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THE SIMPLICIAL COALGEBRA OF CHAINS DETERMINES

HOMOTOPY TYPES RATIONALLY AND ONE PRIME AT A TIME

MANUEL RIVERA, FELIX WIERSTRA, MAHMOUD ZEINALIAN

Abstract. We prove that the simplicial cocommutative coalgebra of singular chains on
a connected topological space determines the homotopy type rationally and one prime
at a time, without imposing any restriction on the fundamental group. In particular, the
fundamental group and the homology groups with coefficients in arbitrary local systems of
vector spaces are completely determined by the natural algebraic structure of the chains.
The algebraic structure is presented as the class of the simplicial cocommutative coalgebra
of chains under a notion of weak equivalence induced by a functor from coalgebras to
algebras coined by Adams as the cobar construction. The fundamental group is determined
by a quadratic equation on the zeroth homology of the cobar construction of the normalized
chains which involves Steenrod’s chain homotopies for cocommutativity of the coproduct.
The homology groups with local coefficients are modeled by an algebraic analog of the
universal cover which is invariant under our notion of weak equivalence. We conjecture
that the integral homotopy type is also determined by the simplicial coalgebra of integral
chains, which we prove when the universal cover is of finite type.
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1. Introduction

One of the main goals of algebraic topology is to classify topological spaces, up to a
specified notion of equivalence, by means of algebraic invariants. In this paper, we use the
singular chains on a space together with the coproduct induced by the diagonal map to
classify homotopy types over a field. By combining Adams’ work on the cobar construction
in [A56] with Steenrod’s celebrated work on cohomology operations introduced in [St47], we
use the (homotopy) cocommutativity of the diagonal to recover the fundamental group in
its full generality. We further show that the simplicial cocommutative coalgebra of chains
determines all homology groups with coefficients in any possible local system of vector spaces
over a field. When we assume that the universal cover is of finite type, i.e. all its homology
groups are finitely generated, then we also show that the integral homotopy type is completely
determined by the simplicial cocommutative coalgebra of chains. We conjecture that this
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result holds for all connected spaces without any finite type assumptions on the universal
cover.

Steenrod operations began a revolution of progress in algebraic topology, which became the
rich and successful field of stable homotopy theory. In the unstable setting, the work of Sulli-
van and Quillen treated rational homotopy types, with strong conditions on the fundamental
group, through chain and cochain level algebraic structure. Motivated by the geometric prob-
lem of understanding the diffeomorphism class of compact smooth manifolds, Sullivan proved
that two simply connected spaces of finite rational type are rationally homotopy equivalent if
and only if their commutative differential graded (cdg) algebras of rational polynomial forms
are quasi-isomorphic [S77]. Quillen obtained a similar statement for simply connected spaces
(without finiteness assumptions) via cocommutative dg rational coalgebras [Q69]. Their re-
sults and machinery can be improved to include nilpotent spaces, i.e. spaces with nilpotent
fundamental group acting nilpotently on the higher homotopy groups.

Since the appearance of the results of Sullivan and Quillen, there have been different
approaches to classifying spaces up to Bousfield localization or completion with respect to
fields of arbitrary characteristic [G95], [M01] and with respect to integer coefficients [M06].
In some form or another, the cocommutative diagonal map studied by Steenrod, either before
or after chain approximation, appears again in all of these works. The end goal of this line of
research is to understand in complete generality what a homotopy type is in terms of algebraic
data.

However, all of these approaches involve notions of equivalence which are not strong enough
to capture all of the fundamental group. Consequently, many of the statements either require
strong restrictions on the fundamental group or determine spaces up to ambiguity on the
fundamental group. For example, Goerss showed in [G95] that the simplicial cocommutative
coalgebra of chains over a field determines spaces up to Bousfield localization, a notion of
localization for spaces under which the fundamental group is not preserved. In our approach,
we follow a divide and conquer strategy by first obtaining the fundamental group from the
algebraic structure of the chains, constructing the universal cover, and then applying local-
ization techniques to the universal cover taking advantage of its simple connectivity. The
main result of this article is the following.

Main Theorem. For any field F, two reduced Kan complexes X and Y can be connected by a
zig-zag of π1-F-equivalences if and only if their connected simplicial cocommutative coalgebras
of chains FX and FY can be connected by a zig-zag of Ω-quasi-isomorphisms.

We briefly explain the terminology in the above statement, its significance, and the main
ingredients used in the proof. A Kan complex is reduced if it has a single vertex. For example,
any pointed topological space (Z, z) gives rise to a reduced Kan complex Sing(Z, z) whose
n-simplices consist of all continuous maps σ : ∆n → Z such that σ(vi) = z for all vertices
v0, ..., vn ∈ ∆n.

Let R be an arbitrary commutative unital ring. A map f : X → Y between reduced Kan
complexes is a π1-R-equivalence if it induces an isomorphism of fundamental groups

π1(f) : π1(X)
∼=
−→ π1(Y )

and an isomorphism

H∗(f̃ ;R) : H∗(X̃ ;R)
∼=
−→ H∗(Ỹ ;R)

between the homology groups with R-coefficients of the universal covers. Equivalently, a map
f is a π1-R-equivalence if and only if it induces an isomorphism on fundamental groups and on
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all homology groups with values in every possible local system of R-modules. If f : X → Y is a
π1-R-equivalence then f is an R-homology equivalence, i.e. H∗(f ;R) : H∗(X ;R)→ H∗(Y ;R)
is an isomorphism, but not vice-versa. Note that a map between reduced Kan complexes is
a π1-Z-equivalence if and only if it is a homotopy equivalence.

A simplicial cocommutative R-coalgebra C is a simplicial object in the category of co-
commutative counital R-coalgebras. To every simplicial set X we can associate a simplicial
cocommutative coalgebra by defining RX as the free R-module generated by the simplices of
X and with the face and degeneracy maps induced by the face and degeneracy maps of X .
The cocommutative coalgebra structure is the one induced by the diagonal map of simplicial
sets X → X × X . It further turns out that if the simplicial set X is reduced, then RX is
coaugmented and connected, meaning that it is one dimensional in degree 0 and that there
is a canonical map from R to RX , where R is seen as the constant simplicial cocommutative
coalgebra.

To each simpicial cocommutative coalgebra C, we can functorially associate a differential
graded coassociative coalgebra N∗(C) which is called the normalized chains. When C is
connected (resp. coaugmented) then N∗(C) is connected (resp. coaugemented) as well. We
say that a morphism f : C → D of connected simplicial cocommutative coalgebras is an
Ω-quasi-isomorphism if the induced morphism of normalized chains is a quasi-isomorphism
after applying the cobar construction Ω, i.e. if the map

ΩN∗(f) : ΩN∗(C)→ ΩN∗(D),

is a quasi-isomoprhism. Any Ω-quasi-isomorphism is a quasi-isomorphism but not vice-versa.
The proof of our main theorem relies on the following constructions and results, which

hold over an arbitrary integral domain R and are also of independent interest:
1) To any connected simplicial cocommutative coalgebra we may associate functorially a

fundamental bialgebra, a construction which is homotopical in the sense that it is invariant
under Ω-quasi-isomorphisms of simplicial cocommutative coalgebras.

2) The fundamental bialgebra of the simplicial coalgebra of chains RX on any reduced
Kan complex X is naturally isomorphic to the fundamental group Hopf algebra R[π1(X)]. In
other words, the natural (co)algebraic structure of the chains RX on a reduced Kan complex
X determines the fundamental group π1(X) in complete generality, through the group-like
elements functor, and this data is preserved along Ω-quasi-isomorphisms. More precisely,
π1(X) is determined by the quadratic equation

∇(α) = α⊗ α

where

∇ : H0(ΩN∗(RX))→ H0(ΩN∗(RX))⊗H0(ΩN∗(RX))

is a coproduct on the zeroth-homology of the cobar construction induced by the E2-coalgebra
structure of the normalized chains N∗(RX). The coproduct ∇ is therefore part of the higher
hierarchy of homotopies introduced by Steenrod in [St47] and described in terms of the E∞-
operadic framework in [BF04]. The extension of Adams’ classical cobar theorem to non-simply
connected spaces, proven by the first and third author, lies at the bottom of the fact that the
fundamental group can be determined algebraically from the chains [RZ16], [R19].

3) To any connected simplicial cocommutative coalgebra we may associate functorially a
universal cover, which is a new simplicial cocommutative coalgebra equipped with an action
of the fundamental bialgebra. This construction mirrors the passage from a pointed space
to its universal cover. The main idea is equipping a simplicial version of Brown’s twisted
tensor product with an appropriate non-linear algebraic structure. These constructions, which
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constitute the key technical input developed in the paper, are introduced as part of a more
general theory of simplicial twisted tensor products and simplicial twisting cochains.

4) We apply Goerss’ results from [G95] relating simplicial cocommutative coalgebras over
a field to Bousfield localization at the level of universal covers.

Our main result is particularly important in the cases when F = Q, the field of rational
numbers, and when F = Fp, the finite field with p-elements for a prime p. Recall that if a
map of spaces induces an isomorphism on homology with Q-coefficients and an isomorphism
on homology with Fp-coefficients for each prime p, then it induces an isomorphism on integral
homology. This observation, together with the main result of this paper, the classical fracture
theorems and arithmetic square, and the fact that π1-Z-equivalences are exactly homotopy
equivalences, leads us to pose the following conjecture.

Conjecture. Two reduced Kan complexes X and Y are homotopy equivalent if and only
if their connected simplicial cocommutative coalgebras of chains ZX and ZY can be connected
by a zig-zag of Ω-quasi-isomorphims.

One direction of the above conjecture already follows from [RWZ18], where we showed
that a map f : X → Y is a homotopy equivalence between reduced Kan complexes if and
only if Zf : ZX → ZY is an Ω-quasi-isomorphism, extending a classical theorem of White-
head.

The strongest results in the problem of finding complete algebraic models for spaces over
fields of arbitrary characteristic have appeared in the work of Mandell [M06], [M01]. Mandell
proved a classification theorem for nilpotent finite type p-complete spaces using the framework
of E∞-algebras, an up to (coherent) homotopy version of commutative algebras [M01]. E∞-
(co)algebras may be interpreted to be more “algebraic” than simplicial (co)algebras in the
sense that they are described in terms of operations and relations on an abelian group using
the framework of operads and do note involve a “spatial parameter” directly as in the case of
simplicial coalgebras. Moreover, Mandell describes the sense in which the functor of cochains
considered as a Fp-E∞-algebra is homotopically fully faithful on nilpotent finite type p-
complete spaces. In this theory, E∞-algebras are considered under quasi-isomorphism, a
notion suitable to study nilpotent finite type spaces but not strong enough to capture the
fundamental group in complete generality.

Mandell goes further and proves an integral detection statement by means of an arithmetic
square argument [M06]. Namely, he proves that two nilpotent spaces of finite type X and Y
are weak homotopy equivalent if and only if their E∞-algebras of integral singular cochains
are quasi-isomorphic. We use this result, together with our constructions, to prove the fol-
lowing special case of the above conjecture.

Theorem. Let X and Y be two reduced Kan complexes whose universal covers are of finite
type. If the integral chains ZX and ZY can be connected by a zig-zag of Ω-quasi-isomorphisms
of connected simplicial cocommutative coalgebras each of which is projective as a Z-module,
then X and Y are homotopy equivalent.

We also conjecture that two connected Kan complexes are homotopy equivalent if and
only if their E∞-coalgebras of chains are Ω-quasi-isomorphic. This conjecture could also
possibly be improved to arbitrary simplicial sets by incorporating an algebraic localization
procedure into the notion of Ω-quasi-isomorphism. Furthermore, there is recent evidence that
one may be able to obtain a fully faithful (integral) model for homotopy types by considering
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more algebraic structure. This has been studied in a recent preprint of Yuan, [Y19], where
the extra structure is encoded using spectra but not quite in terms of the philosophy and
algebraic structures considered by Mandell, who encodes spaces in terms of discrete abelian
groups equipped with a countable number of operations and relations considered under a
“good” homotopical notion of weak equivalence.

The general goal of this program is to understand in purely algebraic terms what a ho-
motopy type is and then use the resulting algebraic models effectively. This general problem
includes several subtleties such as making a mathematically precise formulation of what “al-
gebraic” means, a point we do not address in this article. The term “algebraic” may have
different interpretations such as computable algebraic, operadic and derived algebraic, posi-
tive degree algebraic, or modeled by an abelian category, and so on. For each interpretation
of the term one may try to explore to what extent one can model homotopy types. We also
believe the results of this general program, including the main theorem of this paper, will be
useful in the study of the topology of geometric spaces, such as compact 3-manifolds, with
arbitrary fundamental group.

The organization of this article is as follows. In section 2 we discuss algebraic preliminaries
and discuss the notion of Ω-quasi-isomorphism. In section 3 we recall those parts of [G95]
that are relevant for this article and discuss the notion of π1-R-equivalence. In section 4 and
section 5 the main technical tools are developed, these include a theory of simplicial twisted
tensor products for simplicial coalgebras and simplicial algebras through which we obtain the
notion of the universal cover of a connected simplicial cocommutative coalgebra as a special
case. In section 6 we prove our main theorem by applying the machinery developed in the
previous sections. Finally in section 7 we prove a special case of our conjecture in the integral
case.

Acknowledgements. The second author was supported by grant number 2019-00536 from
the Swedish Research Council. The second and third author would further like to thank the
Max Planck Institute for Mathematics for its hospitality and excellent working conditions.
The second author would also like to thank the Graduate Center of the City University of
New York for their hospitality and excellent working conditions during his stay there. We
would like to thank Dennis Sullivan, Martin Bendersky, Omar Antoĺın Camarena, Michael
Mandell, Kathryn Hess, Rob Thompson, and George Raptis for stimulating discussions, ex-
changes, and comments. We would like to thank the anonymous referee for general comments
which helped us improve the introduction.

2. Algebraic Preliminaries

In this section we introduce notation, recall a several algebraic definitions and construc-
tions, and discuss the notion of Ω-quasi-isomorphism between simplicial coalgebras. This
notion was originally proposed in Lefevre-Hasegawa’s thesis and it is essential in Koszul du-
ality theory of algebraic structures, see [LH03], [LV12]. In the Lie context, a similar notion
was used in [HS97].

2.1. Algebras and coalgebras. Let R be a commutative ring with unit. All tensor products
will be over R unless stated otherwise. In some of the statements in this paper, we will assume
that R is a field; when this is the case we will denote this field by F. Later on, in section 6,
we will denote an arbitrary algebraically closed field by E.
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We will consider R-algebras and R-coalgebras in two different settings: the differential
graded (dg) setting and the simplicial setting. For the definitions of dg algebras and dg
coalgebras we refer the reader to [LV12]. All differentials will have degree −1.

Denote byAlgR andCoalgR the categories of associative unital augmentedR-algebras and
coassociative counital coaugmented R-coalgebras, respectively. Denote by dgAlgR the cate-
gory of differential graded augmented associative R-algebras and by dgCoalgR the category
of dg coaugmented conilpotent coassociative R-coalgebras. In this paper, all (co)algebras will
be (co)associative and (co)unital. We say a (co)algebra is R-flat if it is flat as an R-module.

We say that C ∈ dgCoalgR is connected if it is non-negatively graded and the coaugmen-
tation c : R→ C induces an isomorphism R ∼= C0. Let dgCoalg0

R be the full subcategory of
connected dg coalgebras in dgCoalgR.

Let ∆ be the simplex category. A simplicial algebra is a functor A : ∆op → AlgR and
a simplicial coalgebra is a functor C : ∆op → CoalgR. Denote by sAlgR and sCoalgR the
categories of simplicial algebras and simplicial coalgebras, respectively, with natural trans-
formations of functors as morphisms. If C is a simplicial coalgebra we write C([n]) = Cn, so
each Cn is equipped with a coassociative coproduct usually denoted by

∆n : Cn → Cn ⊗ Cn.

Equivalently, a simplicial (co)algebra is a set of (co)algebras {V0, V1, V2, ...} equipped with
face maps dni : Vn → Vn−1, n > 0, 0 ≤ i ≥ n and degeneracy maps snj : Vn → Vn+1, n ≤ 0,
0 ≤ i ≤ n, which are all (co)algebra maps and satisfy the simplicial identities.

We say that C is a simplicial cocommutative coalgebra if each (Cn,∆n) is cocommutative
for all n ≥ 0. A simplicial coalgebra C is connected if there is an isomorphism of coalgebras
(C0,∆0) ∼= R, where R is given the coproduct determined by 1 7→ 1 ⊗ 1. We denote by
scCoalgR ⊂ sCoalgR the full subcategory of simplicial cocommutative coalgebras and by
scCoalg0

R ⊂ sCoalgR the full subcategory of connected simplicial cocommutative coalgebras.
The tensor product of simplicial (co)algebras V ⊗ W is defined degree-wise by setting

(V ⊗ W )n = Vn ⊗ Wn with face and degeneracy maps obtained by tensor product, i.e.

dV⊗W
i = dVi ⊗ d

W
i and sV⊗W

i = sVi ⊗ s
W
i .

Any simplicial coassociative coalgebra gives rise to a dg coassociative coalgebra through
the normalized chains functor

N∗ : sCoalgR → dgCoalgR

defined as follows. Given a simplicial coassociative coalgebra C with coproducts ∆n : Cn →
Cn ⊗ Cn, let (N∗(C), ∂) be the dg R-module obtained as the quotient N ′

∗(C)/D∗(C) where
N ′
n(C) = Cn equipped with differential

∂ =
∑

i

(−1)idi : N
′
∗(C)→ N ′

∗−1(C)

given by the alternating sum of the face maps of C, and D∗(C) ⊂ N
′
∗(C) is the sub-complex

generated by degenerate elements. The chain complex (N∗(C), ∂) becomes a dg coassociative
coalgebra when equipped with the coproduct

δ : N∗(C)
N∗(∆)
−−−−→ N∗(C ⊗ C)

AW
−−→ N∗(C)⊗N∗(C).

In the above composition, AW is the Alexander-Whitney map, which is given on any x⊗ y ∈
(C ⊗ C)n = Cn ⊗ Cn by

AW (x⊗ y) =
∑

p+q=n

fp(x) ⊗ lq(y),
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where fp denotes the front p-face induced by the map [p]→ [p+ q] in ∆ determined by i 7→ i
and lp is the last q-face induced by the map [q]→ [p+ q] in ∆ determined by i 7→ i+ p. The
construction (C,∆) 7→ (N∗(C), ∂, δ) is natural with respect to maps of simplicial coalgebras
and consequently defines a functor.

Finally, we briefly recall the notions of bialgebras and Hopf algebras. An R-bialgebra
B = (B, µ,∇, u, ǫ) consists of an R-module B equipped with a unital algebra structure
(µ : B⊗B → B, u : R→ B) together with a counital coalgebra structure (∇ : B → B⊗B, ǫ :
B → R) which are compatible in the sense that the coproduct ∇ and the counit ǫ are algebra
maps. As a consequence of this definition, we have that the product µ and the unit u are
coalgebra maps. A map of bialgebras is a linear map which is simultaneously an algebra and
a coalgebra map. We also have dg and simplicial versions of bialgebras defined analogously
to algebras and coalgebras. We will use the notation scBialgR to denote the category of
simplicial cocommutative bialgebras. Note that the simplicial bialgebras in scBialgR are not
required to be commutative.

A bialgebra B = (B, µ,∇, u, ǫ) is a Hopf algebra if there is a map s : B → B, satisfying

µ ◦ (s⊗ id) ◦ ∇ = u ◦ ǫ = µ ◦ (id⊗ s) ◦ ∇.

The map s : B → B is called the antipode. If a bialgebra has an antipode then it is unique. A
map of Hopf algebras is a map of underlying bialgebras. Any map of Hopf algebras preserves
the antipodes.

2.2. Bar and cobar constructions. We now recall the bar and cobar functors. We refer
to [EM53], [A56] and [HMS74] for further details.

Let (A, dA) ∈ dgAlgR and suppose (M,dM ) and (N, dN ) are right and left dg A-modules,
respectively. We denote both the A-action and the product in A by a · b. Recall that the
two sided bar construction is the chain complex (B∗(N,A,M), ∂) whose underlying graded
R-module is given by

Bp(N,A,M) := (N ⊗ TsA⊗M)p,

where A = ker(a) denotes the kernel of the augmentation a : A → R, s is the shift by +1
functor, and

TsA = R⊕ sA⊕ (sA)⊗2 ⊕ (sA)⊗3 ⊕ ...

The subscript on (N ⊗ TsA ⊗ M)p means total degree p elements in N ⊗ TsA ⊗ M . In
what follows we will drop the s for notational simplicity. We write tensors in Bn(N,A,M) as
n[a1|...|ak]m, where n ∈ N,m ∈ M and ai ∈ A for i = 1, ..., k. Hence, n[a1|...|ak]m ∈
Bp(N,A,M) means that |n| + |a1| + ... + |ak| + k + |m| = p. The differential dbar :
Bp(N,A,M)→ Bp−1(N,A,M) is defined by

dbar(n[a1|...|ak]m) = dN (n)[a1|...|ak]m+

k∑

i=1

(−1)ǫin[a1|...|dAai|...|ak]m

+(−1)|n|+|a1|+...|ak|+kn[a1|...|ak]dM (m)

+(−1)|n|(n · a1)[a2|...|ak]m+

k∑

i=2

(−1)ǫi−1n[a1|....|(ai−1 · ai)|...|ak]m

+(−1)|n|+|a1|+...|ak|+k−1n[a1|...|ak−1](ak ·m),

where ǫi = |n| + |a1 + ... + |ai| + i. It is straightforward to check that d2bar = 0. In this
article, we will only consider the two sided bar construction B(R,A,M) where M is a left
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dg A-module and R is considered as a right dg A-module concentrated in degree 0 and with
right A-action induced by the augmentation a : A→ R.

We now define the version of the cobar construction which is relevant for this article. The
cobar construction is a functor

Ω : dgCoalg0
R → dgAlgR

defined as follows. For any C = (C, ∂C ,∆) ∈ dgCoalg0
R, the underlying graded algebra of

Ω(C) is the tensor algebra

Ts−1C = R ⊕ s−1C ⊕ (s−1C)⊗2 ⊕ (s−1C)⊗3 ⊕ ...,

where C := C/C0, and s−1 is the shift by −1 functor. We denote monomials in Ts−1C
by {x1|...|xk} where xi ∈ C, dropping the s−1 for notational simplicity. Hence, the degree
of {x1|...|xk} ∈ Ts

−1C is |x1| + ... + |xk| − k. The augmentation is given by the canonical
projection a : Ts−1C → R. The differential is defined by extending the linear map

−s−1 ◦ ∂ ◦ s+1 + (s−1 ⊗ s−1) ◦∆ ◦ s+1 : s−1C̄ → T (s−1C̄)

as a derivation to obtain a map D : T (s−1C̄) → T (s−1C̄). The coassociativity of ∆, the
compatibility of ∂ and ∆, and the fact that ∂2 = 0 together imply that D2 = 0.

2.3. Weak equivalences of coalgebras. One of the goals of this paper is to understand the
homotopical meaning of the following two notions of weak equivalences between (simplicial
and dg) coalgebras.

Definition 1. (a) A map f : C → C′ in dgCoalgR is a quasi-isomorphism of dg coalgebras
if the induced map on homology H∗(f) : H∗(C)→ H∗(C

′) is an isomorphism.
(b) A map f : C → C′ in sCoalgR is a quasi-isomorphism of simplicial coalgebras if the
induced map of dg coalgebras N∗(f) : N∗(C)→ N∗(C

′) after applying the normalized chains
functor is a quasi-isomorphism of dg coalgebras.

Recall that a map f : C → C′ in sCoalgR is a quasi-isomorphism if and only if f is a
weak homotopy equivalence between the underlying simplicial sets of C and C′.

We also have the following notions, which are stronger than the ones defined above.

Definition 2. (a) A map f : C → C′ in dgCoalg0
R is an Ω-quasi-isomorphism of connected

dg coalgebras if the induced map after applying the cobar functor Ω(f) : Ω(C)→ Ω(C′) is a
quasi-isomorphism of dg algebras.
(b) A map f : C → C′ in sCoalg0

R is an Ω-quasi-isomorphism of connected simplicial coal-
gebras if the induced map of dg coalgebras N∗(f) : N∗(C) → N∗(C

′) after applying the
normalized chains functor is an Ω-quasi-isomorphism of connected dg coalgebras.

Proposition 3. Any Ω-quasi-isomorphism between connected dg R-flat coalgebras is a quasi-
isomorphism, but not vice versa.

Proof. This follows from exactly by the same arguments given in Propositions 2.4.2 and 2.4.3
of [LV12], where this is shown when R is a field. We assume flatness since, for general rings
R, the bar construction of dg R-algebras will not preserve quasi-isomorphisms, but it does
when restricted to dg R-flat algebras, such as the cobar construction of a connected dg R-flat
coalgebra. �

The two notions of Ω-quasi-isomorphism and quasi-isomorphism agree on simply connected
dg R-flat coalgebras, namely, dg R-flat coalgebras C such that C1 = 0 and C0

∼= R.
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Proposition 4. Let C and C′ be simply connected dg R-flat coalgebras. Then f : C → C′ is
a quasi-isomorphism if and only if f is an Ω-quasi-isomorphism.

Proof. This follows from a standard spectral sequence argument, see Proposition 2.2.7 of
[LV12] (in their terminology 2-connected means simply connected). �

We say that two (connected) simplicial cocommutative coalgebras C and C′ are (Ω-)quasi-
isomorphic if there is a zig-zag of (Ω-)quasi-isomorphisms of (connected) simplicial cocom-
mutative coalgebras between C and C′.

2.4. Brown’s twisted tensor product. We recall Brown’s definition of twisting cochains
and twisted tensor products. Given any C = (C, ∂C ,∆C) ∈ dgCoalg0

R and (A, dA, µA) ∈
dgAlgR, the graded R-module HomR(C,A) becomes a graded associative algebra with con-
volution product

⋆ : HomR(C,A) ⊗HomR(C,A)→ HomR(C,A)

given by the formula
f ⋆ g = µA ◦ (f ⊗ g) ◦∆C .

A twisting cochain is defined to be a linear map τ : C → A of degree −1 satisfying

∂Homτ + τ ⋆ τ = 0.

We also require that the compositions C
τ
−→ A

a
−→ R and R

c
−→ C

τ
−→ A are both zero, where

a is the augmentation of A and c the coaugmentation of C. Given any left dg A-module
(M,dM ) define ∂τ : C ⊗M → C ⊗M by

(2.1) ∂τ (x⊗m) = ∂C(x)⊗m+ (−1)|x|x⊗ dM (m) +
∑

(x)

(−1)|x
′|x′ ⊗ (τ(x′′) ·m)

where we have written ∆C(x) =
∑

(x) x
′⊗x′′ using Sweedler notation. It follows that ∂τ ◦∂τ =

0, so (C⊗M,∂τ) is a chain complex called Brown’s twisted tensor product of C andM , which
we denote simply by C ⊗τ M .

The twisted tensor product construction was originally introduced in [B59] to model the
singular chain complex of the total space of a fibration in terms of the chains in the base and
the chains in the fiber, see the main statement of [B59].

For any any C ∈ dgCoalg0
R the natural map ι : C  C ∼= s−1C →֒ ΩC is an example of

a twisting cochain called the universal twisting cochain of C. We now prove the invariance
of Brown’s twisted tensor product with respect to Ω-quasi-isomorphisms of connected dg
coalgebras in the following sense.

Theorem 5. Let C and C′ be two connected dg R-flat coalgebras and let M be a left dg
Ω(C′)-module. Any Ω-quasi-isomorphism g : C → C′ induces a quasi-isomorphism of chain
complexes

g ⊗ id : C ⊗ι Ω(g)
∗M → C′ ⊗ιM,

where Ω(g)∗M denotes the dg R-module M equipped with the left dg Ω(C)-module structure
obtained by pulling back the left Ω(C′)-module structure on M via Ω(g) : Ω(C)→ Ω(C′)

Theorem 5 will follow from Propositions 6 and 7 below, which use techniques and con-
structions similar to those appearing in [HMS74], [LH03], and [P11].

Proposition 6. Let C be a connected dg coalgebra and denote by ι : C → Ω(C) the universal
twisting cochain. If M is any left dg Ω(C)-module, then there is a natural quasi-isomorphism
of chain complexes

(2.2) φ : B(R,Ω(C),M)→ C ⊗ιM
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Proof. Define φ : B(R,Ω(C),M)→ C ⊗ιM by setting φ([a1|...|an]⊗m) = 0 if n > 1, φ = id
if n = 0, and if n = 1 with a1 = {c1|...|ck} let

φ([{c1|...|ck}]⊗m) =

{
c1 ⊗m k = 1,
c1 ⊗ {c2|...|ck} ·m, k > 1;

It is straightforward to check φ is a chain map. Moreover, φ is surjective with right inverse
given by the chain map

ρC ⊗ idM : C ⊗ιM → B(R,Ω(C),M),

where ρC : C → BΩ(C) = B(R,Ω(C), R) is the dg coalgebra map defined by

(2.3) ρC(c) = [{c}] +
∑

(c)

[{c′}|{c′′}] +
∑

(c)

[{c′}|{c′′}|{c′′′}] + ... ,

and the number of prime subscripts denotes the number of iterated applications of ∆ : C →
C ⊗ C; this notation is unambiguous since C is coassociative. Note that ρC is well defined
since C is connected and thus conilpotent.

We argue that (ker φ, dbar) is an acyclic sub-complex in order to conclude that φ is a
quasi-isomorphism. In fact, define h : ker φ → ker φ on any [a1|...|an] ⊗ m ∈ ker φ with
an = {c1|...|ck} ∈ Ω(C) by

h([a1|a2|...|an−1|{c1|...|ck}]⊗m) =

{
0, k = 1,
[a1|a2|...|an−1|{c1}|{c2|...|ck}]⊗m k > 1;

A computation yields that, since C is conilpotent, for any x ∈ ker φ there exists a non-
negative integer nx such that (dbar ◦ h+ h ◦ dbar − id)

nx = 0. This last equation implies that
if x ∈ ker φ is a cycle then there exists some y such that x = dbar(y), as desired. �

We adapt the argument from Proposition 2.2.4 of [LV12] to prove the bar construction is
invariant under quasi-isomorphisms in the following sense.

Proposition 7. If f : A → A′ is a quasi-isomorphism of dg augmented R-flat algebras and
M is a dg A′-module then

B(idR, f, idM ) : B(R,A, f∗M)→ B(R,A′,M)

is a quasi-isomorphism of chain complexes.

Proof. Consider the filtration defined by

Fp(B(R,A, f∗M)) = {[a1|...|an]⊗m : n ≤ p}

and define Fp(B(R,A′,M)) similarly. These are increasing, bounded below, and exhaustive
filtrations of chain complexes so they yield convergent spectral sequences. The desired result
follows by noting that B(idR, f, idM ) induces a chain map on the associated quotients

Fp(B(R,A, f∗M))/Fp−1(B(R,A, f∗M))→ Fp(B(R,A′,M))/Fp−1(B(R,A′,M)),

which is a quasi-isomorphism by Künneth’s theorem, since we assumed that A and A′ are
R-flat. �

Proof of Theorem 5. Let g : C → C′ be an Ω-quasi-isomorphism between connected dg coas-
sociative R-flat coalgebras. Then Ω(g) : ΩC → ΩC′ is a quasi-isomorphism of dg associative
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R-flat algebras. Consider the following commutative square

B(R,Ω(C),Ω(g)∗M)
φ⊗id //

B(idR,Ω(g),idM )

��

C ⊗ι Ω(g)
∗M

g⊗id

��
B(R,Ω(C′),M)

φ⊗id // C′ ⊗ιM.

The horizontal maps are quasi-isomorphisms by Proposition 6. The left vertical map is a
quasi-isomorphism by Proposition 7. Hence, it follows that the right vertical map is a quasi-
isomorphism as well by the 2 out of 3 property. �

3. Simplicial coalgebras and localization

In this section we recall some results from [G95] relating simplicial coalgebras and Bous-
field localization and then discuss the notion of a π1-R-equivalence between reduced Kan
complexes.

Let sSet denote the category of simplicial sets. We say S ∈ sSet is a 0-reduced simplicial
set if S has a single vertex, i.e. if the set S0 is a singleton. Denote by sSet0 ⊂ sSet the full
sub-category consisting of reduced simplicial sets.

Definition 8. Let X,Y ∈ sSet. A map f : X → Y is an R-equivalence if H∗(f ;R) :
H∗(X ;R)→ H∗(Y ;R) is an isomorphism. We say that X and Y are R-equivalent if there is
a zig-zag of R-equivalences in sSet connecting X and Y .

Any (Kan) weak homotopy equivalence of simplicial sets is an R-equivalence, but not
vice-versa. Bousfield constructed in [B75] a model category structure on sSet whose weak
equivalences are the R-equivalences and cofibrations are the same as those in Quillen’s model
structure on sSet (the level-wise injections). A fibrant replacement X → LRX in Bousfield’s
model structure on sSet yields a model for the R-localization of X ∈ sSet.

For any X ∈ sSet denote by RX ∈ scCoalgR the simplicial cocommutative R-coalgebra
of chains in X , namely, each (RX)n := R[Xn] is the free R-module generated by Xn, the
face and degeneracy maps are induced by those in X , and each coproduct

∆n : (RX)n → (RX)n ⊗ (RX)n

is defined on basis elements x ∈ Xn by

∆n(x) = x⊗ x.

Note that the coproduct is induced by the diagonal map X → X ×X . The counit is induced
by the map X → ∆0. This construction defines a functor

R : sSet→ scCoalgR.

The functor R has a right adjoint

P : scCoalgR → sSet,

called the functor of points, whose n-simplices are given by

(P(C))n = HomCoalg
R
(R,Cn).

When R is a field, which we denote by F, Goerss constructed in [G95] a cofibrantly
generated model category structure on scCoalg

F
with weak equivalences given by quasi-

isomorphisms of simplicial cocommutative F-coalgebras (as defined in Section 2.3) and cofi-
brations given by level-wise inclusions. Raptis extended this model category structure to
simplicial cocommutative R-coalgebras over an arbitrary unital commutative ring R [R13].
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The adjunction (F,P) becomes a Quillen adjunction when sSet is equipped with the model
category structure constructed by Bousfield in [B75]. For any X ∈ sSet, the derived unit
η : X → RP(FX), where RP denotes the total derived functor of P, gives a canonical
map from X to a fibrant object in Bousfield’s model category (i.e. an “F-local space”).
Furthermore, using that the category of sets is an idempotent retract of the category of
coalgebras over a fixed algebraically closed field, Goerss proves the following theorem.

Theorem 9. (Theorem C in [G95]) If E is an algebraically closed field, then for any X ∈
sSet, the derived unit

η : X → RP(EX)

is the Bousfield localization of X.

Using that any field extension F ⊆ E induces a weak homotopy equivalence

LFX
≃
−→ LEX

between Bousfield localizations, Goerss obtained, as a consequence of the previous theorem,
that the simplicial cocommutative coalgebra of chains over any field classifies spaces up to
Bousfield localization in the following sense.

Theorem 10. (Theorem D in [G95]) Let F be any field and X,Y ∈ sSet. The simplicial
cocommutative coalgebras of chains FX and FY are quasi-isomorphic if and only if X and Y
are F-equivalent.

One of the main goals of this article is to relate the notion of Ω-quasi-isomorphism between
simplicial cocommutative coalgebras to the following notion.

Definition 11. Let X,Y ∈ sSet0 be two reduced Kan complexes. A map f : X → Y is a
π1-R-equivalence if it induces an isomorphism

π1(f) : π1(X)
∼=
−→ π1(Y )

between fundamental groups and the induced map at the level of universal covers

f̃ : X̃ → Ỹ

is an R-equivalence. We say X and Y are π1-R-equivalent if there is a zig-zag of π1-R-
equivalences of reduced Kan complexes connecting X and Y .

The following is analogous to Proposition 3.

Proposition 12. Any π1-R-equivalence between reduced Kan complexes is an R-equivalence
but not vice-versa.

Proof. Suppose f : X → Y is a π1-R-equivalence between Kan complexes, so that π1(f) :
π1(X) ∼= π1(Y ) := π1 is an isomorphism and

C∗(f̃ ;R) : C∗(X̃ ;R)→ C∗(Ỹ ;R)

is a quasi-isomorphism of chain complexes, where, for any simplicial set S, we denote by
C∗(S;R) = N∗(RS), the normalized simplicial chains on S with coefficients in R. Let R[π1]
be the group algebra on π1 and consider R as a left R[π1]-module through the natural aug-
mentation R[π1]→ R. We have a natural isomorphism of chain complexes

C∗(X ;R) ∼= C∗(X̃;R)⊗R[π1] R

and similarly for Y . But C∗(X̃;R) is a free R[π1]-module, which implies C∗(X̃;R)⊗R[π1]R is

a model for the derived tensor product of R[π1]-modules, so C∗(f ;R) = C∗(f̃ ;R) ⊗R[π1] idR
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is a quasi-isomorphism. Clearly, the converse is not true since an R-equivalence does not
necessarily induce an isomorphism on fundamental groups. �

Let E be an algebraically closed field and let R : scCoalg
E
→ scCoalg

E
be a fibrant

replacement functor in Goerss’ model category structure on scCoalg
E
so that

X → (P ◦R)(EX)

is a functorial model for the Bousfield E-localization of X .
For any Kan complex X ∈ sSet0 with universal cover X̃, we have a natural fibration

(3.1) (P ◦R)(EX̃)→ Eπ1(X)×π1(X) (P ◦R)(EX̃)→ Bπ1(X),

where Eπ1(X)→ Bπ1(X) is a functorial model for the universal bundle of the group π1(X).

In other words, 3.1 is the Borel fibration associated to the π1(X) action on (P ◦ R)(EX̃).
The fibration 3.1 is the fiberwise E-localization of the fibration

(3.2) X̃ → Eπ1(X)×π1(X) X̃ → Bπ1(X),

whose homotopy class classifies the π1(X)-space X̃. For simplicity, we denote 3.1 by

(3.3) LEX̃ → EE(X̃)→ Bπ1(X)

The following proposition is now straightforward.

Proposition 13. Let F be a field with algebraic closure E. A map f : X → Y between

reduced Kan complexes is a π1-F-equivalence if and only if π1(f) : π1(X)
∼=
−→ π1(Y ) is an

isomorphism and f induces a commutative diagram

LEX̃ //

≃

��

EE(X̃)

≃

��

// Bπ1(X)

∼=

��
LEỸ // EE(Ỹ ) // Bπ1(Y ),

where the first two vertical arrows are weak homotopy equivalences.

Remark 14. The above notion of π1-R-equivalence between spaces can also be described
by applying the fiberwise R-completion construction, as introduced in [BK71] and [BK72], to

the fibration X̃ → X → Bπ1(X) for any reduced Kan complex X . This follows since a map
of spaces is an R-equivalence if and only if it is a weak homotopy equivalence between R-
localizations if and only if it is a weak homotopy equivalence between R-completions [BK72].
In fact, something stronger is true for simply connected spaces Z: the R-completion Z →
R∞Z is equivalent to the R-localization of Z, for a subring R of Q, or the field of p elements

R = Zp, as discussed in [B75]. Hence, for fibrations with simply connected fiber, e.g. X̃ →
X → Bπ1(X), the fiberwise R-completions and fiberwise R-localizations agree.

In the proof of our main theorem in section 6, we use the fact that the Bousfield R-
localization of a space can be assumed to be given by a functorial construction at the level
of simplicial sets before passing to the homotopy category. This follows since fibrant replace-
ments may be taken to be functorial in Bousfield’s model category structure as a consequence
of the small object argument used in [B75]. The completion and its fiberwise version are also
functorial constructions as described in [BK71].
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4. The simplicial twisted tensor product

In this section we introduce the notion of simplicial twisted tensor product between a sim-
plicial cocommutative coalgebra and a simplicial associative algebra. More precisely, given
a simplicial cocommutative coalgebra C, a simplicial associative algebra A, and a simplicial
twisting cochain τ : C → A, we construct a simplicial R-module C ⊗τ A, which is compatible
with the classical twisted Cartesian product construction. If we further assume that A has
the structure of a simplicial cocommutative bialgebra compatible with the simplicial twisting
cochain, then C⊗τ A inherits a simplicial cocommutative coalgebra structure. This construc-
tion will be used to define the universal cover of a simplicial cocommutative coalgebra in
section 5.

4.1. Notation. Throughout sections 4, 5, and 6 we assume that R is an integral domain,
whenever we say “coalgebra” and “algebra” we mean “coassociative counital R-coalgebra”
and “associative unital R-algebra”, respectively.

In order to distinguish certain factors in the coproduct of a simplicial cocommutative coal-
gebra, we introduce a Sweedler style notation to distinguish certain factors in the coproduct:
if C is a simplicial cocommutative coalgebra we denote each coproduct ∆n : Cn → Cn ⊗ Cn
by

∆n(x) =
∑

(x)

x̃⊗ x̄

for any x ∈ Cn. We will sometimes omit the subscript when the context is clear and write
∆n(x) =

∑
x̃ ⊗ x̄ and if there are several coproducts involved in a calculation we write

∆n(x) =
∑

∆ x̃⊗ x̄.
Using this notation the identity ∆n−1(di(x)) = (di ⊗ di)∆n(x) may be written as

∑
dix̃⊗ dix̄ =

∑
d̃ix⊗ dix.

The equation for coassociativity may be written as

(id⊗∆)∆(x) =
∑∑

x̃⊗ x̃⊗ x =
∑∑˜̃x⊗ x̃⊗ x = (∆⊗ id)∆(x).

4.2. Simplicial twisting cochains and simplicial twisted tensor product.

Definition 15. For any two simplicial R-modules G and H , the simplicial tensor product of
G⊗H is defined as

(G⊗H)n := Gn ⊗Hn,

with face and degeneracy maps given by

dG⊗H
i = dGi ⊗ d

H
i

and
sG⊗H
i = sGi ⊗ s

H
i .

For notational simplicity we will from now on drop the superscripts G, H and G⊗H from
the face and degeneracy maps.

Definition 16. Let (C,∆) be simplicial connected cocommutative coalgebra and (A, µ) a
simplicial associative algebra. A simplicial twisting cochain is a degree −1 map of graded
R-modules τ : C → A, i.e. a collection of linear maps {τn : Cn → An−1}n≥1, satisfying the
following identities:

(1) dj−1τ = τdj , for j ≥ 2
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(2) τd1 = µ ◦ (d0τ ⊗ τd0) ◦∆
(3) sj−1τ = τsj , for j ≥ 1
(4) (idC ⊗ µ) ◦ (idC ⊗ τs0 ⊗ idA) ◦ (∆⊗ idA) = idC⊗A

We now define the simplicial twisted tensor product.

Theorem-Definition 17. Let (C,∆) be simplicial cocommutative coalgebra, (A, µ) a simpli-
cial associative algebra, and τ : C → A a simplicial twisting cochain. For any x⊗g ∈ Cn⊗An
define

• dτ0(x⊗ g) :=
∑

(x) d0(x̃)⊗ d0(g) · τ(x),

• dτi (x⊗ g) := di(x) ⊗ di(g) for i ≥ 1,
• sτj (x⊗ g) := sj(x)⊗ sj(g) for j ≥ 0.

The maps dτi and sτj satisfy the simplicial identities and, consequently, define a simplicial

R-module denoted by C ⊗τ A with (C ⊗τ A)n = Cn ⊗ An. We call C ⊗τ A the simplicial
twisted tensor product of C and A with respect to τ : C → A, and dτi and sτj the twisted face
and degeneracy maps.

Proof. To show that dτi and sτj define a simplicial R-module structure on C ⊗τ A we need to
check the simplicial identities. Since the simplicial twisting cochain only affects d0, we only
need to check the following identities:

(1) dτ0dj = dj−1d
τ
0 ,

(2) dτ0sj = sj−1d
τ
0 ,

(3) dτ0s0 = id.

The first identity splits into two cases: j = 1 and j ≥ 2. We first show the j = 1 case, i.e.
dτ0d1 = dτ0d

τ
0 . Let x⊗g ∈ Cn⊗An for some n, then we get the following sequence of identities

for dτ0d1:

dτ0d1(x⊗ g) = dτ0(d1(x)⊗ d1(g))(4.1)

=
∑

d0(d̃1(x))⊗ d0(d1(g)) · τ(d1(x))(4.2)

=
∑

d0(d1(x̃))⊗ d0(d1(g)) · τ(d1(x))(4.3)

=
∑

d0(d0(x̃))⊗ d0(d0(g)) · τ(d1(x)).(4.4)

In the second line above we have used that d1 is a coalgebra map and in the third line that
d0d1 = d0d0. On the other hand, we also have:

dτ0d
τ
0(x⊗ g) =

∑
dτ0(d0(x̃)⊗ d0(g) · τ(x))(4.5)

=
∑∑

d0(d̃0(x̃))⊗ d0(d0(g) · τ(x)) · τ(d0(x̃))(4.6)

=
∑∑

d0(d0(˜̃x))⊗ d0(d0(g)) · d0(τ(x)) · τ(d0(x̃))(4.7)

=
∑∑

d0(d0(x̃))⊗ d0(d0(g)) · d0(τ(x̃)) · τ(d0(x)).(4.8)

=
∑

d0(d0(x̃))⊗ d0(d0(g)) ·
(∑

d0τ((x̃)) · τ(d0(x))
)
.(4.9)

In the second line we used the fact that d0 is a coalgebra map and an algebra map and in the
third line we used the coassociativity of the coproduct. The equality of 4.4 and 4.9 follows
from the definition of a simplicial twisting cochain.



16 MANUEL RIVERA, FELIX WIERSTRA, MAHMOUD ZEINALIAN

We now verify that dτ0dj = dj−1d
τ
0 for j ≥ 2 by using the fact that d0 and dj−1 are algebra

and coalgebra morphisms and the identities dj−1d0 = d0dj , dj−1τ = τdj .

dj−1d
τ
0(x ⊗ g) = dj−1(

∑
d0(x̃)⊗ d0(g) · τ(x))(4.10)

=
∑

dj−1(d0(x̃))⊗ dj−1(d0(g)) · dj−1(τ(x))(4.11)

=
∑

d0(dj(x̃))⊗ d0(dj(g)) · τ(dj(x))(4.12)

=
∑

d0(d̃j(x))⊗ d0(dj(g)) · τ(dj(x))(4.13)

= dτ0(dj(x ⊗ g)).(4.14)

We continue by checking the identity dτ0sj = sj−1d
τ
0 as follows:

dτ0sj(x⊗ g) = dτ0(sj(x) ⊗ sj(g))(4.15)

=
∑

d0(s̃j(x))⊗ d0(sj(g)) · τ(sj(x))(4.16)

=
∑

d0(sj (̃x))⊗ d0(sj(g)) · τ(sj(x))(4.17)

=
∑

sj−1(d0(x̃))⊗ sj−1(d0(g)) · sj−1τ(x)(4.18)

= sj−1d
τ
0(x⊗ g).(4.19)

In the second line, we wrote down the definition of the twisted face map. In the third line we
used sj is a coalgebra map and in the fourth line we used d0sj = sj−1d0 and τsj = sj−1τ .

To show the last identity dτ0s0 = id, we note

dτ0s0(x ⊗ g) = dτ0(s0(x) ⊗ s0(g))(4.20)

=
∑

d0(s̃0(x))⊗ d0(s0(g)) · τ(s0(x))(4.21)

=
∑

d0(s0(x̃))⊗ d0(s0(g)) · τ(s0(x))(4.22)

= x̃⊗ g · τ(s0(x))(4.23)

= x⊗ g.(4.24)

In the second line, we use the definition of the twisted face map and in the third line, we used
the fact that s0 is a coalgebra map. In the fourth line, we used d0s0 = id and in the fifth
line, we used equation 4 of Definition 16.

From these calculations it follows that the twisted face and degeneracy maps define a
simplicial R-module C ⊗τ A. �

4.3. The simplicial coalgebra structure on the simplicial twisted tensor product.

Suppose A is a simplicial algebra equipped with a simplicial cocommutative coalgebra struc-
ture making it into a simplicial bialgebra. We will show that if τ : C → A is a simplicial
twisting cochain which is compatible with the cocommutative coalgebra structure, then the
coproducts of C and A induce a simplicial cocommutative coalgebra structure on the simpli-
cial twisted tensor product C ⊗τ A.

Definition 18. Let C be a connected simplicial cocommutative coalgebra and A a simplicial
cocommutative bialgebra. A simplicial twisting cochain τ : C → A is called a simplicial
coalgebra twisting cochain if τ is a coalgebra map, i.e.

∆′
n−1τ = (τ ⊗ τ)∆n,
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where ∆n : Cn → Cn ⊗ Cn is the coproduct of C and ∆′
n−1 : An−1 → An−1 ⊗ An−1 is the

coproduct of A.

Proposition 19. Let C be a connected simplicial cocommutative coalgebra, A a simplicial
cocommutative bialgebra, and τ : C → A a simplicial coalgebra twisting cochain. Then the
twisted tensor product C ⊗τ A becomes a simplicial cocommutative coalgebra with coproduct
given by

∆C⊗A : C ⊗A→ C ⊗A
⊗

C ⊗A

∆C⊗A := (id⊗ T ⊗ id)(∆C ⊗∆A),

where T : C ⊗ A→ A⊗ C is the flip map.

Proof. From Proposition 17 it follows that C⊗τ A is a simplicial R-module, so we must show
that ∆C⊗A defines a simplicial cocommutative coalgebra structure, i.e.

∆C⊗A(d
τ
0) = (dτ0 ⊗ d

τ
0)∆C⊗A.

Since the degeneracy and face maps di for i ≥ 1 commute with the coproduct, these maps
satisfy the simpicial identities. We check the compatibility of the coproduct with dτ0 . For any
x⊗ g ∈ C ⊗τ A we have

∆C⊗A(d
τ
0)(x ⊗ g) =

∑

∆C

∆C⊗A (d0(x̃)⊗ d0(g) · τ(x))(4.25)

= (id⊗ T ⊗ id)

(
∑

∆A

∆C(d0(x̃))⊗∆A(d0(g) · τ(x))

)
(4.26)

=
∑

∆C

∑

∆C

∑

∆A

d̃0(x̃)⊗ ˜d0(g) · τ(x)
⊗

d0(x̃)⊗ d0(g) · τ(x)(4.27)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d̃0(x̃)⊗ d̃0(g) · τ̃(x)
⊗

d0(x̃)⊗ d0(g) · τ(x)(4.28)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d̃0(x̃)⊗ d̃0(g) · τ(x̃)
⊗

d0(x̃)⊗ d0(g) · τ(x)(4.29)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d0(˜̃x)⊗ d̃0(g) · τ(x̃)
⊗

d0(x̃)⊗ d0(g)τ(x)(4.30)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d0(
˜̃̃
x)⊗ d̃0(g) · τ(x̃)

⊗
d0(˜̃x)⊗ d0(g) · τ(x)(4.31)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d0(˜̃x)⊗ d̃0(g) · τ(x̃)
⊗

d0(x̃)⊗ d0(g) · τ(x)(4.32)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d0(˜̃x)⊗ d̃0(g) · τ(x̃)
⊗

d0(x̃)⊗ d0(g) · τ(x)(4.33)

=
∑

∆C

∑

∆C

∑

∆C

∑

∆A

d0(˜̃x)⊗ d0(g̃) · τ(x̃)
⊗

d0(x̃)⊗ d0(g) · τ(x)(4.34)

=
∑

∆C⊗A

dτ0(x̃ ⊗ g̃)⊗ d
τ
0(x⊗ g)(4.35)

= (dτ0 ⊗ d
τ
0)∆C⊗A(x ⊗ g).(4.36)
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We now explain the above calculation. In the third line, we used τ is a coalgebra map. In
the fourth line, we used the bialgebra compatibility. In the fifth line, we used τ : C → A is a
coalgebra map and the compatibility of dC0 with ∆C . In the sixth line, we used the coproduct
∆C is coassociative. In the seventh line, we used that dC0 is a coalgebra map and, once more,
the coassociativity of ∆C . In the eighth line, we used the coassocaitivity of ∆C again. In the
ninth line, we used the cocommutativity of ∆C . In the tenth line, we used the compatibility
of dA0 with ∆A. In the eleventh line, we used the definition of dτ0 .

The tensor product of the counits of C and A defines a counit on C ⊗τ A. �

4.4. The twisted Cartesian product and its relation to the simplicial twisted tensor

product. We recall the notion of twisted Cartesian product of simplicial sets and discuss the
universal cover of a reduced Kan complex as an example following [C71]. Then we explain the
relationship between the twisted Cartesian product and the simplicial twisted tensor product
constructions.

Definition 20. Let X be a reduced simplicial set and G be a simplicial group. A twisting
morphism is a degree −1 map t : X → G of graded sets, i.e. a sequence of maps {tn : Xn →
Gn−1}n≥1, satisfying the following identities for any x ∈ Xn

(1) di(t(x)) = t(di+1(x)) for i ≥ 1,
(2) d0(t(x)) = t(d1(x)) · t(d0(x))

−1,
(3) si(t(x)) = t(si+1(x)) for i ≥ 1,
(4) e = t(s0(x)),

where e denotes the identity element of Gn. The twisted Cartesian product of X and G with
respect to t : X → G is the simplicial set defined by

(X ×t G)n := Xn ×Gn,

together with face and degeneracy maps given by

d0(x, g) := (d0(x), d0(g) · t(x)),(4.37)

si(x, g) := (si(x), si(g)),(4.38)

di(x, g) := (di(x), di(g)) for i ≥ 1,(4.39)

for (x, g) ∈ (X ×t G)n.

The twisted Cartesian product construction yields a simplicial model for the universal
cover of a reduced Kan complex X as follows. Denote by G the fundamental group of X
considered as a discrete simplicial set, i.e. Gn := π1(X) for all n ≥ 0 and with the identity
as face and degeneracy maps. Define a twisting morphism

t : Xn → Gn−1,

by

t(x) := [d2...dn(x)],

where [d2...dn(x)] denotes the homotopy class of the 1-simplex d2...dn(x) considered as an
element of the fundamental group.

Proposition 21 ([C71], Example 6.9). Let X be a reduced Kan complex and G the fun-
damental group of X considered as a discrete simplicial group. Then the twisted Cartesian

product X̃ := X ×t G is equal to the universal cover of X. The right action of G on X̃ is
given by multiplication on the second component of the twisted Cartesian product.
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We proceed to show that if X is a reduced Kan complex and G is the fundamental group
of X seen as a discrete simplicial group, then the twisting morphism t : X → G from Section
4.4, induces a simplicial coalgebra twisting cochain τ = Rt : RX → RG and that we have a
natural isomorphism of simplicial cocommutative coalgebras R(X ×t G) ∼= RX ⊗τ RG.

Lemma 22. If t : X → G is a twisting morphism from a reduced simplicial set X to a
simplicial group G, then τ = Rt : RX → RG is a simplicial coalgebra twisting cochain.

Proof. We show that τ satisfies the equations of Definition 16 and that τ is a coalgebra map.
Equations 1 and 3 from Definition 16 follow immediately from equations 1 and 3 of Defi-

nition 20, respectively. We show equation 2 of Definition 20 implies equation 2 of Definition
16, i.e. τ satisfies the identity

(4.40) τd1 = µ ◦ (d0τ ⊗ τd0) ◦∆

Since RX and RG are free as R-modules generated by the sets X and G they have a basis.
It is therefore enough to check that for any basis element x ∈ Xn ⊂ (RX)n, we have

µ ◦ (d0τ ⊗ τd0) ◦∆(x) =(4.41)

d0τ(g) · τd0(x) =(4.42)

Rt(d1(x)) ·Rt(d0(x))
−1 ·Rt(d0(x)) =(4.43)

Rt(d1(x)) =(4.44)

τ(d1(x)),(4.45)

where we used that x is group-like in the second line and equation 2 of Definition 9 in the
third line.

We now show that equation 4 of Definition 16,

(4.46) (idRX ⊗ µ) ◦ (idRX ⊗ τs0 ⊗ idRG) ◦ (∆⊗ idRG) = idRX⊗RG,

is also satisfied. This follows since

(idRX ⊗ µRG) ◦ (idRX ⊗ τs0 ⊗ idRG) ◦ (∆RX ⊗ idRG)(x⊗ g) =(4.47)

(idRX ⊗ µRG) ◦ (idRX ⊗ τs0 ⊗ idRG)(x⊗ x⊗ g) =(4.48)

x⊗ τs0x · g =(4.49)

x⊗ e · g =(4.50)

x⊗ g(4.51)

In the first line, we used x is group-like and in the third line we used equation 4 of Definition
20.

The fact that τ is a coalgebra map follows from the fact that both RX and RG have a
basis of group-like elements and that τ preserves these basis elements. Namely, for x ∈ X a
basis element of RX , we have

∆RG(τ(x)) =(4.52)

τ(x) ⊗ τ(x) =(4.53)

(τ ⊗ τ)∆RX (x).(4.54)

�

The twisted Cartesian product is compatible with the simplicial twisted tensor product in
the following sense.
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Proposition 23. Let X ×t G be the twisted Cartesian product of a simplicial set X and
a simplicial group G with respect to a twisting morphism t : Xn → Gn−1. There is an
isomorphism of simplicial cocommutative coalgebras

R(X ×t G) ∼= RX ⊗τ RG,

where τ = Rt.

Proof. Each R-module Rn(X ×t G) has a basis of the form (x, g) with x ∈ Xn and g ∈ Gn.
Similarly (RX ⊗τ RG)n has a basis of the form x⊗ g, again with x ∈ Xn and g ∈ Gn. Using
these bases we define a map

ϕ : R(X ×t G)→ RX ⊗τ RG,

by setting

ϕ(x, g) := x⊗ g.

We claim the map ϕ induces an isomorphism of graded R-modules, commutes with face and
degeneracy maps, and commutes with the coalgebra structures.

The fact that ϕ induces an isomorphism of graded R-modules is clear because both R(X×t
G) and RX ⊗τ RG are free as R-modules and ϕ induces a bijection on the bases.

Note that it is straightforward to show that ϕ commutes with the degeneracy maps and
the face maps di for i ≥ 1, so we show that ϕ(d0(x, g)) = d0(ϕ(x, g)) by noting that

ϕ(d0(x, g)) = ϕ(d0(x), d0(g) · t(x))(4.55)

= d0(x) ⊗ d0(g) · t(x)(4.56)

= d0(x) ⊗ d0(g) · τ(x)(4.57)

= d0(ϕ(x ⊗ g)),(4.58)

where we used in the second line that on basis elements τ(x) is defined as t(x) and in the
third line that x is group-like.

Finally, the fact that ϕ is a coalgebra map follows since all basis elements are group-like,
namely

∆(ϕ(x, g)) = ∆(x⊗ g)(4.59)

= x⊗ g
⊗

x⊗ g(4.60)

= ϕ(x, g)
⊗

ϕ(x, g)(4.61)

= (ϕ⊗ ϕ)∆(x, g).(4.62)

�

As an immediate consequence we have the following corollary.

Corollary 24. Let X be a reduced Kan complex and G be the fundamental group of X seen
as a discrete simplicial group. Let t : X → G be the twisting morphism of simplicial sets
from Proposition 21 and denote τ = Rt. Then RX ⊗τ RG is isomorphic to the simplicial
cocommutative coalgebra of chains on the universal cover of X.
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5. The universal cover of a simplicial coalgebra

Let C be a connected simplicial coassociative R-coalgebra. The chain complex of normal-
ized chains N∗(C) becomes a differential graded (dg) connected coassociative coalgebra when
equipped with the coproduct given by

δ : N∗(C)
N∗(∆)
−−−−→ N∗(C ⊗ C)

AW
−−→ N∗(C)⊗N∗(C),

where ∆ denotes the coproduct of C and AW the Alexander-Whitney map, as previously
recalled in section 2. For any such C, the cobar construction ΩN∗(C) = Ω(N∗(C), δ) yields
a dg associative algebra defining a functor

ΩN∗ : sCoalg0
R → dgAlgR,

where sCoalg0
R is the category of connected simplicial coalgebras and dgAlgR the category

of dg algebras.
The backbone for this section comes from the following result, which shows that the dg

bialgebra of normalized chains on the based loop space is completely determined by the
simplicial cocommutative coalgebra of chains on the underlying Kan complex.

Theorem 25. Let X be a reduced Kan complex with X0 = {b} and denote by C∗(X ;R) =
N∗(RX) the dg coassociative coalgebra of normalized chains on X with R-coefficients. Then
1) there exists a natural quasi-isomorphism of dg algebras

ϕ : ΩC∗(X ;R) ≃ C∗(Ωb|X |),

where Ωb|X | denotes the topological monoid of Moore loops based at b on the geometric real-
ization |X |, and
2) there exists a natural coproduct

∇ : ΩC∗(X ;R)→ ΩC∗(X ;R)⊗ ΩC∗(X ;R)

making ΩC∗(X ;R) a dg bialgebra such that ϕ becomes an quasi-isomorphism of dg bialgebras
and for any α ∈ (ΩC∗(X ;R))0

∇0(α) = α⊗ α+ 1R ⊗ α+ α⊗ 1R.

Proof. Part 1 is an extension of a classical theorem of Adams proven in [RZ16] and [R19]
by relating the cobar construction to a cubical version of the left adjoint of the homotopy
coherent nerve functor. Part 2 is shown in [RZ19]. �

A direct consequence of the above result is that H0(ΩC∗(X ;R)) is naturally isomorphic to
the fundamental group ring. However, we have decided to include a direct, self contained, and
elementary proof for this particular result since it showcases an idea that will be generalized
in Section 5.1 for the construction of the fundamental bialgebra of an arbitrary simplicial
cocommutative coalgebras.

Theorem 26. Let X be a reduced Kan complex and denote by C = RX the connected
simplicial cocommutative coalgebra of chains. Then there is a natural isomorphism of R-
algebras

H0(ΩN∗(C)) ∼= R[π1(X)]

between the 0-th homology of the cobar construction of the connected dg coassociative coalgebra
(N∗(C), δ) and the fundamental group algebra of X. Consequently, the R-algebra H0(ΩN∗(C))
extends to a cocommutative Hopf algebra whose group-like elements form a group isomorphic
to π1(X).
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Proof. We have

H0(ΩN∗(C)) =
(ΩN∗(C))0

DΩN∗(C)((ΩN∗(C))1)
.

The free associative algebra (ΩN∗(C))0 has an R-linear basis given by monomials {σ̄1|...|σ̄n}
where each σi is a non-degenerate 1-simplex inX and σ̄i denotes its class inN1(C) = N1(RX).
The free multiplication of (ΩN∗(C))0 is then given by concatenation of monomials. The
quotient relation on (ΩN∗(C))0 that yields the 0-th homology R-algebra is generated by
declaring DΩN∗(C){x̄} to be zero for any non-degenerate x ∈ X2, or equivalently, by the
equivalence relation

{d2(x)|d0(x)} ∼ −{d0(x)}+ {d1(x)} − {d2(x)},

where di : X2 → X1 is the i-th face map for i = 0, 1, 2.
On the other hand, R[π1(X)], is freely generated as an R-module by the elements of

π1(X). The group π1(X) may be identified with the groupoid with a single object τ1(X),
where τ1 : sSet → Cat, is the left adjoint of the nerve functor. Recall that τ1(X) is given
by imposing an equivalence relation on the monoid freely generated by X1. The equivalence
relation is generated by declaring

σ2 · σ0 ∼
′ σ1

for σi ∈ X1, i = 0, 1, 2, if and only if there exists some x ∈ X2 with di(x) = σi for i = 0, 1, 2.
For any σ ∈ X1 we denote by [σ] the ∼′-equivalence class of σ in π1(X). The unit of the
group algebra R[π1(X)] corresponds to 1R[s0(∗)], where ∗ denotes the single vertex of X and
s0 : X0 → X1 the degeneracy map.

Define a map of R-algebras

φ : (ΩN∗(C))0 → R[π1(X)]

by setting
φ : 1R 7→ 1R[s0(∗)]

and
φ : {σ̄} 7→ [σ]− 1R[s0(∗)]

for any non-degenerate 1-simplex σ ∈ X1 and then extending φ as an algebra map to mono-
mials of arbitrary length in (ΩN∗(C))0. We check φ preserves equivalence relations so it
induces a well defined map on homology, which we also denote by

φ : H0(ΩN∗(C))→ R[π1(X)].

This follows from the computation

φ({d2(x)|d0(x)}+ {d0(x)} − {d1(x)}+ {d2(x)}) =

([d2(x)] − 1R[s0(∗)]) · ([d0(x)] − 1R[s0(∗)]) + [d0(x)]−

1R[s0(∗)]− [d1(x)] + 1R[s0(∗)] + [d2(x)]− 1R[s0(∗)] =

[d2(x)] · [d0(x)] − [d1(x)].

The map φ : H0(ΩN∗(C)) → R[π1(X)] is clearly an isomorphism of algebras. In fact, the
inverse

φ−1 : R[π1(X)]→ H0(ΩN∗(C))

is determined by
φ−1 : 1R[s0(∗)] 7→ 1R

and
φ−1 : [σ] 7→ {σ̄}+ 1R
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for any non-degenerate σ ∈ X1. Recall that the group algebra R[π1(X)] has a cocommutative
coproduct

∇ : R[π1(X)]→ R[π1(X)]⊗R[π1(X)]

determined by setting
∇(g) := g ⊗ g

for any g ∈ π1(X). The counit ǫ : R[π1(X)] → R is determined by setting ǫ(g) := 1R
for any g ∈ π1(X). Moreover, the algebra R[π1(X)] together with the coproduct ∇ is a
cocommutative Hopf algebra with antipode induced by the inverse map g 7→ g−1. Thus
H0(ΩN∗(C)) inherits a cocommutative Hopf algebra structure with coproduct

∇0 : H0(ΩN∗(C))→ H0(ΩN∗(C)) ⊗H0(ΩN∗(C))

given by
∇0 := (φ−1 ⊗ φ−1) ◦ ∇ ◦ φ.

In fact, the coproduct ∇0 : H0(ΩN∗(C)) → H0(ΩN∗(C)) ⊗H0(ΩN∗(C)) is induced from a
coproduct

∇0 : (ΩN∗(C))0 → (ΩN∗(C))0 ⊗ (ΩN∗(C))0

before passing to homology, which is determined by the formula

∇0(α) = α⊗ α+ 1R ⊗ α+ α⊗ 1R

for any generator α ∈ (ΩN∗(C))0, i.e. any α = {σ̄1|...|σ̄n}, where each σi ∈ X1 is a non-
degenerate 1-simplex. �

Remark 27. If X is an arbitrary reduced simplicial set (not necessarily a Kan complex)
and C = RX , we may recover the fundamental group ring of X from C by incorporating the
derived localization of [CHL18] as follows. The same formula for ∇0 given in the previous
proof induces a natural bialgebra structure on H0(ΩN∗(C)) (this construction did not use the
Kan property of X). In this case, H0(ΩN∗(C)) may not be isomorphic as an algebra to the
fundamental group algebra R[π1(|X |)] of the geometric realization of X . However, we may
consider the derived localization of the dg algebra ΩN∗(C) at the set of cycles S ⊂ (ΩN∗(C))0
given by the group like elements of

∇0 : (ΩN∗(C))0 → (ΩN∗(C))0 ⊗ (ΩN∗(C))0.

This yields a new dg algebra ΩN∗(C)[S
−1] which is quasi-isomorphic to the chains on the

based loop space of |X |. Hence H0(ΩN∗(C)[S
−1]) is isomorphic to the fundamental group

algebra of |X |. When X is a reduced Kan complex, there is no need to preform this de-
rived localization to obtain the fundamental group algebra. The idea of localizing the cobar
construction at a basis of degree 0-elements, to address the non-simply connected case, was
originally treated in [HT10] and briefly described in [Ko09]. Furthermore, the relationship
between the localized cobar construction and the chains on Kan’s “loop group” construction
is explained in [HT10]. We expect these constructions to be useful when describing small
algebraic models for non-simply connected homotopy types.

5.1. The fundamental bialgebra. We now describe how to associate a cocommutative
bialgebra to any abstract connected simplicial commutative coalgebra C in such a way that
we recover the discussion above when C = RX for some reduced Kan complex X .

Let C be a connected simplicial cocommutative coalgebra C. Recall that we denote the
coproduct ∆1 : C1 → C1 ⊗ C1 by

(5.1) x 7→
∑

(x)

x̃⊗ x.
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Since the degenercy map s0 : C0 → C1 is a coalgebra map, ∆1 : C1 → C1⊗C1 induces a well
defined coproduct

∆1 : N1(C)→ N1(C)⊗N1(C)

for which we use exactly the same Sweedler type notation as in 5.1 above.
Define a coproduct

∇C0 : (ΩN∗(C))0 → (ΩN∗(C))0 ⊗ (ΩN∗(C))0

on the degree zero elements of the cobar construction of N∗(C) as follows. On the unit
1 ∈ (ΩN∗(C))0 we let

∇C0 (1) := 1R ⊗ 1R

and on any {x} ∈ (ΩN∗(C))0, where x ∈ N1(C), we define

∇C0 ({x}) :=
∑

(x)

{x̃} ⊗ {x}+ 1R ⊗ {x}+ {x} ⊗ 1R.

Then extend ∇C0 as an algebra map to monomials in (ΩN∗(C))0 of arbitrary length.
It is clear that ∇C0 is natural, coassociative, cocommutative, and counital with counit given

by the map

(ΩN∗(C))0 = R⊕ T>0s−1(N1(C))→ R

which is the identity on the first summand and zero everywhere else. When C is clear from
the context we write ∇C0 = ∇0.

We now prove that the algebraic structure used to determine the fundamental group in
Theorem 26 is completely determined by the Ω-quasi-isomorphism type of the simplicial
cocommutative coalgebra of chains.

Proposition 28. Let C be a connected simplicial cocommutative coalgebra. The coproduct ∇0

defined above induces a coalgebra structure on H0(ΩN∗(C)) making it into a cocommutative
bialgebra. Furthermore, if C = RX for a reduced Kan complex X, there is an isomorphism
of bialgebras H0(ΩN∗(C)) ∼= R[π1(X)].

Proof. We prove that ∇0 induces a coproduct on homology H0(ΩN∗(C)). Define a map

∇1 : (ΩN∗(C))1 → (ΩN∗(C))0 ⊗ (ΩN∗(C))1
⊕

(ΩN∗(C))1 ⊗ (ΩN∗(C))0

as follows. On any {y} ∈ (ΩN∗(C))1, where y ∈ N2(C), define

∇1({y}) :=
∑

(ỹ)

∑

(y)

{d2(˜̃y)|d0(ỹ)} ⊗ {y}+ {d2(ỹ)} ⊗ {y}+ {d0(ỹ)} ⊗ {y}+ {ỹ} ⊗ {d1(y)}

+ {y} ⊗ 1R + 1R ⊗ {y}.

Above we have denoted the coproduct N2(C) → N2(C) ⊗ N2(C) (induced by ∆2 : C2 →
C2 ⊗ C2) by y 7→

∑
(y) ỹ ⊗ y.

For any {y1|...|yn} ∈ (ΩN∗(C))1, where each yi belongs to either N1(C) or N(C2), ∇1 is
defined by extending multiplicatively, i.e. by letting

∇1({y1|...|yn}) := ∇|y1|−1(y1) · ∇|y2|−1(y2) · ... · ∇|yn|−1(yn),

where |yi| denotes the degree of yi and we have denoted by · the product on the tensor product
of algebras ΩN∗(C)⊗ ΩN∗(C). Then a straightforward computation yields that

(DΩN∗(C) ⊗ id+ id⊗DΩN∗(C)) ◦ ∇1 = ∇0 ◦DΩN∗(C),
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where DΩN∗(C) is the cobar construction differential. This implies that ∇0 induces a well
defined map on homology, which we denote by the same symbol

∇0 : H0(ΩN∗(C))→ H0(ΩN∗(C))⊗H0(ΩN∗(C)).

By construction, this coproduct is a map of algebras. Hence, it defines an R-bialgebra
structure on H0(ΩN∗(C)). In the case when C = FX for a reduced Kan complex X each
∆n : Cn → Cn ⊗ Cn is group-like on the basis elements given by the simplices in Xn. Thus
the coproduct ∇0 coincides with the corresponding one constructed in the proof of Theorem
26. �

Remark 29. The above coproduct ∇0 extends a construction of Baues described in the
simply connected setting [B98]. It may be also be interpreted as an explicit description of
the coproduct on degree 0 of the cobar construction of differential graded coalgebra over the
surjection operad (a particular model for the E∞-operad).

Definition 30. For any connected simplicial cocommutative coalgebraC we callH0(ΩN∗(C)),
equipped with the cocommutative bialgebra structure constructed above, the fundamental
bialgebra of C.

Remark 31. Theorem 26 says that forX a reduced Kan complex, H0(ΩN∗(C)) is isomorphic
to R[π1(X)] as a Hopf algebra, so that by applying the group-like elements functor

G : HalgR → Grp

from the category of Hopf algebras to the category of groups, we obtain a natural isomorphism
of groups

G(H0(ΩN∗(C))) ∼= π1(X).

In the above isomorphism we use the fact that for any integral domain R and group G the
set of group-like elements in R[G] forms a group naturally isomorphic to G. Conceptually,
Proposition 28 is saying that the fundamental group of a Kan complex is completely de-
termined from the natural algebraic structure (simplicial cocommutative coalgebra) of the
chains C = RX and that if C′ is any other connected simplicial cocommutative coalgebra
which is Ω-quasi-isomorphic to C then there is an isomorphism G(H0(ΩN∗(C

′))) ∼= π1(X).
Hence, the fundamental group is determined by the quadratic equation

∇(α) = α⊗ α,

for α ∈ H0(ΩN∗(C)).

5.2. The fundamental simplicial twisting cochain. We can consider the cocommutative
bialgebra H0(ΩN∗(C)) described above as a simplicial cocommutative bialgebra by placing
H0(ΩN∗(C)) in each degree and defining the face and degeneracy maps to be the identity
maps. For notational simplicity we denote this simplicial cocommutative bialgebra by π(C).
The construction of π(C) is natural with respect to maps of connected simplicial cocommu-
tative coalgebras and consequently induces a functor

π : scCoalg0
R → scBialgR,

where scCoalg0
R denotes the category of connected simplicial cocommutative R-coalgebras

and scBialgR the category of simplicial cocommutative (possibly non-commutative)R-bialgebras.
We define a simplicial coalgebra twisting cochain from C to π(C) as follows.
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Proposition 32. For any connected simplicial cocommutative coalgebra C there is a simpli-
cial coalgebra twisting cochain

τ : Cn → π(C)n−1

for n ≥ 1, defined by

τ(x) := [{d2...dn(x)}] + ǫ(x)e,

where [{d2...dn(x)}] ∈ H0(ΩN∗(C)) denotes the homology class of {d2...dn(x)} ∈ (ΩN∗(C))0,
ǫ(x) denotes the counit applied to x, and e is the unit element of π(C).

Proof. We show that τ satisfies the equations of Definition 16 and that it is a map of coalge-
bras.

It is clear that equations 1 and 3 of Definition 16 are satisfied, so we check equations 2
and 4. For equation 2 we need to check that

τd1(x) = µ(d0τ ⊗ τd0)∆C(x),

where ∆C is the coproduct of C. Using the simplicial identities we can write the left hand
side as

τd1(x) = [{d1d3....dn(x)}] + ǫ(x)e.

On the other hand, the right hand side is equal to

µ(d0τ⊗τd0)∆C(x) =
∑

(x)

[{d2...dn(x̃)|d0d3...dn(x)}]+ [{d0d3...dn(x)}]+ [{d2...dn(x)}]+ ǫ(x)e.

To show that these two are equal in homology we find an α ∈ (ΩN∗(C))1 bounding
(5.2)∑

(x)

{d2...dn(x̃)|d0d3...dn(x)}+{d0d3...dn(x)}+{d2...dn(x)}+ǫ(x)e−({d1d3....dn(x)}+ǫ(x)e).

One explicit choice of such a boundary is given by α = {d3...dn(x)}; a straightforward com-
putation shows that DΩN∗(C){d3...dn(x)} is exactly equation 5.2, proving that τ satisfies
equation 2 of Definition 16.

We now show that τ satisfies equation 4 of Definition 16, i.e.

(idC ⊗ µ) ◦ (idC ⊗ τs0 ⊗ idπ(C)) ◦ (∆C ⊗ idπ(C))(x⊗ g) = x⊗ g,

for any x⊗ g ∈ C ⊗ π(C). Note that

(idC ⊗ µ) ◦ (idC ⊗ τs0 ⊗ idπ(C)) ◦ (∆C ⊗ idπ(C))(x⊗ g) =(5.3)
∑

(x)

x̃⊗ τs0(x)g =(5.4)

∑

(x)

x̃⊗ [{d2...dn+1s0(x)|g}] +
∑

(x)

x̃ǫ(x)⊗ g.(5.5)

Using the simplicial identities we see that d2...dn+1s0(x̄) = s0d1...dn(x̄), which is degenerate
and therefore zero in the normalized chain complex N∗(C). We are left with

∑
(x) x̃ǫ(x̄)⊗ g,

but since ǫ is the counit and e is the unit, this is exactly x⊗ g.
We now prove that τ : C1 → π(C)0 is a coalgebra map. First note τ : C1 → π(C)0 =

H0(ΩN∗(C)) is the sum of the projection map and the counit times the unit element. The
projection map from C1 to H0(ΩN∗(C)) is given by sending an element x ∈ C1 to the
homology class [{x}] ∈ H0(ΩN∗(C)).

We verify

∇0(τ(x)) = (τ ⊗ τ)∆1(x),
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where ∆1 : C1 → C1 ⊗ C1 is the coproduct of C1 and ∇0 : π(C) → π(C) ⊗ π(C) is the
coproduct from Section 5.1. The right hand side is equal to

∑

(x)

τ(x̃)⊗ τ(x) =
∑

(x)

[{x̃}]⊗ [{x}] + [{x̃}]⊗ ǫ(x)e+ ǫ(x̃)e ⊗ [{x}] + ǫ(x̃)e ⊗ ǫ(x)e(5.6)

=
∑

(x)

[{x̃}]⊗ [{x}] + [{x}]⊗ e+ e⊗ [{x}] + ǫ(x)e ⊗ e,(5.7)

where in the second line we used that ǫ is a counit. This is exactly the left hand side, since
by the definition of ∇0 we have

∇0(τ(x)) = ∇0([x]) +∇0(ǫ(x)e)(5.8)

=
∑

(x)

[{x̃}]⊗ [{x}] + [{x}]⊗ e+ e⊗ [{x}] + ǫ(x)e ⊗ e.(5.9)

It now follows immediately that for each n > 1 the map τ : Cn → π(C)n−1 is a coalgebra
map. �

Definition 33. We call the map τ : C → π(C), defined in the above proposition, the
fundamental simplicial twisting cochain of C.

5.3. The universal cover. We now assemble a new simplicial cocommutative coalgebra from
a connected simplicial cocommutative coalgebra C together with π(C) and τ : C → π(C).

Definition 34. Let C be a connected simplicial cocommutative coalgebra and τ : C → π(C)
the fundamental simplicial twisting cochain described in the previous section. The universal
cover of C is the simplicial cocommutative coalgebra defined as the simplicial twisted tensor
product C ⊗τ π(C) with respect to τ : C → π(C) equipped with the coproduct described in

Proposition 19. Denote the universal cover of C by C̃ = C ⊗τ π(C). The universal cover is
clearly a functorial construction with respect to maps of connected simplicial cocommutative
coalgebras and so it defines a functor

˜: scCoalg
0
R → scCoalgR.

Note that C̃ has a natural right π(C)-module structure.

When C = RX for a reduced Kan complex X , then C̃ is exactly the simplicial cocommuta-

tive coalgebra of chains on the universal cover X̃. This is stated in the following proposition,
which is a straightforward consequence of Corollary 24.

Proposition 35. If X is a reduced Kan complex, then there is an isomorphism of simplicial

cocommutative coalgebras between RX̃ and R̃X.

The following lemma relates the simplicial twisted tensor product C ⊗τ π(C) to Brown’s
twisted tensor product in the dg setting.

Lemma 36. Let C, π(C), and τ : C → π(C) be as above. Then the dg R-module of normal-
ized chains N∗(C⊗τ π(C)) is naturally isomorphic to the twisted tensor product N∗(C)⊗N(τ)

N∗(π(C)) in the sense of Brown.

Proof. The normalized chain complex N∗(π(C)) is a dg algebra concentrated in degree 0.
In fact, by definition N0(π(C)) = H0(ΩN∗(C)). Also note that, for any n ≥ 0, we have
Nn(C ⊗π(C)) ∼= Nn(C)⊗H0(ΩN∗(C)). Hence, we have a natural isomorphism of graded R-
modules N∗(C⊗τ π(C)) ∼= N∗(C)⊗N(τ)N∗(π(C)). To see that the differentials are the same,
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first observe that Brown’s twisting cochain N(τ) : Nn(C)→ Nn−1(π(C)) is only non-zero for
n = 1 where it is given by the projection map

N(τ)(y) = [{y}] ∈ H0(ΩN∗(C)),

for any y ∈ N1(C). Then the twisting term in the differential of Brown’s twisted tensor
product is a map dN(τ) : N∗(C) ⊗N(τ) H0(ΩN∗(C))→ N∗(C) ⊗N(τ) H0(ΩN∗(C)) given by

dN(τ)(x⊗ g) =
∑

(x)

d0(x̃)⊗ g · [{d2...dn(x)}] .

Thus, for any x⊗ g ∈ Nn(C)⊗N(τ)H0(ΩN∗(C)), the differential of the Brown twisted tensor
product is given by

(dC ⊗ id+ dN(τ))(x⊗ g) =
n∑

i=0

(−1)idi(x)⊗ g +
∑

(x)

d0(x̃)⊗ g · [{d2...dn(x)}],

which is precisely
∑n
i=0(−1)

idτi (x⊗ g), the differential of N∗(C ⊗τ π(C)). �

Remark 37. The above lemma does not hold in general if we replace π(C) with an arbitrary
simplicial algebra. If the non-degenerate simplicies of A are not concentrated in degree 0,
there is no isomorphism N∗(C ⊗ A) ∼= N∗(C) ⊗ N∗(A); this can be solved using a cubical
version of the twisted product, as described in [KS05]. See [S61] for a more general statement
regarding relation between the chains on a twisted Cartesian product and Brown’s twisted
tensor products.

Any Ω-quasi-isomorphism of connected simplicial cocommutative coalgebras induces a
weak equivalence between universal covers as we now show.

Theorem 38. The universal cover functor

˜: scCoalg0R → scCoalgR

sends Ω-quasi-isomorphisms between simplicial cocommutative R-flat coalgebras to quasi-
isomorphisms.

Proof. Let f : C → C′ be an Ω-quasi-isomorphism between two connected simplicial cocom-
mutative R-flat coalgebras. Then ΩN∗(f) : ΩN∗(C) → ΩN∗(C

′) is a quasi-isomorphism of
dg R-flat algebras. In particular, H0(ΩN∗(f)) : H0(ΩN∗(C)) → H0(ΩN∗(C

′)) is an isomor-
phism of algebras (in fact, of bialgebras). By Theorem 5, f induces a quasi-isomorphism of
chain complexes

N∗(f)⊗H0(ΩN∗(f)) : N∗(C)⊗N(τ) H0(ΩN∗(C))→ N∗(C
′)⊗N(τ) H0(ΩN∗(C

′))

between Brown twisted tensor products. Lemma 36 then implies

N∗(f ⊗ π(f)) : N∗(C ⊗τ π(C))→ N∗(C
′ ⊗τ π(C

′))

is a quasi-isomorphism.
�



29

6. Main theorem

Using the machinery developed in the previous sections, together with Theorem C of [G95],
we prove the following.

Proposition 39. Let E be an algebraically closed field and X and Y two reduced Kan com-
plexes. If the connected simplicial cocommutative coalgebras of chains EX and EY are Ω-
quasi-isomorphic then X and Y are π1-E-equivalent.

Remark 40. In the proofs of Proposition 39 and Theorem 41, we will need to use the
naturality of the universal cover construction, it is therefore important that we use explicit
zig-zags of equivalences and not just morphisms in the homotopy category.

Proof of Proposition 39. Suppose that EX and EY are Ω-quasi-isomorphic, so there is a zig-
zag of connected simplicial cocommutative coalgebras

(6.1) EX
≃Ω−−→ C1

≃Ω←−− · · ·
≃Ω−−→ Cn

≃Ω←−− EY,

where each map is an Ω-quasi-isomorphism. In particular, there are isomorphisms

(6.2) H0(ΩN∗(EX)) ∼= H0(ΩN∗(C1)) ∼= · · · ∼= H0(ΩN∗(Cn)) ∼= H0(ΩN∗(EY ))

of fundamental bialgebras. Since X and Y are Kan complexes, Theorem 26 implies that by
applying the functor of group-like elements we obtain an isomorphism

π1(X) ∼= π1(Y ) := π1

of fundamental groups. Apply the universal cover functor ˜: scCoalg0
E
→ scCoalg

E
to the

zig-zag in 6.1 and obtain a zig-zag of simplicial cocommutative coalgebras

(6.3) ẼX
≃
−→ C̃1

≃
←− · · ·

≃
−→ C̃n

≃
←− ẼY .

Each object in the zig-zag 6.3 has a π1-action, each map is π1-equivariant, and by Theorem
38, each map is a quasi-isomorphism of simplicial cocommutative coalgebras. By Proposi-

tion 35, the endpoints in zig-zag 6.3 are naturally π1-equivariantly isomorphic to EX̃ and

EỸ , respectively. Thus, we get a zig-zag of π1-equivariant quasi-isomorphisms of simplicial
cocommutative π1-coalgebras

(6.4) EX̃
≃
−→ C̃1

≃
←− · · ·

≃
−→ C̃n

≃
←− EỸ .

Apply to the above zig-zag of quasi-isomorphisms the composition of functors (P ◦R) where
R : sCoalg

E
→ sCoalg

E
is a fibrant replacement functor for Goerss’ model category structure

on simplicial cocommutative coalgebras and P : sCoalg
E
→ sSet is the functor of points.

We obtain a zig-zag of E-local spaces with π1-actions

(6.5) (P ◦R)EX̃
≃
−→ (P ◦R)C̃1

≃
←− · · ·

≃
−→ (P ◦R)C̃n

≃
←− (P ◦R)EỸ

where each map is a π1-equivariant weak homotopy equivalence. By Theorem C of [G95] the

endpoints of 6.5 are the E-localizations of the universal covers X̃ and Ỹ , respectively.
By adding the derived unit of adjunction (E,P) to each end of the above zig-zag, we obtain

(6.6) X̃
η
X̃−−→ (P ◦R)EX̃

≃
−→ (P ◦R)C̃1

≃
←− · · ·

≃
−→ (P ◦R)C̃n

≃
←− (P ◦R)EỸ

η
Ỹ←−− Ỹ .

To turn this zig-zag of F-equivalences between the π1-equivariant Kan complexes X̃ and Ỹ
into a zig-zag of π1-F-equivalences of Kan complexes between X and Y , we would like to take
the quotient by π1 on every space in the zig-zag. We can not do this directly, because the
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derived functor of points does not necessarily produce simplicial sets with a free π1-action.
We therefore first need to apply the Borel construction to make sure that all the π1 actions
are free. After applying the Borel construction we get

(6.7) Eπ1 ×π1
X̃

ψX

−−→ Eπ1 ×π1
(P ◦R)EX̃

≃
−→ Eπ1 ×π1

(P ◦R)C̃1
≃
←− · · ·

· · ·
≃
−→ Eπ1 ×π1

(P ◦R)C̃n
≃
←− Eπ1 ×π1

(P ◦R)EỸ
ψY

←−− Eπ1 ×π1
Ỹ .

We claim that every map in the sequence of spaces 6.7 is a π1-E-equivalence. Note that
because the two ends are weakly homotopy equivalent to X and Y , respectively, this would
establish a zig-zag of π1-E-equivalences between X and Y .

All of the following maps are weak homotopy equivalences and therefore π1-E-equivalences

(6.8) Eπ1 ×π1
(P ◦R)EX̃

≃
−→ Eπ1 ×π1

(P ◦R)C̃1
≃
←− · · ·

· · ·
≃
−→ Eπ1 ×π1

(P ◦R)C̃n
≃
←− Eπ1 ×π1

(P ◦R)EỸ .

Therefore, we just need to argue that ψX : Eπ1 ×π1
X̃ → Eπ1 ×π1

(P ◦ R)EX̃ is a π1-
E-equivalence (the argument for ψY will be exactly the same). The map ψX is the induced
map on the coinvariants, forming the following commutative diagram

π1 //

=

��

Eπ1 × X̃ //

id×η
X̃

��

Eπ1 ×π1
X̃

ψX

��
π1 // Eπ1 × (P ◦R)EX̃ // Eπ1 ×π1

(P ◦R)EX̃,

The two spaces in the middle column of the above diagram are simply connected and the
horizontal maps in the right hand side square are universal covers. It follows that ψX induces
an isomorphism on fundamental groups. The middle map is an E-equivalence since

η
X̃

: X̃ → (P ◦R)EX̃,

the derived unit of the adjunction (E,P), is the Bousfield E-localization of X̃ . Hence, ψX is
a π1-E-equivalence. �

Recall that if X is a simplicial set and F is any field with algebraic closure E then the field

extension F →֒ E induces a weak homotopy equivalence between localizations LFX
≃
−→ LEX

[G95]. Furthermore, for any field F, the simplicial cocommutative F-coalgebra of chains
on a space, under quasi-isomorphisms, determines the space up to Bousfield F-localization
(Theorem D in [G95]). Using Proposition 39, we show that, for any field F, the F-chains in X ,
regarded as a connected simplicial cocommutative F-coalgebra up to Ω-quasi-isomorphism,
determines reduced Kan complexes up to π1-F-equivalence. This is our main theorem.

Theorem 41. For any field F, two reduced Kan complexes X and Y are π1-F-equivalent
if and only if the connected simplicial cocommutative coalgebras of chains FX and FY are
Ω-quasi-isomorphic.

Proof. We first show that if X and Y are π1-F-equivalent then FX and FY are Ω-quasi-
isomorphic. It suffices to prove that any map f : X → Y between reduced Kan complexes
which induces an isomorphism on fundamental groups

π1(f) : π1(X) ∼= π1(Y ) := π1



31

and an F-equivalence between universal covers

f̃ : X̃ → Ỹ ,

induces an Ω-quasi-isomorphism

N∗(f) : N∗(FX)→ N∗(FY )

of connected dg coalgebras.

Since X and Y are reduced, X̃ and Ỹ have induced base points. Let Sing1|X̃ | be the

singular Kan complex consisting of all singular simplices σ : |∆n| → |X̃|, for any n ≥ 0, that

collapse the 1-skeleton of |∆n| to the basepoint of |X̃ | and define Sing1|Ỹ | similarly. Since X̃

and Ỹ are both simply connected, the inclusions of Kan complexes

Sing1|X̃| →֒ Sing|X̃|

and

Sing1|Ỹ | →֒ Sing|Ỹ |

are a natural homotopy equivalences. We claim that the map

Sing1|f̃ | : Sing1|X̃| → Sing1|Ỹ |

is an F-equivalence, or equivalently, that it induces a quasi-isomorphism

N∗(|f̃ |) : N∗(FSing
1|X̃ |)→ N∗(FSing

1|Ỹ |)

between the simply connected dg coalgebras of normalized chains. This follows from the
2-out-of-3 axiom for F-equivalences by considering the commutative diagram

Sing1|X̃ |
Sing1|f̃|//

≃

��

Sing1|Ỹ |

≃

��
Sing|X̃|

Sing|f̃| // Sing|X̃|

X̃

≃

OO

f̃

// Ỹ

≃

OO

where the vertical maps are all homotopy equivalences, and consequently F-equivalences, and
the bottom horizontal map f̃ is an F-equivalence by assumption.

By Proposition 4, quasi-isomorphisms of simply connected dg coalgebras are Ω-quasi-
isomorphisms, hence we get an induced quasi-isomorphism

ΩN∗(|f̃ |) : ΩN∗(FSing
1|X̃ |)→ ΩN∗(FSing

1|Ỹ |)

of dg algebras. By Adams’ classical cobar theorem, it follows that f̃ : X̃ → Ỹ induces a
quasi-isomorphism

C∗(Ω|f̃ |) : C∗(Ω|X̃|;F)→ C∗(Ω|Ỹ |;F)

between the dg algebras of normalized singular chains on the based loop spaces of X̃ and Ỹ ,
respectively. It now follows that the dg algebra map

C∗(Ω|f |) : C∗(Ω|X |;F)→ C∗(Ω|Y |;F)

is a quasi-isomorphism since we have a commutative square
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H∗(Ω|X̃|;F)⊗ F[π1]

H∗(Ω|f̃ |)⊗id
��

// H∗(Ω|X |;F)

H∗(Ω|f |)

��
H∗(Ω|Ỹ |;F)⊗ F[π1] // H∗(Ω|Y |;F)

where the left vertical map and the horizontal maps, which are induced by projecting from
the universal cover to the base and then multiplying of loops, are isomorphisms of graded
vector spaces. By the extension of Adams’ cobar theorem to reduced Kan complexes, recalled
in Theorem 25, it follows that N∗(f) is an Ω-quasi-isomorphism.

To prove the converse suppose the connected simplicial cocommutative coalgebras of chains
FX and FY are Ω-quasi-isomorphic through a zig-zag

(6.9) FX
≃Ω−−→ C1

≃Ω←−− · · ·
≃Ω−−→ Cn

≃Ω←−− FY.

Let E be the algebraic closure of F and tensor zig-zag 6.9 with E to obtain a zig-zag of
simplicial E-coalgebras

(6.10) EX ∼= FX ⊗F E
Ω
−→ C1 ⊗F E

Ω
←− · · ·

Ω
−→ Cn ⊗F E

Ω
←− FX ⊗F E ∼= EY.

All the maps above are Ω-quasi-isomorphisms because for any dg F-coalgebra C, Ω(C⊗FE) ∼=
Ω(C)⊗FE and tensoring over a field preserves quasi-isomorphisms. It follows from Proposition
39 that X and Y are π1-E-equivalent, which implies X and Y are π1-F-equivalent. �

We now consider a reformulation of Theorem 41 in the case F = Q. A map f : X → Y
between reduced Kan complexes is called a π1-rational homotopy equivalence if it induces an
isomorphism on fundamental groups

π1(f) : π1(X)
∼=
−→ π1(Y )

and an isomorphism between rationalized higher homotopy groups

πn(f)⊗Q : πn(X)⊗Q
∼=
−→ πn(Y )⊗Q

for n ≥ 2 [RWZ19]. The following corollary extends the classification theorem of rational
homotopy theory to path-connected spaces with arbitrary fundamental group.

Corollary 42. Two reduced Kan complexes X and Y are π1-rationally homotopy equivalent
if and only if the connected simplicial cocommutative coalgebras of chains QX and QY are
Ω-quasi-isomorphic.

Proof. This follows directly from Theorem 41 because the notion of π1-Q-equivalence is equiv-
alent to that of π1-rational equivalence, since Q-equivalences between simply connected spaces
(such as the universal covers) are exactly maps that induce isomorphisms on rationalized ho-
motopy groups. �

We would like to point out that in this corollary we do not need any finiteness assumptions
on our spaces and that the simplicial cocommutative coalgebra of chains is therefore a com-
plete invariant of the π1-rational homotopy type of reduced Kan complexes. The π1-rational
homotopy type was also studied in [GHT00], where they constructed a version of the minimal
models for certain finite type spaces. Their results unfortunately had rather strong finiteness
assumptions that for example excluded simple spaces like S1 ∨ S3.
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7. The integral case for spaces with universal cover of finite type

In this section we apply the algebraic machinery developed in sections 4 and 5 to prove a
partial case of the conjecture posed in the introduction. First, one of the directions of the
conjecture holds in complete generality.

Theorem 43. If X and Y are homotopy equivalent reduced Kan complexes then the connected
simplicial cocommutative coalgebras of integral chains ZX and ZY are Ω-quasi-isomorphic.

Proof. The proof for this fact follows by exactly the same argument as in the proof of the
forward direction of Theorem 41, which holds for any integral domain R. Note that a map is
a π1-Z-equivalence if and only if it is a weak homotopy equivalence. �

A simplicial R-coalgebra C is said to be R-projective if each Cn is a projective R-module.
Note that when R = Z this is equivalent to a simplicial coalgebra C such that each Cn is free
as an abelian group. We further say that that the simplicial R-coalgebra C is of finite type if
H∗(C) is finitely generated as an R-module in each degree. The combination of projective and
finite type implies that we can dualize and use cochains instead of chains without losing any
homotopical information. We prove a special case of the converse direction of our conjecture
by applying our algebraic methods together with the main theorem of [M06], which says that
the integral E∞-algebra of singular cochains determines finite type nilpotent homotopy types,
at the level of universal covers.

Theorem 44. Let X and Y be two reduced Kan complexes whose universal covers are of
finite type. If ZX and ZY can be connected by a zig-zag of Ω-quasi-isomorphisms of connected
simplicial cocommutative Z-projective coalgebras, then X and Y are homotopy equivalent.

Proof. Suppose that ZX and ZY can be connected by a zig-zag of Ω-quasi-isomorphisms of
connected simplicial cocommutative Z-projective coalgebras

ZX
≃Ω−−→ C1

≃Ω←−− · · ·
≃Ω−−→ Cn

≃Ω←−− ZY.

By Theorem 26, π1(X) ∼= π1(Y ) := π1. By Theorems 26 and 38 we obtain a zig-zag of
simplicial cocommutative coalgebras

ZX̃
≃
−→ C̃1

≃
←− · · ·

≃
−→ C̃n

≃
←− ZỸ

where each object is a simplicial cocommutative Z-projective coalgebra equipped with a
natural π1-action and each map is a π1-equivariant quasi-isomorphism.

If C is any simplicial cocommutative coalgebra, then the dg coassociative coalgebra of
normalized chains N∗(C) has a natural E∞-coalgebra struture through the construction de-
scribed in [BF04]. We remark here that strictly speaking Mandell’s results require a cofibrant
E∞-operad, while the Barratt-Eccles operad which Berger and Fresse use is just a Σ-cofibrant
operad, this can be fixed by taking a cofibrant replacement. If C = ZS for some simplicial set
S, this recovers the E∞-coalgebra of normalized chains on the simplicial set S. Moreover, if C
is Z-projective, so is N∗(C). Applying the normalized chains functor to the above zig-zag we
obtain a zig-zag of π1-equivariant quasi-isomorphisms between Z-projective E∞-coalgebras

N∗(ZX̃)
≃
−→ N∗(C̃1)

≃
←− · · ·

≃
−→ N∗(C̃n)

≃
←− N∗(ZỸ ).

Since each object above is Z-projective, if we take linear duals (i.e. apply HomZ( ,Z)) we
obtain a zig-zag of π1-equivariant quasi-isomorphisms of E∞-algebras

N∗(ZX̃)
≃
←− N∗(C̃1)

≃
−→ · · ·

≃
←− N∗(C̃n)

≃
−→ N∗(ZỸ ).
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Since X̃ and Ỹ are of finite type by assumption, the main theorem in [M06] implies that X̃

and Ỹ are homotopy equivalent. Furthermore, we may conclude X̃ and Ỹ are π1-equivariantly
homotopy equivalent. In fact, Mandell proves the main theorem in [M06] by constructing a
map

ǫ : [N∗(ZỸ ), N∗(ZX̃)]E∞
→ [X̃, Ỹ ]

which is natural at the level of homotopy categories, where [ , ]E∞
and [ , ] denote the Hom

sets in the homotopy category of E∞-algebras and spaces, respectively, see Theorem 0.1 of
[M06]. By fixing a functorial fibrant and cofibrant replacements, ǫ may be constructed so
that it associates functorially a zig-zag of maps of spaces to any zig-zag of maps between E∞-
algebras before passing to the homotopy category. Hence, this model for ǫ sends a zig-zag of
π1-equivariant maps of E∞-algebras to a zig-zag of π1-equivariant maps between spaces. The
desired conclusion now follows by taking Borel constructions as in the proof of Proposition
39.

�

Remark 45. It seems plausible that if E∞-algebras are replaced by flat E∞-coalgebras the
finite type assumption in Mandell’s theorem might be dropped. Such a version of Mandell’s
theorem could be used to prove the conjecture from the introduction. Another approach
could be to prove an integral version of Theorem 10 (Theorem D in [G95]). Proving such a
theorem is beyond the scope of this paper and will be the topic of future work.
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