect. 3.1.1.More precisely we explain this construction in terms of internal
hom in the category of �-sequences, see Proposition 3.15.
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3.3.1 The Right Closed Monoidal Category of Symmetric Sequences

It is well known and appears in almost any textbook on the theory of operads that the category
�Seq of �-sequences has a monoidal structure (�Seq, ◦,1) with the unit

1(k) =
{

∗, k = 1;
∅, k 
= 1;

and the composition product

(X ◦ Y )(k) =
∐

n≥0

X(n) ×�n

∐

β : [k]→[n]

n∏

i=1

Y (|β−1(i)|).

Monoids in (�Seq, ◦,1) are usual topological operads.
It is less known that �Seq is closed with respect to this monoidal structure. This fact is

true for the category of�-sequences in any bicomplete closed symmetric monoidal category
and was noticed by G. M. Kelly back in the 1970s [30]. More recently this also appeared in
[35, Section 2.2] and in [24, Section 3].4 This means that�Seq is endowed with an internal
hom functor

[−,−]: �Seqop × �Seq → �Seq,

such that for any X ∈ �Seq , the functor (−) ◦ X is left adjoint to [X ,−]. Sometimes this
structure on a category is called right closed monoidal instead of just closed monoidal as a
monoidal product with an object on the right has an adjoint. Explicitly,

[X , Y ](k) =
∏

n≥0

⎡

⎣
∏

α : [n]→[k]
Map

(
k∏

i=1

X(|α−1(i)|), Y (n)

)⎤

⎦

�n

. (83)

3.3.2 The Tensor-Hom Adjunction

For concreteness all the statements in this subsection are made for the category �Seq .
One should mention, however, that they hold true for any bicomplete right closed monoidal
category. (One only needs to replace the word “operad” by “monoid”.)

Lemma 3.13 Let P, Q ∈ �Operad and X , Y ∈ �Seq. Consider the internal hom object
[X , Y ] ∈ �Seq.

(a) If X is a left Q-module, then [X , Y ] is a right Q-module.
(b) If Y is a left P-module, then [X , Y ] is a left P-module.
(c) If X is a left Q-module and Y is a left P-module, then [X , Y ] is a (P-Q)-bimodule.

Sketch of the proof For (a), the right action map [X , Y ] ◦ Q → [X , Y ] is the adjoint to the
composition

[X , Y ] ◦ Q ◦ X
id[X ,Y ]◦μX−−−−−−→ [X , Y ] ◦ X

evX ,Y−−−→ Y .

Here μX : Q ◦ X → X is the left Q-action on X, and evX ,Y is the adjoint to the identity map
id[X ,Y ].

4 We also refer to [2, Definition 1.20], where this structure appears implicitly and fromwhere our formula (83)
is borrowed.
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For (b), the left action map P ◦ [X , Y ] → [X , Y ] is adjoint to the composition

P ◦ [X , Y ] ◦ X
idP◦evX ,Y−−−−−−→ P ◦ Y

μY−→ Y .

Here μY is the left P-action on Y .
The facts that these formulae correctly define P and Q actions are easily checked as well

as the fact that these actions commute in case of (c). ��
If X is a right module over an operad Q and Y is a left Q-module, one defines X ◦Q Y ∈

�Seq as the coequalizer

X ◦Q Y = coeq (X ◦ Q ◦ Y ⇒ X ◦ Y ) ,

where both arrows are μx ◦ idY and idX ◦ μY .
In case X and Y are both right modules over an operad Q, one defines [X , Y ]Q ∈ �Seq

as the equalizer

[X , Y ]Q = eq ([X , Y ] ⇒ [X ◦ Q, Y ]) ,

where the upper map is induced by the right Q-action μX : X ◦ Q → X , and the lower map
is the adjoint to the composition

[X , Y ] ◦ X ◦ Q
evX ,Y ◦idQ−−−−−−→ Y ◦ Q

μY−→ Y .

Proposition 3.14 ([24, Proposition5.22])Let Q1, Q2, P ∈ �Operad andY ∈ �BimodQ1;Q2 .

(a) One has an adjunction between the categories of right Q1 and Q2 modules

(−) ◦Q1 Y : �RModQ1 � �RModQ2 : [Y ,−]Q2 . (84)

(b) One has an adjunction between the categories of (P-Q1) and (P-Q2) bimodules

(−) ◦Q1 Y : �BimodP;Q1 � �BimodP;Q2 : [Y ,−]Q2 . (85)

Sketch of the proof The statements are general and hold in any bicomplete (right) closed
monoidal category. The proof is essentially a categorification of the tensor-hom adjunction
between the categories of (bi)modules over rings. ��

3.3.3 The Reedy Fibrant Replacement

Let N be a �-cofibrant right module over a �-cofibrant operad Q. Viewed as a (1-
Q)-bimodule, we consider its resolution B1;Q(N ), see Sect. 3.2.2, which is its cofibrant
replacement as a right Q-module. It is easy to see that in case N is a (P-Q)-bimodule for
some operad P , the sequence B1;Q(N ) has also a natural structure of a (P-Q)-bimodule.
Denote by Qc := B1;Q(Q). One can show that Qc is a cofibrant replacement of Q as a
Q-bimodule. Roughly speaking it is because even before taking its resolution, Q is cofibrant
as a left module over itself.

We leave the following proposition as an exercise to the reader. For this proposition we
do not assume that Q is �-cofibrant.

Proposition 3.15 Let M ∈ �BimodP;Q, let M f be its Reedy fibrant replacement as defined
in Sect. 3.1.1, and let Qc := B1;Q(Q), see Sect. 3.2.2. One has an isomorphism of (P-Q)-
bimodules:

M f = [Qc, M]Q .
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Moreover, the fibrant replacement map M → M f is induced by the (cofibrant, in case Q is
�-cofibrant) replacement map Qc → Q:

M = [Q, M]Q → [Qc, M]Q .

As an interesting consequence we have the following.

Corollary 3.16 For any M ∈ �BimodP;Q, one has a homeomorphism (M f ) f ∼= M f of
fibrant replacements.

Proof It follows from Proposition 3.15 and adjunction (85) that

(M f ) f = [Qc, [Qc, M]Q]Q ∼= [Qc ◦Q Qc, M]Q .

On the other hand, it is easy to see that Qc◦Q Qc ∼= Qc. To define an explicit homeomorphism

Qc
∼=−→ Qc ◦Q Qc, for each tree in Qc we draw a horizontal line t = 1/2 and then replace all

the real parameters in the vertices below the horizontal section t ∈ [0, 1/2] by 2t and all the
real parameters of the vertices above the section t ∈ (1/2, 1] by 2t − 1.5 ��

3.4 The Subcategory of Reduced Bimodules

3.4.1 Main Properties

Let P and Q be two reduced operads. We can then consider the category �∗BimodP ; Q of
reduced (P-Q)-bimodules. This category has been used by the first and third authors [15]
in order to get delooping theorems for the Taylor tower approximations of mapping spaces
avoiding multi-singularities, i.e. singularities depending on several points.

The present section is devoted to adapt the constructions and theorems introduced in the
previous sections to the category�∗BimodP ; Q . By considering only reduced bimodules, we
can simplify some constructions. Since the proofs are almost the same, we list altogether the
main statements. Note that the statements are slightly improved for the functorial cofibrant
resolution and for the extension/restriction adjunction.

Theorem 3.17 Let P and Q be reduced operads and, moreover, assume that Q is well-
pointed.

(i) Reedy model structure. The category �∗BimodP ; Q admits a cofibrantly generated
model category structure, called the Reedy model category structure, transferred from
the Reedy model category �>0Seq along the adjunction

F�∗
P ; Q : �>0Seq � �∗BimodP ; Q : U�,

where the free functor is given by

F�∗
P ; Q(M)(n) :=

{F�
P>0 ; Q>0

(M)(n), n ≥ 1,

∗, n = 0,
(86)

The model category so obtained makes the adjunction (F�∗
P ; Q,U�) into a Quillen

adjunction. Moreover, the fibrant coresolution functor introduced in Sect. 3.1.1 restricts

5 In fact for any rightQ-module N , one hasB1;Q(N ) = N◦QQc and it is always true thatB1;Q (B1;Q(N )) ∼=
B1;Q(N ).
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to the category �∗BimodP ; Q giving rise to a functorial fibrant replacement. In case P

and Q are componentwise cofibrant, the functor M �→ φ!
(
B�
P ′∞ ; Q′∞

(M ′∞)
)
of Propo-

sition 3.12 gives rise to a functorial cofibrant resolution in �∗BimodP ; Q.
(ii) Characterization of Reedy cofibrations. A morphism φ : M → N in the category

�∗BimodP ; Q is a Reedy cofibration if and only if the correspondingmapφ>0 : M>0 →
N>0 is a cofibration in the projective model category of (P>0-Q>0)-bimodules.

(iii) Left and Right properness. The Reedy model category �∗BimodP ; Q is right proper.
If P is Reedy cofibrant and Q is componentwise cofibrant, then �∗BimodP ; Q is left
proper relative to the class of componentwise cofibrant bimodules. In the latter case, the
class of componentwise cofibrant bimodules is closed under cofibrations. In particular,
cofibrant bimodules are componentwise cofibrant. If in addition Q is �-cofibrant, the
class of�-cofibrant bimodules is also closed under cofibrations and cofibrant bimodules
are �-cofibrant.

(iv) Extension/restriction adjunctions. Let φ1 : P → P ′ and φ2 : Q → Q′ be weak
equivalences between componentwise cofibrant reduced operads. One has a Quillen
equivalence

φ! : �∗BimodP ; Q � �∗BimodP ′ ; Q′ : φ∗,

All the above statements admit truncated versions for the categories Tr�∗BimodP ; Q with
r ≥ 0.

Proof The proof of (i) is exactly the same as for the construction of the usual Reedy model
category of (P-Q)-bimodules and the construction of the fibrant coresolution. Note that for
the cofibrant replacement functor we do not require P to be �-cofibrant, but only that it
is componentwise cofibrant. The reason is that the argument of Proposition 3.12 uses the
extension/restriction adjunction. The latter has also the same improved requirement that P
and P ′ are componentwise cofibrant, see statement (iv) above.

Statement (ii) follows from the fact that the forgetful functor ι : �∗BimodP ; Q →
�BimodP ; Q creates cofibrations, see Proposition 3.18. Applying the characterization of
Reedy cofibrations for bimodules of Theorem 3.6, a map M → N in�∗BimodP ; Q is a cofi-
bration if and only if it is a cofibration in �BimodP , Q>0 . Since P(0) = M(0) = N (0) = ∗,
the arity zero component can be naturally ignored, and the map in question is a cofibration if
and only ifM>0 → N>0 is one in�BimodP>0 , Q>0 (or, equivalently, in�>0BimodP>0 , Q>0 ).

Statement (iii) follows from Theorem 3.7 and the fact that the inclusion functor ι creates
weak equivalences, fibrations, pullbacks, and also cofibrations and pushouts, see Proposi-
tion 3.18.

We now prove (iv). Since the restriction functor creates weak equivalences, one has to
check that, for any Reedy cofibrant object M in �∗BimodP ; Q , the adjunction unit

M −→ φ∗(φ!(M))

is a weak equivalence. Due to the characterization of Reedy cofibrations, M>0 is also cofi-
brant in the projective model category �>0BimodP>0,Q>0 . Since (φ1)>0 : P>0 → P ′

>0
and (φ2)>0 : Q>0 → Q′

>0 are still weak equivalences between componentwise cofibrant
operads, by Theorem 2.22, the pair of functors ((φ>0)! ; (φ>0)

∗) gives rise to a Quillen
equivalence

(φ>0)! : �>0BimodP>0;Q>0 � �>0BimodP ′
>0;Q′

>0
: (φ>0)

∗.
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Therefore, the map M>0 → (φ>0)
∗((φ>0)!(M>0)

)
(n) is a weak equivalence. The statement

is a consequence of the identity

φ∗(φ!(M))>0 = (φ>0)
∗((φ>0)!(M>0)

)
.

��

3.4.2 Quillen Adjunction Between the Reedy Model Categories

Let P and Q be two reduced operads with Q well-pointed. The inclusion functor ι from the
category of (possibly truncated) reduced bimodules into the category of (possibly truncated)
bimodules has a left adjoint τ called the unitarization functor. This latter one consists in
collapsing the arity zero component to a point and adjusting the other components according
to the equivalence relation induced by this collapse:

τ : �BimodP ; Q � �∗BimodP ; Q : ι,

τ : Tr�BimodP ; Q � Tr�∗BimodP ; Q : ι.
(87)

Proposition 3.18 Thepairs of functors (87) formQuillen adjunctions.Moreover, the inclusion
functor ι creates weak equivalences, fibrations, cofibrations, limits, and colimits.

Proof By construction, ι creates equivalences and fibrations. As a consequence, the adjunc-
tion (87) is a Quillen one. Since the limits are taken objectwise, and the limit of any
point-constant diagram is a point, ι creates limits. Note that τ , as a left adjoint, preserves
colimits and cofibrations, and τ ◦ ι = id . Therefore, one only needs to check that ι preserves
colimits and cofibrations.

For colimits, we again have to show that the colimit of any diagram in �BimodP ; Q with
values in reduced bimodules is a reduced bimodule. The truncation functor Tr : �BimodP ; Q
→ Tr�BimodP ; Q preserves colimits as it admits a right adjoint, see Sect. 3.1.2. In the case
r = 0, the category T0�BimodP ; Q is equivalent to the category of P-algebras in Top. The
one-point space is a free P-algebra generated by the empty set FP (∅). On the other hand, the
free P-algebra functor FP : Top → AlgP preserves colimits and the colimit of any empty
set constant diagram is the empty set. The statement follows.

Finally, for cofibrations, since ι creates colimits, it is enough to check that the generating
cofibrations in �∗BimodP ; Q are cofibrations in �BimodP ; Q . The generating cofibrations
in the former are the maps

F�∗
P ; Q(∂X) → F�∗

P ; Q(X), (88)

where ∂X → X is one of the generating cofibrations of �>0Seq . For a �>0-sequence Y ,
denote by Y+ the �-sequence that agrees with Y in positive arities and has one point in arity
zero. From the formulas (86) and (49), it follows thatF�∗

P ; Q(Y ) = F�
P ; Q(Y+). The inclusion

(∂X)+ → X+ is a �-cofibration and, as a consequence, is a �SeqP -cofibration. Together
with the fact that the functorF�

P ; Q preserves cofibrations,we conclude that the inclusion (88),

or equivalently F�
P ; Q((∂X)+) → F�

P ; Q(X+), is a cofibration in �BimodP ; Q . ��
Theorem 3.19 Let P and Q be as in Theorem 3.17. The inclusion functors ι from (87)
induce fully faithful inclusions of homotopy categories. Moreover, for any pair M, N ∈
�∗BimodP ; Q, one has

�∗BimodhP ; Q(M, N ) � �BimodhP ; Q(ιM, ιN ) � �BimodhP ; Q(ιM, ιN ). (89)
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Furthermore, if M, N ∈ Tr�∗BimodP ; Q, with r ≥ 0, then one has

Tr�∗BimodhP ; Q(M, N ) � Tr�BimodhP ; Q(ιM, ιN ) � Tr�BimodhP ; Q(ιM, ιN ). (90)

Proof The first statement follows from the fact that the functors ι themselves are fully faith-
ful inclusions of model categories preserving equivalences, fibrations, and cofibrations, see
Proposition 3.18. The equivalences (89) and (90) follow from Theorem 3.9 and the fact that
ι preserve cofibrant and fibrant replacements and are fully faithful. ��

4 The Projective Model Category ofO Infinitesimal Bimodules

Let O be an operad. An O infinitesimal bimodule, or just an O-Ibimodule, is a �-sequence
M ∈ �Seq together with operations

◦i : M(n) × O(m) −→ M(n + m − 1), right infinitesimal operations with i ∈ {1, . . . , n},
◦i : O(n) × M(m) −→ M(n + m − 1), left infinitesimal operations with i ∈ {1, . . . , n},

(91)

satisfying compatibility relations with the symmetric group action as well as associativity
and unit axioms. More precisely, for any integers i ∈ {1, . . . , n}, j ∈ {i + 1, . . . , n}, k ∈
{1, . . . ,m} and any permutations σ ∈ �n and τ ∈ �m , one has the following commutative
diagrams:

M(n) × O(m) × O(�)
◦k

◦i

M(n) × O(m + � − 1)

◦i

M(n + m − 1) × O(�)
◦k+i−1

M(n + m + � − 2)

Linear associativity for the right infinitesimal operations

M(n) × O(m) × O(�)
◦i

◦ j

M(n + m − 1) × O(�)

◦ j+m−1

M(n + � − 1) × O(m)
◦i

M(n + m + � − 2)

Ramified associativity for the right infinitesimal operations

O(n) × M(m) × O(�)
◦i

◦ j

M(n + m − 1) × O(�)

◦ j+m−1

O(n + � − 1) × M(m) ◦i M(n + m + � − 2)

Ramified compatibility between the left and right operations 1

O(n) × O(m) × M(�)
◦i

◦ j

O(n + m − 1) × M(�)

◦ j+m−1

M(n + � − 1) × O(m)
◦i

M(n + m + � − 2)

Ramified compatibility between the left and right operations 2

O(n) × M(m) × O(�)
◦i

◦k

M(n + m − 1) × O(�)

◦k+i−1

O(n) × M(m + � − 1) ◦i M(n + m + � − 2)

Linear compatibility between the left and right operations

O(n) × O(m) × M(�)
◦k

◦i

O(n) × M(m + � − 1)

◦i

O(n + m − 1) × M(�) ◦k+i−1
M(n + m + � − 2)

Linear associativity for the left infinitesimal operations

O(n) × M(m)
◦i

σ ∗×τ∗

M(n + m − 1)

(σ◦σ(i)τ )∗

O(n) × M(m) ◦σ(i)
M(n + m − 1)

Compatibility with the symmetric group action 1

M(n) × O(m)
◦i

σ∗×τ∗

M(n + m − 1)

(σ◦σ(i)τ )∗

M(n) × O(m)
◦σ(i)

M(n + m − 1)

Compatibility with the symmetric group action 2
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M(n) × O(1)

◦i

M(n) O(1) × M(n)

◦1
M(n)

Compatibility with the unit of the operad

Note that the ramified compatibility between the left and right operations 2 follows from the
ramified compatibility between the left and right operations 1 and the compatibility with the
symmetric group action and was given for clarity.

Amap between O-Ibimodules should preserve these operations.We denote by�IbimodO
the category of O-Ibimodules. Given an integer r ≥ 0, we also consider the category of r -
truncated Ibimodules Tr�IbimodO . An object of this category is an r -truncated �-sequence
endowed with left and right operations (91) which are defined under the conditions n ≤ r
and n + m − 1 ≤ r . One has an obvious truncation functor

Tr (−) : �IbimodO −→ Tr�IbimodO .

In the rest of the paper, we use the notation

x ◦i θ = ◦i (x; θ), for x ∈ M(n) and θ ∈ O(m),

θ ◦i x = ◦i (θ; x), for θ ∈ O(n) and x ∈ M(m),

Example 4.1 If η : O → M is a map of O-bimodules, then η is also a map of O-Ibimodules.
Indeed, any operad is an infinitesimal bimodule over itself. Since the right operations and
the right infinitesimal operations are the same, the O-Ibimodule structure on M is given by
the following left infinitesimal operations:

◦i : O(n) × M(m) −→ M(n + m − 1);
(θ, x) �−→ γ�(θ; η(∗1), · · · , η(∗1), x, η(∗1), · · · , η(∗1)).

4.1 Properties of the Category of Infinitesimal Bimodules

In this subsectionwe introduce some basic properties related to the category of O-Ibimodules
where O is a fixed operad. First, we show that the category of O-Ibimodules is equivalent
to the category of algebras over an explicit colored operad denoted by O+. Thereafter, we
build the free bimodule functor using the language of trees. Finally, we give a combinatorial
description of the pushout for infinitesimal bimodules.

4.1.1 Infinitesimal Bimodules as Algebras over a Colored Operad

From an operad O , we build a colored operad O+ such that the category of O-Ibimodules is
equivalent to the category of O+-algebras. More precisely, the colored operad O+, with set
of colors S = N, is concentrated in arity 1 and it is given by the formula

O+(n ; m) :=
∐

α+:[m]+→[n]+

∏

i∈[n]+
O(|α−1+ (i)|), (92)

where [n]+ is the set obtained from [n] by adding a basepoint denoted by 0. The map α+ is
a map of sets preserving the basepoint. In order to define operadic compositions

◦1 : O+(n ; m) × O+(k ; n) −→ O+(k ; m),

123



Projective and Reedy Model Category Structures… 899

we fix two pointed maps α+ : [m]+ → [n]+ and β+ : [n]+ → [k]+ and we build a map of
the form

∏

i∈[n]+
O( |α−1+ (i)| ) ×

∏

j∈[k]+
O( |β−1+ ( j)| ) −→

∏

j∈[k]+
O( |(β+ ◦ α+)−1( j)| ).

For this purpose, we rewrite the left hand side term as follows:

O( |α−1+ (0)| ) × O( |β−1+ (0)| ) ×
∏

i∈β−1+ (0)\{0}
O( |α−1+ (i)| )

︸ ︷︷ ︸
Part 1

×
∏

j∈[k]
O( |β−1+ ( j)| ) ×

∏

i∈β−1+ ( j)

O( |α−1+ (i)| )
︸ ︷︷ ︸

Part 2

.

In Part 2, as in formula (24), we use the operadic structure of O in order to get an element
in O( |(β+ ◦ α+)−1( j)| ) with j 
= 0. For Part 1, let β−1+ (0)\{0} = {i1, . . . , i p}, a0 ∈
O( |α−1+ (0)| ), b0 ∈ O( |β−1+ (0)| ), ar ∈ O( |α−1+ (ir )| ), 1 ≤ r ≤ p. Then the element
(a0, b0, a1, . . . , ap) in the Part 1 product is sent to a0 ◦1 b0(id, a1, . . . , ap).

Proposition 4.2 (Proposition 4.9 in [3]) The category of O-Ibimodules is equivalent to the
category of O+-algebras.

Note that since the operad O+ has only unary operations, it can be viewed as an enriched
in Top category. One has that an O+-algebra is the same thing as an O+-shaped diagram in
Top:

AlgO+ = TopO+ .

4.1.2 The Free Ibimodule Functor

In what follows, we introduce the left adjoints of the forgetful functors

U� : �IbimodO −→ �Seq and UTr� : Tr�IbimodO −→ Tr�Seq,

denoted by IF�
O and IFTr�

O , respectively. As usual in the operadic theory, the free functor
can be described as a coproduct indexed by a particular set of trees. In that case, we use the
set of pearled trees which are pairs T = (T ; p) where T is a planar rooted tree, with leaves
labelled by a permutation, and p is a particular vertex, called the pearl. A pearled tree is said
to be reduced if each vertex is connected to the pearl by an inner edge. We denote by pPn

and rpPn the sets of pearled trees and reduced pearled trees, respectively, having exactly n
leaves (see Fig. 18).

Fig. 18 Examples of a pearled tree T1 ∈ pP5 and a reduced pearled tree T2 ∈ rpP5
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Construction 4.3 Let M = {M(n)} be a �-sequence. The space IF�
O(M)(n) is obtained

from the set of reduced pearled trees by indexing the pearl by a point in M whereas the other
vertices are indexed by points in the operad O . More precisely, one has

IF�
O(M)(n) =

⎛

⎝
∐

T∈rpPn

M(|p|) ×
∏

v∈V (T )\{p}
O(|v|)

⎞

⎠

/

∼ . (93)

A point in IF�
O (M) is denoted by [T ; xp ; {θv}] where T is a reduced pearled tree, xp is a

point inM and {θv}v∈V (T )\{p} is a family of points in O . The equivalence relation is generated
by the following relations:

(i) The unit relation: if a vertex is indexed by the unit of the operad O , then we can remove
it (see Fig. 19).

(ii) The compatibility with the symmetric group action: if a vertex is labelled by x ·σ , with x
a point in O(n) or M(n) and σ ∈ �n , then we can remove σ by permuting the incoming
edges (see Fig. 20).

The right infinitesimal operation ◦i (respectively the left infinitesimal operation ◦i ) of a
point [T ; xp ; {θv}]with an element θ ∈ O(m) consists in grafting them-corolla indexed by
θ (respectively the reduced pearled tree T ) into the i-th leaf of the reduced tree with section
T (respectively the m-corolla indexed by θ ). If the obtained element contains an inner edge
joining two consecutive vertices other than a pearl, then we contract it using the operadic
structure of O (see Fig. 21).

Similarly, the free r -truncated bimodule functor IFTr�
O is obtained from the formula (28)

by taking the restriction of the coproduct to the reduced pearled trees having at most r leaves

Fig. 19 Illustration of the unit relation

Fig. 20 Illustration of the compatibility with the symmetric group

Fig. 21 Illustration of the right infinitesimal operation ◦3 : IF�
O (M)(5) × O(3) → IF�

O (M)(7)
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and such that the pearl has at most r incoming edges. The equivalence relation, the left and
right infinitesimal operations are defined in the same way. Finally, one has two functors:

IF�
O : �Seq −→ �IbimodO and IFTr�

O : Tr�Seq −→ Tr�IbimodO .

Theorem 4.4 One has the following adjunctions:

IF�
O : �Seq � �IbimodO : U� and IFTr�

O : Tr�Seq � Tr�IbimodO : UTr�.

(94)

Proof The proof is similar to the proof of Theorem 2.8. For any O-Ibimodule M ′ and for
any morphism of �-sequences f : M → M ′, we can build a unique map of O-Ibimodules
f̃ : IF�

O(M) → M ′ by induction on the number of vertices, such that f = f̃ ◦ i . We refer
the refer to [12, Proposition 2.3] for more details. ��

4.1.3 Combinatorial Description of the Pushout

Let O be a topological operad. Contrary to the bimodule case, the left infinitesimal operations
are unary. As a consequence, the pushout in the category of O-Ibimodules coincides with the
pushout in the underlying category of sequences. More precisely, for any pushout diagrams

A
f1

f2

C

B

Ar
f1

f2

Cr

(respectively )

Br

(95)

in the category of O-Ibimodules (respectively, r -truncated O-Ibimodules) we introduce the
�-sequences

D(n) =
⎛

⎝B(n)
⊔

A(n)

C(n)

⎞

⎠ and Dr (n) =
⎛

⎝Br (n)
⊔

Ar (n)

Cr (n)

⎞

⎠ . (96)

The above sequences inherit a (possibly truncated) infinitesimal bimodule structure over O
and one has the following statement:

Proposition 4.5 One has the following identities in the category of (possibly truncated) O-
Ibimodules:

D = colim
�IbimodO

(
B ←− A −→ C

)
and

Dr = colim
Tr�IbimodO

(
Br ←− Ar −→ Cr

)
.

Proof Let h1 : C → D′ and h2 : B → D′ be two maps of O-Ibimodules such that
h1 ◦ f1 = h2 ◦ f2. Then there exists a unique map of O-Ibimodule δ : D → D′ given by

δ(x) =
{
h1(x) if x ∈ C,

h2(x) if x ∈ B.

This map is well defined and proves that D satisfies the universal property of the pushout. ��
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4.2 Model Category Structure

By applying the transfer principle 1.1 to the adjunctions introduced in Sect. 4.1.2

IF�
O : �Seq � �IbimodO : U� and IFTr�

O : Tr�Seq � Tr�IbimodO : UTr�,

(97)

we get the following statement:

Theorem 4.6 Let O be any topological operad. The category of (truncated) infinitesimal
bimodules �IbimodO (respectively, Tr�IbimodO, r ≥ 0) inherits a cofibrantly gener-
ated model category structure, called the projective model category structure, in which all
objects are fibrant. The model structure in question makes the adjunctions (97) into Quillen
adjunctions. More precisely, a (possibly truncated) Ibimodule map f is a weak equiva-
lence (respectively, a fibration) if and only if the induced map U�( f ) is a weak equivalence
(respectively, a fibration) in the category of (possibly truncated) �-sequences.

Proof Similar to the proof of Theorem 2.11. ��

4.2.1 Left Properness of the Projective Model Category

Theorem 4.7 For any topological operad O, the projective model category �IbimodO is
right proper. It is left proper provided O is componentwise cofibrant.

Proof Since all the objects in �IbimodO are fibrant, this category is right proper (we refer
the reader to the proof of Theorem 2.2.1 for more details). Furthermore, as explained in
Sect. 4.1.3, the pushout in the category of O-Ibimodules coincides with the pushout in the
category of (non-�) sequences, which is obviously left proper as the category Top is such.
By part (a) of the next theorem, cofibrations in �IbimodO are componentwise cofibrations
provided O is componentwise cofibrant. We conclude that in this case, �IbimodO is also
left proper. ��
Theorem 4.8 (a) If O is a componentwise cofibrant operad, then cofibrations in the category
�IbimodO are cofibrations componentwise. In particular, the class of componentwise cofi-
brant objects is closed under cofibrations and cofibrant objects have cofibrant components.

(b) If O is a �-cofibrant operad, then cofibrations in the category �IbimodO are �-
cofibrant. In particular, the class of �-cofibrant objects is closed under cofibrations and
cofibrant objects are �-cofibrant.

Proof It is enough to check that the generating cofibrations in �IbimodO are cofibrations
in Top componentwise, in the case (a), and are �-cofibrations, in the case (b). The first is a
consequence of the pushout-product axiom, while the second is proved in exactly the same
way as the similar statement for operads [6, Corollary 5.2]. ��

4.2.2 Extension/Restriction Adjunction for the Projective Model Category of
Infinitesimal Bimodules

Let φ : O → O ′ be a map of operads. Similarly to the category of algebras (see The-
orem 1.7) and bimodules (see Sect. 2.2.2), we show that the projective model categories
of O-Ibimodules and O ′-Ibimodules are Quillen equivalent under some conditions on the
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operads. For this purpose, we recall the construction of the restriction functor φ∗ and of the
extension functor φ! in the context of infinitesimal bimodules:

φ! : �IbimodO � �IbimodO ′ : φ∗.

• The restriction functor. The restriction functor φ∗ sends an O ′-Ibimodule M to the O-
Ibimodule φ∗(M) = {φ∗(M)(n) = M(n), n ≥ 0} in which the O-bimodule structure is
defined using the O ′-bimodule structure of M as follows:

◦i : φ∗(M)(n) × O(m) −→ φ∗(M)(n + m − 1);
x ; θ �−→ x ◦i φ(θ),

◦i : O(n) × φ∗(M)(m) −→ φ∗(M)(n + m − 1);
θ ; x �−→ φ(θ) ◦i x .

• The extension functor. The extension functor φ! is obtained as a quotient of the free O ′-
Ibimodule functor introduced in Sect. 4.1.2. More precisely, if M is an O-Ibimodule, then
the extension functor is given by the formula

φ!(M)(n) = IF�
O ′(U�(M))(n)/ ∼

where the equivalence relation is generated by the axiom which consists in contracting inner
edges having a vertex v indexed by a point of the form φ1(θ) using the O infinitesimal
bimodule structure of M as illustrated in the following picture:

The O ′-infinitesimal bimodule structure on the free object is compatible with the equiva-
lence relation and provides an O ′-Ibimodule structure on φ!(M). Let us remark that, similarly
to the bimodule case, the O-Ibimodule map M → φ∗(φ!(M)), sending a point x ∈ M(n) to
the n-corolla indexed by x , is not necessarily injective.

Theorem 4.9 Let φ : O → O ′ be a weak equivalence between operads with cofibrant
components. The extension and restriction functors, as well as their truncated versions, give
rise to Quillen equivalences:

φ! : �IbimodO � �IbimodO ′ : φ∗, (98)

φ! : Tr�IbimodO � Tr�IbimodO ′ : φ∗. (99)

Proof As explained in Sect. 4.1.1, the projective model category of infinitesimal bimodules
over an operad is equivalent to the projective model category of algebras over a specific
colored operad. We denote by O+ and O ′+ the corresponding colored operads associated to
O andO ′, respectively.Onehas that the adjunction (98) is induced by the extension/restriction
adjunction between the categories of algebras:

φ! : �IbimodO = AlgO+ � AlgO ′+ = �IbimodO ′ : φ∗.

From the fact that O and O ′ have cofibrant components and from the explicit formula (92) for
the components of O+ and O ′+, we obtain that the colored operads O+ and O ′+ have cofibrant
components. Since they are concentrated in arity one, they are �-cofibrant. Applying [6,

123



904 J. Ducoulombier et al.

Theorem 4.4], we conclude that the extension/restriction adjunction between the categories
of algebras is a Quillen equivalence.

The truncated case is done similarly by restricting the operads O+ and O ′+ to their subsets
of colors. ��

5 The ReedyModel Category ofO Infinitesimal Bimodules

Let O be a reduced operad. From now on, we denote by �IbimodO and Tr �IbimodO the
categories of O-Ibimodules and truncated O-Ibimodules, respectively, equipped with the
Reedy model category structures. Note that as categories, �IbimodO = �IbimodO . Only
the model structure is different. Similarly to the case of reduced operads and bimodules, this
structure is transferred from the categories �Seq and Tr �Seq along the adjunctions

IF�
O : �Seq � �IbimodO : U�,

IFTr�
O : Tr�Seq � Tr�IbimodO : U�,

(100)

where both free functors are obtained from the functors IF�
O and IFTr�

O by taking the
restriction of the coproduct (93) to the reduced pearled trees without univalent vertices other
than the pearl. In other words, one has

IF�
O (M) := IF�

O>0
(M), and IFTr�

O (M) := IFTr�
O>0

(M).

By construction, the above �-sequences are equipped with a (truncated) infinitesimal
bimodule structure over O>0. We can extend this structure in order to get a (truncated)
O infinitesimal bimodule structure using the operadic structure of O and the � structure
of M (see Fig. 22).

Theorem 5.1 Let O be a reduced well-pointed operad. The categories �IbimodO and
Tr�IbimodO, with r ≥ 0, admit cofibrantly generated model category structures, called
Reedy model category structures, transferred from �Seq and Tr�Seq, respectively, along
the adjunctions (100). In particular, these model category structures make the pairs of func-
tors (100) into Quillen adjunctions.

Proof The proof is similar to the proof of Theorem 3.1. The path object is given by the same
formula (52) and the functorial fibrant coresolution (for which we need the assumption Q is
well-pointed) is defined in Sect. 5.1.1. ��

5.1 Properties of the ReedyModel Category of Infinitesimal Bimodules

This subsection is divided into two parts. The first one is devoted to the construction of
an explicit fibrant coresolution functor for infinitesimal bimodules. In the second part, we

Fig. 22 Illustration of the right action by ∗0
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characterize (acyclic) cofibrations in the Reedy model category of Ibimodules, we prove
properness and we study extension/restriction adjunctions.

5.1.1 Fibrant Replacement Functor for Infinitesimal Bimodules

Let O be a reduced operad. In this subsection we produce a construction of a Reedy fibrant
coresolution for infinitesimal bimodules if the operad O is well-pointed. More precisely, we
show that the coresolution introduced in Sect. 3.1.1 gives rise to a coresolution for infinitesi-
mal bimodules too. In other words, in both cases, bimodules and infinitesimal bimodules, we
only need the right module part of the structures in order to get Reedy fibrant replacements.
In the following, we overuse the notation introduced in Sect. 3.1.1. Given an infinitesimal
bimodule M over O , we consider the space M f (n) from (53) taking Q = O . The family
M f = {M f (n), n ≥ 0} admits a �-structure and a right module structure from operations
(59).

In order to introduce the left infinitesimal operations, we need the following notation. For
a tree T ∈ P[n], we denote by T1, . . . , Tn the sub-trees grafting to the root of T according
to the planar order. In particular, one has the identity T = cn(T1, . . . , Tn) where cn is the
n-corolla. The number of leaves of each tree Tj , with 1 ≤ j ≤ n, is denoted by n j [T ]. For
any tree T ∈ P[n] and 1 ≤ j ≤ n, we also consider the operations

β j : D(T ) −→ O(n j [T ]);
{θv}v∈V (T )\{r} �−→ η({θv}v∈V (Tj )),

given by composing the points of O indexing the vertices of the sub-tree Tj .
Finally, by using the operation �m

k introduced in Sect. 3.1.1, one can define the left
infinitesimal action

◦i : O(n) × M f (m) −→ M f (n + m − 1);
θ , { fT }T∈P[n] �−→ {(θ ◦i f )T }T∈P[n+m−1],

where (θ ◦i f )T is the composite map:

H(T ) × D(T )
(θ◦i f )T

M(|T |)

⎛

⎜
⎜
⎝

∏

1≤ j≤n+m−1
j /∈{i,...,i+m−1}

O(n j [T ])

⎞

⎟
⎟
⎠× (

H(�m
i−1(T )) × D(�m

i−1(T ))
)

O

⎛

⎜
⎜
⎝

∑

1≤ j≤n+m−1
j /∈{i,...,i+m−1}

n j [T ]

⎞

⎟
⎟
⎠× M(|�m

i−1(T )|)

If we denote by I the set {1, . . . , i − 1} ∪ {i + m, . . . n + m − 1}, then the left vertical map
is given by the product

∏
j∈I β j to get the first factor and the operation induced by �m

i−1,
removing the incoming edges of the root of T corresponding to the set I , in order to get the
second factor. The lower horizontal map is given by the map f�m

i−1(T ) on the second factor

123



906 J. Ducoulombier et al.

and the following map

θ(−, · · · , id, · · · ,−) :
⎛

⎝
∏

j∈{1,...,i−1}
O(n j [T ])

⎞

⎠×
⎛

⎝
∏

j∈{i+m,...n+m−1}
O(n j [T ])

⎞

⎠

−→ O

⎛

⎜
⎜
⎝

∑

1≤ j≤n+m−1
j /∈{i,...,i+m−1}

n j [T ]

⎞

⎟
⎟
⎠ ;

(θ1, . . . , θi−1); (θ ′
1, . . . , θ

′
n−i−1) �−→ θ(θ1, . . . , θi−1, id, θ ′

1, . . . , θ
′
n−i−1),

using the operadic structure of O , on the first factor. Finally, the right vertical map is obtained
using the left infinitesimal operation ◦�, with � = ∑

1≤ j≤i−1 n j [T ] + 1. The fact that the
compatibility relations between the left and the right infinitesimal operations (defined at the
beginning of Sect. 4) are satisfied is a consequence of the following observations:

� Ramified compatibility between the left and right operations: for T ∈ P[n +m + � − 2],
i ∈ {1, . . . , n − 1} and j ∈ {i + 1, . . . , n}, one has

�m
i−1(T ) = �m

i−1

(
δ j+m−1;�(T )

)
.

� Linear compatibility between the left and right operations: for T ∈ P[n + m + � − 2],
i ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, one has

�m
i−1

(
δk+i−1;�(T )

) = δk;�
(
�m+�−1
i−1 (T )

)
.

Proposition 5.2 The map η : M → M f is a weak equivalence of O-Ibimodules. Further-
more, if the operad O is well-pointed, then the O-Ibimodule M f is Reedy fibrant.

Proof The reader can easily check that η is a map of O infinitesimal bimodules. The other
statements are consequences Propositions 3.3 and 3.4. ��

Remark 5.3 The same strategy can be used in order to get a fibrant replacement functor for
r -truncated reduced O-Ibimodules. The fibrant replacement should be defined as a subspace
of the product with an additional restriction |T | ≤ r . The constraints are the same.

5.1.2 Characterization of Cofibrations/Left properness/Extension-restriction
adjunction

In this section, we show that the properties related to the Reedy model category of reduced
bimodules introduced inSect. 3.1 admit counterparts in the context of infinitesimal bimodules.
It means that we are able to give a characterization of Reedy cofibrations and we prove that
�IbimodO is left proper relative to componentwise cofibrant objects. We also prove that the
extension/restriction adjunction gives rise to a Quillen equivalence between Reedy model
categories of Ibimodules under some conditions on the operads.

Theorem 5.4 Let O be a reduced well-pointed operad. A morphism φ : M → N in the
category of (possibly truncated) O-Ibimodules is a Reedy cofibration if and only if φ is a
cofibration in the projective model category of (possibly truncated) O>0-Ibimodules.
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Idea of the proof The strategy used for the proof of Theorem 3.6 works with no change in the
context of infinitesimal bimodules. Again, we introduce an adjunction ars : �I bimodO �
�I bimodO : cosks where ars and cosks are the arity filtration and the coskeleton func-
tors, respectively. More precisely, if Ls and Rs denote the left adjoint and the right adjoint,
respectively, to the truncation functor Ts : �I bimodO → Ts�I bimodO , then one has the
following identities:

ars = Ls ◦ Ts and cosks = Rs ◦ Ts .

In particular, the coskeleton functor is given by the formula (65) and inherits an infinites-
imal bimodule structure over O . The �-structure and the right infinitesimal operations are
given by (66) and (67), respectively. In order to define the left infinitesimal operations, we
recall the following notation. Let n,m > 0, � ∈ {1, . . . , n} and h ∈ �+([i] ; [n+m−1]). If
we denote by �1 ∈ �+([m] ; [n +m − 1]) and �2 ∈ �+([n] ; [n +m − 1]) the morphisms

�1 : [m] −→ [n + m − 1]; and �2 : [n] −→ [n + m − 1];
α �−→ α + �, α �−→

{
α if α ≤ �,

α + m if α > �,

then there exist unique morphisms h1 and h2 making the following diagrams commute:

[i] h [n + m − 1]

[|Im(�1) ∩ Im(h)|]
h1

[m]
l1

[i] h [n + m − 1]

[|Im(�2\{�}) ∩ Im(h)|]
h2

[n]
l2

Finally, if we denote by � = � − |{α ∈ [i] | h(α) < �}|, then the left infinitesimal operations
are given by

◦i : O(n) × cosks(M)(m) −→ cosks(M)(n + m − 1);
θ ; {xu}0≤i≤s

u∈�+([i] ; [m]) �−→ {h∗
2(θ) ◦� xh1}0≤i≤s

h∈�+([i] ; [n+m−1]).

The rest of the proof is the same as the proof of Theorem 3.6. It consists in using the
adjunction (ars, cosks) in order to define by induction a solution to the lifting problem. ��
Theorem 5.5 For any reduced well-pointed operad O, the Reedy model category�IbimodO
is right proper. It is left proper provided O is componentwise cofibrant. In the latter case, cofi-
brations are componentwise cofibrations, and, as a consequence, the class of componentwise
cofibrant objects is closed under cofibrations and cofibrant Ibimodules are componentwise
cofibrant. If O is �-cofibrant, then the cofibrations are �-cofibrations, the class of �-
cofibrant objects is closed under cofibrations, and cofibrant objects are �-cofibrant.

Proof Right properness immediately follows from Theorem 4.7. Indeed, �IbimodO =
�IbimodO as categories. Therefore, they have the same pullbacks. Moreover, a Reedy fibra-
tion is always a projective fibration. For left properness and the properties of cofibrations, we
use the characterization of cofibrations of Theorem 5.4 together with the analogous properties
of �IbimodO>0 established in Theorems 4.7 and 4.8. ��

Let φ : O → O ′ be a weak equivalence of reduced operads. Similarly to Sect. 4.2.2,
we show that the Reedy model categories of O-Ibimodules and O ′-Ibimodules are Quillen
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equivalent. By abuse of notation, we denote by φ∗ and φ! the restriction functor and the
extension functor, respectively, between the Reedy model categories:

φ! : �IbimodO � �IbimodO ′ : φ∗.

In the same way as in Sect. 4.2.2, for any M ∈ �IbimodO and M ′ ∈ �IbimodO ′ , one has

φ!(M) = {φ!(M)(n) = F�
O (U�(M))(n)/ ∼, n ≥ 0},

φ∗(M ′) = {φ∗(M ′)(n) = M ′(n), n ≥ 0}.

Theorem 5.6 Let φ : O → O ′ be a weak equivalence between reduced componentwise
cofibtant operads. One has Quillen equivalences

φ! : �IbimodO � �IbimodO ′ : φ∗, (101)

φ! : Tr�IbimodO � Tr�IbimodO ′ : φ∗. (102)

Proof Since the restriction functor creates weak equivalences, one has to check that, for any
Reedy cofibrant object M in �IbimodO , the adjunction unit

M −→ φ∗(φ!(M))

is a weak equivalence. Due to the characterization of Reedy cofibrations, M is also cofibrant
in the projective model category of O>0-Ibimodules. Since φ>0 : O>0 → O ′

>0 is still a
weak equivalence between componentwise cofibrant operads, by Theorem 2.19, the pair
of functors ((φ>0)! ; (φ>0)

∗) gives rise to a Quillen equivalence and the map M(n) →
(φ>0)

∗((φ>0)!(M)
)
(n) is a weak equivalence. The statement is a consequence of the identity

φ∗(φ!(M)) = (φ>0)
∗((φ>0)!(M)

)
.

��

5.2 The Connection Between theModel Category Structures on Infinitesimal
Bimodules

Similarly to the operadic case in [21],webuild aQuillen adjunctionbetween the projective and
theReedymodel categories of infinitesimal bimodules over a reduced operadO . Furthermore,
if M and N are two infinitesimal bimodules, then we show that there is a weak equivalence
between the derived mapping spaces:

�IbimodhO (M ; N ) � �IbimodhO(M ; N ).

For completeness of exposition, at the end of the subsection, we explain how to adapt the
Boardman–Vogt resolution (well known for operads, see [7]) to the context of infinitesimal
bimodules. We refer the reader to [15] where this construction was defined by the first and
third authors. Using this construction we define a functorial cofibrant replacement in the
categories �IbimodO and �IbimodO provided O is componentwise cofibrant.

5.2.1 Quillen Adjunction Between the Model Category Structures

Let O be a reduced operad. The projective and the Reedy model categories of infinitesimal
bimodules over O have the same set of weak equivalence and induce the same homotopy
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category. Consequently, one has the following statement about the adjunctions

id : �IbimodO � �IbimodO : id,

id : Tr�IbimodO � Tr�IbimodO : id.
(103)

Theorem 5.7 For any well-pointed reduced operad O, the pairs of functors (103) form
Quillen equivalences. Furthermore, for any pair M, N ∈ �IbimodO, one has

�IbimodhO (M, N ) � �IbimodhO(M, N ). (104)

Moreover, if M, N ∈ Tr�IbimodO, with r ≥ 0, then one has

Tr�IbimodhO (M, N ) � Tr�IbimodhO(M, N ). (105)

Proof The proof is similar to that of Theorem 3.9. ��

5.2.2 Cofibrant Resolution in the Projective/Reedy Model Category

Let O be an operad not necessarily reduced. From an O-Ibimodule M , we build an
O-Ibimodule IbO(M). The points of IbO(M)(n), n ≥ 0, are equivalence classes
[T ; {tv} ; xp ; {θv}], where T ∈ pPn (see Sect. 4.1.2) is a pearled tree, xp is a point in
M labelling the pearl and {θv}v∈V (T )\{p} is a family of points in O labelling the vertices
other than the pearl. Furthermore, {tv}v∈V (T )\V p(T ) is a family of real numbers in the interval
[0 , 1] indexing the vertices which are not pearls. According to the orientation toward the
pearl, if e is an inner edge, then ts(e) ≥ tt(e). In other words, the closer to the pearl is a vertex,
the smaller is the corresponding number. The space IbO(M)(n) is a quotient of the subspace
of

∐

T∈pPn

M(|p|) ×
∏

v∈V (T )\{p}

[
O(|v|) × [0 , 1]] (106)

determined by the restrictions on the families {tv}. The equivalence relation is generated
by the unit condition (i) and the compatibility with the symmetric group relation (ii) of
Construction 4.3 as well as the following conditions:

(iii) If two consecutive vertices, connected by an edge e, are indexed by the same real number
t ∈ [0 , 1], then e is contracted using the operadic structure of O . The vertex produced
by this edge contraction is indexed by the real number t .

(iv) If a vertex connected to the pearl is indexed by 0, then we contract the inner edge
connecting them using the infinitesimal bimodule structure of M . In that case the new
vertex, produced by the contraction, becomes the pearl.
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Let us describe the O-Ibimodule structure. Let θ ∈ O(n) and [T ; {tv} ; xp ; {θv}] be a
point in IbO(M)(m). The right infinitesimal operation [T ; {tv} ; xp ; {θv}] ◦i θ consists in
grafting the n-corolla labelled by θ to the i-th incoming edge of T and indexing the new
vertex by 1. Similarly, the left infinitesimal operation θ ◦i [T ; {tv} ; xp ; {θv}] consists in
grafting the pearled tree T to the i-th incoming edge of n-corolla labelled by θ and indexing
the new vertex by 1 (see Fig. 23).

One has an obvious inclusion of �-sequences ι : M → IbO(M), where each element
x ∈ M(n) is sent to an n-corolla, labelled by x , whose only vertex is a pearl. Furthermore,
the following map:

μ : IbO(M) → M ; [T ; {tv} ; xp ; {θv}] �→ [T ; {0} ; xp ; {θv}], (107)

is defined by sending the real numbers indexing the vertices other than the pearl to 0. The so
obtained element is identified to the pearled corolla labelled by a point in M . It is easy to see
that μ is an O-Ibimodule map.

In order to get resolutions for truncated infinitesimal bimodules, one considers a filtration
in IbO(M) according to the number of geometrical inputs which is the number of leaves
plus the number of univalent vertices other than the pearl. A point in IbO(M) is said to be
prime if the real numbers indexing the vertices are strictly smaller than 1. Otherwise, a point
is said to be composite and can be associated to a prime component as shown in Fig. 24.
More precisely, the prime component is obtained by removing the vertices indexed by 1.

A prime point is in the r -th filtration layer IbO(M)r if the number of its geometrical
inputs is at most r . Similarly, a composite point is in the r -th filtration layer if its prime
component is in IbO(M)r . For instance, the composite point in Fig. 24 is in the filtration

Fig. 23 Illustration of the right infinitesimal operation

Fig. 24 A composite point and its prime components
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layer IbO(M)6. For each r , IbO(M)r is an O-Ibimodule and one has the following filtration
of IbO(M):

IbO (M)0 IbO (M)1 · · · IbO (M)r−1 IbO (M)r · · · IbO (M).

(108)

Theorem 5.8 (Theorem 3.10 in [15]) Assume that O is a �-cofibrant operad, and M
is a �-cofibrant O-Ibimodule. Then the objects IbO(M) and TrIbO(M)r are cofibrant
replacements of M and Tr M in the categories �IbimodO and Tr�IbimodO, respectively. In
particular, the maps μ and Trμ|TrIbO (M)r are weak equivalences.

Now we slightly change the above construction in order to produce Reedy cofibrant
replacements for O-Ibimodules when O is a reduced operad. Let M be an infinitesimal
bimodule over O . As a �-sequence, we set

Ib�
O(M) := IbO>0(M)

The superscript � is to emphasize that we get a cofibrant replacement in the Reedy model
category structure. The right and left action by the positive arity components is defined as it
is on IbO>0(M). The right action by ∗0 ∈ O(0) is defined in the obvious way as the right
action by ∗0 on a in the vertex (a, t) connected to the leaf labelled by i as illustrated in
Fig. 17.

Note that since the arity zero component of O>0 is empty, in the union (106) we can
consider only trees whose all non-pearl vertices have arities ≥ 1. We denote this set by
pP

≥1
n . In other words, the space Ib�

O(M) can be obtained as the restriction of the coproduct
(106) to this set.

Proposition 5.9 [15, Proposition 3.12] Assume that O is a reduced�-cofibrant operad, and
M is a �-cofibrant O-Ibimodule. Then the objects Ib�

O(M) and TrIb�
O(M) are cofibrant

replacements of M and Tr M in the categories �IbimodO and Tr�IbimodO, respectively. In
particular, the maps μ and Trμ are weak equivalences.

Proof The map μ : Ib�
O(M) → M , which changes the assignment of the real numbers

indexing the vertices to 0, is a homotopy equivalence. More precisely, it is a deformation
retract in the category of �-sequences in which the homotopy consists in bringing the real
numbers to 0. Furthermore, as a consequence of Theorem 5.8, Ib�

O(M) = IbO>0(M)

is cofibrant in the projective model category of O>0-Ibimodules. Due to Theorem 5.4,
Ib�

O(M) is also Reedy cofibrant and it gives rise to a cofibrant resolution of M in the
Reedy model category �IbimodO . The same arguments work for the truncated case. Note
that TrIb�

O(M)r = TrIb�
O(M), since arity zero non-pearl vertices are not permitted. ��

Bymeans of Theorem 5.8 and Proposition 5.9, we construct a functorial cofibrant replace-
ment in �IbimodO and �IbimodO assuming that O is componentwise cofibrant. We adapt
notation from Sect. 3.2.3. Given an O-Ibimodule M , we define M ′∞ := |S•M | × E∞,
O ′∞ := |S•| × E∞. One has that both M ′∞ and O ′∞ are �-cofibrant and M ′∞ is an O ′∞-
bimodule. Let

φ : O ′∞
�−→ O, and φ0 : M ′∞

�−→ M

be the natural projections. Note that φ0 can be viewed as a map of O ′∞-Ibimodules.

123



912 J. Ducoulombier et al.

Proposition 5.10 (a) Assume that O is a componentwise cofibrant operad. Let M be any
O-Ibimodule. Then the objects φ!

(IbO ′∞(M ′∞)
)
and φ!

(
TrIbO ′∞(M ′∞)r

)
are cofibrant

replacements of M and Tr M in the categories �IbimodO and Tr�IbimodO, respectively.

(b) Assume in addition that the operad O is reduced. Then the objects φ!
(
Ib�

O ′∞
(M ′∞)

)

and φ!
(
TrIb�

O ′∞
(M ′∞)

)
are cofibrant replacements of M and Tr M in the categories

�IbimodO and Tr�IbimodO, respectively.

Proof The result is an immediate consequence of Theorems 4.9, 5.6, 5.8 and Proposition 5.9.
��

A Equivariant Homotopy Theory

A.1 Projective Cofibrations for Monoidal Action

In what follows, for any topological monoidG, we consider the projective model structure on
the category ofG-spaces denotedG-Top.We refer the reader to Sect. 1.1 formore details.We
start by recalling the statement of Berger-Moerdijk concerning the pushout product axiom.

Lemma A.1 [7, Lemma 2.5.3] Let 1 → G1 → G → G2 → 1 be a short exact sequence
of discrete groups. Let A → B be a G2-cofibration and X → Y be a G-equivariant G1-
cofibration. Then the pushout productmap (A×Y )∪A×X (B×X) → B×Y is aG-cofibration.
Moreover, the latter is acyclic if A → B or X → Y is.

We use an analogue of this result (namely, Lemmas A.5 and A.8 below) that can be
applied to �n � O(1) and to (�k × �n−k) � O(1), which are not groups, but monoids, and
also are not discrete. In fact non-discreteness is not a big problem. It is not hard to see that
Berger-Moerdijk’s proof of [7, Lemma 2.5.3] works for topological groups as well. On the
contrary, for their proof it is critical that the action is by groups. In fact the statement of
Lemma A.1 in general does not hold when G, G1, and G2 are monoids. Indeed, consider
G1 = 1 and G2 = G = N the monoid of non-negative natural numbers with the natural
addition operation. Then for A → B being Sk−1×N → Dk ×N, and X → Y beingN → N,
i �→ i+1, the pushout product map (A×Y )∪A×X (B×X) → B×Y is not anN-cofibration.

Lemma A.2 Let � be a topological monoid, A → B be a �-cofibration, X → Y be a
cofibration (in T op), then the pushout-product map (A × Y ) ∪A×X (B × X) → B × Y is
a �-cofibration, where X and Y are regarded as spaces endowed with a trivial action of �.
Moreover, the latter is acyclic if A → B or X → Y is.

The proof of this lemma is identical to that of [7, Lemma 2.5.2] in which � is not a
topological monoid but a discrete group. For the convenience of the reader the argument is
given below.

Proof Let Z → W be a trivial �-fibration. One has to show that any square

(A × Y ) ∪A×X (B × X) Z

B × Y W

(109)
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has a �-equivariant lift. Since Top is cartesian closed, the existence of such lift is equivalent
to the existence of a �-equivariant lift of the square

A Map(Y , Z)

B Map(Y ,W ) ×Map(X ,W ) Map(X , Z).

(110)

Here the �-action on the mapping spaces Map(Y , Z), Map(Y ,W ), etc. is defined through
the action on the target: ( f ·γ )(y) := f (y) ·γ . Since the left vertical arrow is a�-cofibration,
it is enough to show that the right arrow is a trivial �-fibration. On the other hand, since the
forgetful functor �-Top → Top creates fibrations and weak equivalences, it suffices to
verify that the right arrow is a trivial fibration in Top, in other words that any square

Sk−1 Map(Y , Z)

Dk Map(Y ,W ) ×Map(X ,W ) Map(X , Z)

has a lift in Top. The latter is equivalent to the pushout-product property that the map
(Sk−1 × Y ) ∪Sk−1×X (Dk × X) → Dk × Y is a cofibration.

The acyclicity statement is proved similarly by starting with any not-necessarily trivial
�-fibration Z → W . ��

Given a homomorphism of monoids j : � → �′, one gets an extension-restriction adjunc-
tion

j! : �-Top � �′-Top : j∗. (111)

Lemma A.3 For any morphism of topological monoids j : � → �′, the extension-restriction
adjunction (111) is a Quillen adjunction. In particular, the extension functor j! preserves
cofibrations and acyclic cofibrations. The restriction functor j∗ preserves fibrations and
weak equivalences. Moreover, if �′ is cofibrant as a right �-module, then j∗ also preserves
cofibrations.

Proof All the statements follow from definition except the last one, which is implied by
the fact that the restriction functor preserves colimits and sends the generating cofibrations
Sk−1 × �′ → Dk × �′ to cofibrations. The latter assertion is a consequence of Lemma A.2
applied to A → B being ∅ → �′, and X → Y being Sk−1 → Dk . ��

Definition A.4 (a) A sequence of morphisms of topological monoids

1 → �1
i−→ �

p−→ �2 → 1 (112)

is called short exact sequence if �2 is a quotient of � as a topological space (p is a
quotient map), and i is a homeomorphism onto p−1(1).

(b) A short exact sequence (112) of topological monoids is called split-surjective, if p
admits a continuous section s : �2 → � which is a morphism of monoids, and the map
�2 × �1 → �, (γ2, γ1) �→ s(γ2) · i(γ1), is surjective.
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914 J. Ducoulombier et al.

For a split-surjective short exact sequence (112), thanks to the inclusions i and s, the
monoids �1 and �2 can be viewed as subobjects of �. For this reason in the sequel, we will
be omitting i and s considering �1, �2 ⊂ �. Note also that if �2 is a group, then the map
�2 × �1 → �, (γ2, γ1) �→ γ2 · γ1, is always surjective (and, in fact, bijective).

Lemma A.5 Let (112) be a split-surjective short exact sequence of monoids. Let also �2 fit
into a split-surjective short exact sequence

1 → �0
2 → �2

p2−→ G2 → 1 (113)

with G2 being a group. Also assume that all elements of�0
2 commutewith those from�1 inside

�. Let A → B be a �2-cofibration and X → Y be a �-equivariant �1-cofibration with both
X and Y having trivial action of�0

2 . Then the pushout product map (A×Y )∪A×X (B×X) →
B × Y is a �-cofibration. Moreover, the latter is acyclic if A → B or X → Y is.

Example A.6 If A → B is a �2-cofibration and X → Y is a �1-cofibration, then the pushout
product map (A×Y )∪A×X (B× X) → B×Y is a �1 ×�2-cofibration. (Take � = �1 ×�2

and G2 = 1.)

Proof of Lemma A.5 Let Z → W be a trivial�-fibration.One has to show that the square (109)
has a �-equivariant lift. By adjunction such lift defines a lift in the square (110). If � were
a group then the mapping spaces Map(Y , Z), Map(Y ,W ), etc., would be endowed with a
natural right �-action: ( f · γ )(y) := f (y · γ −1) · γ . The lift in question would arise from a
lift in (109) if and only if it were �-equivariant. However, in our more general situation the
mapping spaces do not get a natural �-action and the condition on the induced lift of (110) is
less obvious. Denote by Map�1(Y , Z) (Map�1(Y ,W ), etc.) the subspace of Map(Y , Z) of
�1-equivariant maps. Since the action of �1 is trivial on A and on B, the induced lift of (110)
must factor through a lift in the square

A Map�1(Y , Z)

B Map�1(Y ,W ) ×Map�1 (X ,W ) Map�1(X , Y ).

(114)

On the other hand, the spaces Map�1(Y , Z), Map�1(Y ,W ), etc., have a natural �2-action
defined as follows:

( f · γ2)(y) := f (y · p2(γ2)−1) · γ2,

where γ2 ∈ �2. One checks that if f ∈ Map�1(Y , Z), then so is f · γ2:

( f · γ2)(y · γ1) = f (y · γ1 · p2(γ2)−1) · γ2

= f (y · p2(γ2)−1 · p2(γ2) · γ1 · p2(γ2)−1) · γ2

= f (y · p2(γ2)−1) · p2(γ2) · γ1 · p2(γ2)−1 · γ2

= f (y · p2(γ2)−1) · p2(γ2) · p2(γ2)−1 · γ2 · γ1

= f (y · p2(γ2)−1) · γ2 · γ1= ( f · γ2)(y) · γ1.

The third equation is obtained using the fact that p2(γ2) · γ1 · p2(γ2)−1 ∈ �1 and f ∈
Map�1(Y , Z). The fourth equation uses that p2(γ2)−1 · γ2 ∈ �0

2 and that �1 commutes with
�0
2 .
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We claim that a map B → Map(Y , Z) is adjoint to a �-equivariant map F : B × Y → Z
if and only if it factors through Map�1(Y , Z) and the map B → Map�1(Y , Z) is �2-
equivariant. (The same holds for the maps A → Map(Y , Z), B → Map(Y ,W ), etc.)

Indeed, let F : B × Y → Z be a �-equivariant map. Since �1 acts trivially on B,

F(b, y) · γ1 = F(b · γ1, y · γ1) = F(b, y · γ1).

Thus, F(b,−) ∈ Map�1(Y , Z). To check that the induced map B → Map�1(Y , Z) is
�2-equivariant, we need to make sure that F(b · γ2, y) = F(b, y · p2(γ2)−1) · γ2. One has

F(b, y · p2(γ2)−1) · γ2 = F(b · γ2, y · p2(γ2)−1 · γ2) = F(b · γ2, y).

The last equation uses the fact that p2(γ2)−1 · γ2 ∈ �0
2 and that �0

2 acts trivially on Y .
In the other direction, let F : B × Y → Z be the adjoint of a �2-equivariant map B →

Map�1(Y , Z) → Map(Y , Z). One has to check that F is �-equivariant. Since the product
map �2 ×�1 → � is surjective, each γ ∈ � can be written as γ = γ2 ·γ1, γ1 ∈ �1, γ2 ∈ �2.
We need to check that F(b · γ2 · γ1, y · γ2 · γ1) = F(b, y) · γ2 · γ1. One has

F(b · γ2 · γ1, y · γ2 · γ1) = F(b · γ2, y · γ2 · γ1) since �1 acts trivially on B,

= F(b · γ2, y · γ2) · γ1 since F(b · γ2,−) ∈ Map�1 (Y , Z),

= F(b, y · γ2 · p2(γ2)−1) · γ2 · γ1 since F is �2-equivariant,
= F(b, y) · γ2 · γ1 since �0

2 acts trivially on Y .

As a consequence of the above, the square (109) has a �-equivariant lift if and only if
the square (114) has a �2-equivariant lift. On the other hand, the left vertical map in (114)
is a �2-cofibration. Therefore a lift exists provided the right vertical map in (114) is a trivial
�2-fibration. The latter holds provided that the map is a trivial fibration in Top, which
follows from the fact that (Sk−1 ×Y )∪Sk−1×X (Dk × X) → Dk ×Y is a �1-cofibration, see
Lemma A.2. ��
Lemma A.7 Let � be a topological monoid and Z be a �-cofibrant space. Then the functor

Z ×� −: �op-T op → Top,

from left �-modules to spaces, sends left �-spaces that are cofibrant in T op to cofibrant
spaces, and preserves the weak equivalences between such objects.

Proof Since a retract of a cofibrant space is a cofibrant space and a retract of a weak equiv-
alence is a weak equivalence, we can assume that Z is �-cellular: Z = colimα<λZα , where
each map Z<α := colimβ<αZβ → Zα is a pushout of a generating �-cofibration. One has
to check two statements.

• If the statement of the lemma holds for Z<α , then it does for Zα .
• If the statement of the lemma holds for each Zβ , β < α, then it does for Z<α .

For any generating �-cofibration Sk−1 × � → Dk × � and any cofibrant in Top left
�-space A, the induced map

(Sk−1 × �) ×� A → (Dk × �) ×� A (115)

is Sk−1×A → Dk×A. Since A is cofibrant, thismap (115) is a cofibration.On the other hand,
for any weak equivalence of �-spaces A → B, the induced maps Sk−1× A → Sk−1× B and
Dk × A → Dk × B are weak equivalences. The first statement above follows by applying
Proposition 2.12 and recalling that Top is left proper.
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916 J. Ducoulombier et al.

To prove the second statement, we notice that the sequence Zα ×� A, α < λ, is a sequence
of cofibrations, being pushouts of cofibrations of the form (115). Therefore,

colimα<λ(Zα ×� A) � hocolimα<λ(Zα ×� A).

One has the same weak equivalence of spaces for B. Since Zα ×� A → Zα ×� B, α < λ,
are all weak equivalences,

hocolimα<λ(Zα ×� A) � hocolimα<λ(Zα ×� B).

On the other hand, the functors (−) ×� A and (−) ×� B preserve colimits. We conclude

Z ×� A = colimα<λ(Zα ×� A) � colimα<λ(Zα ×� B) = Z ×� B.

��
Compatible action of a monoid and a group: We say that a topological monoid � is
endowed with a right action of a group K if one is given a map � × K → �, (γ, k) �→ γ k ,
which is a right K -action on the set � and for every k ∈ K , the map (−)k : � → � is a
monoid homomorphism. Given such an action, one defines the semi-direct product monoid
� � K . Its underlying set is � × K , while multiplication is as follows

(γ1, k1) · (γ2, k2) = (γ1 · γ
k−1
1

2 , k1 · k2).
A right � � K -space A can equivalently be seen as a right �-module with a right K -action
compatible in the sense

(a · γ ) · k = (a · k) · γ k, for any a ∈ A, γ ∈ �, k ∈ K .

Note that the same map � × K → �, defines a right K -action on �op – the monoid
with the reversed multiplication. A right �op

� K -space X can equivalently be seen as a left
�-module with a right K -action compatible in the sense

(γ · x) · k = γ k · (x · k), for any x ∈ X , γ ∈ �, k ∈ K .

Lemma A.8 Let 1 → K1 → K → K2 → 1 be a short exact sequence of topological groups.
Let � be a topological monoid endowed with a right K2-action. If A → B is a � � K2-
cofibration and X → Y is a �op

� K-equivariant K1-cofibration, then the pushout-product
map (A ×� Y ) ∪A×�X (B ×� X) → B ×� Y is a K -cofibration. Moreover, the latter is
acyclic if A → B or X → Y is.

Proof Let Z → W be a trivial K -fibration. One has to show that any square

(A ×� Y ) ∪A×�X (B ×� X) Z

B ×� Y W

(116)

has a K -equivariant lift. One has a homeomorphism of mapping spaces

MapK (B ×� Y , Z) = Map��K2

(
B, MapK1(Y , Z)

)
.

(One has similar homeomorphisms for MapK (A ×� Y , Z), etc.) The K -action on B ×� Y
is the diagonal one: (b, y) · k = (b · k, y · k). The action of � � K2 on MapK1(Y ,W ) is
defined as follows:

( f · (γ, k2))(y) = f (γ · (y · k−1)) · k,
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where k ∈ K is any point in the preimage of k2 ∈ K2.
Using this, the existence of a lift in (116) is equivalent to the existence of a � � K2-

equivariant lift of the square

A MapK1(Y , Z)

B MapK1(Y ,W ) ×MapK1 (X ,W ) MapK1(X , Z).

(117)

Since A → B is a � � K2-cofibration, one has to check that the right vertical arrow is a
trivial � � K2-fibration, or, equivalently a fibration in Top. In other words, one has to check
that any square below

Sk−1 MapK1(Y , Z)

Dk MapK1(Y ,W ) ×MapK1 (X ,W ) MapK1(X , Z)

has a lift in Top. The latter is equivalent to the pushout-product property that the map
(Sk−1 × Y ) ∪Sk−1×X (Dk × X) → Dk × Y is a K1-cofibration, true by Lemmas A.1 or A.2.

��

A.2 Cellularly Equivariant Cofibrations

Definition A.9 Let G be a discrete group.

(a) A G-equivariant map X0 → X1 is called a G-equivariant cell attachment if it fits into
a pushout diagram

Sk−1 × (H\G) Dk × (H\G)

X0 X1,

(118)

where H ⊂ G is a subgroup of G.
(b) A G-equivariant map X0 → X is called a cellularly G-equivariant cofibration if it is a

G-equivariant retract of a possibly transfinite sequence ofG-equivariant cell attachments.

In fact there exists a model structure on G-Top for which cofibrations are exactly the
cellularly G-equivariant cofibrations [17]. This model structure produces a different (from
projective) homotopy category as it has a smaller class of equivalences for which one has to
take into account all orbit subspaces. Any G-space is still fibrant in this model structure. We
do not use this more subtle model structure on G-Top. We just need a few technical lemmas
below.

Lemma A.10 For any cellularly G-equivariant cofibration X0 → X and any G-space Y , the
induced map

MapG(X , Y ) → MapG(X0, Y )

is a Serre fibration.
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Proof A retract of a Serre fibration is a Serre fibration as well as is the limit of a tower of
Serre fibrations. Therefore it is enough to consider the case of aG-equivariant cell attachment
X0 → X1 as in (118). One has a pullback square

MapG(X1, Y ) MapG(Dk × (H\G), Y )

MapG(X0, Y ) MapG(Sk−1 × (H\G), Y ).

The left vertical map is a Serre fibration provided the right vertical map is one. One has

MapG(Dk × (H\G), Y ) = MapH (Dk, Y ) = Map(Dk, Y H );
MapG(Sk−1 × (H\G), Y ) = MapH (Sk−1, Y ) = Map(Sk−1, Y H ).

Therefore, the right vertical map in the square above is the map Map(Dk, Y H ) →
Map(Sk−1, Y H ), which is a Serre fibration. This follows from the fact that the invariant
space Y H is fibrant (like any topological space) and the map from Sk−1 to Dk is a cofibra-
tion. ��

Lemmas A.11–A.14 below help to recognize cellularly equivariant cofibrations.

Lemma A.11 The realization of any G-equivariant inclusion of simplicial G-sets is a cellu-
larly G-equivariant cofibration.

Proof Obvious. ��
Lemma A.12 For any homomorphism φ : G1 → G2 of discrete groups, both the restriction
and extension functors

φ! : G1-T op � G2-T op : φ∗

preserve cellularly equivariant cofibrations.

Proof Obvious. ��
Lemma A.13 If

X0 → X and Y0 → Y (119)

are cellularly G-equivariant cofibrations, then so is the pushout-product map

(X × Y0) ∪X0×Y0 (X0 × Y ) → X × Y . (120)

Proof For generating G-equivariant cell attachments Sk1−1 × (H1\G) → Dk1 × (H1\G)

and Sk2−1 × (H2\G) → Dk2 × (H2\G), the map (120) becomes

Sk1+k2−1 × (H1\G) × (H2\G) → Dk1+k2 × (H1\G) × (H2\G).

The G-set (H1\G) × (H2\G) is isomorphic to a disjoint union of identical G-sets (H1 ∩
H2)\G. Thus, the statement of the lemma holds in this case. Similarly it is true for an arbitrary
pair of G-equivariant cell attachments.

In case X = colimα<λ1Xα and Y = colimα<λ2Yα are (possibly transfinite) sequences of
G-equivariant cell attachments, then the inclusion (120) is also a (transfinite) sequence of
G-equivariant cell attachments

colim
(α1,α2)<(λ1,λ2)

Zα1,α2 ,
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where the set λ1 × λ2 is given the lexicographical order and therefore is also an ordinal. The
spaces Zα1,α2 are defined recursively:

Zα1,α2 =
(

colim
(β1,β2)<(α1,α2)

Zβ1,β2

)

∪ (Xα1 × Yα2),

with Z0,0 being the left-hand side of (120).
Finally, if (119) are retracts of (transfinite) sequences of cell attachments then so is the

pushout-product. ��
Lemma A.14 Let ∂X → X be a cofibration in T op. Then ∂(X×n) → X×n is a cellularly
�n-equivariant cofibration.

Proof One needs to check it first for the inclusion Sk−1 → Dk , which is done by stratify-
ing (Dk)×n into �n-orbits and then decomposing the orbits into cells. Applying previous
Lemmas A.12 and A.13 we can conclude that the inclusion

∂

�∏

i=1

(Dki )×ni →
�∏

i=1

(Dki )×ni

is a cellularly (
∏�

i=1 �ni )-equivariant cofibration. The rest of the argument is similar to the
proof of the previous lemma. Assuming that ∂X → X is a possibly transfinite sequence
of cell attachments colimα<λXα , we decompose X×n

α extending the cellular structure of
colimβ<αX

×n
β . ��
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